
April 2005 1

Tips and Tricks

C55x Code Generation Tools

April 2005 2

Topics

� Performance
� Compilation Options

� Data Types

� Efficient Loop Control &
Indexing

� Efficient Multiply

� Efficient Loops

� Enabling Dual MAC

� Intrinsics

� C Idioms

� Circular Addressing

� Code size
� Compilation Options

� Unused function elimination

� Overlays

� Convenience/Information
� Diagnostic control pragmas
and options

� Optimization information

� Function code alignment

April 2005 3

Compile Options for Performance

� -o3: highest optimization level; enables automatic inlining
� Inlining trades space for speed and saves on branch latencies

� -oisize (with –o3): set auto-inline threshold
� Higher sizes allow inlining of larger functions (default is 1)

� -pm: program mode compiles multiple files together
� Gives compiler a full program view (e.g. cross-file inlining)

� May not have access to source files in other subsystems

� Increases compile time

� -op2 (with –pm): assert no other uses/calls of C funcs & vars
� This is the default but if only compiling a subsystem, may need
to consider other values of -op

� -vdevice:rev: select target hardware device(s)
� Default will compile code for all C55x revisions (not P2)

� Can use one or more –v options to assure minimum silicon bug
workaround code and full use of available instructions

April 2005 4

Optimization Levels

•Performs local copy/constant propagation

•Removes unused assignments

•Eliminates local common expressions

•Simplifies control flow

•Allocates variables to registers

•Eliminates unused code

•Simplifies expressions and statements

•Expands calls to inline functions

•Performs loop optimizations

•Eliminates global common sub-expressions

•Eliminates global unused assignments

•Performs loop unrolling

•Removes functions that are never called

•Simplifies functions with return values that are
never used

•Inlines calls to small functions (regardless of
declaration)

•Reorders functions so that attributes of called
function are known when caller is optimized

•Identifies file-level variable characteristics

Statement (-o0) Basic Block (-o1)

Function (-o2) File (-o3)

April 2005 5

-op Options

–op3functions are called + variables are not modified

–op2functions are not called + variables are not modified

–op1functions are not called + variables are modified

–op0functions are called + variables are modified

Use this option

Indicates if other modules can call this module’s global functions or
modify the module’s global variables

April 2005 6

PRAGMAs for Performance

functions has same behavior as ANSI
function with same name

FUNC_IS_SYSTEM (func)

function never returnsFUNC_NEVER_RETURNS (func)

functions makes no assignments to global
variables and contains no asm statements

FUNC_NO_GLOBAL_ASG (func)

function makes no assignments through
pointers and contains no asm statements

FUNC_NO_IND_ASG (func)

function has no side effectsFUNC_IS_PURE (func)

DescriptionPRAGMA

function may be called by external
function

FUNC_EXT_CALLED (func)

function cannot be inlinedFUNC_CANNOT_INLINE (func)

Ways to tell the optimizer more about function behavior

April 2005 7

Compile Options for Performance

And avoid…
� -g: debugging

� -s, -ss: source interlisting

� -ms: optimize for space rather than speed

� -mr: disable generation of hardware loop instructions

But if you must, then use…
� -mn: allow code motion optimizations even with –g etc.

Best…
cl55 –o3 –oi50 –pm –op2 –vcpu:2.2 *.c

Typical…
cl55 –o3 –oi50 –vcpu:2.2 –g –mn file.c

April 2005 8

C55x is a 16-bit DSP

� Complete instruction set for 16-bit data

� Loop control registers are 16 bits

� Indexed addressing uses 16-bit values

� Multiplies are 16x16 (actually 17x17)
� But does have 32-/40-bit accumulator registers

So…

� Use 16-bit C types for: loop control variables,
indexing expressions, basic data

� Accumulate into 32- or 40-bit variables
� Can maintain accuracy

April 2005 9

C Data Types

For 16-bit data use…
� int: 16 bits on C55x, but not on other targets

� short: also 16 bits on C55x, and will probably have better
portability

� int16_t (from stdint.h): for best portability

Signed is much better than unsigned for loop control
and indexing
� Unless you need the defined behavior on overflow

� C has looser rules for signed and thus allows greater
flexibility for optimization

April 2005 10

Efficient Loop Control/Indexing

int
� Zero-overhead hardware loop

� Auto-increment address
arithmetic

� Loop body: 1 cycle

void clear(int *a, int n) {

int i;

for (i=0; i<n; i++) a[i] = 0

}

repeat (CSR)

*AR0+ = #0

repeat (CSR)

