
Texas Instruments Inc., 2011 1

C28x Digital Power Library

v3.2

March 2011

Module User’s Guide

C28x Foundation Software

Texas Instruments Inc., 2011 2

 IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgement, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible or liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters
stated by TI for that products or service voids all express and any implied warranties for the
associated TI product or service, is an unfair and deceptive business practice, and TI is not
responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2011, Texas Instruments Incorporated

Texas Instruments Inc., 2011 3

Trademarks

TMS320 is the trademark of Texas Instruments Incorporated.
All other trademarks mentioned herein are property of their respective companies

Acronyms

DPLib: Digital Power library functions.

C28x: Refers to devices with the C28x CPU core.

IQmath: Fixed-point mathematical functions in C.

Q-math: Fixed point numeric format defining the binary resolution in bits.

Texas Instruments Inc., 2011 4

Contents
Chapter 1. Introduction ..6

1.1. Introduction... 6

Chapter 2. Installing the DP Library..8

2.1. DP Library Package Contents ... 8

2.2. How to Install the Digital Power Library ... 8

2.3. Naming Convention .. 8

Chapter 3. Using the Digital Power Library..10

3.1. Library Description and Overview ... 10

3.2. Steps to use the DP library... 12

3.3. Viewing DP CLA library variables in watch window.. 14

3.4. IQ Math & IQ Math Library Usage.. 15

Chapter 4. Module Summary ...16

4.1. DP Library Function Summary .. 16

Chapter 5. C28x Module Descriptions ..18

5.1. Controllers ... 18
CNTL_2P2Z.. 18
CNTL_3P3Z.. 23

5.2. Peripheral Configuration ... 28
PWM_PSFB_PCMC_CNF ... 28

5.3. Peripheral Drivers .. 29
ADCDRV_1ch... 29
ADCDRV_4ch... 33
ADCDRV_8ch... 37
PWMDRV_1ch ... 42
PWMDRV_1chHiRes.. 46
PWMDRV_PFC2PhiL... 51
PWMDRV_PSFB.. 55
PWMDRV_ComplPairDB ... 59
PWMDRV_DualUpDwnCnt .. 64
PWMDRV_BuckBoost .. 68
PWMDRV_2ch_UpCnt ... 73
PWMDRV_1ch_UpDwnCnt .. 77
PWMDRV_PSFB_VMC_SR... 81
PWMDRV_LLC_ComplPairDB... 85
PWMDRV_LLC_1ch_UpCntDB ... 90
PWMDRV_LLC_1ch_UpCntDB_Compl ... 95
DACDRV_RAMP .. 101

5.4. Application Specific .. 105
PFC_ICMD ... 105
PFC_INVSQR... 108
PFC_BL_ICMD... 111
PFC_InvRmsSqr... 115

Texas Instruments Inc., 2011 5

5.4 Math Blocks .. 119
MATH_EMAVG .. 119
SineAnalyzer... 123

Utilities .. 128
DLOG_4ch.. 128
DLOG_1ch.. 132

Chapter 6. Revision History...135

Texas Instruments Inc., 2011 6

Chapter 1. Introduction

1.1. Introduction

Texas Instruments Digital Power (DP) library is designed to enable flexible and efficient coding of
digital power supply applications using the C28x processor. An important consideration of these
applications is their relatively high control loop rate, which imposes certain restrictions on the way
the software can be written. In particular, the designer must take care to ensure the real-time
portion of the code, normally contained within an Interrupt Service Routine (ISR), must execute in
as few cycles as possible. In many cases this makes the use of C code impossible, or at least
inadvisable, for the ISR.

A further requirement in code development and test is for the software structure to be flexible and
adaptable. This enables the designer to experiment with various control loop layouts, and to
monitor software variables at various points in the code to confirm correct operation of the
system. For this reason, the DP library is constructed in a modular form, with macro functions
encapsulated in re-usable code blocks which can be connected together to build any desired
software structure.

This strategy encourages the use of block diagrams to plan out the software structure before the
code is written. An example of a simple block diagram showing the connection of three DP library
modules to form a simple control loop is shown below.

Net Var 2

Net Var 3

Net Var 1

ADC Ch:n:
A
D
C

ADCDRV_1ch:n:

Rlt

Out

Ref

Fdbk

CNTL_2P2Z:n:

Coef

B2
B1
B0
A2
A1
min
max

CNTL_2P2Z_CoefStruct

DBUFF

P
W
M

PWMnA

PWMDRV_1ch:n:

Duty

Period

Figure 1 Close Loop System using DPLib

In this example, three library macro-blocks are connected: an ADC driver, a second order digital
controller, and a PWM driver. The labels “Net Var 1”, Net Var 2” and “Net Var 3” correspond to
software variables which form the connection points, or “nodes”, in the diagram. The input and
output terminals of each block are connected to these nodes by a simple method of C pointer
assignment in software. In this way, designs may be rapidly re-configured to experiment with
different software configurations.

Library blocks have been color coded: “turquoise” blocks represent those which interface to
physical device hardware, such as an A/D converter, while “yellow” blocks indicate macros which
are independent of hardware. This distinction is important, since hardware interface blocks must
be configured to match only those features present on the device. In particular, care should be

Texas Instruments Inc., 2011 7

taken to avoid creating blocks which access the same hardware (for example two blocks driving
the same PWM output may well give undesirable results!).

Both types of blocks require initialization prior to use, and must be configured by connecting their
terminals to the desired net nodes. The initialization and configuration process is described in
Chapter 3.

Once the blocks have been initialized and connected, they can be executed by calling the
appropriate code from an assembly ISR. Macro blocks execute sequentially, each block
performing a precisely defined computation and delivering its’ result to the appropriate net list
variables, before the next block begins execution.

Texas Instruments Inc., 2011 8

Chapter 2. Installing the DP Library

2.1. DP Library Package Contents

The TI Digital Power library consists of the following components:

 C initialization functions

 Assembly macros files

 An assembly file containing a macro initialization function and a real-time run functions.

 An example CCS project showing the connection and use of DP library blocks.

 Documentation

2.2. How to Install the Digital Power Library

The DP library is distributed through the controlSUITE installer. The user must select the Digital
Power Library Checkbox to install the library in the controlSUITE directory. By default, the
installation places the library components in the following directory structure:

<base> install directory is C:\ti\controlSUITE\libs\app_libs\digital_power\<device>

 …where <device> is the C28x platform. The following sub-directory structure is used:

<base>\asm Contains assembly macros

<base>\C C initialization files

<base>\doc Contains this file

<base>\include Contains the library header file for the “DPlib.h”

The installation also installs a template project using the DPLib for the device inside the
controlSUITE directory

controlSUITE\development_kits\TemplateProjects_<ver. No.>\

DPLibTemplate-<device_name> _<ver. No.>

These template projects can be quickly modified to start a new project using the DPlib.

2.3. Naming Convention

Each macro of the digital power library has an assembly file that contains the initialization and the
run time code for the block. In addition to the assembly block peripheral interface blocks use a
peripheral configuration function as well.

An example of the naming convention used is shown below:

Texas Instruments Inc., 2011 9

Figure 2 – Function Naming Convention

Include files, initialization functions, and execution macros share the same naming. In the above
example, these would be…

 Include file: ADCDRV_1ch.asm

 Init function: ADCDRV_1ch_INIT n

 Execution Macro: ADCDRV_1ch n

Where n refers to the instance number of the macro.

Note: In the case of some Peripheral Drivers (e.g. ADC Drivers and PWM drivers) the instance
number also implies the Peripheral Number the DP Library macro would drive or use on the
device. For example

ADCDRV_1ch 0 normalizes AdcResult0 of the ADC Peripheral &
PWMDRV_1ch 3 drives the EPWM3 peripheral present on the device.

Texas Instruments Inc., 2011 10

Chapter 3. Using the Digital Power Library

3.1. Library Description and Overview

Typical user software will consist of a main framework file written in C and a single Interrupt
Service Routine (ISR) written in assembly. The C framework contains code to configure the
device hardware and initialize the library macros. The ISR consists of a list of optimized macro
modules which execute sequentially each time a hardware trigger event occurs.

This structure of setting up an interrupt based program is common in embedded real-time
systems which do not use a scheduler. For examples of device initialization code, refer to the
peripheral header file examples for the C28x device.

Conceptually, the process of setting up and using the DP library can be broken down into three
parts.

1 Initialisation. Macro blocks are initialized from the C environment using a C callable function
(“DPL_Init()”) which is contained in the assembly file {ProjectName}-DPL-ISR.asm. This
function is prototyped in the library header file “DPlib.h” which must be included in the main C
file.

2 Configuration. C pointers of the macro block terminals are assigned to net nodes to form the
desired control structure. Net nodes are 32-bit integer variables declared in the C framework.
Note names of these net nodes are no dependent on the macro block.

3 Execution. Macro block code is executed in the assembly ISR (“DPL_ISR”). This function is
defined in the “{ProjectName}-DPL-ISR.asm” .

An example of this process and the relationship between the main C file and assembly ISR is
shown below.

Texas Instruments Inc., 2011 11

Figure 3 : Relation between Main.c & ISR.asm file

The DP library assembly code has a specific structure which has been designed to allow the user
to freely specify the interconnection between blocks, while maintaining a high degree of code
efficiency. Before any of the library macros can be called, they must be initialized using a short
assembly routine located in the relevant macro.asm file for each module. The code which calls
the macro initialization must reside in the same assembly file as the library ISR.

The assembly code in “DPL_Init” is C callable, and its’ prototype is in the library header file
“DPlib.h” described above. To initialize the macros, edit the DPL_Init section of the file
“{ProjectName}-DPL-ISR.asm” to add initialization calls for each macro required in the
application. The order of the calls is not important, providing one call is made for each macro-
block required in the application. The respective macro assembly file must be included at the
starting of the “{ProjectName}-DPL-ISR.asm” file.

The internal layout and relationship between the ISR file and the various macro files is shown
diagrammatically below. In this example, three DP library macros are being used. Each library
module is contained in an assembly include file (.asm extension) which contains both
initialization and macro code. The ISR file is also divided into two parts: one to initialize the
macros, the other is the real-time ISR code in which the macro code is executed.

Texas Instruments Inc., 2011 12

Figure 4 DP library assembly ISR and macro file

The ISR contains context save and context restore blocks to protect any registers used by the
assembly modules. By default, the template performs a complete context save of all the main
CPU registers. PUSH/POP instructions can be commented to save cycles if specific registers are
known to be unused by any of the macros in the ISR. A list of registers used by each module is
shown below.

3.2. Steps to use the DP library

The first task before using the DP library should be to sketch out in diagram form the modules
and block topology required. The aim should be to produce a diagram similar to that in Figure
1.This will indicate which macro-blocks are required and how they interface with one another.
Once this is known, the code can be configured as follows:

Step 1 Add the library header file. The C header file “DPlib.h” contains prototypes and
variable declarations used by the library. Add the following line at the top of your main C file:

#include "DPlib.h"

This file is located in the at,
 controlSUITE\libs\app_libs\digital_power\{device_name_VerNo}\include

Texas Instruments Inc., 2011 13

This path needs to be added to the include path in the build options for the project.

Step 2 Declare terminal pointers in C. The “{ProjectName}-Main.c” file needs to be
edited to add extern declarations to all the macro terminal pointers which will be needed in the
application under the “DPLIB Net Terminals” section inside this file. In the example below,
three pointers to an instance of the 2P2Z control block are referenced. Please note the use of
volatile keyword for the net pointers, as they point to net variables which are volatile as the ISR
computes these values.

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// CNTL_2P2Z #instance 1
extern volatile long *CNTL_2P2Z_Ref1;
extern volatile long *CNTL_2P2Z_Fdbk1;
extern volatile long *CNTL_2P2Z_Out1;
extern volatile long *CNTL_2P2Z_Coef1;

Step 3 Declare signal net nodes/net variables in C. Edit the “{ProjectName}-Main.c “ C
file to define the net variables which will be needed in the application under the “DPLIB
Variables” section . In the example below, three arbitrarily named variables are declared as
global variables in C.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Net1, Net2, Net3;

Step 4 Call the Peripheral configuration function. Call the peripheral configuration functions
that are needed to configure the peripherals being used by the library macros being used in the
system.

Note as CNTL_2P2Z is a software block this step is not needed.

Step 5 Call the initialisation function from C. Call the initialization function from the C
framework using the syntax below.

 /* Digital Power (DP) library initialization */
 DPL_Init(); // initialize DP library

Step 6 Assign macro block terminals to net nodes. This step connects macro blocks together
via net nodes to form the desired control structure. The process is one of pointer assignment
using the net node variables and terminal pointers declared in the previous two steps.

For example, to connect the ADC driver (instance 0) and 2P2Z control block (instance 1) to net
node “Net2” as shown in Figure 1, the following assignment would be made:

// feedback node connections
 ADCDRV_1ch_Rlt0 = &Net2;
 CNTL_2P2Z_Fdbk1 = &Net2;

Note that net pointer assignment can be dynamic: i.e. the user code can change the connection
between modules at run-time if desired. This allows the user to construct flexible and complex
control topologies which adapt intelligently to changing system conditions.

Texas Instruments Inc., 2011 14

Step 7 Add the ISR file. A single assembly file containing the ISR code and calls to the macro
initialisation functions must exist in the project. The relationship between these elements is
described in Chapter 3.1. A blank template “ProjectName-DPL-ISR.asm” is included with the
DP library for this purpose in the template directory. To use this file, rename the file as
“{ProjectName}-DPL-ISR.asm” and add it to the project.

Step 8 Include the required macro header files. Add assembly include files to the top of the
ISR file “{ProjectName}-DPL_ISR.asm” as required. The include (.asm) file is required for
each block type being used in the project. For example, to use the 2P2Z controller block, add this
line to the top of the ISR file:
 .include "CNTL_2P2Z.asm"

Step 9 Initialize required macro blocks. Edit the function “DPL_Init” in the above ISR file to
add calls to the initialization code in each macro file. Each call is invoked with a number to identify
the unique instance of that macro block. For example, to create an instance of the 2P2Z control
block with the identifier “1”:

 CNTL_2P2Z_INIT 1

Step 10 Edit the assembly ISR to execute the macros in the required order. Edit the function
“DPL_Run” to add calls to the run time routine of each macro and instance being used in the
system. In the example above the first instance of a 2P2Z control macro would be executed by:

 CNTL_2P2Z 1

Step 11 Add the DP library sections to the linker command file. The linker places DP library
code is a named sections as specified in the linker command file “{DeviceName-RAM/FLASH-
ProjectName}.CMD”. A sample CMD file is provided with the sections specified for the entire
DPS library in the template folder. The files only provides a sample memory allocation and can be
edited by the user to suit their application.

This DPLib Macros need to be placed in the data RAM. The sample linker file specifies where
each memory section from each DP library module would be placed in internal memory. An
example of section placement for the CNTL_2P2Z module is shown below.

 /* CNTL_2P2Z section */
 CNTL_2P2Z_Section : > dataRAM PAGE = 1
 CNTL_2P2Z_InternalData : > dataRAM PAGE = 1
 CNTL_2P2Z_Coef : > dataRAM PAGE = 1

Where dataRAM is a location in the RAM on the device which is specified in the sample CMD file.

3.3. Viewing DP CLA library variables in watch window

If is desired to see the DP CLA library macro variables, i.e. the net pointers can be added to the
watch window by adding a qualifier of *(type*). Shown below is the value stored in the net pointer
Ref, and the net variable the pointer points to. Note the address of the net variable is stored in the
net pointer.

Texas Instruments Inc., 2011 15

3.4. IQ Math & IQ Math Library Usage

The DPlib modules use a common Q24 value for the variables that interface to the net pointers of
the macros. The modules assume and write to variables in Q24 format. Please see the module
specific document for what range of Q24 values are supported at the terminals of the macros.
Some variables that are local to the macro may be saved in Q30 or other Q format to save
resolution.

The DPLib does not use IQ Math Library for its functions and macors, However IQMath library is
used in the code snippets given in this file for ease of readability of the code. For example
reference variable can be written with a value of 0.2 in Q24 in the following two fashion, both of
which write the same value to the variable.

Ref = _IQ24(0.2); //Uses IQ Math Library
Ref = 0x333333; //Does not use IQMath Library

Texas Instruments Inc., 2011 16

Chapter 4. Module Summary

4.1. DP Library Function Summary

The Digital Power Library consists modules than enable the user to implement digital control for
different power topologies. The following table lists the modules existing in the power library and
a summary of cycle counts and code size.

Note: The memory sizes are given in 16-bit words and cycles are the system clock cycles taken
to execute the Macro run file.

Module Name
Module
Type

Description
HW
Config
File

Cycles

Init
Code
Size
(W)

Run
Code
Size
(W)

Data
Size
(W)

Multiple
Instance
Support

CNTL_2P2Z CNTL
Second Order
Control Law

NA 34 17 46 18 Yes

CNTL_3P3Z CNTL
Third Order Control
Law

NA 42 17 56 22 Yes

ADCDRV_1ch HW
Single Channel ADC
Driver

Yes 5 5 8 2 Yes

ADCDRV_4ch HW
Four Channel ADC
Driver

Yes 14 8 20 8 No

PWMDRV_1ch HW
Single Channel
PWM Driver

Yes 10 12 12 4 Yes

PWMDRV_1chHiRes HW
Single Channel
PWM Driver with Hi
Res capability

Yes 10 12 12 4 Yes

PWMDRV_PFC2PhiL HW
PWM driver for Two
Phase Interleaved
PFC stage

Yes 17 13 18 6 Yes

PWMDRV_PSFB HW
PWM driver for
Phase Shifted Full
Bridge Power stage

Yes 21 13 21 6 Yes

PWMDRV_ComplPairDB HW
PWM driver for
complimentary pair
PWMs

Yes 10 15 12 6 Yes

PWMDRV_DualUpDwnCnt HW

PWM driver with
independent duty
control on ch A
and ch B, using up
down count mode

Yes 14 13 16 6 Yes

PWMDRV_BuckBoost HW
PWM driver for a
four switch Buck
Boost Stage

Yes 12 12 16 4 Yes

PWMDRV_2ch_UpCnt HW

PWM driver with
independent duty
control on ch A
and ch B, using up
down count mode

Yes 13 12 16 6 Yes

PFC_ICMD APPL
Power Factor
Correction Current
Command Block

NA 17 9 19 10 Yes

PFC_INVSQR APPL Power Factor NA 71 15 39 12 Yes

Texas Instruments Inc., 2011 17

Correction Inverse
Square Block

MATH_EMAVG MATH
Exponential moving
average

NA 16 6 16 6 Yes

DLOG_4ch UTIL
4 channel Data
Logger Module

NA
33
(Avg)

14 56 24 No

DLOG_1ch UTIL
1 channel Data
Logger Module

NA
20
(Avg)

17 41 12 Yes

Texas Instruments Inc., 2011 18

Chapter 5. C28x Module Descriptions

5.1. Controllers

CNTL_2P2Z

Description: This assembly macro implements a second order control law using a 2-pole, 2-

zero construction. The code implementation is a second order IIR filter with
programmable output saturation.

CNTL_2P2Z_Out:n:
CNTL_2P2Z_Ref:n:

CNTL_2P2Z_Fdbk:n:

CNTL_2P2Z_Coef:n:

Out
Ref

Fdbk

CNTL_2P2Z:n:

Coef

B2
B1
B0
A2
A1
min
max

CNTL_2P2Z_CoefStruct

DBUFF

Macro File: CNTL_2P2Z.asm

Module
Description: The 2-pole 2-zero control block implements a second order control law using

an IIR filter structure with programmable output saturation. This type of
controller requires two delay lines: one for input data and one for output data,
each consisting of two elements.

 The discrete transfer function for the basic 2P2Z control law is…

2
2

1
1

0
1

1
2

2

1)(

)(








zaza

bzbzb

zE

zU

This may be expressed in difference equation form as:

)2()1()()2()1()(21021  nebnebnebnuanuanu

Where…

 u(n) = present controller output (after saturation)
u(n-1) = controller output on previous cycle
u(n-2) = controller output two cycles previously
e(n) = present controller input
e(n-1) = controller input on previous cycle
e(n-2) = controller input two cycles previously

Two Pole Two Zero Controller

Texas Instruments Inc., 2011 19

The 2P2Z control law may be represented graphically as shown below.

