

Application Report SBOA055A-March 1993-Revised March 2005

High-Performance Linear Products

Compensate Transimpedance Amplifiers Intuitively

Tony Wang, Barry Erhman

Transimpedance amplifiers are used to convert low-level photodiode currents to usable voltage signals. All too often the amplifiers have to be empirically compensated to operate properly. The problem can be easily understood if one looks at all the elements involved. Figure 1 shows the typical photodiode application.

The ideal transimpedance transfer function is, by inspection:

$$V_{OUT} = -I_{S} \cdot Z_{F} = -I_{S} \cdot \frac{R_{F}}{1 + j2\pi f R_{F} C_{F}}$$

This equation suggests that the frequency response is strictly due to the feedback network. This does not explain why transimpedance amplifiers are prone to oscillate. Figure 2 provides more insight into the stability problem. The photodiode is replaced with an ideal current source in parallel with its equivalent resistance, R_D , and capacitance, C_D . The op amp input capacitance cannot be considered insignificant and should be included as part of C_D .

The noise gain (i.e., the noninverting closed-loop gain) of this configuration determines the stability of the circuit. The reason for this is that any noise signal, no matter how small, can trigger an unstable circuit into oscillation. From inspection, the transfer function can be determined to be:

$$A_{CL}(f) = \frac{R_F + R_D}{R_D} \cdot \frac{1 + j2\pi f \left(\frac{R_F R_D}{R_F + R_D}\right) (C_F + C_D)}{1 + j2\pi f R_F C_F}$$
$$A_{CL}(f) = \frac{R_F + R_D}{R_D} \cdot \frac{1 + j\frac{f}{f_Z}}{1 + j\frac{f}{f_D}}$$

(2)

1

(1)

The dc gain is set solely by the resistors. The pole frequency, f_P , is set by the feedback network, just as in the transimpedance function. The zero frequency, f_Z , is determined by **(a)** the sum of the feedback and the diode capacitances and **(b)** the parallel combination of the feedback and the diode resistances.



Figure 1. Typical Photodiode Transimpedance Amplifier

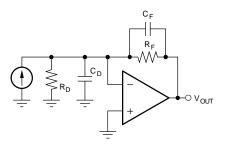


Figure 2. Photodiode Modeled with Ideal Elements

(6)

Typically, the feedback resistor is much smaller than the photodiode's equivalent resistance. This makes the dc resistive gain unity. The value of the parallel combination is essentially equal to the feedback resistor alone. Therefore, f_{z} will always be lower than f_{P} , as shown in Figure 3.

Figure 4 depicts three different scenarios for the intersection of the closed-loop response curve with the open-loop gain curve. Stability degradation will occur when f_P falls outside the open-loop gain curve. For f_{P1} the circuit will oscillate. If f_P lies inside the open-loop gain curve, the transimpedance circuit will be unconditionally stable. This is the case for f_{P2} but stability is traded off for transimpedance bandwidth. The optimum solution paces f_P on the open-loop gain curve as shown for f_{P3} .

Since f_P is determined by the feedback network, judicious selection of C_F is all that is necessary. This process can be greatly simplified by noting that the high frequency asymptote for the noise gain is determined by capacitance values alone:

$$A_{CL}(f >> f_{P}) = \frac{C_{F} + C_{D}}{C_{F}}$$
(3)

This value should be equal to the op amp's open-loop gain at f_P . The open-loop gain is found by dividing the op amp's gainbandwidth product (GBW) by f_P . Setting these two expressions equal yields:

$$\frac{\text{GBW}}{\text{f}_{P}} = \frac{\text{C}_{F} + \text{C}_{D}}{\text{C}_{F}}$$
(4)

Simple substitution yields a quadratic equation whose only real, positive solution is:

$$C_{F} = \frac{1}{4\pi R_{F}GBW} \left[1 + \sqrt{\left(1 + 8\pi R_{F}C_{D}GBW\right)} \right]$$
(5)

This simple equation selects the appropriate feedback capacitor for guaranteed stability once the op amp's minimum gainbandwidth and the photodiode's maximum capacitance are determined.

Further insight can be gained with some simplifying assumptions and a little algebra:

$$f_{P} \approx \sqrt{\frac{GBW}{2\pi R_{F}C_{D}}}$$

This result indicates that, for a given op amp and photodiode, transimpedance bandwidth is inversely related to the square root of the feedback resistor. Thus, if bandwidth is a critical requirement, the best approach may be to opt for a moderate transimpedance gain stage followed by a broadband voltage gain stage.

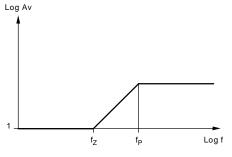


Figure 3. Bode Plot of Noise Analysis

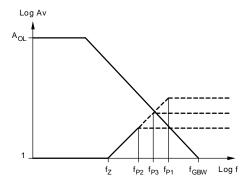


Figure 4. Various Feedback Responses Intersecting Op Amp Open-Loop Gain

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated