

Copyright © Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 26

Multi-Channel Video Input Port (MCVIP)

Document Revision 1.02

TVP5158 Software Driver User Guide

Page 2 of 26

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2010, Texas Instruments Incorporated

Page 3 of 26

Revision History

Version Date Revision History

1.00 18 Jan 2010 First Draft

1.01 19 Jan 2010 Updated based on review comments

1.02 13 May 2011 Updated feature supported

Page 4 of 26

TABLE OF CONTENTS

IMPORTANT NOTICE ... 2

1 Introduction ... 4

1.1 Overview... 4

1.2 Software Driver : Features Supported ... 5

1.3 Software Driver : Features Not Supported ... 5

2 Top Level Design .. 6

2.1 TVP5158 and Host processor interface .. 6

2.2 Software Driver Structure ... 7

3 Application Interface (API) .. 8

3.1 Libraries .. 8

3.2 Include files ... 8

3.3 Constants .. 8

3.4 Data structures .. 10

3.5 Functions .. 11

4 Sample API Usage Sequence .. 16

5 Comparison with V4L2 interface .. 20

6 Output Data format and system data flow .. 22

7 Resource and Performance Benchmarks .. 23

7.1 Resource requirements ... 23

7.2 CPU Loading .. 23

8 DVSDK / LSP dependencies .. 24

8.1 Supported versions .. 24

8.2 Migration to other versions .. 24

9 Source code information .. 25

10 Other Useful Information ... 26

10.1 TVP5158 patch download .. 26

1 Introduction

1.1 Overview

TI TVP5158 video decoder is a multi-channel video decoder with capability to send

multiple channels of video streams over a single 8-bit/16-bit BT656/BT1120

embedded sync interface.

For TVP5158 device specific information refer to TVP5158 data sheet.

(http://focus.ti.com/docs/prod/folders/print/tvp5158.html)

http://focus.ti.com/docs/prod/folders/print/tvp5158.html

Page 5 of 26

This document explains the details of the TVP5158 software device driver that is

used by applications, running on a host processor like DM365, DM6467, to capture

and process multiple channels of video streams.

This document explains the multi-channel driver interface (MCVIP) that is used by

applications to get the video data. This document also provides information about

top-level design, host platform specific details like performance, system data-flows,

source code information etc.

1.2 Software Driver : Features Supported

- Refer to Release notes for video modes supported.

- NTSC/PAL video source

- Integrated, low CPU overhead software demuxing logic

- Multi-channel Video Input Port (MCVIP) interface for low overhead exchange of

buffers between drivers and application

- Same MCVIP interface is used for multiple platforms, making applications

portable across platforms

- MCVIP interface is similar in behavior to V4L2 interface, making it easy to

migrate existing single-CH V4L2 applications to make use of this multi-channel

interface.

- User Configurable I2C device address for portability across customer hardware

boards

- Audio capture support

- Supports DM365 platform

1.3 Software Driver : Features Not Supported

- Non multiplexed capture, pixel multiplexed capture support not present in

software driver

- V4L2 interface not supported. The driver application interface is a special MCVIP

interface optimized for multi-channel operation.

- Does not support DM646 platform

Page 6 of 26

2 Top Level Design

2.1 TVP5158 and Host processor interface

Figure below shows connection between TVP5158 and DMxxx host video port.

- As shown below a single video port is used to send data from multiple video

sources.

- This is achieved by TVP5158 multiplexing data on a line-by-line basis and then

sending the multiplexed “super”-frame to the DMxxx host.

- In the super-frame for every line the TVP5158 tags each line with CH ID, line

number and other information. This meta-data is part of the super-frame data.

- To the DMxxx host this super-frame stream appears as a normal BT656/BT1120

data source. And the video port of DMxxx captures the super-frame along with

the per line meta data to its DDR external memory.

- The TVP5158 software driver then interprets this meta-data for every line and

then DMAs the actual line active data to channel specific frame buffers.

- Once a channel frame buffer is complete i.e all lines of the frame are received,

the driver marks the buffers as “filled”.

- When the application issues a API call to get the captured frames, the driver

returns the captured frame to the application

- Once the application has processed this captured frame, it returns the buffer back

to the driver, so that the driver can reuse this buffer for subsequent frame

captures.

Figure 1. Example, 16CH CIF capture using 4 TVP5158 over two
video ports with DM6467 as host

Page 7 of 26

2.2 Software Driver Structure

The software driver structure is shown in the below figure

- As shown below the user application will use the MCVIP interface to configure,

control the TVP5158 and capture de-multiplexed frames

- MCVIP User space library implements the super-frame capture, demuxing, I2C

programming logic for the TVP5158 and also handles the exchanges of channel

frame buffers between the driver and the application

- The DMA driver is used to implement efficient line-by-line DMA which is used by

the demuxing logic.

- The I2C driver is used to do send commands over I2C to the TVP5158 device

- The DRV user space library provides the interface to the DMA and I2C driver

which are implemented as kernel loadable modules

- The OSA library provides utility functions to create tasks, message queues, frame

queues and so on, which help in implementing buffer exchange between

application and driver

- The video port capture driver is used to program the platform specific video port

in order to capture the super frames from the TVP5158 device.

Figure 2. Software Driver Structure

MCVIP Application Interface

Video Port Capture Demux Logic I2C programming

Video Port Capture
Driver

EDMA
 Driver

I2C
 Driver

MCVIP User Space Library
(mcvip.a)

OSA OS Abstraction User Space
Library based on pthreads
(osa.a)

MCVIP User Space Interface
(mcvip.h)

User Application

DMA I2C
DRV User Space library -
DMA and I2C driver (drv.a)

Kernel mode driver
(/dev/video0, /dev/video1)
and/or kernel loadable
modules. (drv.ko, /dev/dma ;
csl.ko, /dev/cslx)

Page 8 of 26

3 Application Interface (API)

3.1 Libraries

User Space Libraries – application must link to these libraries

Mcvip.a MCVIP TVP5158 user space driver

Drv.a DMA and I2C user space driver

Osa.a OS Abstraction library for buffer and task control

Csl.a (only in DM365) CSL user space driver for DM365 video port

Kernel Space modules – application must load these before executing the application

Drv.ko DMA and I2C kernel side driver implementation

Csl.ko (only in DM365) Video Port driver for DM365 ISIF (video port).

Note, in DM6467 video port driver is part of the base kernel image

itself

3.2 Include files

Interface header files – application must include these files in their application to make

use of the MCVIP interface

Mcvip/inc/mcvip.h MCVIP interface header file.

Include Path – application must include the below paths in their compile include search

path

Mcvip/inc MCVIP interface header file path.

Osa/inc OSA header file include path, osa.h file is included by mcvip.h

3.3 Constants

Below constants are defined in mcvip.h

Video Input Port ID

MCVIP_VIDEO_INPUT_PORT_0 Video Port 0

MCVIP_VIDEO_INPUT_PORT_1 Video Port 1 (only in DM6467)

MCVIP_VIDEO_INPUT_PORT_MAX Max supported video ports

Video capture and demuxing thread priority

MCVIP_CAPTURE_THR_PRI_LOW Lowest priority

MCVIP_CAPTURE_THR_PRI_MED Medium priority

MCVIP_CAPTURE_THR_PRI_HIGH Highest priority (recommended)

Video Decoder ID

MCVIP_VIDEO_DECODER_ID_TVP5158 TVP5158 – as of now only TVP5158 is

supported

Page 9 of 26

Video Decoder Mode – uncropped modes

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_A 2CH D1 via TVP5158 Port A

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_B 2CH D1 via TVP5158 Port B

MCVIP_VIDEO_DECODER_MODE_4CH_D1 4CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1 4CH Half-D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF 4CH CIF

MCVIP_VIDEO_DECODER_MODE_4CH_D1_16 4CH D1 16-bit BT1120 mode (only in

DM6467)

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_16 4CH Half-D1 16-bit BT1120 mode

(only in DM6467)

MCVIP_VIDEO_DECODER_MODE_8CH_HALF_D1 8CH Half-D1 cascaded mode

MCVIP_VIDEO_DECODER_MODE_8CH_CIF 8CH CIF cascaded mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_PLUS_D1 4CH Half-D1 + 1CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF_PLUS_D1 4CH CIF + 1CH D1

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_PLUS_D1 8CH CIF + 1 CH D1

Video Decoder Modes – cropped (only in DM6467)

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_A_CROP 2CH D1 via TVP5158 Port A

