
By Barry Wood
Tundra

While there are many ways
to connect components in
embedded systems, the most
prominent are the high speed
serial standards of Ethernet,
PCI Express, and RapidIO. All of
these standards leverage similar
Serialiser/Deserialiser (SerDes)
technology to deliver throughput
and latency performance greater
than what is possible with wide
parallel bus technology. For ex-
ample, RapidIO and PCI Express
leveraged the XAUI SerDes tech-
nology developed for Ethernet.

The trend towards leveraging a
common SerDes technology will
continue with future versions of
these specifications. The implica-
tion is that raw bandwidth is not a
significant differentiator for these
protocols. Instead, the usefulness
of each protocol is determined by
how the bandwidth is used.

Protocol summaries
Most designers are familiar with
basic Ethernet protocol charac-
teristics. Ethernet is a ‘best effort’
means of delivering packets. The
software protocols built on top of
the Ethernet physical layer, such
as TCP/IP, are necessary to provide
reliable delivery of information, as
Ethernet-based systems gener-
ally perform flow control at the
network layer, not the physical
layer. Typically, the bandwidth of
Ethernet-based systems is over-
provisioned between 20 and 70
per cent. Ethernet is best suited
for high latency inter-chassis
applications or on-board/inter-
board applications where band-
width requirements are low.

PCI Express (PCIe), in contrast,
is optimised for reliable delivery of
packets within an on-board inter-
connect where latencies are typi-
cally in the microsecond range.
The PCIe protocol exchanges

Transaction Layer Packets (TLPs)
such as reads and writes, and
smaller quantities of link-specific
information called Data Link Layer
Packets (DLLPs). DLLPs are used
for link management functions, in-
cluding physical layer flow control.
PCIe was designed to be back-
wards compatible with the legacy
of PCI and PCI-X devices, which
assumed that the processor(s) sat
at the top of a hierarchy of buses.
This had the advantage of lever-
aging PCI-related software and
hardware intellectual property. As
discussed later in this article, the
PCI bus legacy places significant
constraints on the switched PCIe
protocol.

RapidIO technology has been
optimised for embedded systems,
particularly those which require
multiple processing elements to
cooperate. Like PCIe, the RapidIO
protocol exchanges packets and
smaller quantities of link-specific
information called control sym-
bols. RapidIO has characteristics
of both PCIe and Ethernet. For
example, RapidIO provides both
reliable and unreliable packet
delivery mechanisms. RapidIO
also has many unique capabilities
which make it the optimal inter-
connect for on-board, inter-board,
and short distance (<100 m) inter-
chassis applications.

Physical layer
At the physical/link layer, the pro-
tocols have different capabilities
when it comes to flow control
and error recovery. Ethernet flow
control is primarily implemented
in software at the network layer,
as this is the most effective for
large networks. Ethernet’s only
physical layer flow control mech-
anism is PAUSE, which halts trans-
mission for a specified period of

time. The limited physical layer
flow control means that Ethernet
networks discard packets to deal
with congestion.

In contrast, PCIe and RapidIO
physical-layer flow control mech-
anisms ensure reliable delivery of
packets. Each packet is retained
by the transmitter until it is ac-
knowledged. If a transmission er-
ror is detected, a link maintenance
protocol ensures that corrupted

Figure 1: RapidIO embedded control symbols and PCIe DLLPs.

Figure 2: RapidIO Multicast Event Control Symbol and PCIe DLLP.

� eetindia.com | EE Times-India

Undestanding RapidIO, PCIe and
Ethernet

INTERCONNECTS

packets are retransmitted.
PCIe ensures delivery using

DLLPs, while RapidIO uses control
symbols. Unlike DLLPs, RapidIO
control symbols can be embed-
ded within packets. This allows
RapidIO flow control informa-
tion, such as buffer occupancy
levels, to be exchanged with low
latency, allowing more packets
to be sent sooner. Figure 1 illus-
trates this concept. In the leftmost
panel, Device A cannot send any
packets to Device B because the
buffers in Device B are full. Device
B is sending packets to Device A
continually. In the middle panel,
one buffer in Device B becomes
free. At this point, Device B must
inform Device A that it can send
a packet. In the PCIe panel on the
bottom right, the DLLP cannot be
transmitted until transmission of
the current packet is complete. In
the RapidIO panel on the top right,
a control symbol is embedded in
a packet that is being transmitted.
This allows the RapidIO protocol
to deliver packets with lower la-
tency and higher throughput than
the other protocols. The ability to
embed control symbols within
packets allows the rest of the
RapidIO flow control story to be
much richer than PCIe or Ethernet,
as discussed later in this article.

