
Application Report
SPRAB09 – October 2008

1

Shared Memory Message Queue Transport (MQT)
and Pool Modules for C647x

Todd Mullanix, Judah Vang TI Software Development Organization

ABSTRACT

The DSP/BIOS MSGQ module sends and receives structured variable-length messages.
By using the Shared Memory Message Queue Transport (SMMQT) and Shared Memory
Pool (SMPOOL) described in this document, you can use shared memory to allow
multiple processors to communicate with each other via the MSGQ module.

This document describes how to configure SMMQT and SMPOOL. It also covers how to
install the associated software package, build the libraries and examples, and run the
examples.

This document and the example application focus on C647x devices, specifically the
C6474 device (three cores). These devices have shared memory between the cores.
However, this document is applicable to any device with multiple cores and shared
memory.

Contents
1 Introduction ...3
2 Modules..3
3 Contents of Deliverable ..3
4 Requirements ..3
5 Installation ...4
6 Building..4
7 Atomically Accessing Shared Memory ...4

7.1 CRIT Module ...5
7.1.1 CRIT Interface (CRIT_Fxns)..5
7.1.2 CRIT APIs..6
7.1.3 CRIT Example ...7

7.2 HSEMCRIT Module ...8
7.2.1 Enter/Leave ...8
7.2.2 Parameters ..8
7.2.3 Objects ..8
7.2.4 HSEMCRIT Example...8

8 POOL Configuration..8
8.1 SMPOOL ...8

8.1.1 Parameters ..9
8.1.2 Object Placement and Alignment ..10
8.1.3 Code Example ...10

SPRAB09

2 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

8.2 POOL_Config ..11
8.3 POOL_Obj ...11
8.4 Code Example ...12

9 MSGQ Configuration...12
9.1 MSGQ_Config ...13
9.2 MQT Instance ..13
9.3 MSGQ_TransportObj...13
9.4 Code Example ...14

10 SMMQT Instance Parameters...14
11 SMMQT System Configuration...15

11.1 Placement and Alignment..15
11.2 Code Example ...16

12 Initialization Order...17
13 Endianism ..17
14 Configuring Required Static Objects ..17

14.1 Configuring a LOG Object ...17
14.2 Configuring an SMMQT SWI Object..17
14.3 Plugging the SMMQT ISR ...17
14.4 Enabling the MSGQ and POOL Modules ..18
14.5 Setting the DSP/BIOS Processor ID..18

15 Example Overview...18
16 Debug Capabilities ..19
17 Cache Concerns..19
18 Support for Other Chips ...20
19 Errors..20
20 Performance Benchmarks..21
21 Footprint...21
22 References...22

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 3

1 Introduction
The Shared Memory Message Queue Transport (SMMQT) and the Shared Memory Pool
(SMPOOL) allow processors that share memory to communicate with each other via the
DSP/BIOS MSGQ module.

To use the SMMQT and SMPOOL modules, you provide simple static configuration information.
The interface with these two modules is then managed internally by MSGQ. You must supply
three initialized variables: MSGQ_config, POOL_config, and SMMQT_config. This document
describes how to initialize these three variables. It also covers how to install the package, build
the libraries and examples, and run the example. In addition, it provides application benchmarks.

This document and the example application focus on C647x devices, specifically the C6474
device (three cores). These devices have shared external memory. However, this document is
applicable to any device with multiple cores and shared memory.

2 Modules
Several modules allow communication between processors with shared memory. While the
application uses only the MSGQ APIs, the following modules are used internally by MSGQ. Each
of these modules is discussed in this application note and included in the SMMQT package.

• SMMQT. Shared Memory Message Queue Transport
• SMPOOL. Shared Memory POOL
• CRIT. Critical Region API and interface
• HSEMCRIT. Hardware Semaphore Critical Region Implementation

3 Contents of Deliverable
The following items are included in the SMMQT installation provided with this application note:

• Shared Memory Message Queue Transport (MQT) and Pool Modules (SPRAAI2)
application note (this document)

• SMMQT, SMPOOL, CRIT, and HSEMCRIT source code, libraries, and the project files to
rebuild the libraries

• A sample application (source and project file) that uses the above modules

4 Requirements
The following software must be installed in order to build the MQT and example:

• DSP/BIOS 5.33 or higher
• Code Generation Tools (codegen) 6.0.8 or higher
• CCStudio 3.3 or higher

SPRAB09

4 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

Before reading the rest of this document, you should have an understanding of the MSGQ APIs
and their configuration. Refer to the “Message Queues” section of the TMS320 DSP/BIOS
User's Guide (SPRU423) and the MSGQ topic in the TMS320C6000 DSP/BIOS Application
Programming Interface (API) Reference Guide (SPRU403) from DSP/BIOS 5.33 or higher.

5 Installation
Follow these steps to install the software:

1. Untar the package into a directory (for example, into c:\).

2. Define a DDK_INSTALL_DIR environment variable to point to the location of the installed
SMMQT package (for example, c:\mqtciv_1_##, where # is a version number digit).

