{f’ TEXAS

INSTRUMENTS

Multi-Channel Video Input Port (MCVIP)

Document Revision 1.02

TVP5158 Software Driver User Guide

Copyright © Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 26

{f’ TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI's standard warranty. Testing and other quality control techniques are utilized to the extent Tl deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of Tl covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI's publication of information regarding any third party’s products or
services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and Tl is neither responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by Tl for
that product or service voids all express and any implied warranties for the associated Tl product or service, is
an unfair and deceptive business practice, and Tl is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2010, Texas Instruments Incorporated

Page 2 of 26

Q’ TEXAS
INSTRUMENTS

Revision History

Version Date Revision History
1.00 18 Jan 2010 First Draft
1.01 19 Jan 2010 Updated based on review comments
1.02 13 May 2011 Updated feature supported

Page 3 of 26

Q’ TEXAS
INSTRUMENTS

TABLE OF CONTENTS

IMPORTANT NOTICE .tutitiitiitiiseineseieresesassassassassassansansansssssne e saerarsansansanaansaneanesnsnnes 2
1 3 o e [¥ T ot o o 4
1.1 L A= YT 4
1.2 Software Driver : Features SUpPpPOrtedcocviiiiiiiii i 5
1.3 Software Driver : Features Not Supportedccooiiiiiiiiiiiii e 5
2 TOp Level DeSIgN .ouciuiieiicieiiniranie s sassa st sassasassasassasassasassnsassasassnsassnsnsnnsnnnns 6
2.1 TVP5158 and HOSt processor iNterfaCe ...vuveiieiiriiii i aeaaeeas 6
2.2 SOftWAre DriVer STrUCTUNE .viriiriiiii i e e e s n e s a e e reaneanenns 7
3 Application Interface (API)ccciiciiiiimiemresrssras s ssasssasssasssasssanssansnnnsnnnnns 8
3.1 I =Y o == 8
3.2 TN CIUAE fIlES ettt e e 8
3.3 L0 =] = o 8
3.4 1= 1= 1 o U ot o B =T PP 10
3.5 U o Yot o T o =P 11
4 Sample API USage SeQUENCE iiuuirumiramtrantrantrantrassrasssasssssssssssssssssssanssnnsnnnnnnnns 16
5 Comparison with V4L2 interfacecccciiiiiii i irssinsssns s snn s snnssnnssnnssnnnsnnnss 20
6 Output Data format and system data flow........cccciiiiisiiis i ir s rr v v ena e e 22
7 Resource and Performance Benchmarkscccccviimirii i v s s sne s snasnanas 23
7.1 T o I8 o I g <To UL =] =]] = PP 23
7.2 L = U 10 - T | o e 23
8 DVSDK / LSP dependenCie@S . ..ccuucirimimicimimrsmmsesssssssssssssssasssasssnsssanssnnsnnnsnnnnns 24
8.1 15 U] 0] olo] g =T BNV =T o] o 1= PP 24
8.2 Migration tO Other VErSIONS ... v e e e e aae s 24
9 Source code informationcciveciieciieirnsirs s irs s sy 25
10 Other Useful INformationcccciieiierierieremresremassassanssnssnssnssessnssassassansansnnnns 26
10.1 TVP5158 patch download ..o e e e 26
1 Introduction

1.1 Overview

TI TVP5158 video decoder is a multi-channel video decoder with capability to send
multiple channels of video streams over a single 8-bit/16-bit BT656/BT1120
embedded sync interface.

For TVP5158 device specific information refer to TVP5158 data sheet.
(http://focus.ti.com/docs/prod/folders/print/tvp5158.html)

Page 4 of 26

http://focus.ti.com/docs/prod/folders/print/tvp5158.html

{i’ TEXAS

INSTRUMENTS

This document explains the details of the TVP5158 software device driver that is
used by applications, running on a host processor like DM365, DM6467, to capture
and process multiple channels of video streams.

This document explains the multi-channel driver interface (MCVIP) that is used by
applications to get the video data. This document also provides information about
top-level design, host platform specific details like performance, system data-flows,
source code information etc.

1.2 Software Driver : Features Supported

Refer to Release notes for video modes supported.
NTSC/PAL video source
Integrated, low CPU overhead software demuxing logic

Multi-channel Video Input Port (MCVIP) interface for low overhead exchange of
buffers between drivers and application

Same MCVIP interface is used for multiple platforms, making applications
portable across platforms

MCVIP interface is similar in behavior to V4L2 interface, making it easy to
migrate existing single-CH V4L2 applications to make use of this multi-channel
interface.

