
Application Report
SPRAA13A − July 2005

1

TMS320C6000� EMIF to USB Interfacing Using Cypress
EZ-USB SX2

Prateek Bansal, Todd Hiers C6000 Applications

ABSTRACT

This application report describes a glueless interface between a Texas Instruments
TMS320C6416 digital signal processor (DSP) reference board and a Cypress CY7C68001 (EZ-
USB SX2_�) USB device. The two devices are interfaced through the external memory interface
(EMIF) of the C6416 DSP.

The document provides a pin connection diagram demonstrating the interface between the two
devices. In addition, it provides tables and timing diagrams indicating that timing requirements for
such an interface were satisfied.

The application report describes interface with the TMS320C6416 DSP but the details in the ap-
plication report will be applicable to other TMS320C6000� devices (C671x, DM64x, C64x) as
well.

This application report contains project code that can be downloaded from this link.
http://www−s.ti.com/sc/psheets/spraa13a/spraa13a.zip

Contents

1 Introduction 2 .

2 Interface 2 .
2.1 Interrupts 4 .
2.2 Flags 4 .

3 Configuration 6 .
3.1 C6416 DSP Configuration 6 .
3.2 SX2 Configuration 7 .

4 Communication 8 .
4.1 Writing to SX2 8 .
4.2 Reading From SX2 9 .

5 Timing Requirements 10 .

6 Firmware 12 .
6.1 C6416 Initalization 14 .
6.2 Interrupt 14 .
6.3 Enumeration 14 .
6.4 Low Level I/O Functions 14 .
6.5 Endpoint 0 Transfer 14 .
6.6 Data Loopback 15 .

7 Conclusion 17 .

Trademarks are the property of their respective owners.

SPRAA13A

2 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

8 References 18 .

List of Figures

Figure 1. TMS320C6416 to SX2 Interface Block Diagram 3 .
Figure 2. Example Flag Configuration − Polling 6 .
Figure 3. Example Flag Configuration − Interrupt 7 .
Figure 4. Timing Diagram for Asynchronous Read 12 .
Figure 5. Timing Diagram for Asynchronous Write 12 .
Figure 6. System Setup 13 .
Figure 7. Firmware Code Flowchart 14 .

SPRAA13A

3 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

List of Tables

Table 1. SX2 toTMS320C6416 Pin Connections 4 .
Table 2. Endpoints and the Corresponding Memory Address Range 5 .
Table 3. Command Address Write Byte 9 .
Table 4. Command Data Write Byte One 9 .
Table 5. Command Data Write Byte Two 9 .
Table 6. Command Address Read Byte 10 .
Table 7. TMS320C6416 Timing Requirements 11 .
Table 8. SX2Timing Requirements 11 .

1 Introduction
The Cypress CY7C68001 (EZ-USB SX2) device enables USB 2.0 support for an external
master device, such as the TMS320C6000 DSP. The TMS320C6416 DSP reference design
implementation using the SX2 offers the following:

• An industry standard serial interface between a digital signal processor (TMS320C6416) and
peripherals such as mass storage and imaging devices.

• Programmability to operate at high (480 Mbps) or full (12 Mbps) speed.

• 4K bytes First In First Out (FIFO) for maximum flexibility and throughput.

• 8- or 16-bit bidirectional data bus for command and data input/output.

The SX2 device is interfaced to the 16-bit external memory interface B (EMIF B) of
TMS320C6416 device. The EMIF B is a secondary interface of the C6416 while the EMIF A is
the primary EMIF.

2 Interface
The SX2 communicates with the EMIF B asynchronously. Figure 1 shows the pin connection
between the two devices and Table 1 describes pin functionality of the two devices. The
schematics for this reference design can be downloaded from this link:

http://www−s.ti.com/sc/psheets/sprc137/sprc137.zip

GP5/EXT_INT5
GP6/EXT_INT6
GP7/EXT_INT7

GP0
GP1
GP3

BCE3
BAOE/BSDRAS/BSOE

BARE/BSDCAS/BSDADS/BSRE
BAWE/BSDWE/BSWE

BED[16:0]
BEA[13:11]

TMS320C6416

INT
READY
FLAG A
FLAG B
WAKEUP
FLAG C
FLAG D/ CS
SLOE
SLRD
SLWR
PKTEND
FD[15:0]
FIFOADR[2:0]

CY7C68001

3.3 V

Figure 1. TMS320C6416 to SX2 Interface Block Diagram

SPRAA13A

4 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

Table 1. SX2 toTMS320C6416 Pin Connections

SX2 Pin TMS320C6416 Pin Function

INT# GP5/EXT_INT5 INT# signal indicates that the SX2 has data to be read, or that an interrupt
event has occurred.