MCVIP_VIDEO_DECODER_MODE_2CH_D1_PORT_B_CROP 2CH D1 via TVP5158 Port B

MCVIP_VIDEO_DECODER_MODE_4CH_D1_CROP 4CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_CROP 4CH Half-D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF_CROP 4CH CIF

MCVIP_VIDEO_DECODER_MODE_4CH_D1_16_CROP 4CH D1 16-bit BT1120 mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_16_CROP 4CH Half-D1 16-bit BT1120 mode

MCVIP_VIDEO_DECODER_MODE_8CH_HALF_D1_CROP 8CH Half-D1 cascaded mode

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_CROP 8CH CIF cascaded mode

MCVIP_VIDEO_DECODER_MODE_4CH_HALF_D1_PLUS_D1_CROP 4CH Half-D1 + 1CH D1

MCVIP_VIDEO_DECODER_MODE_4CH_CIF_PLUS_D1_CROP 4CH CIF + 1CH D1

MCVIP_VIDEO_DECODER_MODE_8CH_CIF_PLUS_D1_CROP 8CH CIF + 1 CH D1

Video Interface

MCVIP_VIDEO_IF_MODE_BT656 8-bit BT656 interface

MCVIP_VIDEO_IF_MODE_BT1120 16-bit BT1120 interface

Video System

MCVIP_VIDEO_SYSTEM_NTSC NTSC video system

MCVIP_VIDEO_SYSTEM_PAL PAL video system

Buffer flags

Page 10 of 26

MCVIP_FLAG_ENCODER_DONE Mark buffer as processed by encoder

MCVIP_FLAG_DISPLAY_DONE Mark buffer as processed for display

MCVIP_FLAG_ALL_DONE Mark buffer as processed by all

including encoder and display

Other constants

MCVIP_CHANNELS_MAX Maximum channels per MCVIP handle

MCVIP_TVP5158_MAX_CASCADE Max TVP5158 that can be connected

in cascade

MCVIP_BUF_PER_CH_MIN Minimum buffers that are needed to

be provided by application per CH to

the driver

MCVIP_BUF_MAX Max number of buffer's for all CH’s

that can be provided by application to

the driver

3.4 Data structures

Below data structures are defined in mcvip.h

MCVIP_CreatePrm – parameter structure that is passed as input during MCVIP_create

int videoInputPort video input port ID, MCVIP_VIDEO_INPUT_PORT_0 or

MCVIP_VIDEO_INPUT_PORT_1

int captureThrPri capture thread priority, 1 to 100. User can also use

MCVIP_CAPTURE_THR_PRI_xxx

int videoDecoderId Video decoder ID, MCVIP_VIDEO_DECODER_ID_xxx

int videoDecoderMode Video decoder mode,

MCVIP_VIDEO_DECODER_MODE_xxx

int videoIfMode Video interface mode, MCVIP_VIDEO_IF_MODE_BTxxx

int videoSystem Video system, MCVIP_VIDEO_SYSTEM_xxx

int numBuf Number of buffer's to use for capture, must be >=

(number of channels * MCVIP_BUF_PER_CH_MIN)

int bufSize Size of each buffer, must >= ROUND(frame width, 32)*

frame height*2

Uint8

*bufPhysAddr[MCVIP_BUF_MAX]

Physical buffer address of each buffer, must be 32byte

aligned – must be contiguous in memory, use a memory

allocator like CMEM to allocate contiguous buffers

Uint8

*bufVirtAddr[MCVIP_BUF_MAX]

Virtual buffer address of each buffer, must be 32byte

aligned – must be contiguous in memory, use a memory

allocator like CMEM to allocate contiguous buffers

MCVIP_BufInfo – buffer information. User can use this when extracting information about

a captured buffer. User should treat this information as READ-ONLY

int chId Channel ID (0..MCVIP_CHANNELS_MAX-1)

Page 11 of 26

int flags Used internally, SHOULD NOT BE MODIFIED BY USER

unsigned char *physAddr Buffer physical address

unsigned char *virtAddr Buffer virtual address

int timestamp Buffer timestamp in msecs

MCVIP_ChInfo – channel specific information.

int width data width, in pixels

int height data height, in lines

int offsetH horizontal line offset, in pixels

int offsetV vertical line offset, in lines, (In DM6467, for YUV422SP

data format, chroma data offset =

lineOffsetH*lineOffsetV bytes)

MCVIP_ChList – information of all channels

int numCh Number of channels (0..MCVIP_CHANNELS_MAX-1)

MCVIP_ChInfo

info[MCVIP_CHANNELS_MAX]

Channel specific information

3.5 Functions

Below functions are defined in mcvip.h

int MCVIP_init(int devAddr[], int max_tvp5158, int audio_flag);

Description This function should be called by application during system init. This sets up

the I2C addresses for the TVP5158 devices connected to various video ports

of the host.