User Configurable I2C device address for portability across customer hardware
boards

Audio capture support
Supports DM365 platform

1.3 Software Driver : Features Not Supported

Non multiplexed capture, pixel multiplexed capture support not present in
software driver

V4L2 interface not supported. The driver application interface is a special MCVIP
interface optimized for multi-channel operation.

Does not support DM646 platform

Page 5 of 26

¥ 1,

EXAS
INSTRUMENTS

2.1

Top Level Design

TVP5158 and Host processor interface
Figure below shows connection between TVP5158 and DMxxx host video port.

As shown below a single video port is used to send data from multiple video
sources.

This is achieved by TVP5158 multiplexing data on a line-by-line basis and then
sending the multiplexed “super”-frame to the DMxxx host.

In the super-frame for every line the TVP5158 tags each line with CH ID, line
number and other information. This meta-data is part of the super-frame data.

To the DMxxx host this super-frame stream appears as a normal BT656/BT1120
data source. And the video port of DMxxx captures the super-frame along with
the per line meta data to its DDR external memory.

The TVP5158 software driver then interprets this meta-data for every line and
then DMAs the actual line active data to channel specific frame buffers.

Once a channel frame buffer is complete i.e all lines of the frame are received,
the driver marks the buffers as “filled”.

When the application issues a API call to get the captured frames, the driver
returns the captured frame to the application

Once the application has processed this captured frame, it returns the buffer back
to the driver, so that the driver can reuse this buffer for subsequent frame
captures.

- e DVO_ALT] 8-Ch CIF P
o N2 TVP 5158 oLk BBRiL@S«MHZ : -
S MN_3 DVO_D[710]
[= [y SSS—— YR OCLKNCLKIN
3
1 R2C
Y
s DWO_A_[7:0]
g] 5158 OCLK_P oh CIF —1
-| o RG] I UI .l,1
S wfuns SER@2TMHz= DM 6467
DaVinci HD
I e LR DWO_A_[T0] 8-Ch CIF o] vRF_ &
= e - QCLK_P P -
::j TVP 5158 BBILE SMH =z
DG D [70] [
=1 A OCLKNACLKN
F B2C
L]
_— VL WO _A_[7:0]
L I m—— P OCLK P
] |, TVP5158 4-Ch CIF
w3 ABIUD 2TMHz
e
Figure 1. Example, 16CH CIF capture using 4 TVP5158 over two

video ports with DM6467 as host

Page 6 of 26

{i’ TEXAS

INSTRUMENTS

2.2

Software Driver Structure
The software driver structure is shown in the below figure

As shown below the user application will use the MCVIP interface to configure,
control the TVP5158 and capture de-multiplexed frames

MCVIP User space library implements the super-frame capture, demuxing, 12C
programming logic for the TVP5158 and also handles the exchanges of channel
frame buffers between the driver and the application

The DMA driver is used to implement efficient line-by-line DMA which is used by
the demuxing logic.

The I2C driver is used to do send commands over I12C to the TVP5158 device

The DRV user space library provides the interface to the DMA and I2C driver
which are implemented as kernel loadable modules

The OSA library provides utility functions to create tasks, message queues, frame
queues and so on, which help in implementing buffer exchange between
application and driver

The video port capture driver is used to program the platform specific video port
in order to capture the super frames from the TVP5158 device.

User Application

JC

MCVIP Application Interface MCVIP User Space Interface

(mcvip.h)
1C

Video Port Capture | |Demux Logic | [I2C programming MCV.IP User Space Library
~ -~ ~ (mcvip.a)
| | | |
=~ =~ DRV User Space library -
DMA 12C DMA and 12C driver (drv.a)

OSA OS Abstraction User Space
Library based on pthreads
(osa.a)
- = = =

\/
Video Port Capture EDMA 12C Kernel mode driver
Driver Driver Driver (/dev/videoO, /dev/videol)

and/or kernel loadable
modules. (drv.ko, /dev/idma ;
csl.ko, /devicslIx)

Figure 2. Software Driver Structure

Page 7 of 26

Q’ TEXAS
INSTRUMENTS

3 Application Interface (API)

3.1 Libraries

User Space Libraries - application must link to these libraries

Mcvip.a MCVIP TVP5158 user space driver
Drv.a DMA and I2C user space driver
Osa.a OS Abstraction library for buffer and task control

Csl.a (only in DM365)

CSL user space driver for DM365 video port

Kernel Space modules

- application must load these before executing the application

Drv.ko

DMA and I12C kernel side driver implementation

Csl.ko (only in DM365)

Video Port driver for DM365 ISIF (video port).

Note, in DM6467 video port driver is part of the base kernel image
itself

3.2 Include files

Interface header files

- application must include these files in their application to make

use of the MCVIP interface

Mcvip/inc/mcvip.h

MCVIP interface header file.