READY GP6/EXT_INT6 READY gates DSP command reads and writes

FLAG A GP7/EXT_INT7 FLAGA pins report the status of the FIFO selected by the FIFOADR[2:0]
pins. At reset, these pin report the status of the programmable flag.

FLAG B GP0 FLAGB pins report the status of the FIFO selected by the FIFOADR[2:0]
pins. At reset, these pin report the status of the full flag.

WAKEUP GP1 This pin awakens the SX2 from a low-power mode

FLAG C GP3 FLAGC pins report the status of the FIFO selected by the FIFOADR[2:0]
pins. At reset, these pin report the status of the empty flag.

FLAG D/CS# BCE3 FLAGD is connected to the chip select function.

SLOE BAOE/BSDRAS/BSOE When asserted, the data bus is driven by SX2

SLRD BARE/BSDCAS/BSDADS/BSRE When asserted, the FIFO pointer is incremented on each rising edge of
IFCLK.

SLWR BAWE/BSDWE/BSWE When asserted, data on the FD bus is written to the FIFO and the FIFO
pointer is incremented on each rising edge of the IFCLK

PKTEND Always high. Commits the current buffer to USB.

FD[15:0] BED[15:0] Data Bus

FIFOADR[2:0] BEA[13:11] Address Bus Select for FIFO

SPRAA13A

5 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

The SX2 presents two interfaces to the DSP:

1. FIFO Interface: This has eight 512 byte blocks (4K bytes total) in the endpoint RAM that
directly serve as FIFO memories. There are four configurable endpoints that share this 4
KB memory space named EP2, EP4, EP6, and EP8

2. Command Interface: This is used to setup the SX2, read status, load descriptors, and
access Endpoint 0.

The selection of individual FIFOs or the command interface is done through FIFOADR[2:0] pins.
These FIFOs/command interfaces are addressed by the following memory range in CE3 space
of the EMIF B. The endpoints and their corresponding memory address range on the DSP are
tabulated in Table 2. The address range is calculated knowing that the EMIF B uses the BEA
[20:1] pins for addressing.

Table 2. Endpoints and the Corresponding Memory Address Range

Endpoints Start Address End Address

FIFO2 0x6C00 0000 0x6C00 03FF

FIFO4 0x6C00 0800 0x6C00 0BFF

FIFO6 0x6C00 1000 0x6C00 13FF

FIFO8 0x6C00 1800 0x6C00 1BFF

Endpoint 0 (Command Interface) 0x6C00 2000 0x6C00 203F

2.1 Interrupts

The SX2 provides an output signal to the DSP for every interrupt condition. The SX2 has six
interrupt sources, each of which can be enabled or disabled by setting or clearing the
corresponding bit in the INTENABLE register. When an interrupt occurs, the INT# pin is asserted
and the bit corresponding to the interrupt source is set in the INTENABLE register. On INT#
assertion, the Interrupt Status byte (INTENABLE register) presents itself on the lower portion of
the data bus (BED[7:0]). In order to read a SX2 register, the DSP is required to send a register
read request. However, on interrupt occurrence, the DSP will not require a register read request
for reading Interrupt Status byte. It can directly read the Interrupt status byte present on the data
bus after an interrupt occurs. On reading the interrupt status byte, the DSP can identify the
interrupt source and service it accordingly.

2.2 Flags

The FIFO Flag pins (FLAG A-FLAG C) report the status of the FIFO as selected by the
FIFOADR[2:0] pin configurations. The FIFO flag pins can be independently configured, using the
FLAGSAB/FLAGSCD registers to correspond to a programmable, full or empty flag from any of
the four endpoint FIFOs.

On the reference board, FLAG D functions as a chip select pin.

