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While there are many ways 
to connect components in 
embedded systems, the most 
prominent are the high speed 
serial standards of Ethernet, 
PCI Express, and RapidIO. All of 
these standards leverage similar 
Serialiser/Deserialiser (SerDes) 
technology to deliver throughput 
and latency performance greater 
than what is possible with wide 
parallel bus technology. For ex-
ample, RapidIO and PCI Express 
leveraged the XAUI SerDes tech-
nology developed for Ethernet. 

The trend towards leveraging a 
common SerDes technology will 
continue with future versions of 
these specifications. The implica-
tion is that raw bandwidth is not a 
significant differentiator for these 
protocols. Instead, the usefulness 
of each protocol is determined by 
how the bandwidth is used. 

Protocol summaries
Most designers are familiar with 
basic Ethernet protocol charac-
teristics. Ethernet is a ‘best effort’ 
means of delivering packets. The 
software protocols built on top of 
the Ethernet physical layer, such 
as TCP/IP, are necessary to provide 
reliable delivery of information, as 
Ethernet-based systems gener-
ally perform flow control at the 
network layer, not the physical 
layer. Typically, the bandwidth of 
Ethernet-based systems is over-
provisioned between 20 and 70 
per cent. Ethernet is best suited 
for high latency inter-chassis 
applications or on-board/inter-
board applications where band-
width requirements are low. 

PCI Express (PCIe), in contrast, 
is optimised for reliable delivery of 
packets within an on-board inter-
connect where latencies are typi-
cally in the microsecond range. 
The PCIe protocol exchanges 

Transaction Layer Packets (TLPs) 
such as reads and writes, and 
smaller quantities of link-specific 
information called Data Link Layer 
Packets (DLLPs). DLLPs are used 
for link management functions, in-
cluding physical layer flow control. 
PCIe was designed to be back-
wards compatible with the legacy 
of PCI and PCI-X devices, which 
assumed that the processor(s) sat 
at the top of a hierarchy of buses. 
This had the advantage of lever-
aging PCI-related software and 
hardware intellectual property. As 
discussed later in this article, the 
PCI bus legacy places significant 
constraints on the switched PCIe 
protocol. 

RapidIO technology has been 
optimised for embedded systems, 
particularly those which require 
multiple processing elements to 
cooperate. Like PCIe, the RapidIO 
protocol exchanges packets and 
smaller quantities of link-specific 
information called control sym-
bols. RapidIO has characteristics 
of both PCIe and Ethernet. For 
example, RapidIO provides both 
reliable and unreliable packet 
delivery mechanisms. RapidIO 
also has many unique capabilities 
which make it the optimal inter-
connect for on-board, inter-board, 
and short distance (<100 m) inter-
chassis applications. 

Physical layer
At the physical/link layer, the pro-
tocols have different capabilities 
when it comes to flow control 
and error recovery. Ethernet flow 
control is primarily implemented 
in software at the network layer, 
as this is the most effective for 
large networks. Ethernet’s only 
physical layer flow control mech-
anism is PAUSE, which halts trans-
mission for a specified period of 

time. The limited physical layer 
flow control means that Ethernet 
networks discard packets to deal 
with congestion. 

In contrast, PCIe and RapidIO 
physical-layer flow control mech-
anisms ensure reliable delivery of 
packets. Each packet is retained 
by the transmitter until it is ac-
knowledged. If a transmission er-
ror is detected, a link maintenance 
protocol ensures that corrupted 

Figure 1: RapidIO embedded control symbols and PCIe DLLPs. 

Figure 2: RapidIO Multicast Event Control Symbol and PCIe DLLP.
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packets are retransmitted. 
PCIe ensures delivery using 

DLLPs, while RapidIO uses control 
symbols. Unlike DLLPs, RapidIO 
control symbols can be embed-
ded within packets. This allows 
RapidIO flow control informa-
tion, such as buffer occupancy 
levels, to be exchanged with low 
latency, allowing more packets 
to be sent sooner. Figure 1 illus-
trates this concept. In the leftmost 
panel, Device A cannot send any 
packets to Device B because the 
buffers in Device B are full. Device 
B is sending packets to Device A 
continually. In the middle panel, 
one buffer in Device B becomes 
free. At this point, Device B must 
inform Device A that it can send 
a packet. In the PCIe panel on the 
bottom right, the DLLP cannot be 
transmitted until transmission of 
the current packet is complete. In 
the RapidIO panel on the top right, 
a control symbol is embedded in 
a packet that is being transmitted. 
This allows the RapidIO protocol 
to deliver packets with lower la-
tency and higher throughput than 
the other protocols. The ability to 
embed control symbols within 
packets allows the rest of the 
RapidIO flow control story to be 
much richer than PCIe or Ethernet, 
as discussed later in this article. 