Parameters

int devAddr[] I2C device addresses for each TVP5158 cascade stage and each video

port

int max_tvp5158 Max TVP5158’s connected in cascade mode

1: One TVP5158 connected to one video port

2: Two TVP5158 connected in cascade to one video port

int audio_flag Flag to control audio initialization during TVP5158 init

0: Do not init audio

1: Init audio

Return Value OSA_SOK on success, else failure

int MCVIP_exit();

Description This function should be called by application during system exit. This free’s

up system resources allocated during MCVIP_init()

Parameters

NONE

Page 12 of 26

Return Value OSA_SOK on success, else failure

void *MCVIP_create(MCVIP_CreatePrm *prm);

Description Creates a thread for capturing data and allocates required resources specific

to a video input port

Should be called for each HW Video Input port, with appropriate input port ID

On success it returns a handle to the MCVIP driver instance. This handle

should be used in subsequent MCVIP API calls

Parameters

MCVIP_CreatePrm

*prm

Create time parameters

Return Value MCVIP driver instance handle pointer on success, else NULL on failure

int MCVIP_delete(void *hndl);

Description Delete's the thread and other related resources allocated during

MCVIP_create for that driver instance

Parameters

void *hndl Driver instance handle

Return Value OSA_SOK on success, else failure

int MCVIP_start(void *hndl);

Description Start capture of video frames from TVP5158

This programs the I2C register in the TVP5158, including TVP5158 patch

download, if required, and then starts the video port to begin capture of

super-frame data

Parameters

void *hndl Driver instance handle

Return Value OSA_SOK on success, else failure

int MCVIP_stop(void *hndl);

Description Stop capture of video frames from TVP5158

Parameters

void *hndl Driver instance handle

Return Value OSA_SOK on success, else failure

int MCVIP_getChList(void *hndl, MCVIP_ChList *chInfo);

Description Get channel specific info

Parameters

Page 13 of 26

void *hndl Driver instance handle

MCVIP_ChList

*chInfo

[OUT] Channel info

Return Value OSA_SOK on success, else failure

int MCVIP_getBuf(void *hndl, int *id, unsigned int timeout);

Description Get a demuxed frame buffer.

This function returns a buffer ID, to get buffer info use the API

MCVIP_getBufInfo() with this ID as parameter

Parameters

void *hndl Driver instance handle

int *id [OUT] Buffer ID

unsigned int

timeout

OSA_TIMEOUT_NONE – no timeout, non-blocking API. If no buffer is

available -1 ID is returned and return status is -1

OSA_TIMEOUT_FOREVER – block until at least one buffer is available,

i.e blocking API

Return Value OSA_SOK on success, else failure

int MCVIP_putBuf(void *hndl, int id, int flags);

Description Release a demuxed frame buffer back to driver

Typically, there are two tasks that could use the captured buffer

1. For encoding

2. For display

Since these tasks can happen asynchronously with each other, the capture

buffer should be released to driver only when both encoding and display of

the buffer is done.

To achieve this, user should set 'flags' parameter appropriately when calling

this API.

Set flags according to the task that has completed using this buffer

i.e if display task is done using the buffer set flag to

MCVIP_FLAG_DISPLAY_DONE

if encoder task is done using the buffer set flag to

MCVIP_FLAG_ENCODER_DONE

Only when both MCVIP_FLAG_DISPLAY_DONE,

MCVIP_FLAG_ENCODER_DONE are done is the buffer released

In case both encode processing and display happen in the same task and

user wishes to release the buffer in one go then they should use the flag

MCVIP_FLAG_ALL_DONE

Parameters

Page 14 of 26

void *hndl Driver instance handle

int id buffer ID – same as the one got during MCVIP_getBuf

int flags MCVIP_FLAG_xxx_DONE

Return Value OSA_SOK on success, else failure

MCVIP_BufInfo *MCVIP_getBufInfo(void *hndl, int id);

Description Get buffer info for a particular buffer ID

User gets a buffer ID when MCVIP_getBuf() API is called. Use this API to get

the buffer information for a buffer ID.