The following directories are installed in DDK_INSTALL_DIR\packages\ti\bios\drivers:

smmqt Source code for Shared Memory MQT

smmqt\<chip> Project file, chip-specific items, and library

smpool Source code for Shared Memory POOL

smpool\<chip> Project file, chip-specific items, and library

shared Source code for critical region module

hsemcrit Source code for Hardware Semaphore CRIT implementation

hsemcrit\<chip> Project file, chip-specific items, and library

examples\smmqt Source code for Shared Memory MQT example

examples\smmqt\<board> Project file, board specific items, and binary

6 Building
You can rebuild all the libraries and the example application via CCStudio by using the supplied
project files.

7 Atomically Accessing Shared Memory
When multiple processors access shared memory, there must be a method to guarantee that the
processors have no race conditions with the writing (or reading) of the data in the shared
memory. In the SMMQT package, a new module called CRIT can be used to allow atomic
reading and writing of shared memory. CRIT stands for “critical region”.

The SMMQT and SMPOOL modules use the CRIT module internally to atomically access
shared memory. You only need to supply the CRIT object to the SMMQT and SMPOOL module
(see Sections 7.2 and 9). The SMMQT and SMPOOL modules handle all management of CRIT
objects.

The subsections that follow discuss the CRIT module. Read them if you want to develop your
own critical region implementation or use the CRIT module directly in your application.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 5

7.1 CRIT Module

The means for atomically accessing shared memory is hardware dependent. There are different
solutions—for example, a hardware semaphore, Atomic Access Monitors, Test and Set
hardware instructions, Peterson’s Algorithm, and more. The C6474 has Hardware Semaphores.

The CRIT module consists of an interface and four APIs. Since there is an interface, hardware-
specific modules can be written and plugged into the CRIT module.

Critical regions cannot be nested. Once a critical region is entered, it cannot be re-entered. Also
care must be taken to minimize the duration spent within a critical region. Other processors can
be blocked (that is, they spin while waiting for the critical region resource). Obviously, no
blocking calls should made within a critical region.

There can be multiple CRIT objects in a system. For example, the SMMQT uses one CRIT
object, while each SMPOOL instance uses a different CRIT object. The following is the structure
definition of a CRIT object:

typedef struct CRIT_Obj {
 const CRIT_Fxns *fxns; /* Crit interface functions */
 Ptr params; /* Crit-specific setup parameters */
 Ptr object; /* Crit-specific object */
} CRIT_Obj, *CRIT_Handle;

The fields in this structure are as follows:

Field Name Type Description
fxn const CRIT_Fxns CRIT interface functions
params Ptr Critical region implementation-specific parameters
object Ptr Critical region implementation-specific object

7.1.1 CRIT Interface (CRIT_Fxns)

There are four interface functions in the CRIT module: open(), close(), enter() and leave(). Their
prototypes are as follows:

/* Typedefs for function prototypes */
typedef Int (*CRIT_Open) (Ptr *obj, Ptr params, Bool init);
typedef Void (*CRIT_Close)(Ptr obj);
typedef Uns (*CRIT_Enter)(Ptr obj);
typedef Void (*CRIT_Leave)(Ptr obj, Uns key);

/* CRIT interface functions */
typedef struct CRIT_Fxns {
 CRIT_Open open; /* Open a CRIT implementation-specific object */
 CRIT_Close close; /* Close a CRIT implementation-specific object */
 CRIT_Enter enter; /* Enter critical region managed by object */
 CRIT_Leave leave; /* Leave critical region managed by object */
} CRIT_Fxns;

• open() The open() function initializes any state information or hardware as needed. The
return code is used to return status. SYS_OK denotes the open was successful.

SPRAB09

6 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

• close() The close() function frees any resources that were allocated in the open() function.
The parameter is the implementation-specific object that was returned from the open()
function.

• enter() The enter() function performs the steps necessary to allow atomic accesses to
shared memory. The parameter is the implementation-specific object that was returned from
the open() function. The return code is a key that must be passed into the leave() function.

• leave() The leave() function performs the steps necessary to release the atomic access to
shared memory. The parameters are the implementation-specific object that was returned
from the open() function and the key that was returned from the enter() function.

7.1.2 CRIT APIs

The CRIT APIs map 1-to-1 to the interface functions. They are simply macros that allow for more
readable code.

7.1.2.1 CRIT_open()

Syntax status = CRIT_open(handle, params, init);

Parameters CRIT_Handle handle; /* Handle of CRIT object to open */

 Ptr params; /* Implementation-specific parameters */

 Bool init; /* TRUE: initialize critical region. */
 /* FALSE: do not initialize critical region. */

Return Value Int status;

Reentrant yes

Description Opens a CRIT object. Internally, this API calls the implementation-specific open()
function. Each CRIT object can be opened once and only once. SYS_OK denotes success.

 The CRIT_Obj should be initialized (init == TRUE) by only one processor. The other processors
need to call CRIT_open with init set to FALSE. The processor that initializes the CRIT_Obj must
be called first.