Beyond more efficient flow 
control, the ability to embed con-
trol symbols within packets gives 
RapidIO an ability that currently 
neither PCIe nor Ethernet can of-
fer. Control symbols can be used 
to distribute events throughout a 
RapidIO system with low latency 
and low jitter (Figure 2). This en-
ables applications such as distribu-
tion of a common real time clock 
signal to multiple end-points, or a 
frame signal for antenna systems. 
It also can be used for signalling 
other system events, and for de-
bugging within a multi-proces-
sor system. As shown in Figure 2, 
PCIe DLLPs introduce a significant 
amount of latency and jitter ev-
ery time the DLLP is transferred 
through a switch. In contrast, the 
RapidIO protocol allows a signal 
to be distributed throughout a 
RapidIO fabric with less than 10 

Unit Interval of jitter and 50 nano-
seconds of latency per switch, 
regardless of packet traffic. 

PCIe and Ethernet may choose 
to extend their respective speci-
fications in future to allow events 
to be distributed with low latency. 
Introduction of a control-symbol 
like concept would be a large 
step for Ethernet. Several initia-
tives are underway within the 
Ethernet ecosystem to improve 
Ethernet’s abilities within stor-
age applications that may need 
a control-symbol like concept. 
Ethernet is also being enhanced 
to incorporate simple XON/XOFF 
flow control. 

PCIe currently does not allow 
DLLPs to be embedded within 
TLPs as this concept is incompat-
ible with the legacy of the PCI/X 
bus operation. DLLPs embedded 
within TLPs create periods where 
no data is available to be placed 
on the legacy bus. PCIe end-points 
could operate in store-and-for-
ward mode to ensure that packets 
are completely received before 
being forwarded to the bus, at 
the cost of a drastic increase in 
latency and lowered throughput. 
Given the PCIe focus of on-board 
interconnect for a uniprocessor 
system, and the continued need 
to maintain compatibility with 
legacy bus standards, it is un-
likely that the PCIe community 
will be motivated to allow DLLPs 
to be embedded within TLPs.  

Bandwidth options
Beyond flow control and link 
maintenance, the most obvious 
difference between Ethernet, 
PCIe and RapidIO at the physi-
cal/link layer are the bandwidth 
options supported. Ethernet has 
a long history of evolving band-
width by ten times with each 
step. Ethernet currently operates 
at 10Mbps, 100Mbps, 1Gbps, and 
10Gbps. Some proprietary parts 
also support a 2Gbps (2.5 Gbaud) 
option. Next generation Ethernet 
will be capable of operating at 40 
and/or 100Gbps. 

PCIe and RapidIO take a dif-
ferent approach, as on-board, 
inter-board and inter-chassis in-

terconnects require power to be 
matched with the data flows. As 
a result, PCIe and RapidIO support 
more lane rate and lane width 
combinations than Ethernet. PCIe 
2.0 allows lanes to operate at ei-
ther 2 or 4Gbps (2.5 and 5 Gbaud), 

while RapidIO supports lane rates 
of 1, 2, 2.5, 4 and 5Gbps (1.25, 2.5, 
3.125, 5, and 6.25 Gbaud). Both PCIe 
and RapidIO support lane width 
combinations from a single lane 
up to 16 lanes. PCIe also supports 
a 32 lane port in its specification. 

Figure 3: Read, write, and message semantics. The read semantic retrieves 
data 01 02 03 04 from address 0x1234_0000. The write semantic writes data 
FF FE FD FC to address 0x1234_0000. The message semantic determines the 
location of Fault_Handler without knowing referencing the memory map.

Figure 4: RapidIO’s virtual output queue backpressure mechanism.
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For a given lane width, a RapidIO 
port can supply both more and 
less bandwidth than PCIe, allow-
ing system designers to tune the 
amount of power used to the data 
flows in a system. 

Transport layer
The RapidIO and Ethernet speci-
fications are topology agnostic. 
Any set of end-points can be con-
nected using any fabric topology, 
including rings, trees, meshes, 
hyper-cubes, and more esoteric 
geometries such as entangled 
networks. Packets are routed 
through these topologies based 
on their network address. An 
example of an Ethernet network 
address is an Internet Protocol 
(IP) address. RapidIO network 
addresses are called destination 
identifiers, abbreviated as des-
tIDs. 