Input and output data are located in internal RAM with address designated by
CNTL_2P2Z_DBUFF as shown below. Note that to preserve maximum resolution
the module saves the values inside CNTL_2P2Z_DBUFF in _IQ30 format.

Controller coefficients and saturation settings are located in memory as follows:

Where satmax and satmin are the upper and lower control effort bounds
respectively. Note that to preserve maximum resolution the coefficients are

Texas Instruments Inc., 2011 20

saved in Q26 format and the saturation limits are stored in Q24 format to
match the output format.

Controller coefficients must be initialized before the controller is used. A
structure CNTL_2P2Z_CoefStruct is used to ensure that the coefficients
are stored exactly as shown in the table as the CNTL_2P2Z accesses them
relative to a base address pointer. The structure is defined in the library
header file DPlib.h to allow easy access to the elements from C.

Usage: This section explains how to use CNTL_2P2Z this module.

Step 1 Add the library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
// CONTROL_2P2Z - instance #1
extern volatile long *CNTL_2P2Z_Ref1;
extern volatile long *CNTL_2P2Z_Out1;
extern volatile long *CNTL_2P2Z_Fdbk1;
extern volatile long *CNTL_2P2Z_Coef1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note signal net mode names change from system to system, no dependency exist between these names and module.

// ---------------------------- DPLIB Variables ------------------------

// declare the net nodes/variables being used by the DP Lib Macro here

long Ref , Fdbk , Out;

#pragma DATA_SECTION(CNTL_2P2Z_CoefStruct1, "CNTL_2P2Z_Coef");
struct CNTL_2P2Z_CoefStruct CNTL_2P2Z_CoefStruct1;

Step 4 “Call” the DPL_Init() function to initialize the macros and ”connect” the module
terminals to the signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();

// Connect the CNTL_2P2Z block to the variables
CNTL_2P2Z_Fdbk1 = &Fdbk;
CNTL_2P2Z_Out1 = &Out;
CNTL_2P2Z_Ref1 = &Ref;
CNTL_2P2Z_Coef1 = &CNTL_2P2Z_CoefStruct1.b2;

Texas Instruments Inc., 2011 21

// Initialize the Controller Coefficients
CNTL_2P2Z_CoefStruct1.b2 = _IQ26(0.05);
CNTL_2P2Z_CoefStruct1.b1 = _IQ26(-0.20);
CNTL_2P2Z_CoefStruct1.b0 = _IQ26(0.20);
CNTL_2P2Z_CoefStruct1.a2 = _IQ26(0.0);
CNTL_2P2Z_CoefStruct1.a1 = _IQ26(1.0);
CNTL_2P2Z_CoefStruct1.max =_IQ24(0.7);
CNTL_2P2Z_CoefStruct1.min =_IQ24(0.0);

//Initialize the net Variables/nodes
Ref=_IQ24(0.0);
Fdbk=_IQ24(0.0)
Out=_IQ24(0.0);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the assembly macro file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "CNTL_2P2Z.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
CNTL_2P2Z_INIT 1 ; CNTL_2P2Z Initialization

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR()
which is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
CNTL_2P2Z 1 ; Run the CNTL_2P2Z Macro

Step 9 Include the memory sections in {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note, for the CNTL_2P2Z module the net pointers and the internal data
do not assume anything about allocation on a single data page.

/*CNTL_2P2Z sections*/
CNTL_2P2Z_Section : > dataRAM PAGE = 1
CNTL_2P2Z_InternalData : > dataRAM PAGE = 1
CNTL_2P2Z_Coef : > dataRAM PAGE = 1

Texas Instruments Inc., 2011 22

Module Net Definition:

Net Name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of the
Variable being
pointed to

CNTL_2P2Z_Ref:n: Input Pointer
Pointer to 32 bit fixed point input data
location storing the Reference value for
the controller.

Q24: [0, 1)

CNTL_2P2Z_Fdbk:n: Input Pointer
Pointer to 32 bit fixed point input data
location storing the Feedback value for
the controller.

Q24: [0, 1)

CNTL_2P2Z_Coef:n: Input Pointer
Pointer to the location where coefficient
structure is stored.

See Module
Description

CNTL_2P2Z_Out:n:
Output
Pointer

Pointer to 32 bit fixed point output
location where the reference for the
current loop is stored

Q24:[0,1)

CNTL_2P2Z_DBUFF:n:
Internal
Data

Data Variable storing the scaling factor
See Module
Description

Texas Instruments Inc., 2011 23

CNTL_3P3Z

Description: This assembly macro implements a third order control law using a 3-pole, 3-zero

construction. The code implementation is a third order IIR filter with
programmable output saturation.

Macro File: CNTL_3P3Z.asm

Module
Description: The 3-pole 3-zero control block implements a third order control law using an

IIR filter structure with programmable output saturation. This type of
controller requires three delay lines: one for input data and one for output
data, each consisting of three elements.

 The discrete transfer function for the basic 3P3Z control law is…

1
1

2
2

3
3

0
1

1
2

2
3

3

1)(

)(








zazaza

bzbzbzb

zE

zU

This may be expressed in difference equation form as:

)3()2()1()()3()2()1()(3210321  nebnebnebnebnuanuanuanu

Where…

 u(n) = present controller output (after saturation)
u(n-1) = controller output on previous cycle
u(n-2) = controller output two cycles previously
u(n-3) = controller output three cycles previously
e(n) = present controller input
e(n-1) = controller input on previous cycle
e(n-2) = controller input two cycles previously
e(n-3) = controller input three cycles previously

Control Law Three Pole Three Zero Controller

Texas Instruments Inc., 2011 24

The 3P3Z control law may also be represented graphically as shown below.

Input and output data are located in internal RAM with address designated by
CNTL_3P3Z_DBUFF as shown below. Note that to preserve maximum resolution
the module saves the values inside CNTL_3P3Z_DBUFF in _IQ30 format.

Controller coefficients and saturation settings are located in memory as shown:

Texas Instruments Inc., 2011 25

Where satmax and satmin are the upper and lower control effort bounds
respectively. Note that to preserve maximum resolution the coefficients are
saved in Q26 format and the saturation limits are stored in Q24 format to
match the output format.

Controller coefficients must be initialized before the controller is used. A
structure CNTL_3P3Z_CoefStruct is used to ensure that the coefficients
are stored exactly as shown in the table as the CNTL_3P3Z accesses them
relative to a base address pointer. The structure is defined in the library
header file DPlib.h to allow easy access to the elements from C.

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
// CONTROL_3P3Z - instance #1
extern volatile long *CNTL_3P3Z_Ref1;
extern volatile long *CNTL_3P3Z_Out1;
extern volatile long *CNTL_3P3Z_Fdbk1;
extern volatile long *CNTL_3P3Z_Coef1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note signal net mode names change from system to system, no dependency exist between these names and module.

Texas Instruments Inc., 2011 26

// ---------------------------- DPLIB Variables ------------------------

// declare the net nodes/variables being used by the DP Lib Macro here

volatile long Ref , Fdbk , Out;

#pragma DATA_SECTION(CNTL_3P3Z_CoefStruct1, "CNTL_3P3Z_Coef");
struct CNTL_3P3Z_CoefStruct CNTL_3P3Z_CoefStruct1;

Step 4 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals
to the signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();

// Connect the CNTL_2P2Z block to the variables
CNTL_3P3Z_Fdbk1 = &Fdbk;
CNTL_3P3Z_Out1 = &Out;
CNTL_3P3Z_Ref1 = &Ref;
CNTL_3P3Z_Coef1 = &CNTL_3P3Z_CoefStruct1.b2;

// Initialize the Controller Coefficients
CNTL_3P3Z_CoefStruct1.b2 = _IQ26(0.05);
CNTL_3P3Z_CoefStruct1.b1 = _IQ26(-0.20);
CNTL_3P3Z_CoefStruct1.b0 = _IQ26(0.20);
CNTL_3P3Z_CoefStruct1.a2 = _IQ26(0.0);
CNTL_3P3Z_CoefStruct1.a1 = _IQ26(1.0);
CNTL_3P3Z_CoefStruct1.max =_IQ24(0.7);
CNTL_3P3Z_CoefStruct1.min =_IQ24(0.0);

//Initialize the net Variables/nodes
Ref=_IQ24(0.0);
Fdbk=_IQ24(0.0)
Out=_IQ24(0.0);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "CNTL_3P3Z.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
CNTL_3P3Z_INIT 1 ; CNTL_3P3Z Initialization

Texas Instruments Inc., 2011 27

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
CNTL_3P3Z 1 ; Run the CNTL_3P3Z Macro

Step 9 Include the memory section in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note, for the CNTL_3P3Z module the net pointers and the internal data
do not assume anything about allocation on a single data page.

/*CNTL_3P3Z sections*/
CNTL_3P3Z_Section : > dataRAM PAGE = 1
CNTL_3P3Z_InternalData : > dataRAM PAGE = 1
CNTL_3P3Z_Coef : > dataRAM PAGE = 1

Module Net Definition:

Net Name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of the
Variable being
pointed to

CNTL_3P3Z_Ref:n: Input Pointer
Pointer to 32 bit fixed point input data
location storing the Reference value for
the controller.

Q24: [0, 1)

CNTL_3P3Z_Fdbk:n: Input Pointer
Pointer to 32 bit fixed point input data
location storing the Feedback value for
the controller.

Q24: [0, 1)

CNTL_3P3Z_Coef:n: Input Pointer
Pointer to the location where coefficient
structure is stored.

See Module
Description

CNTL_3P3Z_Out:n:
Output
Pointer

Pointer to 32 bit fixed point output
location where the reference for the
current loop is stored

Q24:[0,1)

CNTL_3P3Z_DBUFF:n:
Internal
Data

Data Variable storing the scaling factor
See Module
Description

Texas Instruments Inc., 2011 28

5.2. Peripheral Configuration

PWM_PSFB_PCMC_CNF

Description: This module configures the PWM generators to control a phase shifted full
bridge (PSFB) in peak current mode control (PCMC) and also configures
synchronous rectifiers (SR), if used.

Peripheral
Initialization File: PWM_PSFB_PCMC_Cnf.c

Description: This module sets the initial configuration of two PWM peripheral modules to
drive the four switches of the full bridge. It also has an option to configure the
PWM module driving synchronous rectifier (SR) switches, if used. In this
configuration the master module operates in up-down count mode and is
used to drive switches in the full bridge leg with passive to active transitions.
The next higher module in the PWM chain operates in up-count mode and is
used to drive switches in the leg with active to passive transitions. The PWM
module that drives SR switches also operates in up-count mode. These two
slaved PWM module time-bases are synced at every half period of the
master and are also directly synced by the comparator1 output.

 This file is used in conjunction with the assembly code in the corresponding
project specific ISR file.

 The PWM_PSFB_PCMC_Cnf.c file consists of the PWM configuration
function

void PWMDRV_PSFB_PCMC_CNF(int16 n, int16 period, int16
SR_Enable, int16 Comp2_Prot)

 where

n is the master PWM peripheral configured for driving switches in
one leg of the full bridge. PWM n+1 is configured to work with
synch pulses from PWM n module and drives switches in the
other leg. PWM n+3 drives SR switches if SR_Enable is 1.

Period is the maximum count value of the PWM timer

SR_Enable This enables drive to SR switches using PWM n+3 module.

Comp2_Prot Enables catastrophic protection based on on-chip comparator2
 and DAC.

Usage:

Call the peripheral configuration function PWMDRV_PSFB_PCMC_CNF(int16 n, int16
Period, int16 SR_Enable, int16 Comp2_Prot) in {ProjectName}-Main.c, this
function is defined in PWM_PSFB_PCMC_SR_Cnf.c. This file must be linked manually to the
project.

// ePWM1 is the master, Period=PWM_PRD, SR_Enable=1, Comp2_Prot=1

PWMDRV_PSFB_PCMC_CNF(1, PWM_PRD, 1, 1);

PWM Configuration for PCMC controlled PSFB Stage

Texas Instruments Inc., 2011 29

5.3. Peripheral Drivers

ADCDRV_1ch

Description: This assembly macro reads a result from the internal ADC module Result
Register:n: and delivers it in Q24 format to the output terminal, where :n: is
the instance number. The output is normalized to 0-1.0 such that the
minimum input voltage will generate nominally 0.0 at the driver output, and a
maximum full scale input voltage read +1.0. The result is then stored in the
memory location pointed to by the net terminal pointer.

Macro File: ADCDRV_1ch.asm

Peripheral
Initialization File: ADC_SOC_Cnf.c

Description: The ADC module in the F2802x & F2803x devices includes a ratio-metric

input which enables the user to determine the maximum and minimum input
voltages. The ADC converts this input range with 12-bits of resolution. The
ADCDRV macro reads one pre-defined result register (determined by the
instance number of the macro i.e. instance 0 reads AdcResult.ADCRESULT0
and instance 5 reads AdcResult.ADCRESULT5) . The module then scales
this to Q24 format and writes the result in unipolar Q24 format to the output
net terminal.

 This macro is used in conjunction with the peripheral configuration file
ADC_SOC_Cnf.c The file defines the function

void ADC_SOC_CNF(int ChSel[], int Trigsel[], int ACQPS[],
int IntChSel, int mode)

 where

ChSel[] stores which ADC pin is used for conversion when a Start of
Conversion(SOC) trigger is received for the respective channel

TrigSel[] stores what trigger input starts the conversion of the respective

channel

ACQPS[] stores the acquisition window size used for the respective
channel

IntChSel is the channel number that triggers interrupt ADCINT 1. If the

ADC interrupt is not being used enter a value of 0x10.

ADC Driver Single Channel

Texas Instruments Inc., 2011 30

Mode determines what mode the ADC is configured in
Mode =0 Start/Stop mode, configures ADC conversions to

be started by the appropriate channel trigger, an
ADC interrupt is raised whenever conversion is
complete for the IntChSel channel. The ADC
interrupt flag needs to be cleared for the interrupt
to be retriggered. This is the mode used for most
C28x based projects.

Mode =1 The ADC is configured in continuous conversion
mode. This mode maintains compatibility with
previous generation ADCs.

Mode =2 CLA Mode, configures ADC conversions to be

started by the appropriate channel trigger. An ADC
interrupt is triggered when conversion is complete
and the ADC interrupt flag is automatically
cleared. This mode is used for all of the CLA
based projects.

Note the function configures the complete ADC module in a single function
call. Hence this function is called only once even for multiple ADCDRV
modules.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//ADCDRV_1ch - instance #1
extern volatile long *ADCDRV_1ch_Rlt1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note signal net node names change from system to system, no dependency exist between these names and module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Out;

Texas Instruments Inc., 2011 31

Step 4 Call the peripheral configuration function ADC_SOC_CNF(int ChSel[],int
TrigSel[],int ACQPS[], int IntChSel, int mode) in {ProjectName}-Main.c, this
function is defined in ADC_SOC_CNF.c. This file must be included manually into the project.

/* Configure ADC channel 0 to convert ADCINB5, and ADC channel 1 to
convert the ADCINA3. The ADC is configured in start stop mode and
channel 0 is configured to raise ADCINT 1. ADC Channel 0 is configured
to be use PWM1 SOCA and channel 1 is configured to use PWM 5 SOCB as
trigger. The following code snippet assumes that the PWM peripherals
have been configured appropriately to generate a SOCA and SOCB */

// Specify ADC Channel – pin Selection for Configuring the ADC
ChSel[0] = 13; // ADC B5
ChSel[1] = 3; // ADC A3

// Specify the Conversion Trigger for each channel
TrigSel[0]= ADCTRIG_EPWM1_SOCA;
TrigSel[1]= ADCTRIG_EPWM5_SOCB;

// Call the ADC Configuration Function
ADC_SOC_CNF(ChSel,TrigSel,ACQPS,1,0);

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the signal nets in “C” in {ProjectName}-Main.c.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// ADCDRV_1ch block connections
ADCDRV_1ch_Rlt1=&Out;
// Initialize the net variables
Out=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "ADCDRV_1ch.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
ADCDRV_1ch_INIT 1 ; ADCDRV_1ch Initialization

Texas Instruments Inc., 2011 32

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
ADCDRV_1ch 1 ; Run ADCDRV_1ch

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*ADCDRV_1ch sections*/
ADCDRV_1ch_Section : > dataRAM PAGE = 1

 Module Net Definition:

Net name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

ADCDRV_1ch_Rlt:n:

Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

Texas Instruments Inc., 2011 33

ADCDRV_4ch

Description: This assembly macro reads four results from the internal ADC module result
registers m,n,p,q and delivers them in Q24 format to the output terminals.
The output is normalized to 0-1.0 such that the minimum input voltage will
generate nominally 0.0 at the driver output, and a maximum full scale input
voltage read +1.0. The result are then stored in the memory location pointed
to by the net terminal pointers.

Macro File: ADCDRV_4ch.asm

Peripheral
Initialization File: ADC_SOC_Cnf.c

Description: The ADC module in the F2802x & F2803x devices includes a ratio-metric

input which enables the user to determine the maximum and minimum input
voltages. The ADC converts this input range with 12-bits of resolution. The
ADCDRV macro reads the result register (determined by the numbers that
are parsed to the run time macro m,n,p and q. The module then scales these
to Q24 format and writes the result in unipolar Q24 format to the output net
terminal.

 This macro is used in conjunction with the peripheral configuration file
ADC_SOC_Cnf.c The file defines the function

void ADC_SOC_CNF(int ChSel[], int Trigsel[], int ACQPS[],
int IntChSel, int mode)

 where

ChSel[] Array that stores which ADC pin is used for conversion when a
start of conversion is received for the respective channel

TrigSel[] stores what trigger Input starts the conversion of the respective

channel

ACQPS[] stores the acquisition window size used for the respective
channel

IntChSel is the channel number that triggers interrupt ADCINT 1. If the

ADC interrupt is not being used enter a value of 0x10.

ADC Driver Single Channel

Texas Instruments Inc., 2011 34

Mode determines what mode the ADC is configured in
Mode =0 Start/Stop mode, configures ADC conversions to

be started by the appropriate channel trigger, an
ADC interrupt is raised whenever conversion is
complete for the IntChSel channel. The ADC
interrupt flag needs to be cleared for the interrupt
to be retriggered. This is the mode used for most
C28x based projects.

Mode =1 The ADC is configured in continuous conversion
mode. This mode maintains compatibility with
previous generation ADCs.

Mode =2 CLA Mode, configures ADC conversions to be

started by the appropriate channel trigger. an ADC
interrupt is raised whenever conversion is
complete and the ADC Interrupt Flag is auto
cleared. This mode is used for all of the CLA
based projects.

Note the function configures the complete ADC module in a single function
call. Hence this function is called only once.

This function is responsible for associating the ADC peripheral pins to result
registers. The macro run time call is only responsible for reading these
registers.

Multiple instantiation of this macro is not supported.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//ADCDRV_4ch
extern volatile long *ADCDRV_4ch_RltA;
extern volatile long *ADCDRV_4ch_RltB;
extern volatile long *ADCDRV_4ch_RltC;
extern volatile long *ADCDRV_4ch_RltD;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note signal net node names change from system to system, no dependency exist between these names and module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long RltA,RltB,RltC,RltD;

Texas Instruments Inc., 2011 35

Step 4 Call the peripheral configuration function ADC_SOC_CNF(int ChSel[],int
TrigSel[],int ACQPS[], int IntChSel, int mode) in {ProjectName}-Main.c, this
function is defined in ADC_SOC_CNF.c. This file must be included manually into the project.

