L . TN

*

*/

Copyright 2004 by Texas Instruments Incorporated.

All rights reserved. Property of Texas Instruments Incorporated.
Restricted rights to use, duplicate or disclose this code are
granted through contract.

/*****************k*k*k*k**k**k*k*k*k*****k*k*k*k***

)k Kk Kk kK

*
*
*
*
*
*
*
*
*
*
*
*
f
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Filename : chk mmc.c

Version : 1.0

Author : Raja Vydhynathan.

Date : Friday the 13th, December,2002

Description

Version 1.0 : This source file provides an API called chk mmc() . It checks the MMC

for proper operation, with the data server. It does a integrity check

the Master Boot Record (MBR) and Boot Record (BR), using the values
from the MMC CSD register as reference. The format of the MMC
(Floppy /Hard disk) is based on the MMC CSD register.

The following fields are not checked by this API, since it does not
affect data server operation.

Master Boot Record:

.MBR code

.MMC ID

.partition 1 -> start Cylinder,Head,Sector (Cylinder Head Sector)
.partition 1 -> End Cylinder, Sector.

.partition 1 -> Boot descriptor.

g w N

Boot Record:

OEM name.

sectors per track.

number of heads.

number of hidden sectors.
drive number

reserved

volume serial number.

volume label.

optional partition boot code.

O 0 ~J oy U W N

Version 1.1 : Susmit, 04-Mar-2003
(a) Added a new unsigned int *disk type parameter to chk mmc ().
(b) Modifying MBR & BR checks to validate MBR & BR as much as possible.
Trying to conform to FAT specs as much as possible.
(c) Removed a few checks as they are not mandated by the FAT spec.

Version 1.2 : Pramod R, 24-Apr-2003
(a) Added a check for second possible jump instruction 0xE9 in Boot Record on
first byte position.

Version 1.3 : Pratap, 07-Sep-2009
(a) Modified getMMCSize () to calculate disk size from CSD structure ver2.0

KK R AR R AR R A A A A A A A A A A R A A AR A A AR A A AR A A A A A A A A A A A A A A A AR A AR A AR A AR AR A A A A AR A AR A AR AR A AN A A A A A AR A ARk Kk

***/

#include "chk mmc.h"

/*****************k*k*k*k**k**k*k*k*k******k*k*k**

******\
*

* Function

*

MMC ERR intl6é chk mmc (AtaState *pAtaDrive);

* Parameters : AtaState *pAtaDrive

-> Pointer to initialised AtaState variable. The

card should have been reset successfully before this API can be

MMC
*
called.
*
* Return Values
*
* MMC ERR NONE ->
*
* MMC ERR BAD CSD FILE FORMAT ->
*
is not
*
*
* MMC ERR CARD NOT READABLE ->
*
* MMC ERR MBR BAD SIGNATURE ->
*
*

be zero.
*

*

MMC_ERR MBR BAD FS DESCRIPTOR ->

* MMC_ERR_MBR BAD PART END HEAD ->

Zero.
*

*

* MMC_ERR_MBR BAD NUM PART SECTORS

larger
*

CSD
*
*

* MMC ERR_MBR BAD PARTITIONS 234

must be
*

Lol S S S S . S

MMC_ERR _BR BAD JMP_ OPCODE

MMC_ERR BR BAD BYTES PER SECTOR

MMC_ERR BR BAD RESERVED SECTORS

to FAT table. (Ox fff8 ffff)

*

* MMC_ERR_BR _BAD NUM OF FATS

*

No Problem has been detected in the MMC.

The file format indicated by CSD register
is not floppy and not hard disk types. This card

supported by data server.

Unable to read card using ATA readSector()

The MBR is not having the signature 0x55AA.

The Partition 1->file system descriptor must NOT

(Probably the card is not formatted.)

The Partition 1->Partition end head must NOT be

(Windows cannot read the card if it 1is =zero.)

-> The Partition 1-> no of partition sectors is
than the total number of sectors reported by
register

-> All the partition entries in partitions 2,3,4
zero.Atleast one of them is non zero.

-> The first byte of BR was not O0xEB OR
the third byte was not 0x90

-> The BR bytes per sector was not 512.

MMC ERR BR BAD SECTORS PER CLUSTER -> The sectors per cluster is not a power of 2.