Include Path - application must include the below paths in their compile include search

path
Mcvip/inc MCVIP interface header file path.
Osa/inc OSA header file include path, osa.h file is included by mcvip.h

3.3 Constants

Below constants are defined in mcvip.h

Video Input Port ID

MCVIP_VIDEO_INPUT_PORT_O Video Port 0

MCVIP_VIDEO_INPUT_PORT_1 Video Port 1 (only in DM6467)

MCVIP_VIDEO_INPUT_PORT_MAX Max supported video ports

Video capture and demuxing thread priority

MCVIP_CAPTURE_THR_PRI_LOW Lowest priority

MCVIP_CAPTURE_THR_PRI_MED Medium priority

MCVIP_CAPTURE_THR_PRI_HIGH Highest priority (recommended)

Video Decoder ID

MCVIP_VIDEO_DECODER_ID_TVP5158 TVP5158 - as of now only TVP5158 is
supported

Page 8 of 26

Q’ TEXAS
INSTRUMENTS

Video Decoder Mode - uncropped modes

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_A

2CH D1 via TVP5158 Port A

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_B

2CH D1 via TVP5158 Port B

MCVIP_VIDEO_DECODER_MODE_4CH_D1 4CH D1
MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1 4CH Half-D1
MCVIP_VIDEO_DECODER_MODE_4CH_CIF 4CH CIF

MCVIP_VIDEO_DECODER_MODE_4CH_D1_16

4CH D1 16-bit BT1120 mode (only in
DM6467)

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_16

4CH Half-D1 16-bit BT1120 mode
(only in DM6467)

MCVIP_VIDEO_DECODER_MODE_8CH_HALF_D1

8CH Half-D1 cascaded mode

MCVIP_VIDEO_DECODER_MODE_8CH_CIF

8CH CIF cascaded mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_PLUS_D1

4CH Half-D1 + 1CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF_PLUS_D1

4CH CIF + 1CH D1

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_PLUS_D1

8CH CIF + 1 CH D1

Video Decoder Modes - cropped (only in DM6467)

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_A_CROP

2CH D1 via TVP5158 Port A

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_B_CROP

2CH D1 via TVP5158 Port B

MCVIP_VIDEO_DECODER_MODE_4CH_D1_CROP 4CH D1
MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_CROP 4CH Half-D1
MCVIP_VIDEO_DECODER_MODE_4CH_CIF_CROP 4CH CIF

MCVIP_VIDEO_DECODER_MODE_4CH_D1_16_CROP

4CH D1 16-bit BT1120 mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_16_CROP

4CH Half-D1 16-bit BT1120 mode

MCVIP_VIDEO_DECODER_MODE_8CH_HALF_D1_CROP

8CH Half-D1 cascaded mode

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_CROP

8CH CIF cascaded mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_PLUS_D1_CROP

4CH Half-D1 + 1CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF_PLUS_D1_CROP

4CH CIF + 1CH D1

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_PLUS_D1_CROP

8CH CIF + 1 CH D1

Video Interface

MCVIP_VIDEO_IF_MODE_BT656

8-bit BT656 interface

MCVIP_VIDEO_IF_MODE_BT1120

16-bit BT1120 interface

Video System

MCVIP_VIDEO_SYSTEM_NTSC

NTSC video system

MCVIP_VIDEO_SYSTEM_PAL

PAL video system

Buffer flags

Page 9 of 26

Q’ TEXAS
INSTRUMENTS

MCVIP_FLAG_ENCODER_DONE

Mark buffer as processed by encoder

MCVIP_FLAG_DISPLAY_DONE

Mark buffer as processed for display

MCVIP_FLAG_ALL_DONE

Mark buffer as processed by all
including encoder and display

Other constants

MCVIP_CHANNELS_MAX

Maximum channels per MCVIP handle

MCVIP_TVP5158_MAX_CASCADE

Max TVP5158 that can be connected
in cascade

MCVIP_BUF_PER_CH_MIN

Minimum buffers that are needed to
be provided by application per CH to
the driver

MCVIP_BUF_MAX

Max number of buffer's for all CH’'s
that can be provided by application to
the driver