7.1.2.2 CRIT_close()

Syntax CRIT_close(handle);

Parameters CRIT_Handle handle;

Return Value Void

Reentrant yes

Description Closes a CRIT object. Internally, this API calls the implementation-specific
close() function. Each CRIT object can be closed only once.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 7

7.1.2.3 CRIT_enter()

Syntax key = CRIT_enter(handle);

Parameters CRIT_Handle handle;

Return Value Uns key;

Reentrant yes

Description Starts a critical region section. Internally, this API calls the implementation-
specific enter() function. The returned key must be used in the CRIT_leave() API when exiting
the critical region.

 Once this API returns, all threads and other processors are blocked from entering the critical
region managed by the CRIT object (until the CRIT_leave() API is called).

 Do not call any blocking functions while in a critical region. The duration between the
CRIT_enter() and CRIT_leave() should be kept as short as possible, since depending on the
specific implementation, interrupts might be disabled on the processor and potentially other
processors.

7.1.2.4 CRIT_leave()

Syntax CRIT_leave(handle, key);

Parameters CRIT_Handle handle;

 Uns key;

Return Value Void

Reentrant yes

Description Leaves a critical region section. Internally, this API calls the implementation-
specific leave() function. The key returned from CRIT_enter must be used as a parameter to the
CRIT_leave() API when exiting the critical region.

7.1.3 CRIT Example

The following is an example of entering and leaving a critical region. The CRIT_Obj has already
been opened. Note: This code is a simplified version of the SMPOOL alloc function.

Uns key;
/* Enter the critical region */
key = CRIT_enter(smpoolHandle->critHandle);

/* Get a free block from the queue and make sure it is valid */
*buf = QUE_dequeue(&(smpoolHandle->queues[i]));
if (*buf == &(smpoolHandle->queues[i])) {
 /* No message. Return an error */
 status = SYS_EALLOC;
}

CRIT_leave(smpoolHandle->critHandle, key);

SPRAB09

8 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

7.2 HSEMCRIT Module

The HSEMCRIT module implements the CRIT interface and manages the atomic accesses via
the Hardware Semaphore capabilities in the C6474.

7.2.1 Enter/Leave

In the enter() function, interrupts are disabled. The leave() function restores interrupts. This is
done to prevent deadlock conditions.

7.2.2 Parameters

There is one parameter for a HSEMCRIT instance: num. This parameter is the number of the
hardware semaphore.

typedef struct HSEMCRIT_Params {
 Uns num; /* hardware semaphore number */
} HSEMCRIT_Params;

7.2.3 Objects

There is no placement requirement for the objects.

7.2.4 HSEMCRIT Example

The following is an example that configures an HSEMCRIT object.

HSEMCRIT_Params hsemcritParams = {0};
HSEMCRIT_Obj hsemcritObj;
CRIT_Obj critObj = {&HSEMCRIT_FXNS, &hsemcritParams, &hsemcritObj};

8 POOL Configuration
The MSGQ module requires the application to supply a global variable called POOL_config of
type POOL_Config. For more details, refer to the TMS320 DSP/BIOS User's Guide (SPRU423)
and the TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference Guide
(SPRU403). These documents are included with DSP/BIOS 5.33 or higher.

8.1 SMPOOL

The Shared Memory Pool (SMPOOL) manages memory in shared memory. Internally it handles
all the atomic accesses to the shared memory.

Each SMPOOL instance manages multiple fixed-size buffer buckets. The number of buckets
(maximum is 8 different size buckets), number of buffers in each bucket, and the size of each
buffer in the buckets is configurable. For instance, a single SMPOOL instance can manage 3
buckets, where one bucket has 10 buffers of size 128 bytes, another bucket has 16 buffers of
size 256 bytes, and the last bucket has 4 buffers of size 512 bytes.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 9

Internally the buckets are ordered based on the buffer size. When an allocation occurs, the
buckets are checked from the smallest buffer to the largest. Once a bucket is found that has a
buffer size that is equal to or greater than the request, allocation comes out of that bucket. If that
bucket is empty, the allocation fails. The next larger bucket is not used in this case.

Since the buffers are of a fixed size, the allocation is fast. Once the correct bucket is identified,
the allocation is basically a QUE_get(). Also, since the buffers have a fixed size, there is no
fragmentation.

8.1.1 Parameters

The following is the SMPOOL parameters structure.

typedef struct SMPOOL_Params {
 Uns numBuckets;
 Ptr *sharedAddrs;
 size_t *sharedLen;
 Uint16 *bufferSizes;
 CRIT_Handle critHandle;
 Uint16 procIdToInit;
}SMPOOL_Params;

The following are the descriptions of these parameters:

Field Name Type Description
numBuckets Uns Number of different size buffers that are managed by the POOL

instance. The maximum is 8 buckets.
sharedAddrs Ptr * Array of addresses pointing to blocks of memory in shared

memory. Each block will be sliced up into smaller pieces. The
size of these buffers will be determined by bufferSizes. Address
must be aligned on an 8-byte boundary. If the addresses are in
a cacheable location, they must be on a cache line boundary.

sharedLen size_t * Array of sizes. The sizes correspond to the blocks of memory
pointed to by sharedAddrs. Lengths must be a multiple of 8
bytes. If the addresses are in a cacheable location, the lengths
must be a multiple of a cache line.

