X% o X o X ot

/
/‘k‘k

b S S S . S . S AU I S S S S . S S AR S S S S S . S S D . S S T . S S I S S I N

~
*

*/

Copyright (c) Texas Instruments Inc 2002, 2003, 2004, 2005, 2008

Use of this software is controlled by the terms and conditions found in the
license agreement under which this software has been supplied.

@file csl dma PingPongExample.c

@brief Test DMA ping-pong mode

\page page2 DMA EXAMPLE DOCUMENTATION
\section DMA4 DMA EXAMPLE4 - PING-PONG MODE TEST

\subsection DMA4x TEST DESCRIPTION:

This test verifies operation of the CSL DMA module in ping-pong mode.
Ping-Pong mode is a special mode of data transfer in which DMA generates
a half way interrupt. When ping-pong mode is enabled DMA considers the
source data buffer as two parts and generates an interrupt after
transferring half of the data. First half of the buffer is Ping data buffer
and second half of the buffer is Pong data buffer. These two buffers
should be allocated in contiguous memory locations or one ping buffer of size
equal to double the data transfer length should be allocated. Buffer being
transferred by the DMA currently can be identified by reading
'Last Transfer Type' bit of the channel transfer control register.
Ping-Pong mode can be utilized effectively in the interrupt mode of data
transfer.

During the test DMA ping-pong functionality is verified by transferring

the data between four buffers allocated in memory of C5515 DSP. There is

one Ping set of data buffers and one Pong set of data buffers. DMA is
configured for ping-pong mode and data transfer is started. Execution will
wait for the ping and pong data transfer interrupts to occur. Successful
completion of data transfer will copy Ping source buffer data into Ping
destination buffer and Pong source buffer data into Pong destination buffer.
Status of the Ping and Pong set transfer will be displayed in the CCS stdout
window. Test is repeated for all the 16 DMA channels.

NOTE: DMA PING-PONG BUFFER MODE IS SUPPORTED ONLY ON CHIP 5515. THIS TEST HAS
BEEN DEVELOPED TO WORK WITH CHIP C5515. MAKE SURE THAT CHIP VERSION MACRO
"CHIP 5515' IS DEFINED IN THE FILE cb55xx csl\inc\csl general.h.

\subsection DMA4y TEST PROCEDURE:

@1i Open the CCS and connect the target (C5515 EVM)

@li Open the project "CSL DMA PingPongExample.pjt" and build it
@li Load the program on to the target

@li Set the PLL frequency to 12.288MHz

@li Run the program and observe the test result

@1i Repeat the test at PLL frequencies 40, 60, 75 and 100MHz
@1i Repeat the test in Release mode

\subsection DMA4z TEST RESULT:

@1i All the CSL APIs should return success

@li Ping source and destination data should match on all the 16 DMA channels
@1li Pong source and destination data should match on all the 16 DMA channels

Revision History

28-Dec-2009 Created

#include "csl dma.h"
#include "csl intc.h"
#include "usbstk5515.h"
#include <stdio.h>

#define CSL_DMA BUFFER SIZE 512
/* Reference the start of the interrupt vector table */

extern void VECSTART (void) ;
/* prototype declaration for ISR function */

/**

* \brief DMA Interrupt Service routine
*

* \param none

*

* \return none

*

~

interrupt void dma isr (void);

//#pragma DATA SECTION (dmaPingDstBuf,".daram buf")
#pragma DATA ALIGN (dmaPingDstBuf, 4)
Uintlo dmaPingDStBuf[CSL_DMA_BUFFER_SIZE];

//#pragma DATA ALIGN (dmaPongDstBuf, 4)
//Uintl6 dmaPongDstBuf [CSL DMA BUFFER SIZE];

/* Declaration of the buffer */
//#pragma DATA ALIGN (dmaPingSrcBuf, 4)
//Uintl6 dmaPingSrcBuf [CSL DMA BUFFER SIZE];

//#pragma DATA ALIGN (dmaPongSrcBuf, 4)
//Uintl6 dmaPongSrcBuf [CSL DMA BUFFER SIZE];

static int count ;

static int isrEntryCount = 0;
CSL_DMA Handle dmaHandleIZs;
CSL_DMA Config dmaConfig;
CSL_DMA Config getdmaConfig;
CSL_Status status;
/**
* \brief Tests DMA Ping-Pong Mode transfers
*
* \param none
*
* \return none
*/
/////INSTRUMENTATION FOR BATCH TESTING -- Part 1 --

///// Define PaSs StAtE variable for catching errors as program executes.
///// Define PaSs flag for holding final pass/fail result at program completion.
volatile Intl6 PaSs StAtE2 = 0x0001; // Init to 1. Reset to 0 at any monitored
execution error.
volatile Intl6 PaSs2 = 0x0000; // Init to 0. Updated later with PaSs StAtE
when and if
/7777 program flow reaches expected exit point(s).
/1177
void Config DMA I2S(void)
{
#if ((defined(C5515 EZDSP)) || (defined(CHIP 5514)))