Topology-agnostic protocols 
enable a wide variety of resource 
sparing and redundancy options. 
For example, some systems use 
an N+1 sparing strategy to ensure 
high availability and reliability 
without significantly increasing 
the amount of hardware. (Sparing 
provides unused equipment as a 
backup for in-use equipment. In 
N+1 sparing, N components have 
one common spare, so that the 
system can continue to operate 
if one of the N components fails. 
This strategy is also known as 1:
N sparing.) Support for different 
topology options also allows sys-
tem designers to eliminate perfor-
mance bottlenecks in systems by 
matching data paths to data flows. 
System expansion and evolution is 
unconstrained within RapidIO and 
Ethernet networks. 

In contrast, PCIe supports a 
tree structure with a single Root 
Complex at the top of the hier-
archy. Several routing algorithms 
are used, depending on the type 
of TLP. The single topology sup-
ported by PCIe is part of the leg-
acy of the PCI/X bus support. The 
PCIe standard has been extended 
with Multi-Root I/O Virtualisation 
(MRIOV), which increases the 
number of physical topologies 
that PCIe can support. However, as 
MRIOV is expensive to implement, 

it is not certain if it will be adopted 
within the PCIe ecosystem. PCIe 
components also support NTB 
functionality, whereby one PCIe 
hierarchy is granted access to a 
defined memory range in another 
PCIe hierarchy. System reliability 
and availability of this approach 
are discussed further on in this 
article. 

Many Ethernet-based systems 
are also functionally limited to tree 
structures. For example, many im-
plementations of Ethernet make 
use of variations on the Spanning 
Tree Protocol to pare down the set 
of available links to a tree of used 
links. As part of an initiative to 
extend Ethernet into the storage 
network, protocols are being spec-
ified that will enable the creation 
of a spanning tree for each of the 
4096 virtual channels supported 
by Ethernet. This will allow more 
links to be used simultaneously. 
However, support for 4096 virtual 
channels increases the complex-
ity of switching, and may require 
more buffering and increased 
latency through the switch.  

Logical layer
There are several large differ-
ences between RapidIO, PCIe and 
Ethernet at the logical layer. The 
most obvious differences are the 
semantics supported, as shown 
in Figure 3. PCIe packets support 
address-based read and write 
semantics. In PCIe, the entity 
which originates a read or write 
must know the target address 
in the system’s global memory 
map. This is a natural approach 
for a control plane application. 
However, this reliance on a global 
address map can lead to tightly 
coupled software systems which 
are difficult to evolve. 

The PCIe protocol also supports 
messaging through Message TLPs. 
However, Message TLPs support a 
limited number of functions such 
as interrupt and reset signals. This 
is much different than Ethernet 
and RapidIO message packets, 
which are used for inter-process 
communication. 

Unlike PCIe, software protocols 
built on the Ethernet physical 
layer only support messaging 

semantics. To send a message, 
the originator only needs to 
know the address of the recipient. 
Addressing schemes are generally 
hierarchical, so that no node must 
know all addresses. Addresses 
may change as a system evolves, 
enabling software components to 
be loosely coupled to each other. 
These attributes are necessary for 
data plane applications. 

RapidIO supports both read/
write and messaging semantics. 
Beyond the obvious architectural 
advantages and system flexibil-
ity, the support of read/write and 
messaging allows the use of a sin-
gle interconnect for both control 
and data planes. RapidIO systems 
are thus simpler than those which 
must incorporate both PCIe and 
Ethernet, which in turn provides 
the benefit of reducing both 
power consumption and cost. 

PCIe is unlikely to incorporate 
inter-process communication 
messaging semantics within its 
packet definitions, as these con-
flict with the operation of the 
legacy PCI and PCI-X busses. PCIe 
is designed around the concept of 
a Root Complex which contains 
the only processors in the system. 
In this paradigm, no messaging is 
done over PCIe to other software 
entities, so messaging semantics 
have no value. 

It could be argued that 
Ethernet supports read-and-write 
semantics through the Remote 
Direct Memory Access (RDMA) 
protocol, which supports direct 
memory copies between de-
vices. However, RapidIO (and PCIe) 
read-and-write semantics are far 
more efficient than RDMA. The 
RDMA protocol is built upon other 
Ethernet-based protocols, such 
as TCP, and requires a significant 
amount of header overhead for 
each packet. RDMA implementa-
tions are much more expensive in 
terms of latency and bandwidth 
when compared with RapidIO 
read/write transactions. While 
some RDMA offload engines ex-
ist, it is difficult to envision using 
RDMA for control plane functions 
such as programming registers. 