/* Configure ADC channel 0 to convert ADCINB5, and ADC channel 1 to
convert the ADCINA3, ADC Channel 2 converts ADCINA7 and ADC channel 5
converts ADCINB2. The ADC is configured in start stop mode and ADC
Interrupt is disabled. ADC Channel 0,2 is configured to use PWM1 SOCA
and channel 1,5 is configured to use PWM 5 SOCB as trigger. The
following code snippet assumes that the PWM peripherals have been
configured appropriately to generate a SOCA and SOCB */

// Specify ADC Channel – pin Selection for Configuring the ADC
ChSel[0] = 13; // ADC B5
ChSel[1] = 3; // ADC A3
ChSel[2] = 7; // ADC A7
ChSel[5] = 10; // ADC B2

// Specify the Conversion Trigger for each channel
TrigSel[0]= ADCTRIG_EPWM1_SOCA;
TrigSel[1]= ADCTRIG_EPWM5_SOCB;
TrigSel[2]= ADCTRIG_EPWM1_SOCA;
TrigSel[5]= ADCTRIG_EPWM5_SOCB;

// Call the ADC Configuration Function
ADC_SOC_CNF(ChSel,TrigSel,ACQPS,1,0);

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// ADCDRV_4ch block connections
ADCDRV_4ch_RltA=&RltA;
ADCDRV_4ch_RltB=&RltB;
ADCDRV_4ch_RltC=&RltC;
ADCDRV_4ch_RltD=&RltD;

// Initialize the net variables
RltA=_IQ24(0.0);
RltB=_IQ24(0.0);
RltC=_IQ24(0.0);
RltD=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "ADCDRV_4ch.asm"

Texas Instruments Inc., 2011 36

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm. Four
numbers need to be specified to identify which result registers would be read and scaled results
written to the respective pointers. The following code snippet would do the following

AdcResult.ADCRESULT0 -> (Scale) -> *(ADCDRV_4ch_RltA)

AdcResult.ADCRESULT5 -> (Scale) -> *(ADCDRV_4ch_RltB)

AdcResult.ADCRESULT2 -> (Scale) -> *(ADCDRV_4ch_RltC)

AdcResult.ADCSESULT1 -> (Scale) -> *(ADCDRV_4ch_RltD)

;Macro Specific Initialization Functions
ADCDRV_4ch_INIT 0,5,2,1 ; ADCDRV_4ch Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
ADCDRV_4ch 0,5,2,1 ; Run ADCDRV_4ch

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*ADCDRV_4ch sections*/
ADCDRV_4ch_Section : > dataRAM PAGE = 1

 Module Net Definition:

Net name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

ADCDRV_4ch_RltA
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_4ch_RltB
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_4ch_RltC
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_4ch_RltD
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

Texas Instruments Inc., 2011 37

ADCDRV_8ch

Description: This assembly macro reads eight results from the internal ADC module result
registers m,n,p,q,r,s,t,u and delivers them in Q24 format to the output
terminals. The output is normalized to 0-1.0 such that the minimum input
voltage will generate nominally 0.0 at the driver output, and a maximum full
scale input voltage read +1.0. The results are then stored in the memory
locations pointed to by the net terminal pointers.

ADCDRV_8ch_RltA

ADC Ch:t:

A
D
C

ADCDRV_8ch:m,n,p,q,r,s,t,u:

RltPtrA

ADC Ch:u:

ADC Ch:v:

ADC Ch:s:

RltPtrC

RltPtrE

RltPtrG

ADCDRV_8ch_RltB

ADCDRV_8ch_RltC

ADCDRV_8ch_RltD

ADCDRV_8ch_RltE

ADCDRV_8ch_RltF

ADCDRV_8ch_RltG

ADCDRV_8ch_RltH

RltPtrB

RltPtrD

RltPtrF

RltPtrH

ADC Ch:x:

ADC Ch:y:

ADC Ch:z:

ADC Ch:w:

Macro File: ADCDRV_8ch.asm

Peripheral
Initialization File: ADC_SOC_Cnf.c

Description: The ADC module in the F2802x & F2803x devices includes a ratio-metric

input which enables the user to determine the maximum and minimum input
voltages. The ADC converts this input range with 12-bits of resolution. The
ADCDRV macro reads the result register (determined by the numbers that
are parsed to the run time macro m,n,p,q,r,s,t and u. The module then scales
these to Q24 format and writes the result in unipolar Q24 format to the output
net terminal.

 This macro is used in conjunction with the peripheral configuration file
ADC_SOC_Cnf.c The file defines the function

void ADC_SOC_CNF(int ChSel[], int Trigsel[], int ACQPS[],
int IntChSel, int mode)

 where

8 Channel ADC Driver

Texas Instruments Inc., 2011 38

ChSel[] Array that stores which ADC pin is used for conversion when a
start of conversion is received for the respective channel

TrigSel[] stores what trigger Input starts the conversion of the respective

channel

ACQPS[] stores the acquisition window size used for the respective
channel

IntChSel is the channel number that triggers interrupt ADCINT 1. If the

ADC interrupt is not being used enter a value of 0x10.

Mode determines what mode the ADC is configured in

Mode =0 Start/Stop mode, configures ADC conversions to
be started by the appropriate channel trigger, an
ADC interrupt is raised whenever conversion is
complete for the IntChSel channel. The ADC
interrupt flag needs to be cleared for the interrupt
to be retriggered. This is the mode used for most
C28x based projects.

Mode =1 The ADC is configured in continuous conversion

mode. This mode maintains compatibility with
previous generation ADCs.

Mode =2 CLA Mode, configures ADC conversions to be

started by the appropriate channel trigger. An ADC
interrupt is raised whenever conversion is
complete and the ADC Interrupt Flag is auto
cleared. This mode is used for all of the CLA
based projects.

Note the function configures the complete ADC module in a single function
call. Hence this function is called only once.

This function is responsible for associating the ADC peripheral pins to result
registers. The macro run time call is only responsible for reading these
registers.

Multiple instantiations of this macro are not supported.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Texas Instruments Inc., 2011 39

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//ADCDRV_8ch
extern volatile long *ADCDRV_4ch_RltA;
extern volatile long *ADCDRV_4ch_RltB;
extern volatile long *ADCDRV_4ch_RltC;
extern volatile long *ADCDRV_4ch_RltD;
extern volatile long *ADCDRV_4ch_RltE;
extern volatile long *ADCDRV_4ch_RltF;
extern volatile long *ADCDRV_4ch_RltG;
extern volatile long *ADCDRV_4ch_RltH;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note signal net node names change from system to system, no dependency exist between these names and module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long RltA,RltB,RltC,RltD,RltE,RltF,RltG,RltH;

Step 4 Call the peripheral configuration function ADC_SOC_CNF(int ChSel[],int
TrigSel[],int ACQPS[], int IntChSel, int mode) in {ProjectName}-Main.c, this
function is defined in ADC_SOC_CNF.c. This file must be included manually into the project.

/* Configure ADC channel 0 to convert ADCINB5, and ADC channel 1 to
convert the ADCINA3, ADC Channel 2 converts ADCINA7, ADC channel 3
converts ADCINB2, channel 4 converts ADCINA0, channel 5 converts
ADCINA1, channel 6 converts ADCINB1 and channel 7 converts ADCINA4. The
ADC is configured in start stop mode and ADC Interrupt is disabled. ADC
Channel 0,2 is configured to use PWM1 SOCA, channel 1,3 is configured
to use PWM 5 SOCB as trigger, channel 4,7 use PWM 3 SOCA as trigger and
channel 5,6 use PWM 2 SOCB as trigger . The following code snippet
assumes that the PWM peripherals have been configured appropriately to
generate a SOCA and SOCB */

// Specify ADC Channel – pin Selection for Configuring the ADC
ChSel[0] = 13; // ADC B5
ChSel[1] = 3; // ADC A3
ChSel[2] = 7; // ADC A7
ChSel[3] = 10; // ADC B2
ChSel[4] = 0; // ADC A0
ChSel[5] = 1; // ADC A1
ChSel[6] = 9; // ADC B1
ChSel[7] = 4; // ADC A4

// Specify the Conversion Trigger for each channel
TrigSel[0]= ADCTRIG_EPWM1_SOCA;
TrigSel[1]= ADCTRIG_EPWM5_SOCB;
TrigSel[2]= ADCTRIG_EPWM1_SOCA;
TrigSel[3]= ADCTRIG_EPWM5_SOCB;

Texas Instruments Inc., 2011 40

TrigSel[4]= ADCTRIG_EPWM3_SOCA;
TrigSel[5]= ADCTRIG_EPWM2_SOCB;
TrigSel[6]= ADCTRIG_EPWM2_SOCB;
TrigSel[7]= ADCTRIG_EPWM3_SOCA;

// Call the ADC Configuration Function
ADC_SOC_CNF(ChSel,TrigSel,ACQPS,1,0);

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// ADCDRV_8ch block connections
ADCDRV_8ch_RltA=&RltA;
ADCDRV_8ch_RltB=&RltB;
ADCDRV_8ch_RltC=&RltC;
ADCDRV_8ch_RltD=&RltD;
ADCDRV_8ch_RltE=&RltE;
ADCDRV_8ch_RltF=&RltF;
ADCDRV_8ch_RltG=&RltG;
ADCDRV_8ch_RltH=&RltH;

// Initialize the net variables
RltA=_IQ24(0.0);
RltB=_IQ24(0.0);
RltC=_IQ24(0.0);
RltD=_IQ24(0.0);
RltE=_IQ24(0.0);
RltF=_IQ24(0.0);
RltG=_IQ24(0.0);
RltH=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "ADCDRV_8ch.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm. Eight
numbers need to be specified to identify which result registers would be read and scaled results
written to the respective pointers. The following code snippet would do the following

AdcResult.ADCRESULT0 -> (Scale) -> *(ADCDRV_4ch_RltA)

AdcResult.ADCRESULT1 -> (Scale) -> *(ADCDRV_4ch_RltB)

AdcResult.ADCRESULT2 -> (Scale) -> *(ADCDRV_4ch_RltC)

AdcResult.ADCSESULT3 -> (Scale) -> *(ADCDRV_4ch_RltD)

AdcResult.ADCRESULT4 -> (Scale) -> *(ADCDRV_4ch_RltE)

AdcResult.ADCRESULT5 -> (Scale) -> *(ADCDRV_4ch_RltF)

Texas Instruments Inc., 2011 41

AdcResult.ADCRESULT6 -> (Scale) -> *(ADCDRV_4ch_RltG)

AdcResult.ADCSESULT7 -> (Scale) -> *(ADCDRV_4ch_RltH)

;Macro Specific Initialization Functions
ADCDRV_8ch_INIT 0,1,2,3,4,5,6,7 ; ADCDRV_8ch Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
ADCDRV_8ch 0,1,2,3,4,5,6,7 ; Run ADCDRV_8ch

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*ADCDRV_8ch sections*/
ADCDRV_8ch_Section : > dataRAM PAGE = 1

 Module Net Definition:

Net name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

ADCDRV_8ch_RltA
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltB
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltC
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltD
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltE
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltF
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltG
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

ADCDRV_8ch_RltH
Output
Pointer

Pointer to 32 bit fixed point data location
storing the result of the module.

Q24: [0, 1)

Texas Instruments Inc., 2011 42

PWMDRV_1ch

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A,
dependent on the value of the input variable.

Macro File: PWMDRV_1ch.asm

Peripheral
Initialization File: PWM_1ch_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro converts the unsigned
Q24 input, pointed to by the net pointer PWMDRV_1ch_Duty:n: into an
unsigned Q0 number scaled by the PWM period value, and stores this value
in the EPwmRegs:n:.CMPA. The module also writes half the value of CMPA
into CMPB register. This is done to enable ADC start of conversions to occur
close to the mid point of the PWM waveform to avoid switching noise. Which
PWM Macro is driven and what period value is used for scaling is determined
by the instance number of the macro i.e. :n:.

 This macro is used in conjunction with the peripheral configuration file
PWM_1ch_Cnf.c. The file defines the function

void PWM_1ch_CNF(int16 n, int16 period, int16 mode, int16
phase)

 where

n is the PWM Peripheral number which is configured in up count
mode
Period is the maximum count value of the PWM timer

PWM Driver Single Channel

Texas Instruments Inc., 2011 43

Mode determines whether the PWM is to be configured as slave or
master, when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode =1 PWM configured as a master
Mode = 0 PWM configured as slave

Phase specifies the phase offset that is used when the PWM module is
synchronized, this value only has meaning when the PWM is
configured as a slave.

The function configures the PWM peripheral in up-count mode. The figure
below, shows with help of a timing diagram how the PWM is configured to
generate the waveform.

Detailed
Description The following section explains how this module can be used to excite buck power

stage. To configure 100Khz switching frequency with CPU operating at 60Mhz,
the Period value needed is (System Clock/Switching Frequency) = 600. Note that
the subtract 1 from the period value, to take into account the up count mode is
done by the CNF function. Hence value of 600 needs to be supplied to the
function.

Buck converter driven by PWMDRV_1ch module

 PWM generation with the EPWM module.

Texas Instruments Inc., 2011 44

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_1ch - instance #1
extern volatile long *PWMDRV_1ch_Duty1;
extern volatile long PWMDRV_1ch_Period1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;

Step 4 Call the peripheral configuration function PWM_1ch_CNF(int16 n, int16
period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is defined
in PWM_1ch_Cnf.c. This file must be included manually into the project.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock, in master mode

PWM_1ch_CNF(1,600,1,0);

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function calls
the PWMDRV_1ch_INIT function. This function initializes the value of PWMDRV_1ch_Period:n:
with the period value of PWM being used. Hence the value of PWM period must be stored before
calling this function i.e. step 4 must be carried out before this step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_1ch block connections
PWMDRV_1ch_Duty1=&Duty;
// Initialize the net variables
Duty=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Texas Instruments Inc., 2011 45

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_1ch.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_1ch_INIT 1 ; PWMDRV_1ch Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_1ch 1 ; Run PWMDRV_1ch (Note EPWM1 is used for instance#1)

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_1ch sections*/
PWMDRV_1ch_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance
number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

PWMDRV_1ch_Duty:n:

Input
Pointer

Pointer to 32 bit fixed point input data
location storing Duty Value

Q24: [0, 1)

PWMDRV_1ch_Period:n:
Internal
Data

Location storing the period value of the
PWM being driven (This is done to save 1
cycles penalty in reading the TBPRDM
register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 46

PWMDRV_1chHiRes

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a high resolution duty on PWM
channel A, using the Hi Res feature of the PWM, dependent on the value of
the input variable.

Macro File: PWMDRV_1chHiRes.asm

Peripheral
Initialization File: PWM_1chHiRes_Cnf.c

Description: With a conventional PWM the resolution achieved is limited by the CPU
clock/system clock. C2000 devices have PWM modules with Micro Edge
Positioning (MEP) technology which is capable of positioning an edge very
finely by subdividing one coarse system clock of a conventional PWM
generator. The time step accuracy is of the order of 150ps. See the device
specific data sheet for the typical MEP step size on a particular device.

The assembly macro provides the interface between a DP library net variable
and the ePWM module on C28x. The macro converts the unsigned Q24
input, pointed to by the Net Pointer PWMDRV_1chHiRes_Duty:n: into an
unsigned Q0 number scaled by the PWM period value, and stores this value
in the EPwmRegs:n:.CMPA and EPwmRegs:n:.CMPAHR. The module also
writes half the value of CMPA into CMPB register. This is done to enable
ADC Start of conversions to occur close to the mid point of the PWM
waveform to avoid switching noise. Which PWM Macro is driven and what
period value is used for scaling is determined by the instance number of the
macro i.e. :n:.

 This macro is used in conjunction with the Peripheral configuration file
PWM_1chHiRes_Cnf.c. The file defines the function

PWM Driver Single Channel Hi Res

Texas Instruments Inc., 2011 47

void PWM_1chHiRes_CNF(int16 n, int16 period, int16 mode,
int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

Period is the maximum count value of the PWM timer
Mode determines whether the PWM is to be configured as slave or

master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode =1 PWM configured as a master
Mode = 0 PWM configured as slave

Phase Specifies the phase offset that is used when the PWM module is
synced, this value only has meaning when the PWM is
configured as a slave.

The function configures the PWM peripheral in up count mode. The figure
below, shows with help of a timing diagram how the PWM is configured to
generate the waveform. To configure 100Khz switching frequency with CPU
operating at 60Mhz, the Period value needed is (System Clock/Switching
Frequency) = 600. Note that the subtract 1 from the period value to take into
account the up count mode is done by the CNF function. Hence value 600
needs to be supplied to the function.

PWM generation with the EPWM module.

Note: The MEP varies from device to device and operating condition, for the module to work
appropriately a Scale Factor Optimization (SFO) function must be called in a slower background
task to auto calibrate the MEP step size. Note the SFO function can only be called by the CPU
and not the CLA

Texas Instruments Inc., 2011 48

Usage:

Step 1 Add library header file and the Scale Factor Optimizer Library header in the file
{ProjectName}-Main.c. Please use V6 or higher of the SFO library for this module to work
appropriately. The Library also needs to included in the project manually. The Library can be
found at

controlSUITE\device_support\<Device_Name>\<Version>\<Device_Name>_commo
n\lib

#include “DPLib.h”
#include "SFO_V6.h"

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c and add
variable declaration for the variables being used by the SFO Library.

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_1chHiRes - instance #1
extern volatile long *PWMDRV_1chHiRes_Duty1;
extern volatile long PWMDRV_1chHiRes_Period1; // Optional
//==
// The following declarations are required in order to use the SFO
// library functions:
//
int MEP_ScaleFactor; // Global variable used by the SFO library
 // Result can be used for all HRPWM channels
 // This variable is also copied to HRMSTEP
 // register by SFO() function.

int status;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;

Step 4 Call the peripheral configuration function PWM_1chHiRes_CNF(int16 n, int16
period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is defined
in PWM_1chHiRes_Cnf.c. This file must be included manually into the project.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock, in master mode

PWM_1chHiRes_CNF(1,600,1,0);

Texas Instruments Inc., 2011 49

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function calls
the PWMDRV_1ch_INIT function. This function initializes the value of
PWMDRV_1chHiRes_Period:n: with the period value of PWM being used. Hence the value of
PWM period must be stored before calling this function i.e. step 4 must be carried out before this
step. “Call” the SFO() function to calculate the HRMSTEP, and update the HRMSTEP register if
calibration function returns without error. The User may want to call this function in a background
task to account for changing operating conditions.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_1ch block connections
PWMDRV_1chHiRes_Duty1=&Duty;
// Calling SFO() updates the HRMSTEP register with calibrated
MEP_ScaleFactor.
// MEP_ScaleFactor/HRMSTEP must be filled with calibrated value in order
// for the module to work
status = SFO_INCOMPLETE;

while (status== SFO_INCOMPLETE){ // Call until complete
 status = SFO();
}
if(status!=SFO_ERROR) { // IF SFO() is complete with no errors
 EALLOW;
 EPwm1Regs.HRMSTEP=MEP_ScaleFactor;
 EDIS;
}
if (status == SFO_ERROR) {

while(1); // SFO function returns 2 if an error occurs
// The code would loop here for infinity if it
// returns an error

}
// Initialize the net variables
Duty=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_1chHiRes.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_1chHiRes_INIT 1 ; PWMDRV_1ch Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

Texas Instruments Inc., 2011 50

;”Call” the Run macro
PWMDRV_1chHiRes 1 ; Run PWMDRV_1ch (Note EPWM1 is used for instance#1)

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_1ch sections*/
PWMDRV_1chHiRes_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

PWMDRV_1chHiRes_Duty:n:

Input
Pointer

Pointer to 32 bit fixed point input data
location storing Duty Value

Q24: [0, 1)

PWMDRV_1chHiRes_Period:n:
Internal
Data

Location storing the period value of the
PWM being driven (This is done to
save 1 cycles penalty in reading the
TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 51

 PWMDRV_PFC2PhiL

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, controls two PWM generators that
cane be used to drive a 2 phase interleaved PFC stage.

Macro File: PWMDRV_PFC2PhiL.asm

Peripheral
Initialization File: PWM_PFC2PhiL_Cnf.c

Description: This module forms the interface between the control software and the device
PWM pins. The macro converts the unsigned Q24 input pointed to by the Net
Pointer PWMDRV_PFC2PhiL_Duty:n: into an unsigned Q0 number scaled
by the PWM period value, and stores this value in the EPwmRegs:n:.CMPA.
Which PWM module is written to is determined by the instance number of the
macro i.e. :n:.