CSL_DMA ChannelObj dmaObj;
Uintlé chanNumber;
Uintlé index;

printf ("\nDMA PING-PONG MODE TEST!\n");

dmaConfig.pingPongMode = CSL DMA PING PONG ENABLE;
dmaConfig.autoMode CSL DMA AUTORELOAD ENABLE;

dmaConfig.burstLen = CSL_DMA TXBURST 1WORD;
dmaConfig.trigger = CSL_DMA EVENT TRIGGER;
dmaConfig.dmaEvt = CSL_DMA EVT I2S0 RX;
dmaConfig.dmaInt = CSL_DMA INTERRUPT ENABLE;
dmaConfig.chanDir = CSL_DMA READ;

dmaConfig.trfType = CSL_DMA TRANSFER IO MEMORY;
dmaConfig.datalLen = CSL_DMA BUFFER _SIZE * 2;
dmaConfig.srcAddr = (Uint32)0x2828; // I2SRXLTO
dmaConfig.destAddr = (Uint32)dmaPingDstBuf; // DARAMI1

IRQ globalDisable();
IRQ clearAll();
IRQ disableAll();

IRQ setVecs ((Uint32) &VECSTART) ;
IRQ clear (DMA EVENT) ;

IRQ plug (DMA EVENT, &dma_isr);

IRQ enable (DMA EVENT) ;
IRQ globalEnable();

status = DMA init();
if (status != CSL_SOK)
{
printf ("DMA init () Failed \n");
/////INSTRUMENTATION FOR BATCH TESTING -- Part 2 --
///// Reseting PaSs_ StAtE to 0 if error detected here.
PaSs StAtE2 = 0x0000; // Was intialized to 1 at declaration.
/11777
}
//for (chanNumber = 0; chanNumber < CSL DMA CHAN MAX; chanNumber++)
/74
count = 0;
printf ("\nTest for DMA Channel Number: %d\n", chanNumber) ;

for(index = 0; index < CSL DMA BUFFER SIZE*2; index++)
{

//dmaPingSrcBuf [index] = index;
//dmaPongSrcBuf [index] = 2*index;
dmaPingDstBuf [index] = 0x0000;
//dmaPongDstBuf [index] = 0x0000;

}

dmaHandleI2s = DMA open (CSL DMA CHANI, &dmaObj, &status);
if (dmaHandleI2s == NULL)
{

printf ("DMA open() Failed \n");

//break;

status = DMA config(dmaHandleI2s, &dmaConfig);
if (status != CSL_SOK)
{

printf ("DMA config() Failed \n");

//break;

status = DMA start (dmaHandleI2s);
if (status != CSL_SOK)
{

printf ("DMA start () Failed \n");
//break;
}

/*while (count != 2);

status = DMA close (dmaHandlelI2s);

if (status != CSL_SOK)

{
printf ("DMA close() Failed \n");
//break;

status = DMA reset (dmaHandlelI2s);

if (status != CSL_SOK)

{
printf ("DMA reset () Failed \n");
//break;

}

for (index = 0; index < CSL DMA BUFFER SIZE; index++)
{
if (dmaPingSrcBuf[index] != dmaPingDstBuf[index])
{
printf ("Ping Buffer Miss Matched at Position %d\n", index);
break;

}

if (dmaPongSrcBuf[index] != dmaPongDstBuf[index])

{
printf ("Pong Buffer Miss Matched at Position %d\n", index);
break;

}

if (index == CSL _DMA BUFFER SIZE)
{
printf ("Test Successfull\n");
}*/
//}

//IRQ clearAll();
//IRQ disableAll();
//IRQ globalDisable () ;

if (isrEntryCount == 2)
{
printf ("\n\nDMA PING-PONG MODE TEST PASSED!!\n");
}
else
{
printf ("\n\nDMA PING-PONG MODE TEST FAILED!!\n");
/////INSTRUMENTATION FOR BATCH TESTING -- Part 2 --
///// Reseting PaSs StAtE to 0 if error detected here.
PaSs_ StAtE2 = 0x0000; // Was intialized to 1 at declaration.
/11777
}

#felse

printf ("\n\nINVALID TEST FOR THE CHIP VERSION!!\n");
/////INSTRUMENTATION FOR BATCH TESTING -- Part 2 --
///// Reseting PaSs StAtE to 0 if error detected here.

PaSs_ StAtE2 = 0x0000; // Was intialized to 1 at declaration.
/1117

#endif
/////INSTRUMENTATION FOR BATCH TESTING -- Part 3 --

///// At program exit, copy "PaSs StAtE" into "PaSs".

PaSs2 = PaSs_StAtE2; //If flow gets here, override PaSs' initial 0 with
/7777 // pass/fail value determined during program execution.
///// Note: Program should next exit to CS$SEXIT and halt, where DSS, under
///// control of a host PC script, will read and record the PaSs' value.
/1177

/**

* \brief DMA Interrupt Service routine
*

* \param none

*

* \return none

*

/
interrupt void dma_ isr (void)
{

int ifrValue;

ifrvValue = CSL SYSCTRL REGS->DMAIFR;
CSL_SYSCTRL_REGS->DMAIFR |= ifrValue;

#if ((defined(C5515 EZDSP)) || (defined(CHIP 5514)))

/*if ((DMA getLastTransferType (dmaHandleI2s, &status)) == 1)

{
printf ("Pong Set Transfer Completed\n");

}

else

{
printf ("Ping Set Transfer Completed\n");

}*/
#endif

++count;
++isrEntryCount;

