
Table 3-2. Compiler Options for Performance 
 

Option Description 

-O3 Represents the highest level of optimization available. Various 

loop optimizations are performed, and various file–level 

characteristics are also used to improve performance. 

-pm Combines source files to perform program–level optimization by 

allowing the compiler visibility to the entire application source. 

-oi<size> Enables inlining of functions based on a maximum size. 

(Enabled with -O3.) Size here is determined internally by the 

optimizer and does not correspond to bytes or any other known 

standard unit. Use a -onx option to check sizes of individual 

functions. 

-mb Asserts to the compiler that all data is on–chip. This option is 

used to enable the compiler to generate dual–MAC. See section 

1.4.2.2 for more details. 

-op2 When used with -pm, this option allows the compiler to assume 

that the program being compiled does not contain any functions 

or variables called or modified from outside the current file. The 

compiler is free to remove any functions or variables that are 

unused in the current file. 

-mn Re–enables optimizations disabled when using -g option 

(symbolic debugging). Use this option when it is necessary to 

debug optimized code. 

-vdevice 

[:revision] 

Tells the compiler what physical hardware device and core 

revision you are compiling for.  Correct use of this option 

minimizes the additional code generated by the compiler to work 

around any hardware ECN’s. 

 

3.2.4 Compiling for codesize 

When compiling to minimize codesize we recommend using the options –O3, -pm, -

op2, -mb, -oi0, and –ms.  The compiler makes certain tradeoffs between 

performance and codesize.  Compiling with –ms tells the compiler to favor lower 

codesize instead of higher performance when making those tradeoffs.  Some of the 

changes you may see when compiling with –ms include: 

- The beginning of each C function will not be aligned.  When compiling without –

ms the start of each function is aligned on a 4 byte boundary.  This enables 

profiling to be more consistent.  When you make changes to one function the 

cycle counts of other functions won’t change simply from alignment differences.  

Compiling with –ms eliminates the codesize overhead (NOP’s) of aligning 

functions. 

- Loops are not unrolled.  Loop unrolling increases codesize and thus is not 

performed under –ms. 

- Instruction selection changes.  When compiling with –ms the compiler may use 

different instructions for some expressions.  For example, certain AMOV (or 



mar) instructions require 1 more byte than the comparable execute phase MOV 

instruction. 

- Less code hoisting out of loops.  Hoisting loop invariant code out of loops can 

lead to increased code size.  Compiling with –ms reduces the amount of 

hoisting performed by the compiler. 

- Fewer predicated instructions.  The compiler attempts to predicate some small 

blocks of code to eliminate control flow.  Compiling with –ms reduces the size 

threshold for determining which instructions should be predicated to reduce 

codesize. 

3.4.2.3 Memory Layout Considerations 

To issue a dual-MAC instruction in a single cycle, the arrays pointed to by the 

various dual-MAC operands must be properly laid out in memory.  Consider the 

following C code that can be used to generate a dual-MAC. 

   y0 += (long)x[j] * h[i]; 

         y1 += (long)y[j] * h[i]; 

 Recall that a C55x dual-MAC has three memory operands, one of them being 

shared between the two MAC’s.  In this example h[i] is the shared operand.  For 

single cycle dual-MAC, the memory pointed to by the unshared operands (arrays x 

and y in our example) must be in DARAM.  The shared operand (array h, typically 

the coefficient array) must reside in a separate memory bank (or block) from the 

other two operands (DARAM or SARAM is acceptable).  See section 3.5.4 for more 

information on controlling the memory placement of C arrays. 

 



3.4.5 Compiler support for circular addressing 

The compiler can generate assembly code that utilizes the circular addressing 

hardware of the C55x.  This feature is available with small memory model 

compilation only using version 2.30 and higher of the code generation tools.  (Small 

memory model is the default mode of the compiler.)  The optimizer must be run (i.e. 

you must use the –O<x> option) to enable generation of circular addressing code. 

The compiler can transform certain array references inside loops into circular 

addressing code.  Given an array ‘a’ of size ‘S’ and index variable ‘x’, the compiler 

will recognize ‘a’ as a circular buffer if the following conditions hold: 

- All index expressions for ‘a’ contain only ‘x’ and constants.  An index 

expressions must be of the form “bx + c” where ‘b’ and ‘c’ are constants. 