3.4 Data structures

Below data structures are defined in mcvip.h

MCVIP_CreatePrm - parameter

structure that is passed as input during MCVIP_create

int videoInputPort

video input port ID, MCVIP_VIDEO_INPUT_PORT_O or
MCVIP_VIDEO_INPUT_PORT_1

int captureThrPri

capture thread priority, 1 to 100. User can also use
MCVIP_CAPTURE_THR_PRI_xxx

int videoDecoderld

Video decoder ID, MCVIP_VIDEO_DECODER_ID_xxx

int videoDecoderMode

Video decoder mode,
MCVIP_VIDEO_DECODER_MODE_ xxx

int videoIfMode

Video interface mode, MCVIP_VIDEO_IF_MODE_BTxxx

int videoSystem

Video system, MCVIP_VIDEO_SYSTEM_ xxx

int numBuf Number of buffer's to use for capture, must be >=
(number of channels * MCVIP_BUF_PER_CH_MIN)

int bufSize Size of each buffer, must >= ROUND(frame width, 32)*
frame height*2

Uint8 Physical buffer address of each buffer, must be 32byte

*bufPhysAddr[MCVIP_BUF_MAX]

aligned - must be contiguous in memory, use a memory
allocator like CMEM to allocate contiguous buffers

Uint8
*bufVirtAddr[MCVIP_BUF_MAX]

Virtual buffer address of each buffer, must be 32byte
aligned - must be contiguous in memory, use a memory
allocator like CMEM to allocate contiguous buffers

MCVIP_BufInfo - buffer information. User can use this when extracting information about

a captured buffer. User should tre

at this information as READ-ONLY

int chId

Channel ID (0..MCVIP_CHANNELS_MAX-1)

Page 10 of 26

Q’ TEXAS
INSTRUMENTS

int flags

Used internally, SHOULD NOT BE MODIFIED BY USER

unsigned char *physAddr

Buffer physical address

unsigned char *virtAddr

Buffer virtual address

int timestamp

Buffer timestamp in msecs

MCVIP_ChInfo - channel specific information.

int width data width, in pixels

int height data height, in lines

int offsetH horizontal line offset, in pixels

int offsetV vertical line offset, in lines, (In DM6467, for YUV422SP

data format, chroma data offset =
lineOffsetH*lineOffsetV bytes)

MCVIP_Chlist - information of all channels

int numCh

Number of channels (0..MCVIP_CHANNELS_MAX-1)

MCVIP_ChInfo
infolMCVIP_CHANNELS_MAX]

Channel specific information

35 Functions

Below functions are defined in mcvip.h

int MCVIP_init(int devAddr[], int max_tvp5158, int audio_flag);

Description | This function should be called by application during system init. This sets up

of the host.

the I12C addresses for the TVP5158 devices connected to various video ports

Parameters

int devAddr([]
port

I2C device addresses for each TVP5158 cascade stage and each video

int max_tvp5158

Max TVP5158’s connected in cascade mode
1: One TVP5158 connected to one video port

2: Two TVP5158 connected in cascade to one video port

int audio_flag

1: Init audio

Flag to control audio initialization during TVP5158 init

0: Do not init audio

Return Value

OSA_SOK on success, else failure

int MCVIP_exit();

Description | This function should be called by application during system exit. This free’s

up system resources allocated during MCVIP_init()

Parameters

NONE

Page 11 of 26

Q’ TEXAS
INSTRUMENTS

Return Value

OSA_SOK on success, else failure

void *MCVIP_create(MCVIP_CreatePrm *prm);

Description

Creates a thread for capturing data and allocates required resources specific
to a video input port

Should be called for each HW Video Input port, with appropriate input port ID

On success it returns a handle to the MCVIP driver instance. This handle
should be used in subsequent MCVIP API calls

Parameters

MCVIP_CreatePrm Create time parameters

*prm

Return Value

MCVIP driver instance handle pointer on success, else NULL on failure

int MCVIP_delete(void *hndl);

Description

Delete's the thread and other related resources allocated during
MCVIP_create for that driver instance

Parameters

void *hndl

Driver instance handle

Return Value

OSA_SOK on success, else failure

int MCVIP_start(void *hndl);

Description

Start capture of video frames from TVP5158

This programs the I2C register in the TVP5158, including TVP5158 patch
download, if required, and then starts the video port to begin capture of
super-frame data

Parameters

void *hndl

Driver instance handle

Return Value

OSA_SOK on success, else failure

int MCVIP_stop(void *hndl);

Description

Stop capture of video frames from TVP5158

Parameters

void *hndl

Driver instance handle

Return Value

OSA_SOK on success, else failure

int MCVIP_getChList(void *hndl, MCVIP_ChList *chInfo);

Description

Get channel specific info

Parameters

Page 12 of 26

{i’ TEXAS

INSTRUMENTS

void *hndl Driver instance handle
MCVIP_ChList [OUT] Channel info
*chInfo

Return Value

OSA_SOK on success, else failure

int MCVIP_getBuf(void *hndl, int *id, unsigned int timeout);

Description

Get a demuxed frame buffer.