bufferSizes Uint16 Array of buffer sizes. The sharedAddrs blocks are sliced up into
multiple buffers of this size. This array must be in shared
memory. Sizes must be a multiple of 8 bytes. If the addresses
are in a cacheable location, the buffer sizes must be a multiple
of a cache line.

critHandle CRIT_Handle Pointer to the CRIT object that manages the critical region for
this pool. Each instance needs it own unique critHandle.
Internally it will call the CRIT_open for the critHandle. If multiple
instances shared the same critHandle, the CRIT object would
be opened multiple times, which is not supported.

procIdToInit Uint16 ProcId of processor to do initialization. This processor must run
before the other processors that use the same SMPOOL
instance.

SPRAB09

10 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

The order of the buckets does not matter. For example, the first bucket can have a bufferSize of
512 bytes while the next one has a bufferSize of 128 bytes. There can be multiple buckets with
the same bufferSize. During initialization, internally the buckets might be re-ordered (in
increasing bufferSize) to allow for faster allocations. Buckets with the same bufferSizes are also
combined internally.

8.1.2 Object Placement and Alignment

The SMPOOL objects must be placed in shared memory and be aligned on a cache line
boundary.

8.1.3 Code Example

The following example configures a SMPOOL instance on two different processors that act on
the same shared memory. The instance has two buckets with 100 buffers of size 128 bytes and
10 buffers of size 512 bytes. For this example, assume that the .sharedmem section is in shared
external memory.

#pragma DATA_SECTION(hsemcritObj, ".sharedmem")
#pragma DATA_SECTION(buf0, ".sharedmem")
#pragma DATA_SECTION(buf1, ".sharedmem")

/* 128 byte cache line boundary */
#pragma DATA_ALIGN(hsemcritObj, 128)
#pragma DATA_ALIGN(buf0, 128)
#pragma DATA_ALIGN(buf1, 128)

/* This array must be placed in shared memory */
HSEMCRIT_Obj hsemcritObj;

HSEMCRIT_Params hsemcritParams = {
 0 /* Hardware Semaphore num */
};

/* Define CRIT Objects and initialize them */
CRIT_Obj critObj = {&HSEMCRIT_FXNS, &hsemcritParams, &hsemcritObj};

#define NUMBUCKETS 2
#define SIZEBUCKET0BUFS 128
#define SIZEBUCKET1BUFS 512
#define NUMBUCKET0BUFS 100
#define NUMBUCKET1BUFS 10
#define SIZEBUCKET0 SIZEBUCKET0BUFS * NUMBUCKET0BUFS
#define SIZEBUCKET1 SIZEBUCKET1BUFS * NUMBUCKET1BUFS

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 11

/* Bucket buffers */
Char buf0[SIZEBUCKET0];
Char buf1[SIZEBUCKET1];
Ptr sharedAddrs[NUMBUCKETS] = {buf0, buf1};
size_t sharedLengths[NUMBUCKETS] = {SIZEBUCKET0, SIZEBUCKET1};
Uint16 sharedMsgSizes[NUMBUCKETS] = {SIZEBUCKET0BUFS, SIZEBUCKET1BUFS};

SMPOOL_Params sharedParams =
 {NUMSHAREDBUCKETS, /* Number of buffer pools */
 (Ptr *)sharedAddrs, /* Address of each buffer pool */
 (size_t *)sharedLengths, /* length of each sharedAddrs */
 (Uint16 *)sharedMsgSizes, /* Msg sizes for each pool */
 &critObj0, /* Handle of CRIT object */
 0}; /* Processor 0 should init */

8.2 POOL_Config

Section 8.1 talks about the SMPOOL module and its parameters. This section discusses how to
plug the instance into the POOL framework. You do this via the POOL_config variable (of type
POOL_Config).

typedef struct POOL_Config {
 POOL_Obj *allocators; /* Array of allocators */
 Uint16 numAllocators; /* Number of allocators in the array */
} POOL_Config;

The allocators array holds all POOL instances. To add a SMPOOL instance into an application,
you must add an entry into the allocators array. More details are provided in the sections that
follow.

8.3 POOL_Obj

The following is the POOL_Obj structure. When you add a SMPOOL instance, all fields of this
structure must be filled in. The exception is the object, which might be managed by the POOL
(this is implementation dependent).

typedef struct POOL_Obj {
 POOL_Init initFxn; /* Allocator init function */
 POOL_Fxns *fxns; /* Allocator interface functions */
 Ptr params; /* Allocator-specific setup parameters */
 Ptr object; /* Allocator-specific object */
} POOL_Obj, *POOL_Handle;

SPRAB09

12 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

The following are the descriptions and the values that you should use for a POOL instance.

Field Name Type Description SMPOOL values
initFxn POOL_Init MQT’s init function SMPOOL_init
fxns POOL_Fxns * Pointer to the POOL’s

interface functions.
&SMPOOL_FXNS

params Ptr POOL’s parameters Must supply the address of a
SMPOOL_Params variable. The
variable must be initialized (discussed
in Section 8.1.1)

object Ptr State information for
the MQT instance

Must supply the address of a
SMPOOL_Obj. It does not need to be
initialized. The object must be in shared
memory and on a cache line boundary.