Note, this function returns a pointer to driver internal buffer information

structure. Hence user should treat the returned information as READ ONLY.

No fields of the return pointer structure should be modified by the user.

Parameters

void *hndl Driver instance handle

int id Buffer ID

Return Value Returns pointer to buffer information structure (MCVIP_BufInfo *)

If buffer ID is invalid or incase of error, it returns NULL

.

int MCVIP_saveFrame(void *hndl);

Description This is a utility API to save one frame of super frame data. This is meant for

debugging and would typically not be used by the application

Parameters

void *hndl Driver instance handle

Return Value OSA_SOK on success, else failure

.

int MCVIP_getNumCh(int videoDecoderMode);

Description Utility API which returns number of video channels that are associated with a

given video decoder mode.

This API is useful when setting values for MCVIP_CreatePrm

Parameters

int

videoDecoderMode

Video decoder mode, MCVIP_VIDEO_DECODER_MODE_xxx

Return Value number of video channels

.

int MCVIP_getBufSize(int videoDecoderMode, int videoSystem);

Description Utility API which returns size of a video frame buffer for a given mode, video

system.

This API is useful when setting values for MCVIP_CreatePrm

Page 15 of 26

This API is also useful for calculating size of buffer to be allocated by the

user.

Parameters

int

videoDecoderMode

Video decoder mode, MCVIP_VIDEO_DECODER_MODE_xxx

int videoSystem Video system, MCVIP_VIDEO_SYSTEM_xxx

Return Value size of a video frame buffer, in bytes

Page 16 of 26

4 Sample API Usage Sequence

The typically sequence of API usage is given below with examples

1. System init - MCVIP_init()

2. Create driver instance – MCVIP_create()

o TVP5158 mode init and video port init for a specific mode

3. Get channel info – MCVIP_getChList()

4. Capture start – MCVIP_start()

5. Get captured frame – MCVIP_getBuf()

6. Get captured frame info – MCVIP_getBufInfo()

7. Process this captured frame, i.e resize, encode, display etc

8. Release capture frame buffer - MCVIP_putBuf()

9. Repeat steps 5-8 continuously until user is done

10. Capture stop – MCVIP_stop()

11. Delete driver instance – MCVIP_delete()

12. System exit – MCVIP_exit()

An example code snippet showing above sequence is given below. Note, this code

has been simplified and limited error checking is done for the sake of clarity.

#include <osa_cmem.h>

#include <drv.h> // only in DM365

#include <mcvip.h>

void *gMcvipHndl;

MCVIP_ChList gChInfo;

MCVIP_CreatePrm gCreatePrm;

int SYS_run()

{

int status;

 status = SYS_init();

 if(status==OSA_SOK) {

 status = CAPTURE_start();

 if(status==OSA_SOK) {

 status = CAPTURE_loop();

 CAPTURE_stop();

 }

 SYS_exit();

 }

Page 17 of 26

 return status;

}

int SYS_init()

{

int devAddr[2], status;

 // memory allocator init, needed by MCVIP

 CMEM_init();

 // EDMA, I2C driver init

 DRV_init(); // only in DM365

 // TVP5158 I2C device address

 devAddr[0] = 0xB0;

 devAddr[1] = 0xB2; // cascaded TVP5158, if present, else set to 0xFF

 status = MCVIP_init(devAddr, 2, 1);

 return status;

}

int CAPTURE_start()