-> Boot sector + reserved sector is not pointing

-> The number of FATs is not 2.

* MMC_ERR BR BAD NUM OF ROOT ENTRIES -> The number of root directory entries is not

512.

*

*
*
*
*
*
*

MMC_ERR BR BAD NUM PART SECTORS

(ref num of sectors).

*

ref num of sectors > OxFFFF

*

-> * For boot record type = HD BOOT RECORD
The number of partition sectors does not
match with MBR (ref num of sectors)
* For boot record type = FD BOOT_ RECORD
The number of partition sectors is greater
than sectors in disk from CSD

Note: If the function parameter

the extended number of sectors in partition

is used

* in place of number of partition sectors.

*

*

* MMC ERR BR BAD MEDIA DESCRIPTOR -> The media descriptor was not O0xF8. Win2k sets
this

* field as 0xF8 for both hard disk type and

* floppy type formats.

*

* MMC_ ERR BR BAD SECTORS_ PER FAT -> The value was not between 1 and 256.

*

* MMC_ERR BR BAD EXTENDED BOOT SIGNATURE -> The extended boot signature is not 0x29.

*

* MMC ERR BR BAD FILE SYS TYPE -> The filesystem type is not " FAT16"

*

* MMC_ERR BR BAD SIGNATURE -> The boot record signature was not O0x55AA

*

* MMC_ERR MBR DSKSIZE MISMATCH —-> Number of sectors in partition + boot
sector

*

by CSD register
*
*/

//#pragma DATA SECTION (master boot record,
MBR_ struct master boot record;

//#pragma DATA SECTION (boot record,
BR struct boot record;

/* NOTE:
Not the actual size of the disk */
AtaUint32 getMMCSize (AtaState *pAtaDrive)

{

AtaUintlo csd_datal[8];
AtaUint32 c _size = 0y
AtaUintlé c_size mult = 0;
AtaUintlé read bl len = 0;
AtaUint32 tempsize = 0;
AtaUint32 totalSectors = 0;
//unsigned int i = 0;
AtaUintlé6 tempdiv = 512;
Uintlé6 csdVersion = 0;
//Uintl6 sectorSize = 0;

/* Read the Card Specific Data (CSD) */
MMC read CSD(pAtaDrive->pAtaMediaState,

/* Get the CSD card structure version;

is not equal to number of sectors given

"master boot record")

/* 512 byte buffer for checking master boot record */

"boot record")
/* 512 byte buffer for checking boot record */

This function will returns total number of sectors in the disk,

(unsigned int *)csd data);

Size calculataion will be different

for different versions of CSD structures */

csdVersion = (csd _datal[7] >> 14) & 0x3;

if (csdVersion

{

== 0)

read bl len = csd data[5]& O0xOF;

/* CSD structure version is 1.x */

c_size = (AtaUint32) ((csd data[3] & 0xC000) >> 14);
c_size |= (AtaUint32) ((csd _datald4] & Ox3FF) << 2);
c_size mult = (AtaUintle) ((csd datal[2] & 0x8000) >> 15);
c_size mult |= (AtaUintl6) ((csd data[3] & 0x0003) << 1);

tempsize = (AtaUint32) (c_size+l);
// mwel total capacity computation
#if O

for(i = 0; i <

{

tempsize *= 2;

(c_size mult + 2); i++)

}

for(i = 0; i < read bl len; i++)
{
tempdiv /= 2;

totalSectors = (AtaUint32) (tempsize*tempdiv) ;
#else

tempsize <<= (c_size mult + 2);

tempdiv = 1 << (read bl len-9);

totalSectors = tempsize*tempdiv;
#endif

}

else /* CSD structure version 1is 2.x */

{
read bl len = csd data[5] & 0x000F;

c_size = (AtaUint32) (csd _datal[3] & OxFFFF);
c_size |= ((AtaUint32) (csd datal4] & O0x3F) << 16);

//sectorSize = 1 << read bl len;

/* Calculate the size of the disk */
tempsize = (AtaUint32) (c_size+l)*512;

/* For CSD ver2.0 size will be in KBytes, multiply
with 1024 to convert to bytes */
// mwei CSD ver2.0 size is in KB not byte