The value pointed by the PWMDRV_PFC2PhiL_Adj:n: stores a Q24 number
that is scaled with the PWM period value to add an offset to the duty being
driven on PWMnA and PWMnB. The value stored can be positive or negative
depending on whether the duty driven on PWMnB needs to greater or
smaller relative to PWMnA. In summary:

PWMPeriodDutyCMPA *

PWMPeriodDutyAdjCMPB *)1(

 This macro is used in conjunction with the Peripheral configuration file
PWM_PFC2PHIL_CNF.c. The file defines the function

void PWM_PFC2PHIL_CNF(int16 n, int16 period)

 where

n is the PWM Peripheral number which is configured in up down count
mode
Period is twice the maximum value of the PWM counter

The function configures the PWM peripheral in up down count mode. The
figure below, shows with help of a timing diagram, how the PWM is
configured to generate the waveform. When in up down count mode the zero
and period event can be used to trigger ADC conversions at mid point of the
switching duty.

PWM Driver for Two Phase Interleaved PFC Stage

Texas Instruments Inc., 2011 52

Detailed
Description The following section explains how this module can be used to excite a two

phase interleaved PFC stage. As up down count mode is used, to configure
200Khz switching frequency, at 60Mhz system clock the period value of
(System Clock/Switching Frequency) = 300 must be used for the CNF function,
the CNF function divides the value to take into account the up down count mode
and stored TBPRD value of 300/2=150.

PFC2PhiL driven by PWMDRV_PFC2PhiL module

PWM generation for PFC2PhiL stage with the F280x EPWM module.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Texas Instruments Inc., 2011 53

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_PFC2PhiL - instance #1
extern volatile long *PWMDRV_PFC2PhiL_Duty1;
extern volatile long *PWMDRV_PFC2PhiL_Adj1;
extern volatile long PWMDRV_PFC2PhiL_Period1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty, Adj;

Step 4 Call the peripheral configuration function PWM_PFC2PHIL_CNF(int16 n, int16
period) in {ProjectName}-Main.c, this function is defined in PWM_PFC2PhiL_Cnf.c. This
file must be included manually into the project.

// Configure PWM1 for switching frequency 100Khz, @60Mhz CPU clock =>
period = (60Mhz/200Khz)=300

PWM_PFC2PHIL_CNF(1,300);

Step 5 ”Call” the DPL_Init() function and then “connect” the module terminals to the
Signal nets in “C” in {ProjectName}-Main.c The DPL_Init() function must be called
before the signal nets are connected. Also note the DPL_Init() function calls the
PWMDRV_PFC2PhiL_INIT function. This function also initialize the value of
PWMDRV_PFC2PhiL_Period:n: with the period value of PWM being used. Hence the value of
PWM period must be stored before calling this function i.e. step 4 must be carried out before this
step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_PFC2PhiL block connections
PWMDRV_PFC2PhiL_Duty1=&Duty;
PWMDRV_PFC2PhiL_Adj1 =&Adj;
// Initialize the net variables
Duty=_IQ24(0.0);
Adj =_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Texas Instruments Inc., 2011 54

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PWMDRV_PFC2PhiL.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_PFC2PHIL_INIT 1 ; PWMDRV_PFC2PHIL Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_PFC2PHIL 1 ; Run PWMDRV_PFC2PHIL (EPWM1 is used by instance#1)

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_PFC2PhiL sections*/
PWMDRV_PFC2PhiL_Section : > RAML2 PAGE = 1

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable
Range of
Variable or of
the Variable
being pointed to

PWMDRV_PFC2PhiL_Duty:n:

Input
Pointer

Pointer to 32 bit fixed
point input data
location to Duty value

Q24(0,1)

PWMDRV_PFC2PhiL_Adj:n: Input
Pointer

Pointer to 32 bit fixed
point input data
location to adjustment
value

Q24(-1, 1)

PWMDRV_PFC2PhiL_Period:n: Internal
Data

Location storing the
period value of the
PWM being driven
(This is done to save 1
cycles penalty in
reading the TBPRDM
register)

Q16
(0,65536)

Texas Instruments Inc., 2011 55

PWMDRV_PSFB

Description: This module controls the PWM generators to control a full bridge by using the
phase shifting approach, whereby providing the zero voltage switching
capabilities. In addition to phase control, the module offers control over left
and right leg dead-band amounts

Macro File: PWMDRV_PSFB.asm

Peripheral
Initialization File: PWM_PSFB_Cnf.c

Description: This module forms the interface between the control software and the device
PWM pins. The macro converts the unsigned Q24 input pointed to by the Net
Pointer PWMDRV_PSFB_Phase:n: into an unsigned Q0 number scaled by
the PWM period value, and stores this value in the EPwmRegs:n:.TBPHS.

 This macro is used in conjunction with the Peripheral configuration file
PWM_PSFB_CNF.c. The file defines the function

void PWMDRV_PSFB_CNF(int16 n, int16 Period)

 where

n is the PWM Peripheral number configured for PSFB topology,
PWM n+1 is configured to work with synch pulses from PWM n
module

Period is the maximum count value of the PWM timer

The figure below, shows with

PWM Driver for Phase Shifted Full Bridge Stage

Texas Instruments Inc., 2011 56

Detailed
Description The following section explains with help of a timing diagram, how the PWM is

configured to generate the waveform for the PSFB power stage. . In up count
mode to configure 100Khz switching frequency for the PWM when CPU is
operating at 60Mhz, the Period value needed is (System Clock/Switching
Frequency) = 600.

 Full bridge power converter

Power
Phase

Power
Phase

DbLeftPWM:n:A

PWM:n:B

PWM:n+1:A

PWM:n+1:B

phase

Left leg
dead-band

DbLeft

DbRight

right leg
dead-band

DbRight

50% duty

Phase shifted PWM generation with the EPWM module.

Texas Instruments Inc., 2011 57

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_PSFB - instance #1
extern volatile long *PWMDRV_PSFB_Phase1;
extern volatile long *PWMDRV_PSFB_DbLeft1;
extern volatile long *PWMDRV_PSFB_DbRight1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Phase, DbLeft, DbRight;

Step 4 Call the peripheral configuration function PWM_PSFB_CNF(int16 n, int16
period) in {ProjectName}-Main.c, this function is defined in PWM_PSFB_Cnf.c. This file
must be included manually into the project.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock, in master mode

PWM_PSFB_CNF(1,600);

Step 5 “Call” the DPL_Init() function and then “connect” the module terminals to the
Signal nets in “C” in {ProjectName}-Main.c The DPL_Init() function must be called
before the signal nets are connected.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_PSFB block connections
PWMDRV_PSFB_Duty1 = &Phase;
PWMDRV_PSFB_DbLeft1 = &DbLeft;
PWMDRV_PSFB_DbRight1= &DbRight;

// Initialize the net variables
Phase=_IQ24(0.0);
DbLeft=0;
DbRight=0;

Texas Instruments Inc., 2011 58

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PWMDRV_PSFB.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm. Note when
instantiating both n and n+1 needs to be passed as arguments. Any other number except n+1
would lead to unexpected behavior.

;Macro Specific Initialization Functions
PWMDRV_PSFB_INIT 1,2 ; PWMDRV_PSFB Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm. Note
when calling the run time macro both n and n+1 needs to be passed as arguments. Any other
number except n+1 would lead to unexpected behavior.

;”Call” the Run macro
PWMDRV_PSFB 1,2 ; Run PWMDRV_PSFB

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_PSFB sections*/
PWMDRV_PSFB_Section : > dataRAM PAGE = 1

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable Range of
Variable or of the
Variable being
pointed to

PWMDRV_PSFB_Phase:n:

Input
Pointer

Pointer to 32 bit fixed
point input data
location to Phase
value

Q24(0,1)

PWMDRV_PSFB_DbLeft:n: Input

Pointer

Pointer to 32 bit fixed
point input data
location to Dead
Band Value for Left
Leg

Q0

PWMDRV_PSFB_DbRight:n: Input
Pointer

Pointer to 32 bit fixed
point input data
location to Dead
Band Value for Right
Leg

Q0

Texas Instruments Inc., 2011 59

PWMDRV_ComplPairDB

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, and
a complimentary PWM on channel B, with dead-band applied to both
channels. The module uses the dead-band module inside the EPWM
peripheral to generate the complimentary waveforms.

Macro File: PWMDRV_ComplPairDB.asm

Peripheral
Initialization File: PWM_ComplPairDB_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro converts the unsigned
Q24 input, pointed to by the Net Pointer PWMDRV_ComplPairDB_Duty:n:
into an unsigned Q0 number scaled by the PWM period value, and stores
this value in the EPwmRegs:n:.CMPA which is used to generate the source
signal used in generating the PWM signal on channel A. The corresponding
configuration file has the dead-band module configured to output the
complimentary waveform on channel B. Dead-band is applied to both
channels.

 This macro must be used in conjunction with the Peripheral configuration file
PWM_ComplPairDB_Cnf.c. The file defines the function

void PWM_ComplPairDB_CNF(int16 n, int16 period, int16 mode,
int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

period is the maximum value of the PWM counter
mode determines whether the PWM is to be configured as slave or

master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode = 1 PWM configured as a master
Mode = 0 PWM configured as slave

phase specifies the phase offset that is used when the PWM module is
synced. This value only has meaning when the PWM is
configured as a slave.

PWM Driver to output complimentary chA and chB PWM

Texas Instruments Inc., 2011 60

The function configures the PWM peripheral in up-count mode and the dead-
band submodule to output complimentary PWM waveforms with dead-band
applied. The falling edge delay is implemented by delaying the rising edge of
the channel B using the dead-band module in the PWM peripheral. The
module outputs an active high duty on ChA of the PWM peripheral and a
complementary active low duty on ChB.

The configuration function only configures the dead-band at initialization
time. However, it may be needed to change the dead-band during operation.
This can be done by calling the function

void PWM_ComplPairDB_UpdateDB (int16 n, int16 DbRed, int16
DbFed)

where

n is the PWM Peripheral number
DbRed is the new rising edge delay
DbFed is the new falling edge delay

Alternatively, an assembly macro is provided to update the dead-band if the
update needs to be done at a faster rate, inside the ISR. The dead-band
update assembly macro, PWMDRV_ComplPairDB_UpdateDB, updates the
dead-band registers with values stored in the macro variables
PWMDRV_ComplPairDB_DeadBandRED:n: and
PWMDRV_ComplPairDB_DeadBandFED:n:

.

Detailed
Description The following section explains how this module can be used to excite a

synchronous buck power stage which uses two NFET’s. (Please note this
module is specific to synchronous buck power stage using NPN transistors only).
The function configures the PWM peripheral in up-count mode. In order to
configure a 100Khz switching frequency for the PWM in up-count mode when
CPU is operating at 60Mhz, the Period value needed is (System Clock/Switching
Frequency) = 600 needs to be provided to the CNF function. The TBPRD is
stored with a value of 600-1, to take the up-count mode into account by the CNF
function itself.

Synchronous Buck converter driven by PWMDRV_ComplPairDB module

Texas Instruments Inc., 2011 61

 PWM generation for CompPairDB PWM DRV Macro

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_ComplPairDB - instance #1
extern volatile long *PWMDRV_ComplPairDB_Duty1;
extern volatile long PWMDRV_ComplPairDB_Period1; // Optional
extern volatile int16 PWMDRV_ComplPairDB_DeadBandRED1; // Optional
extern volatile int16 PWMDRV_ComplPairDB_DeadBandFED1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;

Texas Instruments Inc., 2011 62

Step 4 Call the peripheral configuration function PWM_ComplPairDB_CNF(int16 n,
int16 period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is
defined in PWM_ComplPairDB_Cnf.c. This file must be included manually into the project. The
following code snippet configures PWM1 in Up Count mode and configures the dead band to be 5
and 4 cycles for the rising edge and falling edge respectively.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock

PWM_ComplPairDB_CNF(1,600, 1, 0);
PWM_ComplPairDB_UpdateDB(1,5,4);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function would
call the PWMDRV_ComplPairDB_INIT function. This function initializes the value of PWMDRV_
ComplPairDB_Period:n: with the period value of PWM being used. Hence the value of
PWM period must be stored before calling this function i.e. step 4 must be carried out before this
step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_ComplPairDB block connections
PWMDRV_ComplPairDB_Duty1=&Duty;
// Initialize the net variables
Duty=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_ComplPairDB.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_ComplPairDB_INIT 1

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_ComplPairDB 1

Texas Instruments Inc., 2011 63

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_ComplPairDB sections*/
PWMDRV_ComplPairDB_Section : > dataRAM PAGE = 1

Step 11 Update Dead Band This can be done by calling the C function in the
{ProjectName}-Main.c file.

/*Update dead band delays */
PWM_ComplPairDB_UpdateDB(1,7,4);

If the dead band itself is part of the control loop the following assembly macro can be called.

;Update dead band delays
PWMDRV_ComplPairDB_UpdateDB 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of
the Variable
being pointed
to

PWMDRV_ComplPairDB_Duty:n:

Input
Pointer

Pointer to 32 bit fixed point
input data location storing
Duty Value

Q24: [0, 1)

PWMDRV_ComplPairDB_DeadBandRED:n:
Input
Variable

Value used by the assembly
macro to update the PWM
peripheral dead band
registers.

Q0

PWMDRV_ComplPairDB_DeadBandFED:n:
Input
Variable

Value used by the assembly
macro to update the PWM
peripheral dead band
registers.

Q0

PWMDRV_ComplPairDB_Period:n:
Internal
Data

Location storing the period
value of the PWM being
driven (This is done to save
1 cycles penalty in reading
the TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 64

PWMDRV_DualUpDwnCnt

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, and
PWM channel B dependent on the value of the input variables DutyA and
DutyB.

Macro File: PWMDRV_DualUpDwnCnt.asm

Peripheral
Initialization File: PWM_DualUpDwnCnt_Cnf.c

Description: This assembly macro provides the interface between DP library net variables
and the ePWM module on C28x. The macro converts the unsigned Q24
input, pointed to by the Net Pointers PWMDRV_DualUPDwnCnt_Duty:n:A
and PWMDRV_DualUPDwnCnt_Duty:n:B into an unsigned Q0 number
scaled by the PWM period value, and stores this value in the
EPwmRegs:n:.CMPA and EPwmRegs:n:.CMPB such as to give independty
duty cycle control on channel A and B of the PWM module.

 This macro is used in conjunction with the peripheral configuration file
PWM_DualUpDwnCnt_Cnf.c. The file defines the function

void PWM_DualUpDwnCnt_CNF(int16 n, int16 period)

 where

n is the PWM peripheral number which is configured in up-down
count mode

Period is the maximum value of the PWM counter

Dual PWM Driver, independent Duty on chA & chB

Texas Instruments Inc., 2011 65

The function configures the PWM peripheral in up count mode. The figure below,
shows with help of a timing diagram how the PWM is configured to generate the
waveform. As the module is configured in up-down count mode SOC for the ADC
can be triggered at “zero” and/or “period” events to ensure the sample point
occurs at the mid point of the switching cycle. The following section explains how
this module can be used to excite a two phase interleaved PFC stage. Up down
count mode is used, hence to configure 100Khz switching frequency, at 60Mhz
system clock a period value of (System Clock/Switching Frequency)/2 = 300
must be used for the CNF function.

PWM generation with the EPWM module.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_DualUpDwnCnt - instance #1
extern volatile long *PWMDRV_DualUpDwnCnt_Duty1A;
extern volatile long *PWMDRV_DualUpDwnCnt_Duty1B;
extern volatile long PWMDRV_DualUpDwnCnt_Period1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Texas Instruments Inc., 2011 66

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long DutyA,DutyB;

Step 4 Call the Peripheral configuration function PWM_DualUpDwnCnt_CNF(int16 n,
int16 period) in {ProjectName}-Main.c, this function is defined in PWM_
DualUpDwnCnt_Cnf.c. This file must be included manually into the project.

// Configure PWM1 for switching frequency 200Khz, @60Mhz CPU clock =>
period = (60Mhz/200Khz) =300

PWM_DualUpDwnCnt_CNF(1,300);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function calls
the PWMDRV_DualUpDwnCnt_INIT function. This function initializes the value of
PWMDRV_DualUpDwnCnt_Period:n: with the period value of PWM being used. Hence the
value of PWM period must be stored before calling this function i.e. step 4 must be carried out
before this step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_1ch block connections
PWMDRV_DualUpDwnCnt_Duty1A=&DutyA;
PWMDRV_DualUpDwnCnt_Duty1B=&DutyB;

// Initialize the net variables
DutyA=_IQ24(0.0);
DutyB=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_DualUpDwnCnt.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_DualUpDwnCnt_INIT 1 ; PWMDRV_1ch Initialization

Texas Instruments Inc., 2011 67

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_DualUpDwnCnt 1 ; Run PWMDRV_DualUpDwnCnt

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_DualUpDwnCnt sections*/
PWMDRV_DualUpDwnCnt_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of the
Variable being
pointed to

PWMDRV_DualUpDwnCnt_Duty:n:A
Input
Pointer

Pointer to 32 bit fixed point input
data location storing DutyA Value

Q24: [0, 1)

PWMDRV_DualUpDwnCnt_Duty:n:B

Input
Pointer

Pointer to 32 bit fixed point input
data location storing DutyB Value

Q24: [0, 1)

PWMDRV_ DualUpDwnCnt _Period:n:
Internal
Data

Location storing the period value
of the PWM being driven (This is
done to save 1 cycles penalty in
reading the TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 68

PWMDRV_BuckBoost

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, and
a complimentary PWM on channel B with dead band, on two PWM modules.
The power stage, described later, is such that Duty > 0.5 pu has a boost
effect and Duty < 0.5 has a buck effect on output voltage to input voltage
relation.

Macro File: PWMDRV_BuckBoost.asm

Peripheral
Initialization File: PWM_BuckBoost_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro converts the unsigned
Q24 input, pointed to by the Net Pointer PWMDRV_BuckBoost_Duty:n: into
an unsigned Q0 number scaled by the PWM period value, and stores this
value in the EPwmRegs:n:.CMPA and EPwmRegs:m:CMPA. The
corresponding configuration file has the deadband module configured to
output complimentary waveform on chB with a dead band.

 This macro must be used in conjunction with the Peripheral configuration file
PWM_BuckBoost _Cnf.c. The file defines the function

void PWM_BuckBoost_CNF(int16 n, int16 m, int16 period)

 where

n is the PWM Peripheral number which is configured in up count
mode

m is (n+1) always
Period is the maximum value of the PWM counter

The function configures the PWM peripheral in up count mode and
configures the dead band submodule to output complimentary PWM
waveforms. Periodic Sync pulse are also enabled between PWM module n
and m. The falling edge delay is implemented by delaying the rising edge of
the channel B using the dead band module in the PWM peripheral. The
module outputs an active high duty on ChA of the PWM peripheral and a
complementary on ChB.

Dual PWM Driver, independent Duty on chA & chB

Texas Instruments Inc., 2011 69

The configuration function however does not set the deadband values, this is
done by calling the C function PWM_BuckBoost_UpdateDB function as
follows:

void PWM_BuckBoost_UpdateDB (int16 n, int16 DbRed, int16
DbFed)

where

n is the PWM Peripheral number
DbRed is the new rising edge delay
DbFed is the new falling edge delay

This function would enable fine tuning of the deadband for this power stage.
i.e. PWM 1 deadband can be adjusted different from PWM 2.

.

Detailed
Description The following section explains how this module can be used to excite a buck

boost stage. The module assumes the FET’s used are NFET’s and an active
high I required to turn the FET on. The function configures the PWM peripheral in
up count mode. In up count mode to configure 100Khz PWM switching frequency
when CPU is operating at 60Mhz, a Period value of (System Clock/Switching
Frequency) = 600 is needed by the CNF function. The TBPRD is stored with a
value of 600-1, to account for up count mode, which is taken care of by the CNF
function.