Beyond more efficient flow
control, the ability to embed con-
trol symbols within packets gives
RapidIO an ability that currently
neither PCIe nor Ethernet can of-
fer. Control symbols can be used
to distribute events throughout a
RapidIO system with low latency
and low jitter (Figure 2). This en-
ables applications such as distribu-
tion of a common real time clock
signal to multiple end-points, or a
frame signal for antenna systems.
It also can be used for signalling
other system events, and for de-
bugging within a multi-proces-
sor system. As shown in Figure 2,
PCIe DLLPs introduce a significant
amount of latency and jitter ev-
ery time the DLLP is transferred
through a switch. In contrast, the
RapidIO protocol allows a signal
to be distributed throughout a
RapidIO fabric with less than 10

Unit Interval of jitter and 50 nano-
seconds of latency per switch,
regardless of packet traffic.

PCIe and Ethernet may choose
to extend their respective speci-
fications in future to allow events
to be distributed with low latency.
Introduction of a control-symbol
like concept would be a large
step for Ethernet. Several initia-
tives are underway within the
Ethernet ecosystem to improve
Ethernet’s abilities within stor-
age applications that may need
a control-symbol like concept.
Ethernet is also being enhanced
to incorporate simple XON/XOFF
flow control.

PCIe currently does not allow
DLLPs to be embedded within
TLPs as this concept is incompat-
ible with the legacy of the PCI/X
bus operation. DLLPs embedded
within TLPs create periods where
no data is available to be placed
on the legacy bus. PCIe end-points
could operate in store-and-for-
ward mode to ensure that packets
are completely received before
being forwarded to the bus, at
the cost of a drastic increase in
latency and lowered throughput.
Given the PCIe focus of on-board
interconnect for a uniprocessor
system, and the continued need
to maintain compatibility with
legacy bus standards, it is un-
likely that the PCIe community
will be motivated to allow DLLPs
to be embedded within TLPs.

Bandwidth options
Beyond flow control and link
maintenance, the most obvious
difference between Ethernet,
PCIe and RapidIO at the physi-
cal/link layer are the bandwidth
options supported. Ethernet has
a long history of evolving band-
width by ten times with each
step. Ethernet currently operates
at 10Mbps, 100Mbps, 1Gbps, and
10Gbps. Some proprietary parts
also support a 2Gbps (2.5 Gbaud)
option. Next generation Ethernet
will be capable of operating at 40
and/or 100Gbps.

PCIe and RapidIO take a dif-
ferent approach, as on-board,
inter-board and inter-chassis in-

terconnects require power to be
matched with the data flows. As
a result, PCIe and RapidIO support
more lane rate and lane width
combinations than Ethernet. PCIe
2.0 allows lanes to operate at ei-
ther 2 or 4Gbps (2.5 and 5 Gbaud),

while RapidIO supports lane rates
of 1, 2, 2.5, 4 and 5Gbps (1.25, 2.5,
3.125, 5, and 6.25 Gbaud). Both PCIe
and RapidIO support lane width
combinations from a single lane
up to 16 lanes. PCIe also supports
a 32 lane port in its specification.

Figure 3: Read, write, and message semantics. The read semantic retrieves
data 01 02 03 04 from address 0x1234_0000. The write semantic writes data
FF FE FD FC to address 0x1234_0000. The message semantic determines the
location of Fault_Handler without knowing referencing the memory map.

Figure 4: RapidIO’s virtual output queue backpressure mechanism.

� eetindia.com | EE Times-India

For a given lane width, a RapidIO
port can supply both more and
less bandwidth than PCIe, allow-
ing system designers to tune the
amount of power used to the data
flows in a system.

Transport layer
The RapidIO and Ethernet speci-
fications are topology agnostic.
Any set of end-points can be con-
nected using any fabric topology,
including rings, trees, meshes,
hyper-cubes, and more esoteric
geometries such as entangled
networks. Packets are routed
through these topologies based
on their network address. An
example of an Ethernet network
address is an Internet Protocol
(IP) address. RapidIO network
addresses are called destination
identifiers, abbreviated as des-
tIDs.