Note: The POOL_config structure and allocators array must be persistent for the life of the
application. The params structure does not need to be persistent after the threads start running.
It is only used during DSP/BIOS initialization.

8.4 Code Example

The following code snippet adds a SMPOOL into the POOL_config variable. The variable
sharedParams was discussed in Section 8.1.1.

#define NUMALLOCATORS 1

#pragma DATA_SECTION(smpoolObj, ".sharedmem")

/* 128 byte cache line size */
#pragma DATA_ALIGN(smpoolObj, 128)

static SMPOOL_Obj smpoolObj;

static POOL_Obj allocators[NUMALLOCATORS] =
 {{SMPOOL_init, /* Pool init function */
 (POOL_Fxns *)&SMPOOL_FXNS, /* Pool interface functions */
 &sharedParams, /* Pool configuration */
 &smpoolObj}};

POOL_Config POOL_config = {allocators, NUMALLOCATORS};

9 MSGQ Configuration
MSGQ requires the application to supply a global variable called MSGQ_config of type
MSGQ_Config. See the DSP/BIOS User Guide (SPRU423) and API Reference (SPRU403) for
additional details. These documents are included with DSP/BIOS 5.33 or higher.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 13

9.1 MSGQ_Config

The following is the MSGQ_Config structure.

typedef struct MSGQ_Config {
 MSGQ_Obj *msgqQueues; /* Array of message queue handles */
 MSGQ_TransportObj *transports; /* Array of transports */
 Uint16 numMsgqQueues; /* Number of message queue handles*/
 Uint16 numProcessors; /* Number of processors */
 Uint16 startUninitialized; /* First msgq to init */
 MSGQ_Queue errorQueue; /* Receives async transport errors*/
 Uint16 errorPoolId; /* Alloc error msgs from poolId */
} MSGQ_Config;

The transports array holds all MQT instances. To add an SMMQT instance into an application,
you must add an entry into the transports array. More details are provided in the following
sections.

9.2 MQT Instance

There is a 1-to-1* mapping of MQT instances on all other processors in the system. An MQT
instance communicates with one remote processor. An MQT instance must have a matching
MQT instance on the remote processor. The order of the MQT instances is dictated by the
DSP/BIOS processor ID of the remote processor that it communicates with. This order is
reflected in the transports array in the MSGQ_Config structure.

Note: MSGQ allows sending a message to another thread on the same processor. Messaging
on the same processor is handled via the MSGQ APIs and does not need an MQT.

* If there is no physical connection between two processors, there must be a nop MQT
(MSGQ_NOTRANSPORT) to that processor.

For example, a system might have three processors that communicate to each other via
SMMQT.

9.3 MSGQ_TransportObj

The following is the MSGQ_TransportObj structure. When adding an SMMQT instance, all fields
of this structure must be filled in except the object, which is managed by the SMMQT.

typedef struct MSGQ_TransportObj {
 MSGQ_MqtInit initFxn; /* Transport init function */
 MSGQ_TransportFxns *fxns; /* Transport interface functions */
 Ptr params; /* Transport-specific setup parameters */
 Ptr object; /* Transport-specific object */
 Uint16 procId; /* Processor Id that mqt talks to */
} MSGQ_TransportObj;

SPRAB09

14 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

The following are the descriptions and the values that you should use for an SMMQT instance.

Field Name Type Description SMMQT values
initFxn MSGQ_MqtInit MQT’s init function SMMQT_init
fxns MSGQ_Transpor

tFxns*
Pointer to the transport’s interface
functions

&SMMQT_FXNS

params Ptr MQT’s parameters NULL (currently
no parameters)

object Ptr State information for the MQT instance NULL
procId Uint16 Processor ID that this MQT instance is

communicating with.
Depends

Note: The MSGQ_config structure and transports array must be persistent for the life of the
application.

9.4 Code Example

The following code snippet adds an SMMQT into the MSGQ_config variable. This code assumes
this is processor 0 of a three-processor system.

#define NUMPROCESSORS 3
static MSGQ_TransportObj transports[NUMPROCESSORS] =
{ MSGQ_NOTRANSPORT,
 {SMMQT_init, &SMMQT_FXNS, NULL, NULL, 1},
 {SMMQT_init, &SMMQT_FXNS, NULL, NULL, 2}
};

MSGQ_Config MSGQ_config = {msgQueues, /* Array of message queues */
 transports, /* Array of transports */
 NUMMSGQUEUES, /* # of message queues in array*/
 NUMPROCESSORS, /* # of transports in array */
 0, /* 1st uninitialized msg queue */
 MSGQ_INVALIDMSGQ, /* no error handler queue */
 POOL_INVALIDID}; /* allocator id for errors */

10 SMMQT Instance Parameters
Currently there are no instance parameters for SMMQT.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 15

11 SMMQT System Configuration
There are system-level parameters for SMMQT. These are communicated to SMMQT via a
required variable called SMMQT_config of type SMMQT_Config. Note: This variable must be
stored in shared memory and aligned on a cache line boundary.