Buck Boost Converter driven by PWMDRV_BuckBoost module

Texas Instruments Inc., 2011 70

 PWM generation for BuckBoost PWM DRV Macro

Few thing to note about the power stage, the power stage can be used such that the
FETs are switched as Buck Only and Boost Only, however these modes would put undue
load on the Boot Strap for the high side driver. Also using two different PWM’s enables
individual control of the deadbands which can enable finer tuning of the power stage.
Also phase shifting and other modes are possible as well for the power stage when using
two PWM modules.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

Texas Instruments Inc., 2011 71

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_BuckBoost - instance #1
extern volatile long *PWMDRV_BuckBoost_Duty1;
extern volatile long PWMDRV_BuckBoost_Period1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;

Step 4 Call the peripheral configuration function PWM_BuckBoost_CNF(int16 n,
int16 period, int16 DbRed, int16 DbFed) in {ProjectName}-Main.c, this function
is defined in PWM_BuckBoost_Cnf.c. This file must be included manually into the project.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock

PWM_BuckBoost_CNF(1,600,5,4);
PWM_BuckBoost_UpdateDB(1,5,4);
PWM_BuckBoost_UpdateDB(2,5,5);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function would
call the PWMDRV_BuckBoost_INIT function. This function initializes the value of PWMDRV_
BuckBoost_Period:n: with the period value of PWM being used. Hence the value of PWM
period must be stored before calling this function i.e. step 4 must be carried out before this step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_BuckBoost block connections
PWMDRV_BuckBoost_Duty1=&Duty;
// Initialize the net variables
Duty=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_BuckBoost.asm"

Texas Instruments Inc., 2011 72

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_BuckBoost_INIT 1

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_BuckBoost 1

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_BuckBoost sections*/
PWMDRV_BuckBoost_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of
the Variable
being pointed
to

PWMDRV_BuckBoost_Duty:n:

Input Pointer

Pointer to 32 bit fixed point
input data location storing Duty
Value

Q24: [0, 1)

PWMDRV_BuckBoost_Period:n: Internal Data

Location storing the period
value of the PWM being driven
(This is done to save 1 cycles
penalty in reading the
TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 73

 PWMDRV_2ch_UpCnt

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives two independent duties on
PWM channels A and B, dependent on the value of the input variables.

Macro File: PWMDRV_2ch_UpCnt.asm

Peripheral
Initialization File: PWM_2ch_UpCnt_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro converts the unsigned
Q24 input, pointed to by the net pointers PWMDRV_2ch_UpCnt_Duty:n:A
and PWMDRV_2ch_UpCnt_Duty:n:B into unsigned Q0 numbers scaled by
the PWM period value, and stores these values in the EPwmRegs:n:.CMPA
and EPwmRegs:n:.CMPB registers, respectively. Which PWM Macro is
driven and what period value is used for scaling is determined by the
instance number of the macro i.e. :n:.

 This macro is used in conjunction with the peripheral configuration file
PWM_2ch_UpCnt_Cnf.c. The file defines the function:

void PWM_2ch_UpCnt_CNF(int16 n, int16 period, int16 mode, int16 phase)

where:

n is the PWM Peripheral number which is configured in up count
mode

Period is the maximum count value of the PWM timer
Mode determines whether the PWM is to be configured as slave or

master, when configured as the master the TBSYNC signal is
ignored by the PWM module.

Dual PWM Driver, independent Duty on chA & chB

Texas Instruments Inc., 2011 74

Mode =1 PWM configured as a master
Mode = 0 PWM configured as slave

Phase specifies the phase offset that is used when the PWM module is
synchronized, this value only has meaning when the PWM is
configured as a slave.

The function configures the PWM peripheral in up-count mode. The figure
below, shows with help of a timing diagram, how the PWM is configured to
generate the waveforms.

Detailed
Description The following section explains how this module can be used to excite two buck

power stages. To configure 100Khz switching frequency with CPU operating at
60Mhz, the Period value needed is (System Clock/Switching Frequency) = 600.
Note that the subtract 1 from the period value, to take into account the up count
mode, is done by the CNF function. Hence value of 600 needs to be supplied to
the function.

Buck converter driven by PWMDRV_1ch module

 PWM generation with the EPWM module.

Texas Instruments Inc., 2011 75

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_2ch_UpCnt - instance #1
extern volatile long *PWMDRV_2ch_UpCnt_Duty1A;
extern volatile long *PWMDRV_2ch_UpCnt_Duty1B;
extern volatile long PWMDRV_2ch_UpCnt_Period1; // Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long DutyA;
volatile long DutyB;

Step 4 Call the peripheral configuration function
PWM_2ch_UpCnt_CNF(int16 n, int16 period, int16 mode, int16 phase) in
{ProjectName}-Main.c, this function is defined in PWM_1ch_Cnf.c. This file must be
included manually into the project.

// Configure EPWM1 for 100Khz, @60Mhz CPU Clock, in master mode

PWM_2ch_UpCnt_CNF(1,600,1,0);

Step 5 “Call” the DPL_Init() to initialize the macros and ”connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function calls
the PWMDRV_1ch_INIT function. This function initializes the value of PWMDRV_1ch_Period:n:
with the period value of PWM being used. Hence the value of PWM period must be stored before
calling this function i.e. step 4 must be carried out before this step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_2ch_UpCnt block connections
PWMDRV_2ch_UpCnt_Duty1A=&DutyA;
PWMDRV_2ch_UpCnt_Duty1B=&DutyB;
// Initialize the net variables
DutyA=_IQ24(0.0);

Texas Instruments Inc., 2011 76

DutyB=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_2ch_UpCnt.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_2ch_UpCnt_INIT 1 ; PWMDRV_2ch Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_2ch_UpCnt 1 ; Run PWMDRV_2ch_UpCnt

;(Note EPWM1 is used for instance#1)

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_2ch_UpCnt sections*/
PWMDRV_2ch_UpCnt_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of Variable
or of the Variable
being pointed to

PWMDRV_2ch_UpCnt_Duty:n:A

Input
Pointer

Pointer to 32 bit fixed point input data
location storing DutyA Value

Q24: [0, 1)

PWMDRV_2ch_UpCnt_Duty:n:B

Input
Pointer

Pointer to 32 bit fixed point input data
location storing DutyB Value

Q24: [0, 1)

PWMDRV_2ch_UpCnt_Period:n:
Internal
Data

Location storing the period value of
the PWM being driven (This is done
to save 1 cycles penalty in reading
the TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 77

PWMDRV_1ch_UpDwnCnt

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A
dependent on the value of the input variable DutyA.

Macro File: PWMDRV_1ch_UpDwnCnt.asm

Peripheral
Initialization File: PWM_1ch_UpDwnCnt_Cnf.c

Description: This assembly macro provides the interface between DP library net variables
and the ePWM module on C28x. The macro converts the unsigned Q24
input, pointed to by the Net Pointer PWMDRV_1ch_UpDwnCnt_Duty:n:A into
an unsigned Q0 number scaled by the PWM period value, and stores this
value in the EPwmRegs:n:.CMPA such as to give duty cycle control on
channel A of the PWM module.

 This macro is used in conjunction with the peripheral configuration file
PWM_1ch_UpDwnCnt_Cnf.c. The file defines the function

void PWM_1ch_UpDwnCnt_CNF(int16 n, int16 period, int16 mode,
int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

period is the maximum value of the PWM counter
mode determines whether the PWM is to be configured as slave or

master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode = 1 PWM configured as a master
Mode = 0 PWM configured as slave

PWM Driver, Duty on chA

Texas Instruments Inc., 2011 78

phase specifies the phase offset that is used when the PWM module is
synced. This value only has meaning when the PWM is
configured as a slave.

The function configures the PWM peripheral in up-down count mode. The figure
below shows, with help of a timing diagram, how the PWM is configured to
generate the waveform. As the module is configured in up-down count mode
SOC for the ADC can be triggered at “zero” and/or “period” events to ensure the
sample point occurs at the mid point of the switching cycle. The following section
explains how this module can be used to excite a boost stage. Up-down count
mode is used, hence to configure 100Khz switching frequency, at 60Mhz system
clock a period value of (System Clock/Switching Frequency) = 600 must be
used for the CNF function.

PWM generation with the EPWM module.

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_1ch_UpDwnCnt - instance #1
extern volatile long *PWMDRV_1ch_UpDwnCnt_Duty1A;
extern volatile long PWMDRV_1ch_UpDwnCnt_Period1; // Optional

Texas Instruments Inc., 2011 79

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long DutyA;

Step 4 Call the Peripheral configuration function PWM_1ch_UpDwnCnt_CNF(int16 n,
int16 period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is
defined in PWM_ 1ch_UpDwnCnt_Cnf.c. This file must be included manually into the project.

// Configure PWM1 for switching frequency 100Khz, @60Mhz CPU clock =>
period = (60Mhz/100Khz) = 600

PWM_1ch_UpDwnCnt_CNF(1,600);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function calls
the PWMDRV_1ch_UpDwnCnt_INIT function. This function initializes the value of
PWMDRV_1ch_UpDwnCnt_Period:n: with the period value of PWM being used. Hence the
value of PWM period must be stored before calling this function i.e. step 4 must be carried out
before this step.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_1ch_UpDwnCnt block connections
PWMDRV_1ch_UpDwnCnt_Duty1A=&DutyA;

// Initialize the net variables
DutyA=_IQ24(0.0);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_1ch_UpDwnCnt.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_1ch_UpDwnCnt_INIT 1 ; PWMDRV_1ch_UpDwnCnt Initialization

Texas Instruments Inc., 2011 80

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_1ch_UpDwnCnt 1 ; Run PWMDRV_1ch_UpDwnCnt

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_1ch_UpDwnCnt sections*/
PWMDRV_1ch_UpDwnCnt_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of the
Variable being
pointed to

PWMDRV_1ch_UpDwnCnt_Duty:n:A
Input
Pointer

Pointer to 32 bit fixed point input
data location storing DutyA Value

Q24: [0, 1)

PWMDRV_ 1ch_UpDwnCnt _Period:n:
Internal
Data

Location storing the period value
of the PWM being driven (This is
done to save 1 cycles penalty in
reading the TBPRDM register)

Q16:
[0, 65536)

Texas Instruments Inc., 2011 81

PWMDRV_PSFB_VMC_SR

Description: This module controls the PWM generators to control a phase shifted full
bridge (PSFB) in voltage mode control (VMC) and also drives synchronous
rectifiers (SR), if used. Additionally, this module offers control over dead-
band amounts for switching signals in the two legs of the bridge.

Macro File: PWMDRV_PSFB_VMC_SR.asm

Peripheral
Initialization File: PWM_PSFB_VMC_SR_Cnf.c

Description: This module forms the interface between the control software and the device
PWM pins. The macro converts the unsigned Q24 input pointed to by the Net
Pointer PWMDRV_PSFB_Phase:n: into an unsigned Q0 number scaled by
the PWM period value, and stores this value in the EPwmRegs:m:.TBPHS
and EPwmRegs:p:.TBPHS. The parameter inputs n and m to the macro
module identify the PWM peripherals used to drive switches in the two legs
while input p identifies the PWM peripherals used to drive the SR switches.

 This macro is used in conjunction with the Peripheral configuration file
PWM_PSFB_VMC_SR_CNF.c. The file defines the function

void PWMDRV_PSFB_VMC_SR_CNF(int16 n, int16 Period, int16
SR_Enable, int16 Comp1_Prot)

 where

n is the master PWM peripheral configured for driving switches in
one leg of the full bridge. PWM n+1 is configured to work with
synch pulses from PWM n module and drives switches in the
other leg. PWM n+3 drives SR switches if SR_Enable is 1.

Period is the maximum count value of the PWM timer

SR_Enable This enables drive to SR switches using PWM n+3 module. If a

different PWM module is desired to be used for SR that module
can be configured similar to PWM n+3 module configuration in
this file. Note that if a different PWM module is selected for SR
it should be a module number greater than n.

Comp1_Prot Enables catastrophic protection based on on-chip comparator1
 and DAC.

PWM Driver for VMC controlled PSFB Stage with SR

Texas Instruments Inc., 2011 82

Detailed
Description The following section explains with help of a timing diagram, how the PWM is

configured to generate waveforms to drive a PSFB power stage. In up count
mode to configure 100Khz switching frequency for the PWM when CPU is
operating at 60Mhz, the Period value needed is (System Clock/Switching
Frequency) = 600.

 Full bridge power converter

Power
Phase

DbAtoPPWM:n:A

PWM:n:B

PWM:m:A

PWM:m:B

phase

AtoP leg
dead-band

PtoA leg
dead-band

50% duty

DbAtoP

DbPtoA

DbPtoA

PRD CAD

CBU ZRO

CMPAp = TBPRDm – TBPHSm, CMPBp = TBPHSm = TBPHSm

SR Mode 2SR Mode 1

PRD CAD

Abbreviations:
CMPA/Bx – Compare A/B register value for PWM module ‘x’
CAU – Time base counter = Compare A event when the timer is counting UP
CAD – Time base counter = Compare A event when the timer is counting DOWN
PRD – Time base counter = Period event
ZRO – Time base counter = Zero event

ZRO

PWM:p:A

PWM:p:B

Phase shifted PWM generation with the EPWM module.

Texas Instruments Inc., 2011 83

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_PSFB_VMC_SR - instance #1
extern volatile long *PWMDRV_PSFB_Phase1;
extern volatile int16 *PWMDRV_PSFB_DbAtoP1, *PWMDRV_PSFB_DbPtoA1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long phase = 0;

int16 dbAtoP_leg = 20, dbPtoA_leg = 20;

Step 4 Call the peripheral configuration function PWMDRV_PSFB_VMC_SR_CNF(int16 n,
int16 Period, int16 SR_Enable, int16 Comp1_Prot) in {ProjectName}-Main.c,
this function is defined in PWM_PSFB_VMC_SR_Cnf.c. This file must be linked manually to the
project.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock, in master mode

PWMDRV_PSFB_VMC_SR_CNF(1,600,1,1);

Step 5 “Call” the DPL_Init() function and then “connect” the module terminals to the
Signal nets in “C” in {ProjectName}-Main.c The DPL_Init() function must be called
before the signal nets are connected.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();

// Connect the PWMDRV_PSFB_VMC_SR driver block
 PWMDRV_PSFB_Phase1 = &phase;
 PWMDRV_PSFB_DbAtoP1 = &dbAtoP_leg;
 PWMDRV_PSFB_DbPtoA1 = &dbPtoA_leg;

 phase = _IQ24(0.015625); // Initial value
 dbAtoP_leg = 20; // Initial value
 dbPtoA_leg = 18; // Initial value

Texas Instruments Inc., 2011 84

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PWMDRV_PSFB_VMC_SR.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm. Note when
instantiating n, m and p need to be passed as arguments.

;Macro Specific Initialization Functions
PWMDRV_PSFB_VMC_SR_INIT 1,2,4 ; Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm. Note
when calling the run time macro n, m and p need to be passed as arguments.

;”Call” the Run macro
PWMDRV_PSFB_VMC_SR 1,2,4 ; Run PWMDRV_PSFB_VMC_SR

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_PSFB sections*/
PWMDRV_PSFB_Section : > dataRAM PAGE = 1

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable Range
of Variable or of
the Variable being
pointed to

PWMDRV_PSFB_Phase:n:

Input
Pointer

Pointer to 32 bit fixed
point input data
location to Phase value

Q24(0,1)

PWMDRV_PSFB_DbAtoP:n: Input

Pointer

Pointer to 32 bit fixed
point input data
location to Dead Band
Value for Left Leg

Q0

PWMDRV_PSFB_DbPtoA:n: Input
Pointer

Pointer to 32 bit fixed
point input data
location to Dead Band
Value for Right Leg

Q0

Texas Instruments Inc., 2011 85

PWMDRV_LLC_ComplPairDB

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, and
a complimentary PWM on channel B, with dead-band applied to both
channels. The module uses the dead-band module inside the EPWM
peripheral to generate the complimentary waveforms. This module also
allows for period modulation.

PWMDRV_LLC_ComplPairDB_Duty:n:

P
W
M

PWMnA

PWMDRV_LLC_ComplPairDB:n:

Duty

DeadBandRED PWMnB
DeadBandFED

PWMDRV_LLC_ComplPairDB_Period:n:
Period

Macro File: PWMDRV_LLC_ComplPairDB.asm

Peripheral
Initialization File: PWM_ComplPairDB_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro first loads the unsigned
Q14 input, pointed to by the Net Pointer
PWMDRV_LLC_ComplPairDB_Period:n: and loads it into the PWM period
register. The macro then converts the unsigned Q24 input, pointed to by the
Net Pointer PWMDRV_LLC_ComplPairDB_Duty:n: into an unsigned Q0
number scaled by the PWM period value, and stores this value in the
EPwmRegs:n:.CMPA which is used to generate the source signal used in
generating the PWM signal on channel A. The corresponding configuration
file has the dead-band module configured to output the complimentary
waveform on channel B. Dead-band is applied to both channels.

 This macro must be used in conjunction with the Peripheral configuration file
PWM_ComplPairDB_Cnf.c. The file defines the function

void PWM_ComplPairDB_CNF(int16 n, int16 period, int16 mode,
int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

period is the maximum value of the PWM counter
mode determines whether the PWM is to be configured as slave or

master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode = 1 PWM configured as a master
Mode = 0 PWM configured as slave

phase specifies the phase offset that is used when the PWM module is
synced. This value only has meaning when the PWM is
configured as a slave.

PWM Driver for compl. PWM, period modulation

Texas Instruments Inc., 2011 86

The function configures the PWM peripheral in up-count mode and the dead-
band submodule to output complimentary PWM waveforms with dead-band
applied. The falling edge delay is implemented by delaying the rising edge of
the channel B using the dead-band module in the PWM peripheral. The
module outputs an active high duty on ChA of the PWM peripheral and a
complementary active low duty on ChB.

The configuration function only configures the dead-band at initialization
time. However, it may be needed to change the dead-band during operation.
This can be done by calling the function

void PWM_ComplPairDB_UpdateDB (int16 n, int16 DbRed, int16
DbFed)

where

n is the PWM Peripheral number
DbRed is the new rising edge delay
DbFed is the new falling edge delay

Alternatively, an assembly macro is provided to update the dead-band if the
update needs to be done at a faster rate, inside the ISR. The dead-band
update assembly macro, PWMDRV_LLC_ComplPairDB_UpdateDB,
updates the dead-band registers with values stored in the macro variables
PWMDRV_LLC_ComplPairDB_DeadBandRED:n: and PWMDRV_
LLC_ComplPairDB_DeadBandFED:n:

Detailed
Description The following section explains how this module can be used to excite a Resonant

LLC power stage which uses two NFET’s. (Please note this module is specific to
Resonant LLC power stage using NPN transistors only). The function configures
the PWM peripheral in up-count mode. In order to configure a 100Khz switching
frequency for the PWM in up-count mode when CPU is operating at 60Mhz, the
Period value needed is (System Clock/Switching Frequency) = 600 needs to be
provided to the CNF function. The TBPRD is stored with a value of 600-1, to take
the up-count mode into account by the CNF function itself.

Resonant LLC converter driven by PWMDRV_LLC_ComplPairDB module

Texas Instruments Inc., 2011 87

 PWM generation for PWMDRV_LLC_CompPairDB Macro

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_LLC_ComplPairDB - instance #1
extern volatile long *PWMDRV_LLC_ComplPairDB_Duty1;
extern volatile long *PWMDRV_LLC_ComplPairDB_Period1;
extern volatile int16 PWMDRV_LLC_ComplPairDB_DeadBandRED1; //Optional
extern volatile int16 PWMDRV_LLC_ComplPairDB_DeadBandFED1; //Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;
volatile long Period;

Texas Instruments Inc., 2011 88

Step 4 Call the peripheral configuration function PWM_ComplPairDB_CNF(int16 n,
int16 period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is
defined in PWM_ComplPairDB_Cnf.c. This file must be included manually into the project. The
following code snippet configures PWM1 in Up Count mode and configures the dead band to be 5
and 4 cycles for the rising edge and falling edge respectively.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock

PWM_ComplPairDB_CNF(1,600, 1, 0);
PWM_ComplPairDB_UpdateDB(1,5,4);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function would
call the PWMDRV_LLC_ComplPairDB_INIT function.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_LLC_ComplPairDB block connections
PWMDRV_LLC_ComplPairDB_Duty1=&Duty;
PWMDRV_LLC_ComplPairDB_Period1=&Period;
// Initialize the net variables
Duty=_IQ24(0.5);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_LLC_ComplPairDB.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_LLC_ComplPairDB_INIT 1

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_LLC_ComplPairDB 1

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_LLC_ComplPairDB sections*/
PWMDRV_LLC_ComplPairDB_Section : > dataRAM PAGE = 1

Texas Instruments Inc., 2011 89

Step 11 Update Dead-Band This can be done by calling the C function in the
{ProjectName}-Main.c file.