{

 Uint8 *virtAddr;

 int bufId;

 gCreatePrm.videoInputPort = MCVIP_VIDEO_INPUT_PORT_0;

 gCreatePrm.captureThrPri = MCVIP_CAPTURE_THR_PRI_HIGH;

 gCreatePrm.videoDecoderId = MCVIP_VIDEO_DECODER_ID_TVP5158;

 gCreatePrm.videoDecoderMode = MCVIP_VIDEO_DECODER_MODE_8CH_CIF;

 gCreatePrm.videoIfMode = MCVIP_VIDEO_IF_MODE_BT656;

 gCreatePrm.videoSystem = MCVIP_VIDEO_SYSTEM_NTSC;

 gCreatePrm.numBuf = MCVIP_getNumCh(gCreatePrm.videoDecoderMode) * MCVIP_BUF_PER_CH_MIN;

 gCreatePrm.bufSize = MCVIP_getBufSize(gCreatePrm.videoDecoderMode, gCreatePrm.videoSystem);

 for(bufId=0; bufId<gCreatePrm.numBuf; bufId++)

 {

 virtAddr = OSA_cmemAlloc(gCreatePrm.bufSize, 32);

 gCreatePrm.bufVirtAddr[bufId] = virtAddr;

 gCreatePrm.bufPhysAddr[bufId] = OSA_cmemGetPhysAddr(virtAddr);

 }

 gMcvipHndl = MCVIP_create(&gCreatePrm);

 if(gMcvipHndl==NULL)

 return -1;

Page 18 of 26

 MCVIP_getChList(gMcvipHndl, &gChInfo);

 MCVIP_start(gMcvipHndl);

 return 0;

}

int CAPTURE_loop()

{

 int bufId, status;

 MCVIP_BufInfo *pBuf;

 while(1) {

 status = MCVIP_getBuf(gMcvipHndl, &bufId, OSA_TIMEOUT_FOREVER);

 if(status!=OSA_SOK || bufId < 0)

 return -1;

 pBuf = MCVIP_getBufInfo(gMcvipHndl, bufId);

 /* process buffer pBuf

 pBuf->chId is the channel to which this buffer belongs

 pBuf->timestamp is buffer time stamp

 pBuf->physAddr is the buffer physical address

 pBuf->virtAddr is the buffer virtual address

 */

 /* channel info for this buffer is

 gChInfo.chList[pBuf->chId].width

 gChInfo.chList[pBuf->chId].height

 gChInfo.chList[pBuf->chId].offsetH

 gChInfo.chList[pBuf->chId].offsetV

 */

 MCVIP_putBuf(gMcvipHndl, bufId, MCVIP_FLAG_ALL_DONE);

 // check stop condition and break loop when done

 }

 return 0;

}

void CAPTURE_stop()

{

 int bufId;

 MCVIP_stop(gMcvipHndl);

Page 19 of 26

 MCVIP_delete(gMcvipHndl);

 for(bufId=0; bufId<gCreatePrm.numBuf; bufId++)

 OSA_cmemFree(gCreatePrm.bufVirtAddr[bufId]);

}

void SYS_exit()

{

 MCVIP_exit();

 DRV_exit(); // only in DM365

 CMEM_exit();

}

Page 20 of 26

5 Comparison with V4L2 interface

The MCVIP interface used for the TVP5158 driver is different from the V4L2 interface

typically used by linux application for video data capture.

The reasons for not using the V4L2 interface for the TVP5158 driver are given below,

1. V4L2 interface is designed with single channel per video port capture kind of

system. So multi-channel V4L2 capture can be supported in a system if there

are as many video ports in the system. However in a TVP5158 based system,

we need to receive multiple channels over the same video port. Such a

system scenario is difficult to fit and implement with a V4L2 interface

2. For implementing the TVP5158 driver there needs to be a separate thread

inside the driver for doing the demultiplexing operation. This thread is

required so that the demux operation does not block the main application

thread. In a V4L2 kind of interface, typically, the complete driver is

implemented in the kernel space. However for TVP5158 driver demuxing

thread, it is difficult to create an independent thread in the kernel space, due

to which significant part of the driver resides in the user space. It would have

been difficult to implement the complete TVP5158 driver only in kernel space.

Even though the TVP5158 driver is not based on V4L2 interface, the MCVIP interface

is designed to be similar to V4L2 interface so that it is relatively straight forward to

migrate single channel V4L2 based applications to make use of the multi-CH MCVIP

interface.

The correspondence between MCVIP and V4L2 APIs is shown in the below table.

This will help users to migrate their V4L2 applications.