This function returns a buffer ID, to get buffer info use the API
MCVIP_getBufInfo() with this ID as parameter

Parameters

void *hndl Driver instance handle

int *id [OUT] Buffer ID

unsigned int OSA_TIMEOUT_NONE - no timeout, non-blocking API. If no buffer is
timeout available -1 ID is returned and return status is -1

OSA_TIMEOUT_FOREVER - block until at least one buffer is available,
i.e blocking API

Return Value

OSA_SOK on success, else failure

int MCVIP_putBuf(void *hndl, int id, int flags);

Description

Release a demuxed frame buffer back to driver

Typically, there are two tasks that could use the captured buffer
1. For encoding

2. For display

Since these tasks can happen asynchronously with each other, the capture
buffer should be released to driver only when both encoding and display of
the buffer is done.

To achieve this, user should set 'flags' parameter appropriately when calling
this API.

Set flags according to the task that has completed using this buffer

i.e if display task is done using the buffer set flag to
MCVIP_FLAG_DISPLAY_DONE

if encoder task is done using the buffer set flag to
MCVIP_FLAG_ENCODER_DONE

Only when both MCVIP_FLAG_DISPLAY_DONE,
MCVIP_FLAG_ENCODER_DONE are done is the buffer released

In case both encode processing and display happen in the same task and
user wishes to release the buffer in one go then they should use the flag
MCVIP_FLAG_ALL_DONE

Parameters

Page 13 of 26

P TEXAS
INSTRUMENTS

void *hndl Driver instance handle
int id buffer ID — same as the one got during MCVIP_getBuf
int flags MCVIP_FLAG_xxx_DONE

Return Value

OSA_SOK on success, else failure

MCVIP_BufInfo *MCVIP_getBufInfo(void *hndl, int id);

Description

Get buffer info for a particular buffer ID

User gets a buffer ID when MCVIP_getBuf() API is called. Use this API to get
the buffer information for a buffer ID.

Note, this function returns a pointer to driver internal buffer information
structure. Hence user should treat the returned information as READ ONLY.
No fields of the return pointer structure should be modified by the user.

Parameters
void *hndl Driver instance handle
int id Buffer ID

Return Value

Returns pointer to buffer information structure (MCVIP_BufInfo *)

If buffer ID is invalid or incase of error, it returns NULL

int MCVIP_saveFrame(void *hndl);

Description

This is a utility API to save one frame of super frame data. This is meant for
debugging and would typically not be used by the application

Parameters

void *hndl

Driver instance handle

Return Value

OSA_SOK on success, else failure

int MCVIP_getNumCh(int videoDecoderMode);

Description

Utility API which returns number of video channels that are associated with a
given video decoder mode.

This API is useful when setting values for MCVIP_CreatePrm

Parameters

int
videoDecoderMode

Video decoder mode, MCVIP_VIDEO_DECODER_MODE_xxx

Return Value

number of video channels

int MCVIP_getBufSize(int videoDecoderMode, int videoSystem);

Description

Utility API which returns size of a video frame buffer for a given mode, video
system.

This API is useful when setting values for MCVIP_CreatePrm

Page 14 of 26

Q’ TEXAS
INSTRUMENTS

This API is also useful for calculating size of buffer to be allocated by the

user.

Parameters

int Video decoder mode, MCVIP_VIDEO_DECODER_MODE_xxx
videoDecoderMode

int videoSystem Video system, MCVIP_VIDEO_SYSTEM_ xxx

Return Value size of a video frame buffer, in bytes

Page 15 of 26

Q’ TEXAS
INSTRUMENTS

4 Sample APl Usage Sequence
The typically sequence of API usage is given below with examples
1. System init - MCVIP_init()
2. Create driver instance - MCVIP_create()
o TVP5158 mode init and video port init for a specific mode
Get channel info — MCVIP_getChList()
Capture start - MCVIP_start()
Get captured frame - MCVIP_getBuf()
Get captured frame info — MCVIP_getBufInfo()
Process this captured frame, i.e resize, encode, display etc
Release capture frame buffer - MCVIP_putBuf()

© ® N o UKW

Repeat steps 5-8 continuously until user is done
10. Capture stop - MCVIP_stop()

11. Delete driver instance — MCVIP_delete()

12. System exit - MCVIP_exit()

An example code snippet showing above sequence is given below. Note, this code
has been simplified and limited error checking is done for the sake of clarity.