#if O

tempsize = tempsize*1024;

totalSectors = (AtaUint32) (tempsize/sectorSize);
#else

// 1KB has two sectors (512 Byte)

tempdiv = 2;

totalSectors = (AtaUint32) (tempsize*tempdiv) ;
#endif

}

/* Return the valus of Number of sectors */
return (totalSectors);

/* <susmit : Added a new parameter, unsigned int *disk type : 04-Mar-2003> */
MMC ERR intl6 chk mmc (AtaState *pAtaDrive, unsigned int *disk type)
{
AtaError ata error = ATA ERROR NONE;
AtaUint32 disk sectors from csd = Oxbeefbeef ;
unsigned long sectors_in partition from MBR = Oxbeefbeef;
unsigned long boot record sector = Oxbeefbeef;
unsigned int ii = 0;
/* <susmit : Variables to hold the error value and boot record type : 04-Mar-2003>
*/
MMC ERR intl6 mmcerror = MMC ERR _NONE;
unsigned int boot record type = HD BOOT RECORD;

#if 0 /* For the cards with csd ver2.0 it is not possible to determine the file system
format */
unsigned int mmc file system format = Oxbeef;

/* Get the file format information from MMC CSD register */
mmc_file system format = MMC file system format (pAtaDrive->pAtaMediaState);

/* <susmit : If the file format is Universal File Format or Unknown, return error
04-Mar-2003> */
if ((mmc_file system format!=0)&& (mmc_file system format!=1l))
return MMC ERR BAD CSD FILE FORMAT;

#endif

/* Get total number of sectors on MMC from CSD register */
disk sectors from csd = getMMCSize (pAtaDrive);

/* Try to read Master Boot Record from sector */
ata _error = ATA readSector (0, pAtaDrive, (AtaUintlé*)é&master boot record, 1);

/* ata_error should be ATA ERROR NONE unless the card is damaged and unreadable */
if (ata_error != ATA ERROR NONE)
return MMC ERR CARD NOT READABLE;

/* Check for all partition entries of partitions 2,3,4 to be zero */
for(ii = 0; ii < 3*sizeof (PARTITION TABLE); ii++){

if (*((int*) (&master boot record.partition two) + 1ii) != 0)
/*return MMC ERR MBR BAD PARTITIONS 234;*/
mmcerror = MMC ERR MBR BAD PARTITIONS 234; /* <susmit : Set the error

04-Mar-2003> */
}

/* Verify number of sectors in partition as reported by MBR is less than
the total number of sectors reported by CSD register */

sectors_in partition from MBR =
((unsigned long) (master boot record.partition one.bytel no of sectors in partition)
|
(unsigned long)
(master boot record.partition one.byte2 no of sectors in partition)<<8]
(unsigned long)
(master boot record.partition one.byte3 no of sectors in partition)<<1l6 |
(unsigned long)
(master boot record.partition one.byted4 no of sectors in partition)<<24);

if (sectors_in partition from MBR > disk sectors from csd)
mmcerror |= MMC ERR MBR BAD NUM PART SECTORS; /* <susmit : Set the error : 04
-Mar-2003> */

/* Calculate the sector number of the boot record */
boot record sector =
((unsigned long)master boot record.partition one.bytel first sector position) |
((unsigned
long)master boot record.partition one.byte2 first sector position<<8) |
((unsigned
long)master boot record.partition one.byte3 first sector position<<16) |
((unsigned
long)master boot record.partition one.byted4 first sector position<<24);

/* <susmit : The number of sectors in partition plus the number of reserved sectors
must be equal
* to the number of sectors present in the disk as indicated by the CSD register
04-Mar-2003> */
if ((sectors_in partition from MBR+boot record sector) !=disk sectors from csd)
mmcerror |= MMC ERR MBR DSKSIZE MISMATCH;

/* <susmit : If no errors upto this, then this might be a disk with both MBR & BR.

* Otherwise set boot sector as zero & check : 04-Mar-2003> */
if (mmcerror) {
boot record sector = 0;

boot record type = FD BOOT_ RECORD;

sectors_in partition from MBR = disk sectors from csd;

disk type = 1; / floppy-like file format (without partition table) */
}

/* Now check Boot Record */
return Check boot record(boot record sector,
sectors_in partition from MBR,

boot record type, /* <susmit : Can be HD or FD boot

record : 04-Mar-2003> */

pAtaDrive,

&boot record) ;

/*****************k*k*k*k**k**k*k*k*k*****k*k*k*k***

KKKk Kk kK

*

* Function : MMC ERR intl6 Check boot record(unsigned long boot record sector,

* unsigned long ref num of sectors,

* unsigned int boot record type,

* AtaState *pAtaDrive,

* BR_struct *pBootRecord

*

* Parameters:

*

* boot record sector -> The sector number to fetch the BR from.