Topology-agnostic protocols
enable a wide variety of resource
sparing and redundancy options.
For example, some systems use
an N+1 sparing strategy to ensure
high availability and reliability
without significantly increasing
the amount of hardware. (Sparing
provides unused equipment as a
backup for in-use equipment. In
N+1 sparing, N components have
one common spare, so that the
system can continue to operate
if one of the N components fails.
This strategy is also known as 1:
N sparing.) Support for different
topology options also allows sys-
tem designers to eliminate perfor-
mance bottlenecks in systems by
matching data paths to data flows.
System expansion and evolution is
unconstrained within RapidIO and
Ethernet networks.

In contrast, PCIe supports a
tree structure with a single Root
Complex at the top of the hier-
archy. Several routing algorithms
are used, depending on the type
of TLP. The single topology sup-
ported by PCIe is part of the leg-
acy of the PCI/X bus support. The
PCIe standard has been extended
with Multi-Root I/O Virtualisation
(MRIOV), which increases the
number of physical topologies
that PCIe can support. However, as
MRIOV is expensive to implement,

it is not certain if it will be adopted
within the PCIe ecosystem. PCIe
components also support NTB
functionality, whereby one PCIe
hierarchy is granted access to a
defined memory range in another
PCIe hierarchy. System reliability
and availability of this approach
are discussed further on in this
article.

Many Ethernet-based systems
are also functionally limited to tree
structures. For example, many im-
plementations of Ethernet make
use of variations on the Spanning
Tree Protocol to pare down the set
of available links to a tree of used
links. As part of an initiative to
extend Ethernet into the storage
network, protocols are being spec-
ified that will enable the creation
of a spanning tree for each of the
4096 virtual channels supported
by Ethernet. This will allow more
links to be used simultaneously.
However, support for 4096 virtual
channels increases the complex-
ity of switching, and may require
more buffering and increased
latency through the switch.

Logical layer
There are several large differ-
ences between RapidIO, PCIe and
Ethernet at the logical layer. The
most obvious differences are the
semantics supported, as shown
in Figure 3. PCIe packets support
address-based read and write
semantics. In PCIe, the entity
which originates a read or write
must know the target address
in the system’s global memory
map. This is a natural approach
for a control plane application.
However, this reliance on a global
address map can lead to tightly
coupled software systems which
are difficult to evolve.

The PCIe protocol also supports
messaging through Message TLPs.
However, Message TLPs support a
limited number of functions such
as interrupt and reset signals. This
is much different than Ethernet
and RapidIO message packets,
which are used for inter-process
communication.

Unlike PCIe, software protocols
built on the Ethernet physical
layer only support messaging

semantics. To send a message,
the originator only needs to
know the address of the recipient.
Addressing schemes are generally
hierarchical, so that no node must
know all addresses. Addresses
may change as a system evolves,
enabling software components to
be loosely coupled to each other.
These attributes are necessary for
data plane applications.

RapidIO supports both read/
write and messaging semantics.
Beyond the obvious architectural
advantages and system flexibil-
ity, the support of read/write and
messaging allows the use of a sin-
gle interconnect for both control
and data planes. RapidIO systems
are thus simpler than those which
must incorporate both PCIe and
Ethernet, which in turn provides
the benefit of reducing both
power consumption and cost.

PCIe is unlikely to incorporate
inter-process communication
messaging semantics within its
packet definitions, as these con-
flict with the operation of the
legacy PCI and PCI-X busses. PCIe
is designed around the concept of
a Root Complex which contains
the only processors in the system.
In this paradigm, no messaging is
done over PCIe to other software
entities, so messaging semantics
have no value.

It could be argued that
Ethernet supports read-and-write
semantics through the Remote
Direct Memory Access (RDMA)
protocol, which supports direct
memory copies between de-
vices. However, RapidIO (and PCIe)
read-and-write semantics are far
more efficient than RDMA. The
RDMA protocol is built upon other
Ethernet-based protocols, such
as TCP, and requires a significant
amount of header overhead for
each packet. RDMA implementa-
tions are much more expensive in
terms of latency and bandwidth
when compared with RapidIO
read/write transactions. While
some RDMA offload engines ex-
ist, it is difficult to envision using
RDMA for control plane functions
such as programming registers.