*AR0+ = #0

IDEAL

April 2005 11

Efficient Loop Control/Indexing

unsigned int (& not Small Mem Model)
� Zero-overhead hardware loop

� Address arithmetic in ACs
� Or for Rev 3, in XARs

� Must implement modular
arithmetic

� C language has defined

semantics for unsigned

“overflow”

� Loop body: 6 + 2 = 8 cycles
� Or for Rev 3: 7 cycles

void clear(int *a, unsigned int n) {

unsigned int i;

for (i=0; i<n; i++) a[i] = 0

}

AR1 = #0 ; AR1 holds ‘i’

localrepeat {

AC1 = AR1 & 0xffff

AC0 = XAR0 ; XAR0 holds ‘a’

AC0 = AC0 + AC1

XAR3 = AC0

AR1 = AR1 + #1

*AR3 = #0 }

AR1 = #0 ; AR1 holds ‘i’

localrepeat {

AC1 = AR1 & 0xffff

AC0 = XAR0 ; XAR0 holds ‘a’

AC0 = AC0 + AC1

XAR3 = AC0

AR1 = AR1 + #1

*AR3 = #0 }

NO
T

April 2005 12

Efficient Loop Control/Indexing

long (& not Small Mem Model)
� if...goto loop control

� 16-bit hardware loop counters

� Address arithmetic in ACs
� Or for Rev 3, in XARs

� Loop control in AC

� Loop body: lots of cycles

void clear(int *a, long n) {

long i;

for (i=0; i<n; i++) a[i] = 0

}

AC1 = 0 ; AC1 holds ‘i’

L: AC2 = XAR0 ; XAR0 holds ‘a’

AC2 = AC2 + AC1

XAR3 = AC2

AC1 = AC1 + #1

TC1 = (AC1 < AC0); AC0 holds ‘n’

*AR3 = #0

if (TC1) goto L

AC1 = 0 ; AC1 holds ‘i’

L: AC2 = XAR0 ; XAR0 holds ‘a’

AC2 = AC2 + AC1

XAR3 = AC2

AC1 = AC1 + #1

TC1 = (AC1 < AC0); AC0 holds ‘n’

*AR3 = #0

if (TC1) goto L

NO
T

April 2005 13

Efficient Multiply

� Usual intention is 16 x 16 � 32 multiply

� C gives you these choices
� int x int � int 16 x 16 � 16

� long x long � long 32 x 32 � 32 (done in RTS on C55x!)

� Do NOT write

� DO write

� Accurate representation of what you want

� Efficient implementation

long_var = short_var1 * short_var2; // WRONG!

long_var = (long)(short_var1 * short_var2); // Also WRONG!

long_var = (long)short_var1 * (long)short_var2; // OK

long_var = (long)short_var1 * short_var2; // Also OK

April 2005 14

Efficient Loops

Goal: Generate hardware loops (block/local/repeat)

� Use 16-bit signed loop control variable (see above)

� Call in body (usually) means no hardware loop
� At most three, normally only two, levels of hardware loops
� Smaller body gives better chance at localrepeat or repeat
single

� For hardware loops, must be able to compute “trip count” (# of
times loop executes) before entering loop

� The more the compiler knows about the trip count the more it
can do
� Use pragma MUST_ITERATE(min, max, mod)
� Assert things about the bounds

April 2005 15

Efficient Loops

MUST_ITERATE(min, max, mod)
� min > 0 � can ignore zero-iteration case
� mod == n � can unroll loop n times

assert <predicate>
� Standard C
� Run-time check of the predicate
� Can be deleted (–DNDEBUG)
� Can be converted to _nassert (-DNASSERT)

_nassert <predicate>
� Tells compiler that predicate holds (no check)

#pragma MUST_ITERATE(1,,2); // iterates at least once and

for (i = 0; i < n; i++) // an even number of times

April 2005 16

Enabling Dual MAC

� Do the right multiply (see above)
� Meet hardware requirements

� Two consecutive MACs (MASs or MPYs) producing distinct
results

� All multiplicands in memory
� Share one operand of the multiply
� Shared operand must be in “on chip” memory

� Use –mb or onchip keyword to tell compiler

� Allocate operands in memory such that all three accesses
may be done simultaneously
� Use pragma DATA_SECTION to aid data placement

long_t1 += ((long)*a * *coef)

long_t2 += ((long)*b * *coef)

April 2005 17

Enabling DualMAC - example

void fir(short *x, short *h,
short *y,
int m, int n)

{
int i, j;
long y0;

for (i = 0; i < m; i++)
{

y0 = 0;

for (j = 0; j < n; j++)
y0 += (long)x[i + j] * h[j];

y[i] = (short)(y0 >> 16);
}

}

April 2005 18

Enabling DualMAC - example

void fir(short *x, onchip short *h,
short *y,
int m, int n)