/*Update dead-band delays */
PWM_ComplPairDB_UpdateDB(1,7,4);

If the dead band itself is part of the control loop the following assembly maco can be called.

;Update dead-band delays
PWMDRV_LLC_ComplPairDB_UpdateDB 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of
the Variable
being pointed
to

PWMDRV_LLC_ComplPairDB_Duty:n:

Input
Pointer

Pointer to 32 bit fixed
point input data location
storing Duty Value

Q24: [0, 1)

PWMDRV_LLC_ComplPairDB_Period:n:
Input
Pointer

Pointer to 32 bit fixed
point input data location
storing Period Value

Q14: [0, 1024)

PWMDRV_LLC_ComplPairDB_DeadBandRED:n:
Input
Variable

Value used by the
assembly macro to
update the PWM
peripheral dead-band
registers.

Q0

PWMDRV_LLC_ComplPairDB_DeadBandFED:n:
Input
Variable

Value used by the
assembly macro to
update the PWM
peripheral dead-band
registers.

Q0

Texas Instruments Inc., 2011 90

PWMDRV_LLC_1ch_UpCntDB

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, with
edge shifting. The module uses the dead-band module inside the EPWM
peripheral along with software to generate the rising edge shift (RES) and
falling edge shift (FES). This module also allows for period modulation.

Macro File: PWMDRV_LLC_1ch_UpCntDB.asm

Peripheral
Initialization File: PWM_1ch_UpCntDB_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro first loads the unsigned
Q14 input, pointed to by the Net Pointer
PWMDRV_LLC_1ch_UpCntDB_Period:n: and loads it into the PWM period
register. The macro then converts the unsigned Q24 input, pointed to by the
Net Pointer PWMDRV_LLC_1ch_UpCntDB_Duty:n: into an unsigned Q0
number scaled by the PWM period value, and stores this value in the
EPwmRegs:n:.CMPA. The falling edge is advanced through software by the
value specified in EPwmRegs:n:.DBFED by subtracting that value from the
EPwmRegs:n:.CMPA register. The rising edge is delayed by the value
specified in EPwmRegs:n:.DBRED using the dead-band module.

 This macro must be used in conjunction with the Peripheral configuration file
PWM_1ch_UpCntDB_Cnf.c. The file defines the function

void PWM_1ch_UpCntDB_CNF(int16 n, int16 period, int16 mode,
int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

period is the maximum value of the PWM counter
mode determines whether the PWM is to be configured as slave or

master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode = 1 PWM configured as a master
Mode = 0 PWM configured as slave

phase specifies the phase offset that is used when the PWM module is
synced. This value only has meaning when the PWM is
configured as a slave.

PWM Driver for chA PWM, edge shift, period mod.

Texas Instruments Inc., 2011 91

The function configures the PWM peripheral in up-count mode and the dead-
band submodule to PWM chA with dead-band applied. The module outputs
an active high duty on ChA of the PWM peripheral.

The configuration function only configures the dead-band at initialization
time. However, it may be needed to change the dead-band during operation.
This can be done by calling the function

void PWM_1ch_UpCntDB_UpdateDB (int16 n, int16 DbRed, int16
DbFed)

where

n is the PWM Peripheral number
DbRed is the new rising edge delay
DbFed is the new falling edge delay

Alternatively, an assembly macro is provided to update the dead-band if the
update needs to be done at a faster rate, inside the ISR. The dead-band
update assembly macro, PWMDRV_LLC_1ch_UpCntDB_UpdateDB,
updates the dead-band registers with values stored in the macro variables
PWMDRV_LLC_1ch_UpCntDB_DeadBandRED:n: and PWMDRV_
LLC_1ch_UpCntDB_DeadBandFED:n:
.

Detailed
Description The following section explains how this module can be used to excite one of the

Synchronous Rectifier legs of an LLC Resonant power stage. (Please note this
module is specific to using NPN transistors only). The function configures the
PWM peripheral in up-count mode. In order to configure a 100Khz switching
frequency for the PWM in up-count mode when CPU is operating at 60Mhz, the
Period value needed is (System Clock/Switching Frequency) = 600 needs to be
provided to the CNF function. The TBPRD is stored with a value of 600-1, to take
the up-count mode into account by the CNF function itself.

LLC Resonant converter Synchronous Rectifier leg driven by
PWMDRV_LLC_1ch_UpCntDB module

Texas Instruments Inc., 2011 92

 PWM generation for PWMDRV_LLC_1ch_UpCntDB Macro

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_LLC_1ch_UpCntDB - instance #1
extern volatile long *PWMDRV_LLC_1ch_UpCntDB_Duty1;
extern volatile long *PWMDRV_LLC_1ch_UpCntDB_Period1;
extern volatile int16 PWMDRV_LLC_1ch_UpCntDB_DeadBandRED1; //Optional
extern volatile int16 PWMDRV_LLC_1ch_UpCntDB_DeadBandFED1; //Optional

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;
volatile long Period;

Texas Instruments Inc., 2011 93

Step 4 Call the peripheral configuration function PWM_1ch_UpCntDB_CNF(int16 n,
int16 period, int16 mode, int16 phase) in {ProjectName}-Main.c, this function is
defined in PWM_1ch_UpCntDB_Cnf.c. This file must be included manually into the project. The
following code snippet configures PWM1 in Up Count mode and configures the dead band to be 5
and 4 cycles for the rising edge and falling edge respectively.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock

PWM_1ch_UpCntDB_CNF(1,600, 1, 0);
PWM_1ch_UpCntDB_UpdateDB(1,5,4);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function would
call the PWMDRV_LLC_1ch_UpCntDB_INIT function.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_LLC_1ch_UpCntDB block connections
PWMDRV_LLC_1ch_UpCntDB_Duty1=&Duty;
PWMDRV_LLC_1ch_UpCntDB_Period1=&Period;
// Initialize the net variables
Duty=_IQ24(0.5);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_LLC_1ch_UpCntDB.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_LLC_1ch_UpCntDB_INIT 1

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_LLC_1ch_UpCntDB 1

Texas Instruments Inc., 2011 94

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_LLC_1ch_UpCntDB sections*/
PWMDRV_LLC_1ch_UpCntDB_Section : > dataRAM PAGE = 1

Step 11 Update Dead-Band This can be done by calling the C function in the
{ProjectName}-Main.c file.

/*Update dead-band delays */
PWM_1ch_UpCntDB_UpdateDB(1,7,4);

If the dead band itself is part of the control loop the following assembly maco can be called.

;Update dead-band delays
PWMDRV_LLC_1ch_UpCntDB_UpdateDB 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or of
the Variable
being pointed
to

PWMDRV_LLC_1ch_UpCntDB_Duty:n:

Input
Pointer

Pointer to 32 bit fixed
point input data location
storing Duty Value

Q24: [0, 1)

PWMDRV_LLC_1ch_UpCntDB_Period:n:
Input
Pointer

Pointer to 32 bit fixed
point input data location
storing Period Value

Q14: [0, 1024)

PWMDRV_LLC_1ch_UpCntDB_DeadBandRED:n:
Input
Variable

Value used by the
assembly macro to
update the PWM
peripheral dead-band
registers.

Q0

PWMDRV_LLC_1ch_UpCntDB_DeadBandFED:n:
Input
Variable

Value used by the
assembly macro to
update the PWM
peripheral dead-band
registers.

Q0

Texas Instruments Inc., 2011 95

PWMDRV_LLC_1ch_UpCntDB_Compl

Description: This hardware driver module, when used in conjunction with the
corresponding PWM configuration file, drives a duty on PWM channel A, with
edge shifting. The module uses the dead-band module inside the EPWM
peripheral along with software to generate the rising edge shift (RES) and
falling edge shift (FES). This module also allows for period modulation.
This module generates a signal complementary to the one generated by
PWMDRV_LLC_1ch_UpCntDB.asm

Macro File: PWMDRV_LLC_1ch_UpCntDB_Compl.asm

Peripheral
Initialization File: PWM_1ch_UpCntDB_Compl_Cnf.c

Description: This assembly macro provides the interface between a DP library net
variable and the ePWM module on C28x. The macro first loads the unsigned
Q14 input, pointed to by the Net Pointer
PWMDRV_LLC_1ch_UpCntDB_Period:n: and loads it into the PWM period
register. The macro then converts the unsigned Q24 input, pointed to by the
Net Pointer PWMDRV_LLC_1ch_UpCntDB_Duty:n: into an unsigned Q0
number scaled by the PWM period value, and stores this value, subtracted
from the PWM period register, in the EPwmRegs:n:.CMPA. The falling edge
is advanced through software by the value specified in
EPwmRegs:n:.DBFED by subtracting that value from the PWM period
register. The change in the PWM period register is corrected for during each
PWM synchronization event. No conflicts are generated since both the falling
edge advancement amount and the PWM duty cycle should not exceed 50%
of the period. The rising edge is delayed by the value specified in
EPwmRegs:n:.DBRED using the dead-band module.

 This macro must be used in conjunction with the Peripheral configuration file
PWM_1ch_UpCntDB_Compl_Cnf.c. The file defines the function

void PWM_1ch_UpCntDB_Compl_CNF(int16 n, int16 period, int16
mode, int16 phase)

 where

n is the PWM Peripheral number which is configured in up count
mode

period is the maximum value of the PWM counter

Driver, chA PWM, edge shift, period mod.

Texas Instruments Inc., 2011 96

mode determines whether the PWM is to be configured as slave or
master,when configured as the master the TBSYNC signal is
ignored by the PWM module.

Mode = 1 PWM configured as a master
Mode = 0 PWM configured as slave

phase specifies the phase offset that is used when the PWM module is
synced. This value only has meaning when the PWM is
configured as a slave.

The function configures the PWM peripheral in up-count mode and the dead-
band submodule to output PWM chA with dead-band applied. The module
outputs an active high duty on ChA of the PWM peripheral. This
configuration provides a duty complementary to that configured in
PWM_1ch_UpCntDB_Cnf.c

The configuration function only configures the dead-band at initialization
time. However, it may be needed to change the dead-band during operation.
This can be done by calling the function

void PWM_1ch_UpCntDB_Compl_UpdateDB (int16 n, int16 DbRed,
int16 DbFed)

where

n is the PWM Peripheral number
DbRed is the new rising edge delay
DbFed is the new falling edge delay

Alternatively, an assembly macro is provided to update the dead-band if the
update needs to be done at a faster rate, inside the ISR. The dead-band
update assembly macro, PWMDRV_LLC_1ch_UpCntDB_Compl_UpdateDB,
updates the dead-band registers with values stored in the macro variables
PWMDRV_LLC_1ch_UpCntDB_Compl_DeadBandRED:n: and PWMDRV_
LLC_1ch_UpCntDB_Compl_DeadBandFED:n:
.

Detailed
Description The following section explains how this module can be used to excite one of the

Synchronous Rectifier legs of an LLC Resonant power stage. (Please note this
module is specific to using NPN transistors only). The function configures the
PWM peripheral in up-count mode. In order to configure a 100Khz switching
frequency for the PWM in up-count mode when CPU is operating at 60Mhz, the
Period value needed is (System Clock/Switching Frequency) = 600 needs to be
provided to the CNF function. The TBPRD is stored with a value of 600-1, to take
the up-count mode into account by the CNF function itself.

Texas Instruments Inc., 2011 97

LLC Resonant converter Synchronous Rectifier leg driven by
PWMDRV_LLC_1ch_UpCntDB_Compl module

 PWM generation for PWMDRV_LLC_1ch_UpCntDB_Compl Macro

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Texas Instruments Inc., 2011 98

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PWMDRV_LLC_1ch_UpCntDB - instance #1
extern volatile long *PWMDRV_LLC_1ch_UpCntDB_Compl_Duty1;
extern volatile long *PWMDRV_LLC_1ch_UpCntDB_Compl_Period1;
extern volatile int16 PWMDRV_LLC_1ch_UpCntDB_Compl_DeadBandRED1;
extern volatile int16 PWMDRV_LLC_1ch_UpCntDB_Compl_DeadBandFED1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Duty;
volatile long Period;

Step 4 Call the peripheral configuration function PWM_1ch_UpCntDB_Compl_CNF(int16
n, int16 period, int16 mode, int16 phase) in {ProjectName}-Main.c, this
function is defined in PWM_1ch_UpCntDB_Compl_Cnf.c. This file must be included manually
into the project. The following code snippet configures PWM1 in Up Count mode and configures
the dead band to be 5 and 4 cycles for the rising edge and falling edge respectively.

// Configure PWM1 for 100Khz, @60Mhz CPU Clock

PWM_1ch_UpCntDB_Compl_CNF(1,600, 1, 0);
PWM_1ch_UpCntDB_Compl_UpdateDB(1,5,4);

Step 5 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c. Also note the DPL_Init() function would
call the PWMDRV_LLC_1ch_UpCntDB_Compl_INIT function.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PWMDRV_LLC_1ch_UpCntDB block connections
PWMDRV_LLC_1ch_UpCntDB_Compl_Duty1=&Duty;
PWMDRV_LLC_1ch_UpCntDB_Compl_Period1=&Period;
// Initialize the net variables
Duty=_IQ24(0.5);

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project.

Texas Instruments Inc., 2011 99

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system
.include "PWMDRV_LLC_1ch_UpCntDB_Compl.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PWMDRV_LLC_1ch_UpCntDB_Compl_INIT 1

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PWMDRV_LLC_1ch_UpCntDB_Compl 1

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PWMDRV_LLC_1ch_UpCntDB sections*/
PWMDRV_LLC_1ch_UpCntDB_Compl_Section : > dataRAM PAGE = 1

Step 11 Update Dead-Band This can be done by calling the C function in the
{ProjectName}-Main.c file.

/*Update dead-band delays */
PWM_1ch_UpCntDB_Compl_UpdateDB(1,7,4);

If the dead band itself is part of the control loop the following assembly maco can be called.

;Update dead-band delays
PWMDRV_LLC_1ch_UpCntDB_Compl_UpdateDB 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable
Range of
Variable or
of the
Variable
being
pointed to

PWMDRV_LLC_1ch_UpCntDB_Compl_Duty:n:

Input
Pointer

Pointer to 32 bit
fixed point input
data location
storing Duty
Value

Q24: [0, 1)

Texas Instruments Inc., 2011 100

PWMDRV_LLC_1ch_UpCntDB_Compl_Period:n:
Input
Pointer

Pointer to 32 bit
fixed point input
data location
storing Period
Value

Q14: [0,
1024)

PWMDRV_LLC_1ch_UpCntDB_Compl_DeadBandRED:n:
Input
Variable

Value used by
the assembly
macro to update
the PWM
peripheral dead-
band registers.

Q0

PWMDRV_LLC_1ch_UpCntDB_Compl_DeadBandFED:n:
Input
Variable

Value used by
the assembly
macro to update
the PWM
peripheral dead-
band registers.

Q0

Texas Instruments Inc., 2011 101

 DACDRV_RAMP

Description: This module controls DAC and ramp generator to control a power stage in
peak current mode control (PCMC) using on-chip ramp generator for slope
compensation.

Macro File: DACDRV_RAMP.asm

Peripheral
Initialization File: DAC_Cnf.c

Description: This module forms the interface between the control software and on-chip
DAC and ramp generator module. The macro converts the unsigned Q24
input pointed to by the Net Pointer DACDRV_RAMP_In:n: to an appropriate
16-bit value (RAMPMAXREF)), which is the starting value of the RAMP used
for slope compensation. This module also drives an appropriate 10-bit value
to the DACVAL register, which can be used if slope compensation is not
needed or provided externally. The parameter input n to the macro module
identifies the comparator, DAC and ramp module used.

 This macro is used in conjunction with the Peripheral configuration file
DAC_Cnf.c. The file defines the function

void DacDrvCnf(int16 n, int16 DACval, int16 DACsrc, int16
RAMPsrc, int16 Slope_initial)

 where

n Comparator target module number.

DACval Provides the DAC value when internal ramp is not used.

DACsrc Selects DACval or internal ramp as DAC source

RAMPsrc Selects source to synchronize internal ramp used for slope
compensation.

Slope_initial Initial slope value for slope compensation. This value can be
changed any time during execution.

 DAC Ramp Driver Interface

Texas Instruments Inc., 2011 102

Detailed
Description As seen below the PWM sync signal can start the ramp at a known point in the

switching cycle. Here this happens at TBCTR = 0. When feedback current equals
reference current generated by the DAC and RAMP module it resets the
comparator output, which then causes a reset of the ramp to its starting value.
Slope of this ramp can be programmed using RAMPDECVAL register. When
internal ramp generator is not used (by selecting DACsrc as DACval for
DacDrvCnf function), DAC output is a constant reference value set by the
DACVAL register value.

DAC and ramp for PCMC control of a power stage

Usage:

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
// DACDRV_RAMP

extern volatile long *DACDRV_RAMP_In1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Iref = 0;

Texas Instruments Inc., 2011 103

Step 4 Call the peripheral configuration function DacDrvCnf(int16 n, int16
DACval, int16 DACsrc, int16 RAMPsrc, int16 Slope_initial) in
{ProjectName}-Main.c, this function is defined in DAC_Cnf.c. This file must be linked
manually to the project.

// Comp1, DACval = 1280(Initial), Slope compensation is used,

// Ramp is PWM3 Synced, Initial Slope

DacDrvCnf(1, 1280, 1, 2, Slope);

Step 5 “Call” the DPL_Init() function and then “connect” the module terminals to the
Signal nets in “C” in {ProjectName}-Main.c The DPL_Init() function must be called
before the signal nets are connected.

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();

// DACDRV_RAMP connections

 DACDRV_RAMP_In1 = &Iref;

Step 6 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 7 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "DACDRV_RAMP.asm"

Step 8 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm.

;Macro Specific Initialization Functions
DACDRV_RAMP_INIT 1 ; Initialization

Step 9 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm.

;”Call” the Run macro
DACDRV_RAMP 1 ; Run DACDRV_RAMP

Step 10 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*DACDRV_RAMP sections*/
DACDRV_RAMP_Section : > dataRAM PAGE = 1

Texas Instruments Inc., 2011 104

Module Net Definition:

Net name
(:n: is the instance number)

Description Format Acceptable Range
of Variable or of
the Variable being
pointed to

DACDRV_RAMP_In:n:

Input Pointer Pointer to 32 bit fixed
point input data
location to current
reference value

Q24(0,1)

Texas Instruments Inc., 2011 105

5.4. Application Specific

PFC_ICMD

Description: This software module performs a computation of the current command for
the Power Factor Correction(PFC)

Macro File: PFC_ICMD.asm

Technical: This software module performs a computation of the current command for
the power factor correction. The inputs to the module are the inverse-
squared/averaged line voltage, the rectified line voltage and the output of the
voltage controller. The PFC_ICMD block then generates an output command
profile that is half-sinusoidal, with an amplitude dependent on the output of
the voltage controller. The output is then connected to the current controller
to produce the required inductor current.

The input pointers PFC_ICMD_Vcmd:n:, PFC_ICMD_VinvSqr:n: and
PFC_ICMD_Vcmd:n: points to a variable represented in Q24 format. The
module multiplies these values together and then scales them by multiplying
with a factor which is stored in the internal data
PFC_ICMD_VmaxOverVmin:n: The result in Q24 format is written to the
variable pointed by the output pointer PFC_ICMD_Out:n:

A PFC stage is typically designed to work over a range of AC line conditions.
PFC_ICMD_VminOverVmax:n: is the ratio of minimum over maximum
voltage the PFC stage is designed for represented in the Q24 format.