MCVIP Interface V4L2 Interface

MCVIP_init() NONE – V4L2 init happens during kernel init

Sequence of below function calls,

MCVIP_create()

MCVIP_getChInfo()

Sequence of below function calls,

Open(/dev/videoX)

Ioctl VIDIOC_QUERYCAP

Ioctl VIDIOC_ENUMINPUT

Ioctl VIDIOC_S_INPUT

Ioctl VIDIOC_S_STD

Ioctl VIDIOC_S_FMT

Ioctl VIDIOC_REQBUFS

Ioctl VIDIOC_QBUF – initial buffer queueing

or priming

MCVIP_start() Ioctl VIDIOC_STREAMON

Sequence of below function calls,

MCVIP_getBuf()

MCVIP_getBufInfo()

Ioctl VIDIOC_DQBUF

Page 21 of 26

MCVIP_putBuf() Ioctl VIDIOC_QBUF

MCVIP_stop() Ioctl VIDIOC_STREAMOFF

MCVIP_delete() Close()

MCVIP_exit() NONE – V4L2 system shutdown happens

during kernel shutdown

Page 22 of 26

6 Output Data format and system data flow

The data format, that is output from or input to different modules on host system, is

different in different platforms as shown below,

 Video port

output

MCVIP

Output

Display

Input

H264

Encoder

Input

Data format

Conversion HW

DM365 YUV422 ILE YUV422 ILE YUV420 SP

or

YUV422 ILE

YUV420 SP HW: Resizer

Input: YUV422 ILE

Output: YUV420 SP

DM6467 YUV422 SP YUV422 SP YUV422 SP YUV420 SP HW: VDCE

Input: YUV422 SP

Output: YUV420 SP

Note,

- YUV422 ILE means YUV422 InterLEaved. Here data is arranged as UYVY … in

memory, i.e luminance and chrominance data are interleaved in memory

- YUV422 SP means YUV422 Semi-Planer. Here data is divided into two planes,

first plane has luminance data arranged as YYYY…. Second plane has

chrominance data arrange as UVUV …, luminance data is separated from

chrominance and chrominance data is interleaved

- YUV420 SP means YUV420 Semi-Planer. This is similar to YUV422 SP except that

chrominance plan is further sub-sampled vertically.

Note,

- MCVIP Output format will always be same Video port output format, i.e MCVIP

driver does NOT do any data format conversion.

In order to build a video capture+display+encode system, application needs to make

sure that it passes data to different modules in compatible data formats and does

data format conversion, using appropriate HW, when required.

Example, data flow for H264 encode system for DM365 is shown below,

MCVIP  DDR (YUV422 ILE)  HW RESZ (out A)  DDR (YUV420SP)  H264 Encode

 L (out B) DDR (YUV420SP)  EDMA  DDR (YUV420SP)  Display

Example, data flow for H264 encode system for DM6467 is shown below,

MCVIP  DDR (YUV422 SP)  HW VDCE  DDR (YUV420SP)  H264 Encode

 | EDMA  DDR (YUV422SP)  Display

Page 23 of 26

7 Resource and Performance Benchmarks

7.1 Resource requirements

EDMA Channels 1

EDMA PaRAM entries 24

7.1.1 Note about EDMA PaRAM Entries

The EDMA PaRAM entries used by the driver can be modified by changing the below

constant and then recompiling the user as well as kernel side driver and reloading

the kernel modules.

FILE: drv/inc/drv_dma.h

// must be multiple of 2, must be >=2

#define DRV_DMA_MAX_DEMUX_PARAM (24)

Users can reduce this to reduce the number of EDMA PaRAM entries, if they need to

use the PaRAM entries for some other driver or algorithm/codec

However, the value of this #define affects system CPU loading. If the value is too low

the CPU loading increases.

In general a value of 24 has been found to be high enough to reduce CPU loading

and low enough so as keep sufficient PaRAM entries free for other drivers and

algorithms/codecs

7.1.2 Note about EDMA channels

One EDMA channel is needed for demuxing the received super-frame into individual

channel frames. In case user falls short of EDMA channels on the linux system then

they can increase the number of EDMA channels available for linux side system by

modifying the kernel EDMA configuration header file (ti-davinci/include/asm-

arm/arch-davinci/edma.h, EDMA_DMxxxx_CHANNEL_TO_EVENT_MAPPING_x). Refer

to LSP documentation for details.

7.2 CPU Loading

Due to the demuxing logic and interrupt overhead due to line-by-line DMA, the

TVP5158 driver adds some CPU loading as shown below. This assumes I-cache and

D-cache is ON in the ARM processor.