#include <osa cmem.h>
#include <drv.h> // only in DM365
#include <mcvip.h>

void *gMcvipHndl;
MCVIP ChList gChInfo;

MCVIP CreatePrm gCreatePrm;

int SYS run()

{

int status;

status = SYS init();
if (status==0SA SOK) {
status = CAPTURE_ start();
if (status==0SA SOK) {
status = CAPTURE loop();
CAPTURE_stop () ;
}

SYS exit ();

Page 16 of 26

*ﬂ’ TEXAS
INSTRUMENTS

return status;

int SYS init()
{

int devAddr([2], status;

// memory allocator init, needed by MCVIP

CMEM init () ;

// EDMA, I2C driver init

DRV_init(); // only in DM365

// TVP5158 I2C device address

devAddr[0] = 0xBO;

devAddr([1l] = 0xB2; // cascaded TVP5158, if present, else set to OxFF
status = MCVIP init (devAddr, 2, 1);

return status;

int CAPTURE start()
{
Uint8 *virtAddr;

int bufId;

gCreatePrm.videoInputPort = MCVIP VIDEO INPUT PORT O0;
gCreatePrm.captureThrPri = MCVIP CAPTURE THR PRI HIGH;
gCreatePrm.videoDecoderId = MCVIP VIDEO DECODER ID TVP5158;
gCreatePrm.videoDecoderMode = MCVIP_VIDEO DECODER MODE 8CH CIF;
gCreatePrm.videoIfMode = MCVIP VIDEO IF MODE BT656;
gCreatePrm.videoSystem = MCVIP VIDEO SYSTEM NTSC;
gCreatePrm.numBuf = MCVIP getNumCh (gCreatePrm.videoDecoderMode) * MCVIP BUF PER CH MIN;
gCreatePrm.bufSize = MCVIP getBufSize (gCreatePrm.videoDecoderMode, gCreatePrm.videoSystem);
for (bufId=0; buflId<gCreatePrm.numBuf; bufId++)
{
virtAddr = OSA cmemAlloc (gCreatePrm.bufSize, 32);
gCreatePrm.bufVirtAddr [bufId] = virtAddr;

gCreatePrm.bufPhysAddr [bufId] = OSA cmemGetPhysAddr (virtAddr) ;

gMcvipHndl = MCVIP create (&gCreatePrm);
if (gMcvipHndl==NULL)

return -1;

Page 17 of 26

*ﬂ’ TEXAS
INSTRUMENTS

MCVIP getChList (gMcvipHndl, &gChInfo);
MCVIP start (gMcvipHndl);

return 0;

int CAPTURE loop ()
{
int buflId, status;

MCVIP BufInfo *pBuf;

while (1) {
status = MCVIP getBuf (gMcvipHndl, &bufld, OSA TIMEOUT FOREVER) ;
if (status!=0SA SOK || bufId < 0)

return -1;

pBuf = MCVIP getBufInfo (gMcvipHndl, bufId);

/* process buffer pBuf
pBuf->chId is the channel to which this buffer belongs
pBuf->timestamp is buffer time stamp
pBuf->physAddr is the buffer physical address
pBuf->virtAddr is the buffer virtual address
*/
/* channel info for this buffer is
gChInfo.chList [pBuf->chId].width
gChInfo.chList [pBuf->chId].height
gChInfo.chList [pBuf->chId].offsetH
gChInfo.chList [pBuf->chId].offsetV
*/

MCVIP putBuf (gMcvipHndl, bufld, MCVIP FLAG ALL DONE) ;

// check stop condition and break loop when done

}

return 0;

void CAPTURE stop ()

{
int bufId;

MCVIP stop (gMcvipHndl) ;

Page 18 of 26

{5’ TEXAS
INSTRUMENTS

MCVIP delete (gMcvipHndl) ;
for (bufId=0; buflId<gCreatePrm.numBuf; bufId++)

OSA cmemFree (gCreatePrm.bufVirtAddr [bufld]);

voild SYS exit ()
{
MCVIP exit();
DRV _exit(); // only in DM365

CMEM exit () ;

Page 19 of 26

Q’ TEXAS
INSTRUMENTS

5 Comparison with V4L2 interface

The MCVIP interface used for the TVP5158 driver is different from the V4L2 interface
typically used by linux application for video data capture.

The reasons for not using the V4L2 interface for the TVP5158 driver are given below,

1. V4L2 interface is designed with single channel per video port capture kind of
system. So multi-channel V4L2 capture can be supported in a system if there
are as many video ports in the system. However in a TVP5158 based system,
we need to receive multiple channels over the same video port. Such a
system scenario is difficult to fit and implement with a V4L2 interface

2. For implementing the TVP5158 driver there needs to be a separate thread
inside the driver for doing the demultiplexing operation. This thread is
required so that the demux operation does not block the main application
thread. In a V4L2 kind of interface, typically, the complete driver is
implemented in the kernel space. However for TVP5158 driver demuxing
thread, it is difficult to create an independent thread in the kernel space, due
to which significant part of the driver resides in the user space. It would have
been difficult to implement the complete TVP5158 driver only in kernel space.