The following diagram illustrates the math function operated on in this block.

Current Command for Power Factor Correction

Texas Instruments Inc., 2011 106

Usage: This section explains how to use this module. The example assumes a PFC
Stage designed for 230VAC to 90VAC and the voltage feedback is designed
for max 350V. Hence,

PFC_ICMD_VmaxOverVmin:n: = _IQ24(230/90)=_IQ24(2.5555)

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PFC_ICMD - instance #1
extern volatile long *PFC_ICMD_Vcmd1;
extern volatile long *PFC_ICMD_VacRect1;
extern volatile long *PFC_ICMD_VinvSqr1;
extern volatile long *PFC_ICMD_Out1;
extern volatile long PFC_ICMD_VmaxOverVmin1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Vcmd1,VacRect,VinvSqr,CurrCmd;

Step 4 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PFC_ICMD block connections
PFC_ICMD_Vcmd1=&Vcmd;
PFC_ICMD_VacRect1=&VacRect;
PFC_ICMD_VinvSqr1=&VinvSqr;
PFC_ICMD_Out1=&CurrCmd;
PFC_ICMD_VmaxOverVmin1=_IQ24(2.5555);

// Initialize the net variables
Vcmd=_IQ24(0.0);
VinvSqr=_IQ24(0.0)
VacRect=_IQ24(0.0);
CurrCmd=_IQ24(0.0);

Texas Instruments Inc., 2011 107

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PFC_ICMD.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PFC_ICMD_INIT 1 ; PFC_ICMD Initialization

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PFC_ICMD 1 ; Run the PFC_ICMD Macro

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PFC_ICMD sections*/
PFC_ICMD_Section : > RAML2 PAGE = 1

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable
Range

PFC_ICMD_Vcmd:n:

Input
Pointer

Pointer to 32 bit fixed point
input data location storing
the output of the voltage
controller

Q24: [0, 1)

PFC_ICMD_VinvSqr:n:

Input
Pointer

Pointer to 32 bit fixed point
input data location storing
the output of the
PFC_INVSQR block

Q24: [0, 1)

PFC_ICMD_VacRect:n:
Input
Pointer

Pointer to 32 bit fixed point
input data location storing
the output of the
MATH_EMAVG block

Q30:[0,1)

PFC_ICMD_Out:n:
Output
Pointer

Pointer to 32 bit fixed point
output location where the
reference for the current
loop is stored

Q24:[0,1)

PFC_ICMD_VmaxOverVmin:n:
Internal
Data

Data Variable storing the
scaling factor

Q24:[0,8)

Texas Instruments Inc., 2011 108

 PFC_INVSQR

Description: This software module performs a reciprocal function on a scaled unipolar
input signal and squares it.

Macro File: PFC_INVSQR.asm

Technical: The input pointer PFC_INSQR_In:n: points to a variable represented in
Q24 format. The module scales and inverts this value and writes the result in
Q24 format to a variable pointed by the output pointer PFC_INVSQR_Out:n:
The module uses two internal data variables to specify the range and scaling,
which is dependent on the Power Factor Correction(PFC) stage the module
is used for.

A PFC stage is typically designed to work over a range of AC line conditions.
PFC_INVSQR_VminOverVmax:n: is the ratio of minimum over maximum
voltage the PFC stage is designed for represented in the Q30 format. The
PFC_INVSQR_Vmin:n: is equal or less than the minimum AC Line voltage
that the PFC stage is designed to run for represented in the Q24 format.
Note that PFC_INVSQR_Vmin:n: depends on what range the Voltage
Feedback in the PFC system is designed for.

The module allows for the fact that the input value is the average of a half-
sine (rectified AC), whereas what is desired for power factor correction is the
representation of the peak of the sine. In addition the input signal is clamped
to a minimum to allow the PFC system to work with very low line voltages
without overflows, which can cause undesirable effects. The module also
saturates the output for a maximum of 1.0 in Q24 format. The following
diagram illustrates the math function operated on in this block.

Usage: This section explains how to use this module. The example assumes a PFC
Stage designed for 230VAC to 90VAC and the voltage feedback is designed
for peak 400V. Hence,

Inverse Square Math Block for Power Factor Correction

Texas Instruments Inc., 2011 109

PFC_INVSQR_VminOverVmax:n: = _IQ30(90/230)=_IQ30(0.3913)

PFC_INVSQR_Vmin:n: =<_IQ24(90/400)=_IQ24(0.225)

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PFC_INVSQR - instance #1
extern volatile long *PFC_INVSQR_In1;
extern volatile long *PFC_INVSQR_Out1;
extern volatile long PFC_INVSQR_VminOverVmax1;
extern volatile long PFC_INVSQR_Vmin1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long In, Out;

Step 4 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PFC_INVSQR block connections
PFC_INVSQR_In1=&In;
PFC_INVSQR_Out1=&Out;
PFC_INVSQR_VminOverVmax1=_IQ30(0.3913);

PFC_INVSQR_Vmin1=_IQ24(0.225);

// Initialize the net variables
In=_IQ24(0.0);

Out=_IQ24(0.0);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Texas Instruments Inc., 2011 110

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PFC_INVSQR.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PFC_INVSQR_INIT 1 ; PFC_INVSQR Initialization

Step 6 Call run time macro in assembly inside the C-callable function DPL_ISR() which is the
looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PFC_INVSQR 1 ; Run the PFC_INVSQR Macro

Step 7 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PFC_INVSQR sections*/
PFC_INVSQR_Section : > RAML2 PAGE = 1

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable
Range

PFC_INVSQR_In:n:
Input
Pointer

Pointer to 32 bit fixed point
input data location

Q24: [0, 1)

PFC_INVSQR_Out:n:
Output
Pointer

Pointer to 32 bit fixed point
data location to write the
output

Q24: [0, 1)

PFC_INSQR_VminOverVmax:n:
Internal
Data

Data variable storing
scaling information in Q30
format is ratio of the min to
max voltage the PFC stage
is designed for

Q30:[0,1)

PFC_INVSQR_Vmin:n:
Internal
Data

Data Variable storing
information in Q24 format of
the ratio of minimum AC
line the PFC stage is
designed to work for and
the max voltage the voltage
feedback is designed for

Q24:[0,1)

Texas Instruments Inc., 2011 111

PFC_BL_ICMD

Description: This software module performs a computation of the current command for
the Power Factor Correction (PFC) stage that uses PFC boost switch current
sensing in order to control the PFC inductor current.

Macro File: PFC_BL_ICMD.asm

Technical: This software module performs a computation of the current command for
the power factor correction stage that uses boost PFC switch current sensing
in order to implement PFC input current control. The inputs to the module are
the inverse-squared-rms line voltage, the rectified line voltage, PFC PWM
duty ratio, PFC dc bus voltage and the output of the voltage loop controller.
The PFC_BL_ICMD block then generates an output command profile which
is then connected to the current controller to produce the required inductor
current.

Five input pointers PFC_BL_ICMD_Vcmd:n:,
PFC_BL_ICMD_VinvSqr:n:, PFC_BL_ICMD_VacRect:n:,
PFC_BL_ICMD_Duty:n:, and PFC_BL_ICMD_Vpfc:n: point to variables
represented in Q24 format. The module uses these inputs to implement a
math function and then scales the result by multiplying with a factor which is
stored in the internal data PFC_BL_ICMD_VmaxOverVmin:n: The final
result in Q24 format is written to the variable pointed to by the output pointer
PFC_BL_ICMD_Out:n:

A PFC stage is typically designed to work over a range of input and output
voltages. PFC_BL_ICMD_VminOverVmax:n: is the ratio of minimum over
maximum AC input voltage the PFC stage is designed for represented in
Q24 format. PFC_BL_ICMD_Vout_maxOverVin_max:n: is the ratio of
maximum output voltage over maximum AC input voltage and represented in
Q24 format.The following diagram illustrates the math function operated on in
this block.

Bridgeless PFC Current Command

Texas Instruments Inc., 2011 112

Usage: This section explains how to use this module. The example assumes a PFC
Stage designed for input AC range of 280Vrms to 80Vrms and the max DC
bus voltage of 450V. Hence,

PFC_BL_ICMD_VmaxOverVmin:n: = _IQ24(280/80)=_IQ24(3.5)

PFC_BL_ICMD_Vout_maxOverVin_max:n: =
_IQ24(450/(1.414*280))=_IQ24(1.14)

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PFC_BL_ICMD - instance #1

extern volatile long *PFC_BL_ICMD_Vcmd1;
extern volatile long *PFC_BL_ICMD_VinvSqr1;
extern volatile long *PFC_BL_ICMD_VacRect1;
extern volatile long *PFC_BL_ICMD_Out1;
extern volatile long PFC_BL_ICMD_VmaxOverVmin1;
extern volatile long *PFC_BL_ICMD_Vpfc1;
extern volatile long *PFC_BL_ICMD_Duty1;
extern volatile long PFC_BL_ICMD_VoutMaxOverVinMax1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long Vcmd,VacRect,VinvSqr,CurrCmd, Duty, Vpfc;

Texas Instruments Inc., 2011 113

Step 4 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialization
DPL_Init();
// PFC_BL_ICMD block connections
 PFC_BL_ICMD_Vcmd1 = &VbusVcmd;
 PFC_BL_ICMD_VinvSqr1=&VinvSqr;
 PFC_BL_ICMD_VacRect1=&Vrect;
 PFC_BL_ICMD_Out1=&PFCIcmd;
 PFC_BL_ICMD_VmaxOverVmin1=_IQ24(3.5);
 PFC_BL_ICMD_Vpfc1 = &Vbus;
 PFC_BL_ICMD_Duty1 = &DutyA;
 PFC_BL_ICMD_VoutMaxOverVinMax1 = _IQ24(1.14);
Vcmd=_IQ24(0.0);
VinvSqr=_IQ24(0.0)
VacRect=_IQ24(0.0);
CurrCmd=_IQ24(0.0);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PFC_BL_ICMD.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PFC_BL_ICMD_INIT 1 ; PFC_BL_ICMD Initialization

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PFC_BL_ICMD 1 ; Run the PFC_BL_ICMD Macro

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PFC_BL_ICMD sections*/
PFC_BL_ICMD_Section : > RAML2 PAGE = 1

Texas Instruments Inc., 2011 114

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable
Range

PFC_BL_ICMD_Vcmd:n:

Input
Pointer

Pointer to 32 bit
fixed point input
data location
storing the output
of the voltage
controller

Q24: [0, 1)

PFC_BL_ICMD_VinvSqr:n:

Input
Pointer

Pointer to 32 bit
fixed point input
data location
storing the output
of the
PFC_InvRmsSqr
block

Q24: [0, 1)

PFC_BL_ICMD_VacRect:n:
Input
Pointer

Pointer to 32 bit
fixed point input
data location for
PFC rectified
input voltage

Q24:[0,1)

PFC_BL_ICMD_Out:n:
Output
Pointer

Pointer to 32 bit
fixed point output
location where the
reference for the
current loop is
stored

Q24:[0,1)

PFC_BL_ICMD_VmaxOverVmin:n:
Internal
Data

Data Variable
storing the scaling
factor

Q24:[0,8)

PFC_BL_ICMD_Vout_maxOverVin_max:n:
Internal
Data

Data Variable
storing the scaling
factor

Q24:[0,8)

PFC_BL_ICMD_Vpfc:n:
Input
Pointer

Pointer to 32 bit
fixed point input
data location
storing the PFC
output voltage

Q24: [0, 1)

Texas Instruments Inc., 2011 115

PFC_InvRmsSqr

Description: This software module performs a reciprocal function on a scaled unipolar
input signal and squares it.

Macro File: PFC_InvRmsSqr.asm

Technical: The input pointer PFC_InvRmsSqr_In:n: points to a variable represented
in Q24 format. The module scales and inverts this value and writes the result
in Q24 format to a variable pointed by the output pointer
PFC_InvRmsSqr_Out:n: The module uses two internal data variables to
specify the range and scaling, which is dependent on the hardware design of
the Power Factor Correction(PFC) stage the module is used for.

A PFC stage is typically designed to operate over a range of AC line
conditions. For example a normal operating range could be 85Vrms ~
264Vrms. However, the range of AC line voltage used for signal scaling (in
software implementation) must be wider than this operating range. For
example, if the absolute maximum amplitude of 400V (= 283Vrms) for the AC
voltage is scaled down (using resistor divider) to generate the full scale ADC
input signal, the Vmax signal used for this module will be 400V. Also, the
minimum rms voltage that is used to normalize the inverse rms signal output
from this module must be lower than the selected minimum operating range
of 85Vrms, i.e. about 80Vrms. This will allow the PFC to operate normally at
85Vrms and saturate the inverse signal outside this range, i.e., at 80Vrms.
With these values identified, the parameter
PFC_InvRmsSqr_VminOverVmax:n: is the ratio of minimum over
maximum voltage, which in this example is 80Vrms/283Vrms. This ratio is
then represented in Q30 format. The PFC_InvRmsSqr_Vmin:n: is the
same value represented in Q24 format. This is used for limiting the minimum
input to the module which will allow the scaling and saturation of the inverse
signal to work properly. The module clamps the input signal to this minimum
value to allow the PFC system to detect input under-voltage condition without
causing overflows, which can cause undesirable effects. The module also
saturates the output for a maximum of 1.0 in Q24 format. The following
diagram illustrates the math function operated on in this block.

Inverse of the RMS Squared

Texas Instruments Inc., 2011 116

Usage: This section explains how to use this module. The example assumes a PFC
Stage designed for 264VAC to 85VAC and the voltage feedback is designed
for peak 400V. Also, the minimum voltage used in this module is 80Vrms.
Hence,

PFC_InvRmsSqr_VminOverVmax:n: = _IQ30(80/283)=_IQ30(0.283)

PFC_InvRmsSqr_Vmin:n: =<_IQ24(80/283)=_IQ24(0.283)

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//PFC_InvRmsSqr - instance #1
extern volatile long *PFC_InvRmsSqr_In1;
extern volatile long *PFC_InvRmsSqr_Out1;
extern volatile long PFC_InvRmsSqr_VminOverVmax1;
extern volatile long PFC_InvRmsSqr_Vmin1;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables -----------------------
// Declare the net variables being used by the DP Lib Macro here
volatile long In, Out;

Texas Instruments Inc., 2011 117

Step 4 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialisation
DPL_Init();
// PFC_INVSQR block connections
PFC_InvRmsSqr_In1=&In;
PFC_InvRmsSqr_Out1=&Out;
PFC_InvRmsSqr_VminOverVmax1=_IQ30(0.3913);

PFC_InvRmsSqr_Vmin1=_IQ24(0.225);

// Initialize the net variables
In=_IQ24(0.0);

Out=_IQ24(0.0);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "PFC_InvRmsSqr.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
PFC_InvRmsSqr_INIT 1 ; PFC_INVSQR Initialization

Step 8 Call run time macro in assembly inside the C-callable function DPL_ISR() which is the
looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
PFC_InvRmsSqr 1 ; Run the PFC_INVSQR Macro

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*PFC_InvRmsSqr sections*/
PFC_InvRmsSqr_Section : > RAML2 PAGE = 1

Texas Instruments Inc., 2011 118

Module Net Definition:
Net name
(:n: is the instance number)

Description Format Acceptable
Range

PFC_InvRmsSqr_In:n:
Input
Pointer

Pointer to 32 bit fixed
point input data
location

Q24: [0, 1)

PFC_InvRmsSqr_Out:n:
Output
Pointer

Pointer to 32 bit fixed
point data location to
write the output

Q24: [0, 1)

PFC_InvRmsSqr_VminOverVmax:n:
Internal
Data

Data variable storing
scaling information in
Q30 format is ratio of
the min to max voltage
the PFC stage is
designed for

Q30:[0,1)

PFC_InvRmsSqr_Vmin:n:
Internal
Data

Data Variable storing
information in Q24
format of the ratio of
minimum AC line the
PFC stage is designed
to work for and the
max voltage the
voltage feedback is
designed for

Q24:[0,1)

Texas Instruments Inc., 2011 119

5.4 Math Blocks

MATH_EMAVG

Description: This software module performs exponential moving average

Macro File: MATH_EMAVG.asm

Technical: This software module performs exponential moving average over data stored
in Q24 format, pointed to by MATH_EMAVG_In:n: The result is stored in
Q24 format at a 32 bit location pointed to by MATH_EMAVG_Out:n:

The math operation performed can be represented in time domain as follows:

)1(*))1()(()( nEMAMultipliernEMAnInputnEMA

Where)(nInput is the input data at sample instance ‘n’,

)(nEMA is the exponential moving average at time instance ‘n’,

)1(nEMA is the exponential moving average at time instance

‘n-1’.
Multiplier is the weighting factor used in exponential moving

average

 In z-domain the equation can be interpreted as

1)1(1 


zMultiplier

Multiplier

Input

Output

 This can be seen as a special case for a Low Pass Filter, where pass band
gain is equal to Multiplier and filter time constant is)1(Multiplier . Note

Multiplier is always 1 , hence)1(Multiplier is always a positive

value. Also the lower the value of Multiplier , the larger is the time constant

and more sluggish the response of the filter.

The following diagram illustrates the math function operated on in this block.

Exponential Moving Average

Texas Instruments Inc., 2011 120

Usage: The block is used in the PFC software to get the average value of AC Line.
The multiplier value for this can be estimated through two methods as
follows:

Time Domain: The PFC stage runs at 100Khz and the input AC signal is
60Hz. As the average of the rectified sine signal is desired the effective
frequency of the signal being averaged is 120Hz. This implies that
(100Khz/120) = 833 samples in one half sine. For the average to be true
representation the average needs to be taken over multiple sine halves (note
taking average over integral number of sine halves is not necessary). The
multiplier value distributes the error equally over the number of samples for
which average is taken. Therefore

)0003.0(30_)3332/1(30_)_/1(30_ IQIQNoSAMPLEIQMultiplier 

For AC line average a value of 4000 samples is chosen, as it averages
roughly over 4 sine halves.

Frequency Domain: Alternatively the multiplier value can be estimated from
the z-domain representation as well. The signal is sampled at 100Khz and
the frequency content is at 60Hz. Only the DC value is desired, therefore
assuming a cut-off frequency of 5Hz the value can be estimated as follows,

For a first order approximation, s
sT sTez  1

,
 where T is the sampling period and solving the equation,

Mul

T
s

sT

sInput

sOut

s

s






1

1

)(

)(

Comparing with the analog domain low pass filter, the following equation can
be written

)000314.0(30_)100/14.3*2*5(30_)/)**2((30_ _ IQKIQffIQMultiplier samplingoffcutt  

 The following steps explain how to include this module into your system

Texas Instruments Inc., 2011 121

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//MATH_EMAVG - instance #1
extern volatile long *MATH_EMAVG_In1;
extern volatile long *MATH_EMAVG_Out1;
extern volatile long MATH_EMAVG_Multiplier1;

Step 3 Signal net nodes/ variables in C in the file {ProjectName}-Main.c

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------

// Declare the net variables being used by the DP Lib Macro here

volatile long In,Out;

Step 4 “Call” the DPL_Init() to initialize the macros and “connect” the module terminals to
the Signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialization
DPL_Init();
// MATH_EMAVG block connections
MATH_EMAVG_In1=&In;
MATH_EMAVG_Out1=&Out;
MATH_EMAVG_Multilpier1=_IQ24(0.0025);

// Initialize the net variables
In=_IQ24(0.0);
Out=_IQ24(0.0)

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Texas Instruments Inc., 2011 122

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "MATH_EMAVG.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
MATH_EMAVG_INIT 1 ; MATH_EMAVG Initialization

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
MATH_EMAVG_INIT 1 ; Run the MATH_EMAVG Macro

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*MATH_EMAVG sections*/
MATH_EMAVG_Section : > RAML2 PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

MATH_EMAVG_In:n: Input Pointer
Pointer to 32 bit fixed input data
location storing the data that
needs to averaged

Q24: [0, 1)

MATH_EMAVG_Out:n: Output Pointer
Pointer to 32 bit fixed output data
location where the computed
average is stored

Q24: [0, 1)

MATH_EMAVG_Multiplier:n: Internal Data
Data Variable storing the weighing
factor for the exponential average.