The following is the SMMQT_Config structure.

typedef struct SMMQT_Config {
 CRIT_Handle critHandle;
 Uint16 numProc;
 Uint16 ctrlMsgPoolId;
 Uint16 procIdToInit;
 Uint16 reserved;
 QUE_Obj queArray[6];
 Char filler[FILLER_FOR_CACHELINESIZE];
} SMMQT_Config;

The following are the descriptions of these parameters.

Field Name Type Description
critHandle CRIT_Handle Pointer to a CRIT object. All SMMQTs share the same CRIT

object.
numProc Uint16 Number of cores on the device.
ctrlMsgPoolId Uint16 POOL where SMMQT will allocate internal control

messages. This must be a POOL that uses shared memory.
The internal messages are of type SMMQT_CtrlMsg. The
size of this structure is 64 bytes.

procIdToInit Uint16 ProcId of the processor to do initialization. This processor
must run before the other processors that communicate with
SMMQT via the same shared memory.

reserved Uint16 Reserved. Should not be initialized.
queArrays QUE_Obj array MQT will initialize.
filler Char array Used to make sure the size of the structure is a multiple of a

cache line. Does not need to be initialized.

Note: The SMMQT_config structure must be persistent for the life of the application.

11.1 Placement and Alignment

The SMMQT_config variable must be placed in shared memory and must be aligned on a cache
line boundary.

SPRAB09

16 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

11.2 Code Example

The following example for is a code snippet for configuring the SMMQT at a system level. Also
shown are the MSGQ_config and SMMQT instance configurations for completeness. This
snippet is for core 0 (processor ID 0) of the three-processor system.

#define NUMCORES 3

#pragma DATA_SECTION(SMMQT_config, ".sharedmem")
#pragma DATA_SECTION(hsemcritObj, ".sharedmem")

/* 128 byte cache line boundary */
#pragma DATA_ALIGN(SMMQT_config, 128)
#pragma DATA_ALIGN(hsemcritObj, 128)

/* This array must be placed in shared memory */
HSEMCRIT_Obj hsemcritObj;

HSEMCRIT_Params hsemcritParams = {
 0 /* Hardware Semaphore num */
};

/* Define CRIT Objects and initialize them */
CRIT_Obj critObj = {&HSEMCRIT_FXNS, &hsemcritParams, &hsemcritObj};

SMMQT_Config SMMQT_config = {
 &critObj1, /* Handle of CRIT object */
 NUMCORES, /* Number of cores, in this case same as processors */
 APPPOOLID, /* ctrlMsgPoolId */
 0, /* procId of processor to do initialization */
};

static MSGQ_TransportObj transports[NUMCORES] =
{ MSGQ_NOTRANSPORT,
 {SMMQT_init,(MSGQ_TransportFxns *)&SMMQT_FXNS, NULL, NULL, 1},
 {SMMQT_init,(MSGQ_TransportFxns *)&SMMQT_FXNS, NULL, NULL, 2}
};

MSGQ_Config MSGQ_config = {msgQueues, /* Array of message queues */
 transports, /* Array of transports */
 NUMMSGQUEUES, /* # of message queues in array*/
 NUMCORES, /* # of transports in array */
 0, /* 1st uninitialized msg queue */
 MSGQ_INVALIDMSGQ, /* no error handler queue */
 POOL_INVALIDID}; /* allocator id for errors */

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 17

12 Initialization Order
Several items in shared memory must be initialized. Therefore, it is critical that the order of the
core bring-up is managed. SMMQT and SMPOOL have configuration parameters that specify
which processor is going to be started first. The other cores must wait until this core has finished
initializing. The SMMQT and SMPOOL initialization is completed by the time main() is called.

If a bootloader is used, there must be some type of mechanism in place to let the loader know
when the application on the initializing core has reached main(). For CCStudio, simply make
sure the initializing core reaches main() before starting the other cores.

If the initializing core resets but the chip does not reset, SMMQT and SMPOOL detect this and
do not re-initialize the shared memory.

13 Endianism
The SMMQT and SMPOOL do not do any endian conversion to the MSGQ_MsgHeader or
payload. All processors using SMMQT and SMPOOL must have the same type of endianism.

14 Configuring Required Static Objects
SMMQT requires several statically-configured DSP/BIOS items, which are discussed below.
They are statically defined to reduce code footprint. The example application statically defines
these in smmqttest.tci.

14.1 Configuring a LOG Object
The SMMQT has debug trace capabilities. You must supply a statically-configured LOG_Obj
called “smmqtLogObj”. For example:

smmqtLogObj = bios.LOG.create("smmqtLogObj");
smmqtLogObj.bufLen = 1024;
smmqtLogObj.logType = "circular";

14.2 Configuring an SMMQT SWI Object
You must supply the SMMQT module with a statically-created SWI object. For example:

swi1 = bios.SWI.create("SMMQT_swiObj");
swi1.fxn = prog.extern("SMMQT_swi");
swi1.priority = 1;

The priority of the SWI can be changed as needed. In a TSK-based system, the priority of the
SMMQT’s SWI does not really matter. In a SWI-based system, having the SMMQT SWI at the
highest priority allows it to process (that is, send to the appropriate message Queue) all the
incoming messages.