One possible application of 

messaging semantics is the en-
capsulation of other protocols. 
RapidIO has standards for encap-
sulating a variety of protocols. 
The ability to encapsulate gives 
system designers many advan-
tages, including future-proofing 
RapidIO backplanes. Any future, 
legacy or proprietary protocol can 
be encapsulated and transported 
using standard RapidIO compo-
nents. For example, the existing 
RapidIO specification for Ethernet 
encapsulation allows designers to 
leverage Ethernet-based software 
within a RapidIO-based system. 

Ethernet also supports encap-
sulation, and has several encapsu-
lation standards to choose from. 
RapidIO can encapsulate more 
efficiently than Ethernet, as the 
layers of Ethernet-based protocols 
require more header overhead. 

At one time, there was an 
initiative which attempted to 
standardise encapsulation of a 
variety of protocols over a PCIe-
like fabric. This initiative failed 
years ago due to the complexi-
ties involved. It was too difficult 
to extend PCIe, with its legacy 
bus related requirements, to be 
a fabric for embedded systems.  

Reliability, availability
Most systems have requirements 
for reliability and/or availability. 
Systems with reliability and/or 
availability requirements need 
mechanisms for detection of er-
rors, notification of errors, analysis 
and isolation of the faulty com-
ponent, and recovery. At a high 
level, PCIe, RapidIO, and Ethernet 
have similar capabilities in all of 
these areas. There are significant 
differences in sparing strategies, 
and in the ability to rapidly iso-
late the system from the effects 
of faulty components. 

In the beginning, the Internet 
used software protocols at the net-
work level to deliver reliable com-
munications over a network that 
could experience severe damage. 
Consequently, Ethernet’s original 
error management capabilities 
were aimed at detection, isolation 
and avoidance of new holes in the 
network, rather than robustness 
of individual systems. System reli-
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ability was achieved through du-
plication of network components. 
Later enhancements have added 
standardised error capture and 
error notification mechanisms to 
simplify network management. 

RapidIO has sparing, error cap-
ture and error notification capa-
bilities similar to that of Ethernet. 

PCIe supports limited sparing 
strategies, as its transport layer is 
limited to tree structures. PCIe’s 
Non-Transparent Bridging, previ-
ously mentioned, allows two or 
more tree structures to communi-
cate, and is sufficient for 1+1 spar-
ing (also known as 1:1 sparing). 
NTB is difficult to scale to systems 
employing N+M sparing. In the-
ory, Multi-Root I/O Virtualisation 
(MRIOV) can be used to support 
N+M sparing in PCIe systems 
where N+M totals eight or less. 
However, because the sub-trees 
within a MRIOV system cannot 
communicate with each other, 
recovery from failures may require 
a system outage in order to recon-
figure the system to isolate failed 
components and to incorporate 
new ones. 

Ethernet’s error detection 
mechanisms are generally slower 
when compared to PCIe and 
RapidIO, as Ethernet was designed 
for a network that is distributed 
across the planet. Both PCIe and 
RapidIO have error detection and 
notification mechanisms with 
much lower latency compared to 
Ethernet. 

While both PCIe and RapidIO 
guarantee delivery of packets, 
under error conditions they can 
discard packets to prevent faulty 
components from causing fatal 
congestion. However, the PCIe 
error condition mechanism is not 
configurable. Packets are always 
discarded when a link must re-
train. Additionally, the PCIe isola-
tion mechanism is activated only 
after several milliseconds. These 
are not desirable behaviours in all 
systems. 

In contrast, the RapidIO stan-
dard allows a system-specific 
response to errors such as link re-
training. When errors occur, the 
system can immediately start 
discarding packets, or it can retain 

packets and allow congestion 
to occur. RapidIO makes use of a 
‘leaky bucket’ method of count-
ing errors, with two configurable 
thresholds. The DEGRADED 
threshold gives system manage-
ment software an early warning 
that a link is experiencing errors. 
The FAILED threshold can be 
set to trigger packet discard at a 
user defined error rate. The flex-
ibility of RapidIO error manage-
ment reflects the varying needs 
of embedded system designers.  

Flow control
Flow control cuts across the phys-
ical, transport and logical layers of 
interconnect specifications. Flow 
control capabilities are critical to 
ensuring the correct and robust 
operation of a system under a 
range of conditions, including 
partial failure and overload. Flow 
control mechanisms allow the 
bandwidth available to be used 
as efficiently and completely as 
possible. Flow control strategies 
are becoming more and more 
important in order to minimise 
the amount of bandwidth and 
power wasted by over-provision-
ing high frequency serial links. 