Q30:[0,1)

Texas Instruments Inc., 2011 123

SineAnalyzer

Description: This software module analyzes the input sine wave and calculates several
parameters like RMS, Average and Frequency.

Macro File: SineAnalyzer.h

Technical: This module accumulates the sampled sine wave inputs, checks for
threshold crossing point and calculates the RMS, Average values of the input
sine wave. This module can also calculate the Frequency of the sine wave
and indicate zero (or threshold) crossing point.

This module expects the following inputs:

1) Sine wave in Q15 format (Vin): This is the signal sampled by ADC and
ADC result converted to Q15 format. This module expects a rectified sine
wave as input without any offset.

2) Threshold Value (Threshold): Threshold value is used for detecting the
cross over of the input signal across the threshold value set, in Q15
format. By default threshold is set to Zero.

3) Sampling Frequency (SampleFreq): This input should be set to the
Frequency at which the input sine wave is sampled, in Q15 format.

Upon Macro call – Input sine wave (Vin) is checked to see if the signal
crossed over the threshold value. Once the cross over event happens,
successive Vin samples are accumulated until occurrence of another
threshold cross over point. Accumulated values are used for calculation of
Average, RMS values of input signal. Module keeps track of number of
samples between two threshold cross over points and this together with the
signal sampling frequency (SampleFreq input) is used to calculate the
frequency of the input sine wave.

This module generates the following Outputs:

1) RMS value of sine wave (Vrms): Output reflects the RMS value of the
sine wave input signal in Q15 format. RMS value is calculated and
updated at every threshold crossover point.

Sine wave analyzer

Texas Instruments Inc., 2011 124

2) Average value of sine wave (Vrms): Output reflects the Average value of
the sine wave input signal in Q15 format. Average value is calculated
and updated at every threshold crossover point.

3) Signal Frequency (SigFreq): Output reflects the Frequency of the sine
wave input signal in Q15 format. Frequency is calculated and updated at
every threshold crossover point.

Vin

In

SineAnalyzer – RMS
calculation

Vrms

ZCDSampled Rect. AC
RMS Value of sine

wave

Threshold

N

Vin 2

 2Vin

Vin

In

SineAnalyzer – Avg
calculation

Vavg

ZCDSampled Rect. AC
Average Value of

sine wave

Threshold

NVin
Vin

Vin

In

SineAnalyzer –
Frequency calculation

SigFreq

ZCDSampled Rect. AC
Frequency of sine

wave

Threshold

nSamples
++ nSamples

eqSamplingFr

Usage: This section explains how to use this module.

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “SineAnalyzer.h”

Step 2 Add extern declaration in the header file {ProjectName}-includes.h

// Object declaration in the header file

extern SineAnalyzer sine_mainsV;

Texas Instruments Inc., 2011 125

Step 3 Creation of objects in C file {ProjectName}-Main.c

// Creating instances of the data type with pre-initialized objects
SineAnalyzer sine_mainsV = SineAnalyzer_DEFAULTS;

Step 4 Input initialization in C file {ProjectName}-Main.c

//sine analyzer initialization

sine_mainsV.Vin=0;

sine_mainsV.SampleFreq=_IQ15(20000.0); // Sampling rate 20KHz

sine_mainsV.Threshold=_IQ15(0.02); // Threshold set to 0.02

Step 5 Assigning inputs to the Macro in ISR - {ProjectName}-ISR.c

//Assign ADC result (sampled sine wave) values to Vin in Q15 format

sine_mainsV.Vin = Vn_fb <<3; // input in IQ15 format

Step 6 Macro call in ISR file {ProjectName}-ISR.c

// Invoking the sine analyzer computation macro

SineAnalyzer_MACRO (sine_mainsV);

Step 7 Using Macro output in ISR file {ProjectName}-ISR.c

;Using Sine Analyzer outputs – Ex: calculate real Vrms by multiplying
with

;a constant value to account for voltage ADC input scaling

VrmsReal = _IQ15mpy (KvInv, sine_mainsV.Vrms); // Q 15

Texas Instruments Inc., 2011 126

Object Definition:
typedef struct { _iq Vin; // Input: Sine Signal
 _iq SampleFreq; // Input: Signal Sampling Freq

// Input: Voltage level corresponding to zero i/p
 _iq Threshold;

 _iq Vrms; // Output: RMS Value
 _iq Vavg; // Output: Average Value
 _iq SigFreq; // Output: Signal Freq
 Uint16 ZCD; // Output: Zero Cross detected
 Uint16 PositiveCycle; // Output: Positive cycle
 // internal variables
 _iq15 Vacc_avg ;
 _iq15 Vacc_rms ;

// normalized value of current sample
_iq15 curr_sample_norm;
Uint16 prev_sign ;

 Uint16 curr_sign ;
// samples in half cycle input waveform

 Uint32 nsamples ;
 _iq15 inv_nsamples;
 _iq15 inv_sqrt_nsamples;
 } SineAnalyzer;

typedef SineAnalyzer * SineAnalyzer_handle;

Special Constants and Data types

SineAnalyzer
The module definition is created as a data type. This makes it convenient to instance an
interface to the Sine Analyzer module. To create multiple instances of the module simply
declare variables of type SineAnalyzer.

SineAnalyzer_handle
User defined Data type of pointer to SineAnalyzer module

SineAnalyzer _DEFAULTS
Structure symbolic constant to initialize SineAnalyzer module. This provides the initial
values to the terminal variables as well as method pointers.

Module interface Definition:
Net name Type Description Acceptable

Range

Vin Input Sampled Sine Wave input
Q15

Threshold Input
Threshold to be used for cross over
detection

Q15

SampleFreq Input
Frequency at which the Vin (input sine
wave) is sampled, in Hz

Q15

Vrms Output
RMS value of the sine wave input (Vin)
updated at cross over point

Q15

Vavg Output
Average value of the sine wave input (Vin)
updated at cross over point

Q15

Texas Instruments Inc., 2011 127

SigFreq Output
Frequency of the sine wave input (Vin)
updated at cross over point

Q15

ZCD Output
When ‘I’ - indicates that Cross over
happened and stays high till the next call of
the macro.

Q15

Vacc_avg Internal
Used for accumulation of samples for
Average value calculation

Q15

Vacc_rms Internal
Used for accumulation of squared samples
for RMS value calculation

Q15

Nsamples Internal
Number of samples between two crossover
points

Int32

inv_nsamples Internal Inverse of nsamples Q15

inv_sqrt_nsamples Internal Inverse square root of nsamples Q15

Prev_sign,
Curr_sign

Internal Used for calculation of cross over detection Int16

Texas Instruments Inc., 2011 128

Utilities

DLOG_4ch

Description: This software module performs data logging to emulate an oscilloscope in
software to graphically observe system variables. The data is logged in the
buffers and viewed as graphs in graph windows to observe the system
variables as waveforms.

Macro File: DLOG_4ch.asm

Technical: This software module performs data logging over data stored in Q24 format,
pointed to by four pointers DLOG_4ch_i1Ptr, DLOG_4ch_i2Ptr,
DLOG_4ch_i3Ptr and DLOG_4ch_i4Ptr. The input variable value is
then scaled to Q15 format and stored in arrays pointed to by
DLOG_4ch_buff1Ptr, DLOG_4ch_buff2Ptr, DLOG_4ch_buff3Ptr
and DLOG_4ch_buff4Ptr.

The data logger is triggered at the positive edge of the value pointed by the
pointer DLOG_4ch_i1Ptr. The trigger value is programmable by writing the
Q24 trigger value to the module variable DLOG_4ch_TrigVal.

The size of the data logger has to be specified using the DLOG_4ch_Size
module variable.

The module can be configured to log data every n number module call, by
specifying a scalar value in variable DLOG_4ch_PreScalar. The following
example illustrates how best these values be chose using a PFC algorithm
example.

Usage: When using the DLOG module for observing system variables in the PFC
algorithm it is desirable to observe the logged variable over a multiple line AC
period to verify working of the algorithm. The PFC algorithm is typically run at
100Khz, the AC signal has a frequency of 60Hz. Taking memory constraints
into account it is reasonable to expect 200 words array for each buffer.

The DLOG module each time in the ISR i.e. at 100Khz, if the samples are
logged every call the buffer size required to observe one sine period is
100KHz/60Hz ~= 1666. With memory constraints having four buffers like this
is not feasible. 200 words array for each buffer would be a reasonable buffer
size that would fit into the RAM of the device. Thus samples need to taken

Four Channel Data Logger

Texas Instruments Inc., 2011 129

every alternate number or pre scalar number of times. Assuming two sine
periods need to be observed in the watch window,

33.8
)*60(

100
Pr 

BufferSizeHz

Khz
eScalar

The trigger Value is used to trigger the logging of data at a positive edge
around the trigger value of the data pointed to by DLOG_4CH_iPtr.

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//DLOG_4ch - instance #1
extern volatile long *DLOG_4ch_i1Ptr;
extern volatile long *DLOG_4ch_i2Ptr;
extern volatile long *DLOG_4ch_i3Ptr;
extern volatile long *DLOG_4ch_i4Ptr;
extern volatile int16 *DLOG_4ch_buff1Ptr;
extern volatile int16 *DLOG_4ch_buff2Ptr;
extern volatile int16 *DLOG_4ch_buff3Ptr;
extern volatile int16 *DLOG_4ch_buff4Ptr;
extern volatile long DLOG_4ch_TrigVal;
extern volatile int16 DLOG_4ch_PreScalar;
extern volatile int16 DLOG_4ch_Size;

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.cc Note
that the DLOG_SIZE is a #define in the {ProjectName}-Settings.h and can be modified if needed.

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------

// Declare the net variables being used by the DP Lib Macro here

#pragma DATA_SECTION(DBUFF1,"DLOG_BUFF");
#pragma DATA_SECTION(DBUFF2,"DLOG_BUFF");
#pragma DATA_SECTION(DBUFF3,"DLOG_BUFF");
#pragma DATA_SECTION(DBUFF4,"DLOG_BUFF");
volatile int16 DBUFF1[DLOG_SIZE];
volatile int16 DBUFF2[DLOG_SIZE];
volatile int16 DBUFF3[DLOG_SIZE];
volatile int16 DBUFF4[DLOG_SIZE];

Texas Instruments Inc., 2011 130

Step 4 “Call” the DPL_CLAInit() to initialize the macros and “connect” the module
terminals to the signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialization
DPL_Init();
// DLOG block connections
// Store address of the system variables that need to be logged
// In the example below PFC algorithm variables are logged
DLOG_4ch_i1Ptr =&VacLineRect;
DLOG_4ch_i2Ptr =&InvAvgSqr;
DLOG_4ch_i3Ptr =&PFCIcmd;
DLOG_4ch_i4Ptr =&VacLineAvg;
// Point the BuffPtr to the buffer location
DLOG_4ch_buff1Ptr =DBUFF1;
DLOG_4ch_buff2Ptr =DBUFF2;
DLOG_4ch_buff3Ptr =DBUFF3;
DLOG_4ch_buff4Ptr =DBUFF4;
// Setup Size, Trigger Value and Pre Scalar
DLOG_4ch_TrigVal = _IQ(0.1);
DLOG_4ch_PreScalar = 25;
DLOG_4ch_Size=DLOG_SIZE;

// Zero the buffers
DLOG_4ch_BuffInit(DBUFF1, DLOG_SIZE);
DLOG_4ch_BuffInit(DBUFF2, DLOG_SIZE);
DLOG_4ch_BuffInit(DBUFF3, DLOG_SIZE);
DLOG_4ch_BuffInit(DBUFF4, DLOG_SIZE);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "DLOG_4ch.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
DLOG_4ch_INIT 1 ; DLOG_4CH Initialization

Step 8 Call the run time macro in assembly inside the C-callable function DPL_ISR() which
is the looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
DLOG_4ch 1 ; Run the DLOG_4CH Macro

Texas Instruments Inc., 2011 131

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*DLOG_4ch sections*/
DLOG_4ch_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

DLOG_4ch_i1Ptr,
DLOG_4ch_i2Ptr
DLOG_4ch_i3Ptr
DLOG_4ch_i4Ptr

Input Pointers
Pointer to 32 bit input data location
storing the data that needs to
logged.

Q24: [0, 1)

DLOG_4ch_buff1Ptr,
DLOG_4ch_buff2Ptr
DLOG_4ch_buff3Ptr
DLOG_4ch_buff4Ptr

Output Pointer

Pointer to 16 bit output data buffer
location where the logged data is
stored after scaling input data from
Q24 to Q15.

Q15: [0, 1)

DLOG_4ch_Size Internal Data
16 bit integer data storing the
buffer size being used by the
DLOG module

Q0

DLOG_4ch_PreScalar Internal Data
16 bit integer data storing the pre
scalar value

Q0

DLOG_4ch_TrigVal Internal Data
Q24 data variable storing the
trigger value for the DLOG
module.

Q24:[0,1)

Texas Instruments Inc., 2011 132

DLOG_1ch

Description: This software module performs data logging to emulate an oscilloscope in
software to graphically observe a system variable. The data is logged in a
buffer that can be viewed as a graph to observe the system variables as
waveforms.

Macro File: DLOG_1ch.asm

Technical: This software module performs data logging over data stored in Q24 format,
pointed to by pointer DLOG_1ch_Input:n: The input variable value is then
scaled to Q15 format and stored in the array pointed to by
DLOG_1ch_OutputBuff.

The data logger is triggered at the positive edge of the value pointed by the
pointer DLOG_1ch_Input:n: The trigger value is programmable by writing
the Q24 trigger value to the module variable DLOG_1ch_TrigVal:n:

The size of the data logger has to be specified using the
DLOG_1ch_Size:n: module variable.

The module can be configured to log data every n number module call, by
specifying a scalar value in variable DLOG_1ch_PreScalar:n:

The value of the prescalar can be chosen

Step 1 Add library header file in the file {ProjectName}-Main.c

#include “DPLib.h”

Step 2 Declare the terminal pointers in C in the file {ProjectName}-Main.c

// ---------------------------- DPLIB Net Pointers ---------------------
// Declare net pointers that are used to connect the DP Lib Macros here
// and the data variables being used by the macros internally
//DLOG_1ch - instance #1
extern volatile long *DLOG_1ch_Input1;
extern volatile int16 *DLOG_1ch_OutputBuff1;
extern volatile long DLOG_1ch_TrigVal1;
extern volatile int16 DLOG_1ch_PreScalar1;
extern volatile int16 DLOG_1ch_Size1;

Single Channel Data Logger

Texas Instruments Inc., 2011 133

Step 3 Declare signal net nodes/ variables in C in the file {ProjectName}-Main.c. Note
that the DLOG_SIZE is a #define in the {ProjectName}-Settings.h and can be modified if needed.

Note these signal nets name may change from system to system, there is no dependency on the signal net names to the
module.

// ---------------------------- DPLIB Variables ------------------------

// Declare the net variables being used by the DP Lib Macro here

#pragma DATA_SECTION(DBUFF,"DLOG_BUFF");

volatile int16 DBUFF[DLOG_SIZE];

Step 4 “Call” the DPL_CLAInit() to initialize the macros and “connect” the module
terminals to the Signal nets in “C” in {ProjectName}-Main.c

//----------Connect the macros to build a system-------------------

// Digital Power (DP) library initialization
DPL_Init();
// DLOG block connections
// Store address of the system variables that need to be logged
DLOG_1ch_Input1 =&VacLineRect;
// Point the BuffPtr to the buffer location
DLOG_1ch_OutputBuff1 =DBUFF;

// Setup Size, Trigger Value and Pre Scalar
DLOG_1ch_TrigVal1 = _IQ(0.1);
DLOG_1ch_PreScalar1 = 25;
DLOG_1ch_Size1=DLOG_SIZE;

// Zero the buffers
DLOG_BuffInit(DBUFF, DLOG_SIZE);

Step 5 Add the ISR assembly file “{ProjectName}-DPL-ISR.asm” to the project

Step 6 Include the macro’s assembly file in the {ProjectName}-DPL-ISR.asm

;Include files for the Power Library Macro's being used by the system

.include "DLOG_1ch.asm"

Step 7 Instantiate the INIT macro in assembly (this is one-time pass through code) inside the
C-callable DPL_Init() function which is defined in{ProjectName}-DPL-ISR.asm

;Macro Specific Initialization Functions
DLOG_1ch_INIT 1 ; DLOG_1CH Initialization

Step 8 Call run time macro in assembly inside the C-callable function DPL_ISR() which is the
looped or ISR code. The function is defined in{ProjectName}-DPL-ISR.asm

;”Call” the Run macro
DLOG_1ch 1

Texas Instruments Inc., 2011 134

Step 9 Include the memory sections in the {DeviceName}-{RAM/FLASH}-
{ProjectName}.CMD. Note that the net pointers and the internal data are forced to be placed
in a single data page by use of the .usect directive in the source file of the module.

/*DLOG_1ch sections*/
DLOG_1ch_Section : > dataRAM PAGE = 1

Module Net Definition:

Net name
(:n: is the instance number)

Description Format

Acceptable Range
of Variable or of
the Variable being
pointed to

DLOG_1ch_Input:n: Input Pointer
Pointer to 32 bit input data location
storing the data that needs to
logged.

Q24: [0, 1)

DLOG_1ch_OutputBuff:n: Output Pointer

Pointer to 16 bit output data buffer
location where the logged data is
stored after scaling input data from
Q24 to Q15.

Q15: [0, 1)

DLOG_1ch_Size:n: Internal Data
16 bit integer data storing the
buffer size being used by the
DLOG module

Q0

DLOG_1ch_PreScalar:n: Internal Data
16 bit integer data storing the pre
scalar value

Q0

DLOG_1ch_TrigVal:n: Internal Data
Q24 data variable storing the
trigger value for the DLOG
module.

Q24:[0,1)

Texas Instruments Inc., 2011 135

Chapter 6. Revision History

Version Date Notes
V1.0 --- Original release of DP library modules for F280x platform.

V2.0 July 6, 2010 Major release of library to support Piccolo platform.

Changed net node format to 32-bits.

V3.0 October 2010 Major Release as DPLib for CLA is moved to float math
from Q24 math, for more efficient operation of the CLA.
Fixes to DPlibv2

1. Period value corrected for the
PWMDRV_PFC2PhiL, PWMDRV_1ch,
PWMDRV_1chHiRes,
PWMDRV_DualUpDownCnt,
PWMDRV_ComplPairDB, macro

2. Input Name changed from In to Duty for
PWMDRV_1ch, PWMDRV_1chHiRes,
PWMDRV_ComplPairDB

3. Added Section to the document to mention that
DPlib is independent of IQMath Library

4. Corrected memory section for DLOG_1ch module
net pointers

V3.1 December 2010 1. Corrected the documentation for
PWMDRV_ComplPairDB, macro, removed
reference of DbRed and DbFed from the CNF
function

2. Added PWMDRV_BuckBoost Macro and
PWMDRV_2ch_UpCnt Macro to the library

V3.2 May 2011 1. New Modules added
a. PWM_PSFB_PCMC_CNF
b. PWM_1ch_UpCntDB_Cnf
c. PWM_1ch_UpCntDB_Compl_Cnf
d. PWMDRV_1ch_UpDwnCnt
e. PWMDRV_PSFB_VMC_SR
f. PWMDRV_LLC_ComplPairDB
g. PWMDRV_LLC_1ch_UpCntDB
h. PWMDRV_LLC_1ch_UpCntDB_Compl
i. DACDRV_RAMP
j. ADCDRV_8ch
k. SineAnalyzer
l. PFC_BL_ICMD
m. PFC_INVRMS_SQR

2. Compound if statements in the configuration
files for the PWM macros has been corrected.