Even though the TVP5158 driver is not based on V4L2 interface, the MCVIP interface
is designed to be similar to V4L2 interface so that it is relatively straight forward to
migrate single channel V4L2 based applications to make use of the multi-CH MCVIP
interface.

The correspondence between MCVIP and V4L2 APIs is shown in the below table.

This will help users to migrate their V4L2 applications.

MCVIP Interface V4L2 Interface

MCVIP_init() NONE - V4L2 init happens during kernel init
Sequence of below function calls, Sequence of below function calls,
MCVIP_create() Open(/dev/videoX)

MCVIP_getChInfo() Ioctl VIDIOC_QUERYCAP

Ioctl VIDIOC_ENUMINPUT

Ioctl VIDIOC_S_INPUT

Ioctl VIDIOC_S_STD

Ioctl VIDIOC_S_FMT

Ioctl VIDIOC_REQBUFS

Ioctl VIDIOC_QBUF - initial buffer queueing

or priming
MCVIP_start() Ioctl VIDIOC_STREAMON
Sequence of below function calls, Ioctl VIDIOC_DQBUF

MCVIP_getBuf()
MCVIP_getBufInfo()

Page 20 of 26

{i’ TEXAS

INSTRUMENTS

MCVIP_putBuf() Ioctl VIDIOC_QBUF

MCVIP_stop() Ioctl VIDIOC_STREAMOFF

MCVIP_delete() Close()

MCVIP_exit() NONE - V4L2 system shutdown happens
during kernel shutdown

Page 21 of 26

Q’ TEXAS
INSTRUMENTS

6

Output Data format and system data flow

The data format, that is output from or input to different modules on host system, is
different in different platforms as shown below,

Video port | MCVIP Display H264 Data format
output Output Input Encoder Conversion HW
Input
DM365 YUV422 ILE | YUV422 ILE | YUV420 SP YUV420 SP | HW: Resizer
or Input: YUV422 ILE
YUV422 ILE Output: YUV420 SP

DM6467 | YUV422 SP | YUV422 SP | YUV422 SP YUV420 SP | HW: VDCE

Input: YUV422 SP
Output: YUV420 SP

Note,

- YUV422 ILE means YUV422 InterLEaved. Here data is arranged as UYVY ... in
memory, i.e luminance and chrominance data are interleaved in memory

- YUV422 SP means YUV422 Semi-Planer. Here data is divided into two planes,
first plane has luminance data arranged as YYYY... Second plane has
chrominance data arrange as UVUV .., luminance data is separated from
chrominance and chrominance data is interleaved

- YUV420 SP means YUV420 Semi-Planer. This is similar to YUV422 SP except that
chrominance plan is further sub-sampled vertically.

Note,

- MCVIP Output format will always be same Video port output format, i.e MCVIP
driver does NOT do any data format conversion.

In order to build a video capture+display+encode system, application needs to make
sure that it passes data to different modules in compatible data formats and does
data format conversion, using appropriate HW, when required.

Example, data flow for H264 encode system for DM365 is shown below,
MCVIP > DDR (YUV422 ILE) > HW RESZ (out A) > DDR (YUV420SP) > H264 Encode
L (out B)> DDR (YUV420SP) > EDMA - DDR (YUV420SP) - Display

Example, data flow for H264 encode system for DM6467 is shown below,
MCVIP - DDR (YUV422 SP) > HW VDCE - DDR (YUV420SP) > H264 Encode
|> EDMA > DDR (YUV422SP) - Display

Page 22 of 26

¥ 1,

EXAS

INSTRUMENTS

7 Resource and Performance Benchmarks

7.1 Resource requirements

EDMA Channels 1

EDMA PaRAM entries 24

7.1.1 Note about EDMA PaRAM Entries
The EDMA PaRAM entries used by the driver can be modified by changing the below
constant and then recompiling the user as well as kernel side driver and reloading
the kernel modules.
FILE: drv/inc/drv_dma.h
// must be multiple of 2, must be >=2
#define DRV_DMA_MAX_DEMUX_PARAM (24)
Users can reduce this to reduce the number of EDMA PaRAM entries, if they need to
use the PaRAM entries for some other driver or algorithm/codec
However, the value of this #define affects system CPU loading. If the value is too low
the CPU loading increases.
In general a value of 24 has been found to be high enough to reduce CPU loading
and low enough so as keep sufficient PaRAM entries free for other drivers and
algorithms/codecs

7.1.2 Note about EDMA channels
One EDMA channel is needed for demuxing the received super-frame into individual
channel frames. In case user falls short of EDMA channels on the linux system then
they can increase the number of EDMA channels available for linux side system by
modifying the kernel EDMA configuration header file (ti-davinci/include/asm-
arm/arch-davinci/edma.h, EDMA_DMxxxx_CHANNEL_TO_EVENT_MAPPING_x). Refer
to LSP documentation for details.