It is not possible to talk about 
a unified Ethernet flow control 
strategy, as many unrelated 
Ethernet-based messaging stan-
dards have protocol-specific flow 
control strategies to avoid packet 
discard. Generally, the flow control 
strategies of these standards are 
based on reducing the rate of 
transmission when packet loss is 
detected. The flow control strate-
gies are generally implemented in 
software, and require significant 
buffering capabilities to allow for 
retransmission. 

PCIe flow control is limited to 
the physical layer. The PCIe flow 
control mechanism is based on 
tracking credits for packet head-
ers and data chunks, tracked sepa-
rately for Posted, Non-Posted, and 
Completion transactions. 

RapidIO specifies flow control 
mechanisms at the physical and 
logical layers. Physical layer flow 
control mechanisms are designed 
to deal with multiple-microsec-
ond periods of congestion. At the 

physical layer, RapidIO offers PCIe-
style flow control supplemented 
with a simple retry mechanism. 
The simple retry mechanism is 
very efficient to implement, with 
minimal performance penalty 
compared to PCIe-style flow con-
trol. The RapidIO physical-layer 
flow control also includes a virtual 
output queue-based backpres-
sure mechanism. This mechanism, 
introduced in RapidIO 2.0, allows 
switches and end-points to learn 
which destinations are congested, 
and to send traffic to uncon-
gested destinations. This feature 
enables distributed decision mak-
ing, ensuring that available fabric 
bandwidth is maximally utilised. 
The latency of decision-making is 
low, as congestion information is 
exchanged using control symbols 
which, as already discussed, can 
be embedded within RapidIO 
packets. 

The virtual output queue 
backpressure mechanism is il-
lustrated in Figure 4. In the top 
panel, the source is able to send 
much faster than EndPoint (EP) 1 
can accept packets. This results in 
a congestion status control sym-
bol being sent by EP 1 to Switch 
2, which cascades the message 
back to Source. The congestion 
status control symbol could also 
have been originated by Switch 2 
when it detected congestion on 
the port connected to EP 1. Once 
Source receives the congestion 
status control symbol, it starts to 
send packets to EP 2, reducing 
the rate of packet transmission to 
EP 1. 

RapidIO’s logical layer flow 
control mechanisms are designed 
to avoid congestion within the 
fabric by metering the admis-
sion of packets to the fabric, thus 
managing congestion at the 
network level. This approach is 
similar to Ethernet-based software 
protocols. Admission of packets 
for specific flows can be adminis-
tered through an XON/XOFF type 
protocol, as well as by rate-based 
and credit-based flow control. 
Perhaps most importantly, these 
flow control mechanisms can also 
be used at the application layer 
to engineer software application 

performance. Best of all, these 
mechanisms were designed to be 
implemented in hardware, free-
ing precious CPU cycles to deliver 
value to the customer. RapidIO’s 
flow control mechanisms ensure 
that RapidIO-based systems use 
available bandwidth in an effi-
cient, predictable manner. 

Summary
Ethernet, PCIe, and RapidIO are 
all based on similar SerDes tech-
nology. SerDes technology is 
therefore not a differentiator for 
these technologies, but the way 
they make use of the available 
bandwidth is. Each technology is 
optimised for a particular applica-
tion space. 

Ethernet has been optimised 
for networks which are geo-
graphically distributed, have long 
latencies, and dynamic network 
configurations. PCIe has been op-
timised to support a hierarchical 
bus structure on a single board. 
Both have been used for on-
board, inter-board, and inter-chas-
sis communications, and in many 
cases both are used in the same 
system. RapidIO has the potential 
to combine the benefits of these 
two interconnects into a single in-
terconnect, with associated power 
and cost savings. 

RapidIO is the best intercon-
nect choice for embedded sys-
tems. RapidIO has capabilities 
similar to PCIe and Ethernet, as 
well as capabilities that other 
interconnects will not duplicate, 
such as: 
•	 Low latency, low jitter distri-

bution of system events 
•	 Combined link level and 

network level flow control 
mechanisms 

•	 Configurable error detection 
and topology agnostic rout-
ing enable efficient sparing, 
high reliability and availabil-
ity 

•	 Hardware implementation 
of both read/write and in-
ter-process communication 
messaging semantics 
These capabilities allow system 

architects to create better per-
forming systems which consume 
less power and are easier to scale. 
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