One possible application of

messaging semantics is the en-
capsulation of other protocols.
RapidIO has standards for encap-
sulating a variety of protocols.
The ability to encapsulate gives
system designers many advan-
tages, including future-proofing
RapidIO backplanes. Any future,
legacy or proprietary protocol can
be encapsulated and transported
using standard RapidIO compo-
nents. For example, the existing
RapidIO specification for Ethernet
encapsulation allows designers to
leverage Ethernet-based software
within a RapidIO-based system.

Ethernet also supports encap-
sulation, and has several encapsu-
lation standards to choose from.
RapidIO can encapsulate more
efficiently than Ethernet, as the
layers of Ethernet-based protocols
require more header overhead.

At one time, there was an
initiative which attempted to
standardise encapsulation of a
variety of protocols over a PCIe-
like fabric. This initiative failed
years ago due to the complexi-
ties involved. It was too difficult
to extend PCIe, with its legacy
bus related requirements, to be
a fabric for embedded systems.

Reliability, availability
Most systems have requirements
for reliability and/or availability.
Systems with reliability and/or
availability requirements need
mechanisms for detection of er-
rors, notification of errors, analysis
and isolation of the faulty com-
ponent, and recovery. At a high
level, PCIe, RapidIO, and Ethernet
have similar capabilities in all of
these areas. There are significant
differences in sparing strategies,
and in the ability to rapidly iso-
late the system from the effects
of faulty components.

In the beginning, the Internet
used software protocols at the net-
work level to deliver reliable com-
munications over a network that
could experience severe damage.
Consequently, Ethernet’s original
error management capabilities
were aimed at detection, isolation
and avoidance of new holes in the
network, rather than robustness
of individual systems. System reli-

� eetindia.com | EE Times-India

ability was achieved through du-
plication of network components.
Later enhancements have added
standardised error capture and
error notification mechanisms to
simplify network management.

RapidIO has sparing, error cap-
ture and error notification capa-
bilities similar to that of Ethernet.

PCIe supports limited sparing
strategies, as its transport layer is
limited to tree structures. PCIe’s
Non-Transparent Bridging, previ-
ously mentioned, allows two or
more tree structures to communi-
cate, and is sufficient for 1+1 spar-
ing (also known as 1:1 sparing).
NTB is difficult to scale to systems
employing N+M sparing. In the-
ory, Multi-Root I/O Virtualisation
(MRIOV) can be used to support
N+M sparing in PCIe systems
where N+M totals eight or less.
However, because the sub-trees
within a MRIOV system cannot
communicate with each other,
recovery from failures may require
a system outage in order to recon-
figure the system to isolate failed
components and to incorporate
new ones.

Ethernet’s error detection
mechanisms are generally slower
when compared to PCIe and
RapidIO, as Ethernet was designed
for a network that is distributed
across the planet. Both PCIe and
RapidIO have error detection and
notification mechanisms with
much lower latency compared to
Ethernet.

While both PCIe and RapidIO
guarantee delivery of packets,
under error conditions they can
discard packets to prevent faulty
components from causing fatal
congestion. However, the PCIe
error condition mechanism is not
configurable. Packets are always
discarded when a link must re-
train. Additionally, the PCIe isola-
tion mechanism is activated only
after several milliseconds. These
are not desirable behaviours in all
systems.

In contrast, the RapidIO stan-
dard allows a system-specific
response to errors such as link re-
training. When errors occur, the
system can immediately start
discarding packets, or it can retain

packets and allow congestion
to occur. RapidIO makes use of a
‘leaky bucket’ method of count-
ing errors, with two configurable
thresholds. The DEGRADED
threshold gives system manage-
ment software an early warning
that a link is experiencing errors.
The FAILED threshold can be
set to trigger packet discard at a
user defined error rate. The flex-
ibility of RapidIO error manage-
ment reflects the varying needs
of embedded system designers.

Flow control
Flow control cuts across the phys-
ical, transport and logical layers of
interconnect specifications. Flow
control capabilities are critical to
ensuring the correct and robust
operation of a system under a
range of conditions, including
partial failure and overload. Flow
control mechanisms allow the
bandwidth available to be used
as efficiently and completely as
possible. Flow control strategies
are becoming more and more
important in order to minimise
the amount of bandwidth and
power wasted by over-provision-
ing high frequency serial links.