* ref num of sectors -> The reference number of sectors on disk to validate BR
against.

* boot record type -> Indicates whether this is floppy type or hard disk type boot
record.

* pAtaDrive -> Pointer to initialised AtaState structure.

* pBootRecord -> 512 byte buffer to read boot record.

*

*

* Return Values:

*

* MMC ERR CARD NOT READABLE -> Unable to read card using ATA readSector()

* MMC ERR BR BAD JMP OPCODE -> The first byte of BR was not OxEB OR

* the third byte was not 0x90

* MMC ERR BR BAD BYTES PER SECTOR -> The BR bytes per sector was not 512.

* MMC_ ERR BR BAD SECTORS PER CLUSTER -> The sectors per cluster is not a power of 2.

* MMC ERR BR BAD RESERVED SECTORS -> Boot sector + reserved sector is not pointing
to FAT table. (0x fff8 ffff)

* MMC_ ERR BR BAD NUM OF FATS -> The number of FATs is not 2.

* MMC_ERR BR BAD NUM OF ROOT ENTRIES -> The number of root directory entries is not
512.

* MMC ERR BR BAD NUM PART SECTORS -> * For boot record type = HD BOOT RECORD

* The number of partition sectors does not

* match with MBR (ref num of sectors)

* * For boot record type = FD BOOT_ RECORD

* The number of partition sectors is greater

*

(ref num of sectors).

*

> 0
*

is
*
*
*
*

thi

*

Lol S S S S . S

/

than sectors in disk from CSD

Note: If the function parameter ref num of sectors

the extended number of sectors in partition

in place of number of partition sectors.

The media descriptor was not 0xF8. Win2k sets

field as 0xF8 for both hard disk type and
floppy type formats.
The value was not between 1 and 256.

MMC ERR BR BAD EXTENDED BOOT SIGNATURE -> The extended boot signature is not 0x29.

XFFFF

used

MMC_ERR BR BAD MEDIA DESCRIPTOR ->
s

MMC_ERR BR BAD SECTORS PER FAT ->
MMC_ERR BR BAD FILE SYS TYPE
MMC_ERR BR BAD SIGNATURE

-> The filesystem type is not " FAT16"

-> The boot record signature was not 0x55AA

MMC ERR intl6 Check boot record(unsigned long boot record sector,
unsigned long ref num of sectors,
unsigned int boot record type,
AtaState *pAtaDrive,
BR_struct *pBootRecord
)

AtaError ata _error = ATA ERROR NONE;

unsigned long 1 reserved sectors = Oxbeefbeef;
unsigned long 1 fat signature = Oxbeef;

unsigned long 1 num partition sectors = Oxbeefbeef;
unsigned int 1 sectors per fat = Oxbeef;

/* Read Boot Record from sector number = boot record sector */
ata error = ATA readSector (boot record sector, pAtaDrive, (AtaUintlé*)pBootRecord,

1)
/* ata_error should be ATA ERROR NONE unless the card is damaged and unreadable */
if (ata_error != ATA ERROR NONE)
return MMC ERR CARD NOT READABLE;
/* Check first and third byte of boot record for valid opcodes */
/* <pramod : Added check for second possible jump instruction O0xE9 : 24-Apr-2003>
*/
if (((pBootRecord->short jump instr byte 1 != 0xEB) &&
(pBootRecord->short jump instr byte 1 != 0xE9)) ||
(pBootRecord->short jump instr byte 3 != 0x90))
return MMC ERR BR BAD JMP OPCODE;
/* Verify that bytes per sector to be 512 */
if (((pBootRecord->UB bytes per sector<<8) | (pBootRecord->LB bytes per sector)) !=
512)

return MMC_ERR BR BAD BYTES PER SECTOR;

/* Verify that sectors per cluster is a power of 2 */

if (((pBootRecord->sectors per cluster%2) != 0) &&
(pBootRecord->sectors _per cluster != 1) &&
(pBootRecord->sectors per cluster>64)) /* <susmit : Cluster size should not

exceed 32Kbytes : 04-Mar-2003> */
return MMC ERR BR BAD SECTORS PER CLUSTER;