- Increments of ‘x’ are always by positive constants. 

- Increments of ‘x’ are always followed by “% S” (i.e. modulus the size of the 

buffer).  The syntax “& T” is also acceptable where T = S – 1 and S is a power 

of two. 

- ‘x’ is initialized with a value that is a compile-time constant. 

Example 0-1 shows a simple C function for which the compiler can make use of the 

C55x circular addressing hardware.  The compiler detects a circular buffer with 

array ‘b’, index variable ‘x’ and size 16. The assembly generated by the compiler is 

shown in Example 0-2. 

Example 0-1. A simple circular addressing example 

void circ(int *a, int *b) 

{ 

    int i, x = 0; 

 

    for(i = 0; i < 16; i++) /* (1) start of circular buffer lifetime */ 

    { 

        a[i] = b[x]; 

        x = (x + 3) % 16; /* or x = (x + 3) & 15 */ 

    }                       /* (2) end of circular buffer lifetime */ 

} 

 

 Example 0-2. A simple circular addressing example – algebraic assembly 
_circ: 
 
        BSA01 = @AR1_L 
||      mmap() 
 
        AR0 = #0  ; |6|  
||      mar(AR3 = AR0) ; |2|  
 
        bit(ST2, #ST2_AR0LC) = 1  ; circ mode (AR0) ; |6|  



||      BK03 = #16 
 
        BRC0 = #15 
        localrepeat { 
                                            ; loop starts 
L1:     
            *AR3+ = *AR0 ; |8|  
            mar(AR0 + #3) ; circular mode ; |9|  
        }                               ; loop ends ; |10|  
L2:     
        bit(ST2, #ST2_AR0LC) = 0  ; circ mode (AR0) 
        return 
                                        ; return occurs 

 

 

Example 0-2. A simple circular addressing example – mnemonic assembly 
_circ: 
        MOV mmap(AR1), BSA01 
 
        MOV #0, AR0 ; |6|  
||      AMOV AR0, AR3 ; |2|  
 
        BSET ST2_AR0LC ; circ mode (AR0) ; |6|  
||      MOV #16, BK03 
 
        MOV #15, BRC0 
        RPTBLOCAL L2-1 
                                            ; loop starts 
L1:     
            MOV *AR0, *AR3+ ; |8|  
            AADD #3, AR0 ; circular mode ; |9|  
                                        ; loop ends ; |10|  
L2:     
        BCLR ST2_AR0LC ; circ mode (AR0) 
        RET 
                                        ; return occurs 

 

Note the following restrictions on circular addressing: 

- A negative update of ‘x’ (e.g. “x = (x – 1) % 10”) is not allowed and would 

prohibit the compiler from generating circular addressing code.  However, a 

negative update can be simulated via a large positive update.  Subtracting one 

from a circular buffer of size ten would look like this “x = (x + 9) % 10”. 

- The circular buffer size must be a compile time constant.  That is, the compiler 

must be able to determine what the size of the buffer is, or it will not generate 

circular addressing code. 

- The compiler does not support circular addressing via the CDP register. 

- The hardware has a limited number of registers that it can use for circular 

addressing.  If the user writes code that requires more than the available 

number of circular registers, the compiler will attempt to generate efficient code 

to simulate circular addressing for some circular buffers. 



- The compiler will not generate circular addressing code if a function call would 

be present within the lifetime of the circular buffer (e.g. No function calls are 

allowed between (1) and (2) in example 0-1.) 

- Circular addressing is not available when compiling with the large memory 

model (-ml flag to cl55). 

Some of these restrictions may be eased in future revisions of the compiler. 

Previous versions of this document describe how to use user-defined macros 

CIRC_UPDATE and CIRC_REF to implement circular addressing.  Example 0-3 

shows the proper way to now define those macros and how they would be used to 

transform Example 0-2. 
 