{
int i, j;
long y0, y1;
for (i = 0; i < m; i+=2)
{

y0 = 0;
y1 = 0;
for (j = 0; j < n; j++)
{

y0 += (long)x[i + j] * h[j];
y1 += (long)x[i + 1 + j] * h[j];

}
y[i] = (short) (y0 >> 16);
y[i+1] = (short) (y1 >> 16);

}
}

• Adjacent MACs

• Shared “onchip” operand

April 2005 19

Enabling Dual MAC

� Compiler can do loop transformation to create a
dual MAC situation with help from programmer
� Nested efficient loops (see above)

� outer loop guaranteed to have even trip count
� inner loop guaranteed to execute

� Single MAC in inner loop with memory multiplicands
� Output does not overlap with inputs

� use restrict keyword to tell compiler
� restrict says pointer is only access path to underlying memory

� most useful to restrict pointers used in memory writes

� One multiplicand depends at most on inner loop control
variable
� Use –mb or ‘onchip’ to indicate allocation in on-chip memory

� No control-flow in outer loop
� Inner loop bounds constant wrt outer loop

April 2005 20

Enabling DualMAC - example

void fir(short *x, short *h,
short * y,
int m, int n)

{
int i, j;
long y0;

for (i = 0; i < m; i++)
{

y0 = 0;

for (j = 0; j < n; j++)
y0 += (long)x[i + j] * h[j];

y[i] = (short) (y0 >> 16);
}

}

April 2005 21

void fir(short *x, onchip short *h,
short * restrict y,
int m, int n)

{
int i, j;
long y0;

for (i = 0; i < m; i++)
{

y0 = 0;

for (j = 0; j < n; j++)
y0 += (long)x[i + j] * h[j];

y[i] = (short) (y0 >> 16);
}

}

Enabling DualMAC - example

April 2005 22

void fir(short *x, onchip short *h,
short * restrict y,
int m, int n)

{
int i, j;
long y0;
#pragma MUST_ITERATE(1,,2)
for (i = 0; i < m; i++)
{

y0 = 0;
#pragma MUST_ITERATE(1)
for (j = 0; j < n; j++)

y0 += (long)x[i + j] * h[j];

y[i] = (short) (y0 >> 16);
}

}

Enabling DualMAC - example

April 2005 23

void fir(short *x, onchip short *h,
short * restrict y,
int m, int n)

{
int i, j;
long y0;
_nassert((m >= 1) && ((m % 2) == 0));
for (i = 0; i < m; i++)
{

y0 = 0;
_nassert(n >= 1);
for (j = 0; j < n; j++)

y0 += (long)x[i + j] * h[j];

y[i] = (short) (y0 >> 16);
}

}

Enabling DualMAC - example

April 2005 24

void fir(short *x, onchip short *h,
short * restrict y,
int m, int n)

{
int i, j;
long y0;
assert((m >= 1) && ((m % 2) == 0));
for (i = 0; i < m; i++)
{

y0 = 0;
assert(n >= 1);
for (j = 0; j < n; j++)

y0 += (long)x[i + j] * h[j];

y[i] = (short) (y0 >> 16);
}

}

Enabling DualMAC - example

Compile with –DNASSERT

assert � _nassert

April 2005 25

Intrinsics

� Functional notation; maps to single instruction
� Use instead of asm(…)
� Intrinsics are the “right” way to access DSP
features C/C++ does not support
� Saturation
� Rounding
� Fractional
� Complex, powerful C55x instructions

� firs, absdst, sqdst, lms, …

� Intrinsics do not disrupt optimization

April 2005 26

C Idiom Recognition

� Standard C expression resulting in extremely
efficient C55x code

� Examples (complete list in documentation)
� Fractional Multiply

long l; int i,j; HI(AC1)=T0 || bit(ST1,ST1_FRCT)=#1

l = ((long)i * j) << 1; AC0 = AC1 * T1

� Bi-directional Shift
long v; int sh;

(sh > 0) ? v << sh : v >> -sh AC1 = AC0 << T1

� Min/Max

(a > b) ? a : b AR1 = max(T0, T1)

� Abs
(a < 0) ? -a : a) AR1 = |T0|

April 2005 27

Circular Addressing: Example

int a[10], i = 0, j;
for (j = 0; j < 20; j ++) (1) start of lifetime
{

... a[i] ...
i = (i + 1) % 10;

} (2) end of lifetime

BSA01 = <initial address of "a">
AR0 = #0
BK03 = #10

|| bit(ST2, #ST2_AR0LC) = 1 (1) start
repeat(#19)
... *AR0+ ...

bit(ST2, #ST2_AR0LC) = 0 (2) end

Assembly Code:

C Code:

April 2005 28

Circular Addressing: Fine Print

� I is initialized with a positive constant.