Video Decoder Mode ARM Total Mhz

(ISR + Thread)

ISR Mhz Thread Mhz

2CH D1

4CH CIF
17 Mhz 8 Mhz 9 Mhz

4CH D1

4CH Half-D1

8CH CIF

34 Mhz 16 Mhz 18 Mhz

4CH Half-D1 + 1CH D1 51 Mhz 24 Mhz 27 Mhz

Page 24 of 26

8 DVSDK / LSP dependencies

8.1 Supported versions

Please refer to Release Notes for the LSP and DVSDK versions against which

TVP5158 driver is implemented.

8.2 Migration to other versions

Usually there are significant LSP and DVSDK changes across different versions and

applications and drivers need to be specifically ported when moving across different

versions of LSP and DVSDK.

This section does not explain how to migrate to different versions but gives a feel of

what all needs to be ported when moving to a new LSP/DVSDK version.

The following parts of the driver are dependant on the LSP

 Kernel Video port driver (in DM6467)

 CSL kernel module portions (in DM365)

 DMA and I2C kernel module portions

The following parts of the driver are dependant on the DVSDK

 CMEM – continuous memory allocator

In general if the application is written to use only the MCVIP interface then once the

driver is migrated, application migration will be straightforward.

Page 25 of 26

9 Source code information

Refer to platform specific README.txt or relevant platform installation guide for

detailed platform specific directory structure, build and install instructions.

This section provides some information which is common to all platforms

implementing the TVP5158 driver.

Source code file summary is given below,

MCVIP

Mcvip/inc/mcvip.h Top level MCVIP interface include file

Mcvip/priv/mcvip_priv.h Internal Implementation header file

Mcvip/src/mcvip_api.c MCVIP interface function implementation

Mcvip/src/mcvip_demux.c Demux operation logic code

Mcvip/src/mcvip_tsk.c Super-frame capture and demux thread

Mcvip/src/mcvip_tvp5158.c TVP5158 top level control functions

Mcvip/src/mcvip_tvp5158_i2c.c TVP5158 low level I2C programming

sequence, including patch download

sequence

Mcvip/src/mcvip_v4l2.c Video port super-frame capture driver

wrapper, uses V4L2 in DM6467, uses CSL

interface in DM365

DRV

Drv/inc/drv_dma.h DMA APIs used during demuxing

Drv/inc/drv_i2c.h I2C read, write APIs

Drv/kermod/* Kernel modules to do EDMA and I2C

programming

Drv/usermod/* User space API implementation of EDMA and

I2C

OSA

Osa/inc/osa.h Data types

Osa/inc/osa_cmem.h DVSDK CMEM wrapper APIs

Osa/src/* OSA implementation

TEST CODE

Test/i2crw Command line I2C read, write utility

Test/dma EDMA API unit test

Test/mcvip MCVIP API sample application

Page 26 of 26

10 Other Useful Information

10.1 TVP5158 patch download

TVP5158 has an internally ROM code, which executes when TVP5158 is powered on.

However, based on issues found during production, this ROM is “patched” to fix the

known issues. This patch code needs to be downloaded to TVP5158 at least once,

after power-on reset.

The patch code is downloaded using a specific sequence of I2C commands that are

sent to TVP5158. This patch code download is taken care by the MCVIP driver when

MCVIP_start() is called.

Below section provides additional information on how to identify the patch that is

being downloaded and steps to change patch that gets downloaded.

10.1.1 Identifying the patch that is being used with the driver

“mcvip\priv\tvp5158_patch_v02_xx_xx.h” are the different patch files.

This .h file contains the patch code which is basically an array of byte data.

static const Uint8 gTVP5158_patch[] = { … };

The patch that finally gets downloaded is specified below,

FILE: “mcvip\src\mcvip_tvp5158_i2c.c”

#include <tvp5158_patch_v02_xx_xx.h>

int TVP5158_patchDownload(DRV_I2cHndl *i2cHndl) function downloads the patch to

the TVP5158

10.1.2 Changing the patch that gets downloaded

To change the patch file simply copy the patch file to “mcvip\priv” and modify the

#include in “mcvip\src\mcvip_tvp5158_i2c.c” to include this new patch file.

