

I2C protocol Video Group Limerick
Video Applications August-2006 Page 1 of 7

I2C basics application note

I2C (Inter-Integrated Circuit bus) is a protocol for providing communications links between
integrated circuits. The I2C bus uses only two lines, SDA (serial data line) and SCL (serial clock
line). These are bi-directional, open drain/collector lines, which are pulled up to +5V or +3.3V via
a resistor or current source. Outputs from each I2C compatible device are connected together in a
wired AND configuration, so devices communicate by pulling the bus line low. If both SDA and
SCL lines are high, this indicates an idle condition and in this situation, any device is free to
initiate communications. This is a true multi-master bus which uses collision detection and
arbitration. A master is the device which requests and initiates communications with a slave,
which is another device known by unique addresses. Data transfer is synchronized by the SCL
line which is a clock generated by the master. Data transfers are 8-bit orientated with the MSB
transmitted first and occur serially over the SDA line at a rate of 100kb/s, 400kb/s or 3.4Mb/s
depending on the mode of operation.

Protocol for the bus is outlined below:

 For data on the SDA line to be considered valid, it must be stable during the High period
of the clock, thus data may only change when the clock (SCL) line is Low.

 The protocol defines unique start and stop conditions:
• A start condition is signified by a High to Low transition on the SDA line while

SCL is High.
• A stop condition is signified by a Low to High transition on the SDA line while

SCL is High.

I2C protocol Video Group Limerick
Video Applications August-2006 Page 2 of 7

In order to initiate communications, the master transmits a start condition followed by the 8-bit
address of the slave device. When a peripheral recognizes the address it transmits an
acknowledgment by pulling the SDA line low. Transmitting a byte of data or an address takes
eight clock cycles, but the master also generates a ninth cycle, during which it releases the SDA
line (which returns high). This is an acknowledge clock pulse during which the receiver must pull
the SDA line low and keep it low during the High period of the clock in order to acknowledge the
previous byte or address. If the slave is not ready to receive more data it may produce a no
acknowledge by leaving the line high. This will cause the master to either abort the transfer by
producing a stop condition or suspend the transfer by producing a repeated start. A repeated start
condition indicates that the bus is busy and the master retains possession.

The predefined procedures for the read and write operations, as used with the
ADV740xA/ADV718xB decoders, are given below:

Write Sequence (see fig. 1. below)
1) Send the start condition
2) Send the ADV740xA/ADV718xB slave address (0x40, ALSB = 0) / (0x42,ALSB = 1)
3) check for the acknowledge from ADV740xA/ADV718xB
4) Send the sub-address to be written to.
5) check for the acknowledge from ADV740xA/ADV718xB
8) Send the data to write to specified subaddress
9) check for the acknowledge from ADV740xA/ADV718xB
10) If No-acknowledge send the stop condition
13) Send a stop condition

I2C protocol Video Group Limerick
Video Applications August-2006 Page 3 of 7

Read Sequence (see fig. 1. below)
1) Send the start condition
2) Send the ADV740xA/ADV718xB slave address (0x40, ALSB = 0) / (0x42,ALSB = 1)
3) check for the acknowledge from ADV740xA/ADV718xB
4) Send the sub-address to be read from
5) check for the acknowledge from ADV740xA/ADV718xB
7) Send the start condition
8) Send the slave address = 0x41 / 0x43 for a read operation (LSB = 1)
9) check for the acknowledge from ADV740xA/ADV718xB
10) If No-acknowledge send the stop condition
11) If acknowledged read the data from specified sub-address
12) Send a No-Acknowledge
13) Send a stop condition

The sequences above are depicted graphically as shown below:

Fig.1. Read and write sequences

It should be noted that the decoders above have two possible slave addresses for both
read and write operations, depending on the logic level of the ALSB, which is bit 1 of the
slave address. The LSB (bit 0) sets either a read or write operation. Table 1 below
summarizes this information:

Table 1
ALSB R/W Slave Address
0 0 0x40
0 1 0x41
1 0 0x42
1 1 0x43

We should now be able to predict the waveforms that would be produced if we were to
hook up an oscilloscope to the SDA and SCL lines during a read or write operation. Let
us arbitrarily choose a value of 0xC8 to be written to sub address 1 of a slave device with
address 0x42. A sub address is a location within the memory map of the addressed slave
device. For this write operation, we would expect the following:

 The SDA and SCL lines should be initially High
 A start condition is issued

I2C protocol Video Group Limerick
Video Applications August-2006 Page 4 of 7

 During the high period of the next 8 clock pulses the master should transmit
01000010 (device address 0x42) over the SDA line

 SDA should be pulled low by the slave during the high period of the ninth clock
pulse as an acknowledgement of its address

 During the high period of the next 8 clock pulses the master should transmit
00000001 (sub address 0x01) over the SDA line

 SDA should be pulled low by the slave during the high period of the ninth clock
pulse as an acknowledgement of this address

 During the high period of the next 8 clock pulses the master should transmit
11001000 (Data to be written 0xC8) over the SDA line

 SDA should be pulled low by the slave during the high period of the ninth clock
pulse as an acknowledgement of this data

 Stop condition is issued
 SDA and SCL lines should return High

Carrying out this write operation yielded the waveform in fig. 2 below. SCL on top and
SDA below are shown overlapping for ease of timing comparison:

Fig. 2 I2C write sequence

I2C protocol Video Group Limerick
Video Applications August-2006 Page 5 of 7

We should now be able to read the value 0xC8 back from sub-address 01. For this read
operation, we would expect the following:

 The SDA and SCL lines should be initially High
 A start condition is issued
 During the high period of the next 8 clock pulses the master should transmit

01000010 (device address 0x42) over the SDA line (See fig. (a) below)
 SDA should be pulled low by the slave during the high period of the ninth clock

pulse as an acknowledgement of its address
 During the high period of the next 8 clock pulses the master should transmit

00000001 (sub address 0x01) over the SDA line (See fig. (b) below)
 Repeated start condition is issued so that the next byte will be interpreted as an

address and not data to be written (See fig. (c) below).
 The LSB of the device address is set to indicate a read operation, 0x43 is thus

transmitted to the slave
 During the high period of the next 8 clock pulses the slave should transmit

11001000 (Data to be read 0xC8) over the SDA line (See fig. (d) below)
 No acknowledge from the master indicates the last byte required has been read
 Stop condition is issued
 SDA and SCL lines should return High

Fig. (a)

↓

I2C protocol Video Group Limerick
Video Applications August-2006 Page 6 of 7

Fig. (b)

↓
Fig. (c)

I2C protocol Video Group Limerick
Video Applications August-2006 Page 7 of 7

↓
Fig. (d)