14.3 Plugging the SMMQT ISR
You must plug the SMMQT ISR with the SMMQT_isr function. For example:

bios.HWI_INT5.interruptSelectNumber = 84;
bios.HWI_INT5.fxn = prog.extern("SMMQT_isr");
bios.HWI_INT5.useDispatcher = 1;

SPRAB09

18 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

14.4 Enabling the MSGQ and POOL Modules

You must enable the POOL and MSGQ modules. For example:

bios.MSGQ.ENABLEMSGQ = true;
bios.POOL.ENABLEPOOL = true;

14.5 Setting the DSP/BIOS Processor ID

The SMMQT assumes that each core's GBL.procId is in the same relative order as its DNUM
value assigned by the hardware. For example, if core 0’s DSP/BIOS processor ID is 5, then core
1’s processor ID must be 6, core 2’s must be 7, etc. For example:

bios.GBL.PROCID = 0;

15 Example Overview
The example included in the package is similar to the standard DSP/BIOS 5.33 (or higher)
msgq_tsk2tsk example. This example is intended to run on two cores of a C6474. The biggest
change from the 5.33 example is the addition of the SMMQT and SMPOOL configuration, the
transports array, and the SMMQT ISR.

Core 0 must be run first. Once main() has been called in core 0, then core 1 can run.

The following is the basic data flow:

main()
 if core 0: Open the worker message queue and create the worker thread.
 if core 1: Open the boss message queue and create the boss thread.
 Open error message queue and create the error thread.

workerThread()
 Loop
 MSGQ_get message from the worker queue
 Determine sender
 Send specific number of message to sender

bossThread()
 MSGQ_locate to locate worker queue
 Loop
 MSGQ_alloc message
 Fill in message with number of messages to receive.
 MSGQ_put message to reader
 Loop
 MSGQ_get message from the boss queue

errorThread()
 Loop
 MSGQ_get message from the error queue
 Log MQT error via LOG_printf

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 19

To allow a single image to run on either board, the GBL_initFxn function in the example
determines which core it is running on. Once it determines which core it is on, it sets up the
transports table in MSGQ_config accordingly and calls GBL_setProcId() to set the processor ID.
The GBL_initFxn is configured statically in rapidiotest.tci.

bios.GBL.CALLUSERINITFXN = 1;
bios.GBL.USERINITFXN = prog.extern("configTransports");

16 Debug Capabilities
The SMMQT has debug capabilities. If the -d”SMMQT_DEBUG” compiler option is specified, the
SMMQT includes debug information via the LOG module. If this compiler option is not specified,
no debug output is generated.

Note: The application needs to supply a LOG_Obj called “smmqtLogObj” in order for LOG
messages to be received.

17 Cache Concerns
It is expected that you have caching enabled. The SMMQT and SMPOOL modules maintain
cache coherency as needed. However; you must make sure the following items are aligned on a
cache line boundary:

 SMMQT_config

• SMPOOL objects (smpoolObj in example)

• Messages (appBuf and mqtErrorBuf in example)

Additionally, you must make sure that message sizes are a multiple of the size of a cache line.

The size of the SMMQT_config and SMPOOL_Obj structures must also be a multiple of the
cache line size. The “_CACHELINE_SIZE” compile option allows you to specify the cache line
size. This compile option should be set to the cache line size where the respective objects are
going to reside. If no cache is enabled, set the “_CACHELINE_SIZE” to 0 to minimize the data
footprint.

For example, the SMMQT (and SMPOOL) C6474 CCStudio project file specifies the following
compile option: ‘-D_CACHELINE_SIZE=128’. This setting is used because the example
application has SMMQT_config (and SMPOOL_Obj) in external memory for the C6474.

Note: The L2 cache line size on the C6474 is 128 bytes.

SPRAB09

20 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

18 Support for Other Chips
The SMMQT and SMPOOL modules can be ported to other C6000 chips. The following are
some of the areas that must be modified to port the modules:

• Create a different critical region implementation.

• Modify the cache line sizes as described in Section 17.

• Manage the resets appropriately in SMPOOL and SMMQT.

• Issue the appropriate interrupts in the SMMQT.

19 Errors
Errors may occur in the Shared Memory MQT that cannot be communicated to the application
via a return code. (For example, this includes errors that occur in the SMMQT ISR.) MSGQ has
a facility to receive errors messages for MQTs. See the DSP/BIOS documentation for details on
MSGQ_setErrorHandler(). Also refer to the smmqttest example included in this installation.

The following is the format of the error message:

typedef struct MSGQ_AsyncErrorMsg {
 MSGQ_MsgHeader header;
 MSGQ_MqtError errorType;
 Uint16 mqtId;
 Uint16 parameter;
} MSGQ_AsyncErrorMsg;

The following table shows the errors that the SMMQT might log and a description of each field.