Example 0-3. Using CIRC_REF and CIRC_UPDATE 
#define CIRC_UPDATE(var,inc,size) (var) = ((var) + (inc)) % (size); 
#define CIRC_REF(var,size) (var) 
 
void circ(int *a, int *b) 
{ 
   int i, x = 0; 
 
 
   for(i = 0; i < 16 ; i++) 
   { 
      a[i] = b[CIRC_REF(x,16)]; 
      CIRC_UPDATE(x,3,16) 
   } 

} 

 

 

Table 3-7. C Coding Methods for Generating Efficient C55x Assembly Code 

Operation Recommended C Code Idiom 

16bit * 16bit => 32bit (multiply) int a,b; 
long c; 
c = (long)a * b; 

Q15 * Q15 => Q31 (multiply) 

Fractional mode (no saturation) 

int a,b; 
long c; 
c = ((long)a * b) << 1; 

Q15 * Q15 => Q15 (multiply) 

Fractional mode with saturation 

int a,b,c; 
c = _smpy(a,b); 

Q15 * Q15 => Q31 (multiply) 

Fractional mode with saturation 

int a,b; 
long c; 
c = _lsmpy(a,b); 

32bit + 16bit * 16bit => 32 bit (MAC) int a,b; 
long c; 
c = c + ((long)a * b)); 

Q31 + Q15 * Q15 => Q31 (MAC) 

Fractional mode (no saturation) 

int a,b; 
long c; 
c = c + ((long)a * b) << 1; 

Q31 + Q15 * Q15 => Q31 (MAC) 

Fractional mode with saturation 

int a,b; 
long c; 



c = _smac(c,a,b); 

32bit – 16bit * 16bit => 32 bit (MAS) int a,b; 
long c; 
c = c – ((long)a * b)); 

Q31 – Q15 * Q15 => Q31 (MAS) 

Fractional mode (no saturation) 

int a,b; 
long c; 
c = c – ((long)a * b) << 1; 

Q31 – Q15 * Q15 => Q31 (MAS) 

Fractional mode with saturation 

int a,b; 
long c; 
c = _smas(c,a,b); 

16bit +/- 16bit => 16bit 

32bit +/- 32bit => 32bit 

40bit +/- 40bit => 40bit (addition or subtraction) 

<int, long, long long> a,b,c; 
c = a + b; 
/* or */ 
c = a – b; 

16bit + 16bit => 16bit (addition) 

with saturation 

int a,b,c; 
c = _sadd(a,b); 

32bit + 32bit => 32bit (addition) 

with saturation 

long a,b,c; 
c = _lsadd(a,b); 

40bit + 40bit => 40bit (addition) 

with saturation 

long long a,b,c; 
c = _llsadd(a,b); 

16bit – 16bit => 16bit (subtraction) 

with saturation 

int a,b,c; 
c = _ssub(a,b); 

32bit – 32bit => 32bit (subtraction) 

with saturation 

long a,b,c; 
c = _lssub(a,b); 

40bit – 40bit => 40bit (subtraction) 

with saturation 

long long a,b,c; 
c = _llssub(a,b); 

Max and min <int, long, long long> a,b; 
a = a > b ? a : b; /* max */ 
a = a < b ? a : b; /* min */ 

Bidirectional left shift (i.e. shift left if shift value is 

positive, shift right if shift value is negative). 

<int, long, long long> a; 
int b;  
a = b > 0 ? a << b : a >> -b; 

|16bit| => 16bit 

|32bit| => 32bit 

|40bit| => 40bit (absolute value) 

<int, long, long long> a,b; 
b = abs(a);  /* or */ 
b = labs(a); /* or */ 
b = llabs(a); 

|16bit| => 16bit 

|32bit| => 32bit 

|40bit| => 40bit (absolute value) 

with saturation 

<int, long, long long> a,b; 
b = _abss(a);  /* or */ 
b = _labss(a); /* or */ 
b = _llabss(a); 

round(Q31) = > Q15 (rounding towards infinity) 

with saturation 

long a; 
int b; 
b = _rnd(a)>>16; 

Q39 => Q31 (format change) long long a; 
long b; 
b = a >> 8; 

Q30 = > Q31 (format change) 

with saturation 

long a; 
long b; 
b = _lsshl(a,1); 

40bit => 32bit both Q31 (size change) long long a; 
long b; 
b = a; 



 

 