7.2 CPU Loading
Due to the demuxing logic and interrupt overhead due to line-by-line DMA, the
TVP5158 driver adds some CPU loading as shown below. This assumes I-cache and
D-cache is ON in the ARM processor.

Video Decoder Mode ARM Total Mhz ISR Mhz Thread Mhz

(ISR + Thread)

2CH D1 17 Mhz 8 Mhz 9 Mhz

4CH CIF

4CH D1 34 Mhz 16 Mhz 18 Mhz

4CH Half-D1

8CH CIF

4CH Half-D1 + 1CH D1 51 Mhz 24 Mhz 27 Mhz

Page 23 of 26

Q’ TEXAS
INSTRUMENTS

8 DVSDK / LSP dependencies

8.1 Supported versions

Please refer to Release Notes for the LSP and DVSDK versions against which
TVP5158 driver is implemented.

8.2 Migration to other versions

Usually there are significant LSP and DVSDK changes across different versions and
applications and drivers need to be specifically ported when moving across different
versions of LSP and DVSDK.

This section does not explain how to migrate to different versions but gives a feel of
what all needs to be ported when moving to a new LSP/DVSDK version.

The following parts of the driver are dependant on the LSP
e Kernel Video port driver (in DM6467)
e CSL kernel module portions (in DM365)
e DMA and I2C kernel module portions
The following parts of the driver are dependant on the DVSDK
¢ CMEM - continuous memory allocator

In general if the application is written to use only the MCVIP interface then once the
driver is migrated, application migration will be straightforward.

Page 24 of 26

Q’ TEXAS
INSTRUMENTS

9 Source code information

Refer to platform specific README.txt or relevant platform installation guide for
detailed platform specific directory structure, build and install instructions.

This section provides some information which is common to all platforms

implementing the TVP5158 driver.

Source code file summary is given below,

MCVIP

Mcvip/inc/mcvip.h

Top level MCVIP interface include file

Mcvip/priv/mcvip_priv.h

Internal Implementation header file

Mcvip/src/mcvip_api.c

MCVIP interface function implementation

Mcvip/src/mcvip_demux.c

Demux operation logic code

Mcvip/src/mcvip_tsk.c

Super-frame capture and demux thread

Mcvip/src/mcvip_tvp5158.c

TVP5158 top level control functions

Mcvip/src/mcvip_tvp5158_i2c.c

TVP5158 low level I12C programming
sequence, including patch download
sequence

Mcvip/src/mcvip_v4l2.c

Video port super-frame capture driver
wrapper, uses V4L2 in DM6467, uses CSL
interface in DM365

DRV

Drv/inc/drv_dma.h

DMA APIs used during demuxing

Drv/inc/drv_i2c.h

I12C read, write APIs

Drv/kermod/* Kernel modules to do EDMA and 1I2C
programming

Drv/usermod/* User space API implementation of EDMA and
12C

OSA

Osa/inc/osa.h

Data types

Osa/inc/osa_cmem.h

DVSDK CMEM wrapper APIs

Osa/src/* OSA implementation

TEST CODE

Test/i2crw Command line 12C read, write utility
Test/dma EDMA API unit test

Test/mcvip MCVIP API sample application

Page 25 of 26

Q’ TEXAS
INSTRUMENTS

10 Other Useful Information

10.1 TVP5158 patch download

TVP5158 has an internally ROM code, which executes when TVP5158 is powered on.
However, based on issues found during production, this ROM is “patched” to fix the
known issues. This patch code needs to be downloaded to TVP5158 at least once,
after power-on reset.

The patch code is downloaded using a specific sequence of I2C commands that are
sent to TVP5158. This patch code download is taken care by the MCVIP driver when
MCVIP_start() is called.

Below section provides additional information on how to identify the patch that is
being downloaded and steps to change patch that gets downloaded.

10.1.1 Identifying the patch that is being used with the driver
“mcvip\priv\tvp5158_patch_v02_xx_xx.h"” are the different patch files.

This .h file contains the patch code which is basically an array of byte data.
static const Uint8 gTVP5158 patch[] = { ... };

The patch that finally gets downloaded is specified below,

FILE: “mcvip\src\mcvip_tvp5158_i2c.c”
#include <tvp5158 patch_v02_xx_xx.h>

int TVP5158 patchDownload(DRV_I2cHndl *i2cHndl) function downloads the patch to
the TVP5158

10.1.2 Changing the patch that gets downloaded

To change the patch file simply copy the patch file to “*mcvip\priv” and modify the
#include in “mcvip\src\mcvip_tvp5158_i2c.c” to include this new patch file.

Page 26 of 26