Note: The mqtId corresponds to the MQT instance that logged the error. If the instance cannot
be determined (for example, the ISR logged the error), a value of 0xFFFF is used for mqtId.

errorType Description
MSGQ_MQTFAILEDPUT If a message cannot be placed to the remote or local

processor, this error is logged and the message is dropped.
Note: this error could signify that an internal message could
not be sent also. The msgId of the dropped message is
placed in the “parameter” field of the error message.

MSGQ_MQTERRORALLOC If the MQT cannot allocate a message, this error message is
logged. The “parameter” field holds the size of the message
that was trying to be allocated.

MSGQ_MQTERRORINTERNAL Some internal error happened that might affect the health of
the system. The unique placement number is in the
“parameter” field of the error message. This allows a user to
debug the problem.

SPRAB09

 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x 21

20 Performance Benchmarks
The following benchmarks were found on the EVM6474 running at 1000 MHz. All code was
stored in internal memory after being compiled with -o2 and no symbols. The SMMQT was built
with no debugging trace enabled. The L1D and L1P caches were enabled with sizes of 32 KB.
The L2 cache was not enabled. The _CACHELINE_SIZE compiler option was set to 64. All
messages were in external memory. Note: The CLK ISR was running during the test. This ISR
had minimal impact on the results (that is, <0.5%).

The boss TSK allocates a message before entering its main loop. In the loop, the boss TSK
sends a message to the worker TSK. The worker TSK replies with the same message; it does
not free the message and allocate a new one. This is repeated 10,000 times. So, for the entire
test, the following APIs are called 20,000 times in the application code: MSGQ_put() and
MSGQ_get(). The boss TSK is timed from when it sends the first message to when it receives
the 10,000th reply. Time is in CPU cycles. The test was based on the example that is shipped
with the SMMQT package.

The 2 TSK/processor benchmark has a boss TSK on each core communicating to a worker TSK
on the other core. This test essentially allows both cores to run at a higher level of efficiency, for
example because the core is not idle while the boss TSK is waiting for a response.

The table below shows the results using two TSKs on different processors (using SMMQT). The
TSK-based threading model uses semaphores for its MSGQ notification.

of
TSK/processor

of msgs Msg size CPU load on both
processors

 Wall time (in
CPU cycles)

1 TSK 10,000 128 54 105,130,000

2 TSK 10,000 128 66 194,740,000

21 Footprint
Here are the footprint numbers for the HSEM, SMMQT, and SMPOOL modules. They do not
include any DSP/BIOS APIs (for example, the MSGQ module) or the application’s footprint.

These numbers were obtained on the EVM6474 with debug logging off (SMMQT_DEBUG==0).
The optimization was set to –o2. The _CACHELINE_SIZE compiler option was set to 64. The
values are in bytes.

HSEM SMPOOL SMMQT
.text 160 .text 1856 .text 2912
.const 16 .const 40 .cinit 12
 .const 20
 .far 16
 .bss 4
Total: 176 Total: 1896 Total: 2964

SPRAB09

22 Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x

22 References
For more information, see the following documentation:
• TMS320 DSP/BIOS User's Guide (SPRU423)
• TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference Guide

(SPRU403, DSP/BIOS 5.33 or higher)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by
all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such
use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://interface.ti.com/
http://www.ti.com/digitalcontrol
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Shared Memory Message Queue Transport (MQT) and Pool Modules for C647x
	1 Introduction
	2 Modules
	3 Contents of Deliverable
	4 Requirements
	5 Installation
	6 Building
	7 Atomically Accessing Shared Memory
	7.1 CRIT Module
	7.1.1 CRIT Interface (CRIT_Fxns)
	7.1.2 CRIT APIs
	7.1.2.1 CRIT_open()
	7.1.2.2 CRIT_close()
	7.1.2.3 CRIT_enter()
	7.1.2.4 CRIT_leave()

	7.1.3 CRIT Example

	7.2 HSEMCRIT Module
	7.2.1 Enter/Leave
	7.2.2 Parameters
	7.2.3 Objects
	7.2.4 HSEMCRIT Example

	8 POOL Configuration
	8.1 SMPOOL
	8.1.1 Parameters
	8.1.2 Object Placement and Alignment
	8.1.3 Code Example

	8.2 POOL_Config
	8.3 POOL_Obj
	8.4 Code Example

	9 MSGQ Configuration
	9.1 MSGQ_Config
	9.2 MQT Instance
	9.3 MSGQ_TransportObj
	9.4 Code Example

	10 SMMQT Instance Parameters
	11 SMMQT System Configuration
	11.1 Placement and Alignment
	11.2 Code Example

	12 Initialization Order
	13 Endianism
	14 Configuring Required Static Objects
	14.1 Configuring a LOG Object
	14.2 Configuring an SMMQT SWI Object
	14.3 Plugging the SMMQT ISR
	14.4 Enabling the MSGQ and POOL Modules
	14.5 Setting the DSP/BIOS Processor ID

	15 Example Overview
	16 Debug Capabilities
	17 Cache Concerns
	18 Support for Other Chips
	19 Errors
	20 Performance Benchmarks
	21 Footprint
	22 References