It is not possible to talk about
a unified Ethernet flow control
strategy, as many unrelated
Ethernet-based messaging stan-
dards have protocol-specific flow
control strategies to avoid packet
discard. Generally, the flow control
strategies of these standards are
based on reducing the rate of
transmission when packet loss is
detected. The flow control strate-
gies are generally implemented in
software, and require significant
buffering capabilities to allow for
retransmission.

PCIe flow control is limited to
the physical layer. The PCIe flow
control mechanism is based on
tracking credits for packet head-
ers and data chunks, tracked sepa-
rately for Posted, Non-Posted, and
Completion transactions.

RapidIO specifies flow control
mechanisms at the physical and
logical layers. Physical layer flow
control mechanisms are designed
to deal with multiple-microsec-
ond periods of congestion. At the

physical layer, RapidIO offers PCIe-
style flow control supplemented
with a simple retry mechanism.
The simple retry mechanism is
very efficient to implement, with
minimal performance penalty
compared to PCIe-style flow con-
trol. The RapidIO physical-layer
flow control also includes a virtual
output queue-based backpres-
sure mechanism. This mechanism,
introduced in RapidIO 2.0, allows
switches and end-points to learn
which destinations are congested,
and to send traffic to uncon-
gested destinations. This feature
enables distributed decision mak-
ing, ensuring that available fabric
bandwidth is maximally utilised.
The latency of decision-making is
low, as congestion information is
exchanged using control symbols
which, as already discussed, can
be embedded within RapidIO
packets.

The virtual output queue
backpressure mechanism is il-
lustrated in Figure 4. In the top
panel, the source is able to send
much faster than EndPoint (EP) 1
can accept packets. This results in
a congestion status control sym-
bol being sent by EP 1 to Switch
2, which cascades the message
back to Source. The congestion
status control symbol could also
have been originated by Switch 2
when it detected congestion on
the port connected to EP 1. Once
Source receives the congestion
status control symbol, it starts to
send packets to EP 2, reducing
the rate of packet transmission to
EP 1.

RapidIO’s logical layer flow
control mechanisms are designed
to avoid congestion within the
fabric by metering the admis-
sion of packets to the fabric, thus
managing congestion at the
network level. This approach is
similar to Ethernet-based software
protocols. Admission of packets
for specific flows can be adminis-
tered through an XON/XOFF type
protocol, as well as by rate-based
and credit-based flow control.
Perhaps most importantly, these
flow control mechanisms can also
be used at the application layer
to engineer software application

performance. Best of all, these
mechanisms were designed to be
implemented in hardware, free-
ing precious CPU cycles to deliver
value to the customer. RapidIO’s
flow control mechanisms ensure
that RapidIO-based systems use
available bandwidth in an effi-
cient, predictable manner.

Summary
Ethernet, PCIe, and RapidIO are
all based on similar SerDes tech-
nology. SerDes technology is
therefore not a differentiator for
these technologies, but the way
they make use of the available
bandwidth is. Each technology is
optimised for a particular applica-
tion space.

Ethernet has been optimised
for networks which are geo-
graphically distributed, have long
latencies, and dynamic network
configurations. PCIe has been op-
timised to support a hierarchical
bus structure on a single board.
Both have been used for on-
board, inter-board, and inter-chas-
sis communications, and in many
cases both are used in the same
system. RapidIO has the potential
to combine the benefits of these
two interconnects into a single in-
terconnect, with associated power
and cost savings.

RapidIO is the best intercon-
nect choice for embedded sys-
tems. RapidIO has capabilities
similar to PCIe and Ethernet, as
well as capabilities that other
interconnects will not duplicate,
such as:
•	 Low latency, low jitter distri-

bution of system events
•	 Combined link level and

network level flow control
mechanisms

•	 Configurable error detection
and topology agnostic rout-
ing enable efficient sparing,
high reliability and availabil-
ity

•	 Hardware implementation
of both read/write and in-
ter-process communication
messaging semantics
These capabilities allow system

architects to create better per-
forming systems which consume
less power and are easier to scale.

� eetindia.com | EE Times-India