� All modifications of I in the region are “modulo S” increments

(always followed by ‘% S’) for a constant S.

� Increments of I are always by positive constants.

� Index expressions of a reference are of the form ‘a*I+b’ where

a and b are positive constants.

In a region including a loop the compiler can recognize
references to an array A indexed by a variable I as a
circular buffer of size S if the following hold:

April 2005 29

Compile Options for Code Size

� -ms favors size over speed optimization
� Some changes in instruction selection

� No loop unrolling

� Less code hoisted out of loops

� Fewer predicated instructions

� -mo puts each function, f, in object subsection,
.text:_f, and marks it as conditional
� Linker will not include the subsection unless it is
referenced

� Beware: now all calls are “long”
� Many intra-file calls & few unused functions � size grows!

� Solution (future): linker-generated trampolines
� Calls left as short and fixed by linker as necessary

April 2005 30

Support for Overlays
� Overlay Management

� Single run address; separate load addresses
� Code must be copied before execution
� Copy routine needs: run/load addresses and sizes
� Can use –mo or pragma CODE_SECTION(func, “sect”) to aid in
placement

� Use linker-generated “copy tables” to describe allocation
� Supports auto-split of both load and run allocations

� The directive creates the table entry
os1:{ task1.obj(.text) } load > LDMEM, table(os1_ctbl)
os1:{ task2.obj(.text) } load > LDMEM, table(os2_ctbl)

� General purpose copy routine in RTS
copy_in(&os1_ctbl); /* copy from load to run address */

UNION {
os1: { task1.obj(.text) } load > LDMEM
os2: { task2.obj(.text) } load > LDMEM

} run = RNMEM

April 2005 31

Diagnostic Control

� Want less? Use –pdw to turn off warnings
� Want more? Use –pdr to turn on remarks
� Want more context? Use –pdv to display source
� Want something else? Use –pden to get diagnostic id’s then
use these …

MeaningOptionPragma

Reset id to defaultN/Apragma diag_default id

Treat id as error-pdse=idpragma diag_error id

Treat id as warning-pdsw=idpragma diag_warning id

Treat id as remark-pdsr=idpragma diag_remark id

Suppress id-pds=idpragma diag_suppress id

April 2005 32

Diagnostic Control

/* Little program */

/* Big problems */

hope(int m) {

int a = v;

int b = f(a);

return b;

}

Compile in “strict ANSI” mode

cl55 diag.c -ps

line 5: error: identifier "v" is undefined

Is that all?

Well, technically, yes.

April 2005 33

Turn on remarks

cl55 diag.c –pdr

line 4: remark: explicit type is missing ("int" assumed)

line 5: error: identifier "v" is undefined

line 6: remark: function declared implicitly

line 4: remark: parameter "m" was never referenced

Diagnostic Control

/* Little program */

/* Big problems */

hope(int m) {

int a = v;

int b = f(a);

return b;

}

April 2005 34

Diagnostic Control

#pragma diag_error 225 /* Require explicit function decls */

#pragma diag_error 262 /* Require explicit func return type */

hope(int m) {

int a = v;

int b = f(a);

return b;

}

No remarks, just errors

cl55 diag.c

line 4: error: explicit type is missing ("int" assumed)

line 5: error: identifier "v" is undefined

line 6: error: function declared implicitly

April 2005 35

Getting Info on Your Program

� -k: Keeps generated assembly
� Contains info on each function: Register usage, stack usage, frame size, …

� -os: Adds optimizer comments to generated asm code
� Comments are C-source-like description of the program after re-
arrangement by the optimizer

� -on1, -on2: .nfo file of optimizer decisions (e.g. to inline or not)
� -on2 produces a more verbose file
� Some information in this file for each function …

� “size” of function in terms the units used in –oi to set the inlining
threshold

� Known callers
� Called functions
� Et c.

� -s, -ss: C source interleaved in generated asm code
� Can reduce amount of optimization

April 2005 36

Function Code Alignment

� Some code sequences (esp in hardware loops) can have timing
vary depending on alignment of the code in memory
� Due to mechanics of the Instruction Buffer Queue

� Thus, timing for an unchanged function can change due to
change in location of the code

� Use --align_functions to force code for all functions to be
aligned on longword (32-bit) boundary
� Takes extra space, gains consistency in profiling

� OLD: alignment done unless optimizing for space (-ms)

� NEW: separate from space/speed option setting