/* Verify that data at boot sector + reserved sector is OxFFF8 FFFF */
1 reserved sectors = (pBootRecord->UB reserved sectors<<8) |
(pBootRecord->LB reserved sectors);

/* <susmit : Commented off this code for now but should be enabled : 04-Mar-2003>
*/

/* MS FAT Specs say that this field should never be anything other than 1 for
FAT12/16. But

* a particular customer's images puts some other values in here. Need to discuss
these */

/* 1f(l reserved sectors!=1) return MMC ERR BR BAD RESERVED SECTORS;*/

/* <susmit : _AtaReadDoubleWord () should not be called directly, hence replaced the
call with ATA readSector() : 04-Mar-2003> */
/* 1 fat signature = AtaReadDoubleWord (boot record sector + 1 reserved sectors ,

pAtaDrive, 0); */

ATA readSector (boot record sector + 1 reserved sectors , pAtaDrive,
pAtaDrive-> AtaWriteBuffer, 0);

1 fat signature = pAtaDrive-> AtaWriteBuffer[0]| ((unsigned long)
(pAtaDrive-> AtaWriteBuffer[1])<<16);

/* The FAT signature must be OxFFFFFFF8 . But if the volume is not dismounted
correctly , windows sets the dirty bit to zero which makes the
value appear as Ox7FFFFFF8 */

if ((1_fat signature != OxXFFFFFFF8)&& (1 _fat signature != Ox7FFFFFF8))
return MMC ERR BR BAD RESERVED SECTORS;

/* Verify that the number of partition sectors or extended number of partition
sectors
is valid */

if (ref num of sectors <= OxFFFF) {
1 num partition sectors = ((unsigned long)
(pBootRecord->UB no of sectors on partition)<<8) |
(unsigned long)
(pBootRecord->LB no of sectors on partition);
}

else {

1 num partition sectors =
((unsigned long) (pBootRecord->bytel extended no of sectors on partition) |
((unsigned long) (pBootRecord->byte2 extended no of sectors on partition)<<8) |
((unsigned long) (pBootRecord->byte3 extended no of sectors on partition)<<16) |
((unsigned long)
(pBootRecord->byted4 extended no of sectors on partition)<<24));

}

/* <susmit : Check whether the format type is FAT16 : 04-Mar-2003> */

if(((1_num partition sectors/pBootRecord->sectors per cluster)<4085) ||
((1_num partition sectors/pBootRecord->sectors per cluster)>=65525))
return MMC ERR BR BAD FILE SYS TYPE;

/* Verify that number of root directory entries is 512 */
/* <susmit : This might be different for some disks but for a FAT16 MMC this check
should be okay : 04-Mar-2003> */
if (((pBootRecord->UB no of root dir entries<<8) |
(pBootRecord->LB no of root dir entries)) != 512)
return MMC ERR BR BAD NUM OF ROOT ENTRIES;

/* <susmit : If 1 num partition sectors is not equal to
sectors_in partition from MBR for HD format
* and 1 num partition sectors is not equal to disk sectors from csd for FD
format, return error : 04-Mar-2003> */
if (1 num partition sectors != ref num of sectors)
return MMC ERR BR BAD NUM PART SECTORS;

/* Verify that sectors per fat is between 1 to 256 */

1 sectors per fat = (pBootRecord->UB sectors per fat <<8) |
(pBootRecord->LB sectors per fat);
if ((1_sectors per fat > 256) || (1 _sectors per fat <1))

return MMC_ERR BR BAD SECTORS PER FAT;

/* <susmit : We should verify that the number of clusters match the no. of sectors
per fat calculations : 04-Mar-2003> */
if((((1_num partition sectors - ((unsigned
long) 1l sectors per fat*pBootRecord->no _of fats) -
1 reserved sectors) /pBootRecord->sectors per cluster)*2) \
> ((unsigned long)l sectors per fat*512))
return MMC ERR BR BAD SECTORS PER _FAT;

/* Verify that boot record signature is 0x55AA */

if (pBootRecord->signature != 0x55AA)
return MMC ERR BR BAD SIGNATURE;

return MMC ERR NONE;