As seen in Figure 1, the FLAG A output pin can be used either as a general purpose input or as
an external interrupt to the DSP depending on the DSP’s pin configuration. This gives an option
of using software polling or hardware control via interrupt on the FLAG A status.

SPRAA13A

6 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

Figure 1 also indicates that the FLAG B and the FLAG C pins can only be used as general
purpose inputs. This indicates that software polling is required to service the FLAG B and the
FLAG C pins.

Some example FIFO status pin configurations are illustrated as follows.

EDMA
read burst

Copies the data
from EP2 FIFO

to internal
memory

Is
FLAG B
asserted

(poll on GP0)

Yes

No

EP2 FIFO
empty

EP2 FIFO
full

FLAG B is de−asserted

Figure 2. Example Flag Configuration − Polling

Consider the example shown in Figure 2. The FIFOADR[2:0] pins are configured to select the
Endpoint 2 (EP2) FIFO. Assuming that the FLAG B pin is in its default state, this indicates a full
flag status of the selected FIFO endpoint on FIFOADR pins i.e., EP2. The full flag status is
monitored on the GP0 pin of the interface. This implies that software polling is required to
service the GP0 or the FLAG B pin status. As a result, Figure 2 highlights an example
application performing an EDMA read burst equal to the depth of the FIFO where the FLAG B
pin reports that the EP2 FIFO is full.

SPRAA13A

7 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

EDMA
read burst

Copies the data
from EP2 FIFO

to internal
memory

EP2 FIFO
empty

EP2 FIFO
half full

F
LA

G
 A

 is
 d

e−
as

se
rt

ed

FLAG A is asserted
It trigers the

EDMA process

Figure 3. Example Flag Configuration − Interrupt

As shown in Figure 3, another application might require triggering an EDMA read burst event
automatically when the FIFO is half full. An external interrupt will be needed for triggering. This
requires the use of FLAG A pin as it can only be configured as an external interrupt. The FLAG
A pin in its default state shows the programmable flag(PF) status of the selected FIFO endpoint
on FIFOADR[2:0]. Assume that the EP2 FIFO is selected. The programmable flag can be setup,
using the EPxPFH/KL registers, to indicate when the EP2 FIFO fills up to half of its capacity. Any
interrupt occurrence on the FLAG A pin with this configuration triggers the EDMA read burst
automatically.

There is an alternate way of checking the status of the endpoint flags. This requires reading the
EPxxFLAGS register. The details of reading an SX2 register is described in Section 4.2

3 Configuration

3.1 C6416 DSP Configuration

The C6416 core can be programmed to run up to 720 MHz. This reference design is configured
as follows:

• DSP boots in little-endian, PCI mode.
• DSP EMIF B runs at 120 MHz (CPU/6).
• DSP EMIF A runs at 150 MHz from an external clock.
• SX2 communicates with the EMIF B over the asynchronous memory interface.

Section 5 illustrates the timing requirements for the interface. The setup, strobe, and hold width
were found to be 2, 6, and 3 clock cycles for reads and 2, 6, and 9 clock cycles for writes
respectively with the clock synchronized to BECLKOUT1 (120 MHz). Since the CE3 space
control register supports the maximum write hold width of 7 clock cycles, the CE3 space clock
was synchronized to BECLKOUT2 running at 60 MHz (EMIF B input clock divided by
2 = 120/2 = 60 MHz). This is required to set the SNCCLK bit in CE Space Secondary Control
Register (CESEC3) to 1 and the setup, strobe, and hold width in CE3 Space Control Register
(CECTL3) to 1, 3, and 2 clock cycles for reads and 1, 3, and 5 clock cycles for writes
respectively.

SPRAA13A

8 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

The following are the registers required to be configured on the DSP:

• Global Purpose Enable Register (GPEN).

The GPEN register bits need to be set to indicate if the flag output pins of the SX2 are used
as an external interrupt or a general purpose input (GPIO).

• Global Purpose Direction Register (GPDIR)

It configures the GPIO pins to be inputs or outputs.

• CE3 Space Control Register (CECTL3)

It specifies the setup, strobe and hold fields for both read and write cycles on the interface.

• CE3 Space Secondary Control Register (CESEC3)

The SNCCLK bit in the register is set to 1 to synchronize the CE3 signals to BECLKOUT2.

3.2 SX2 Configuration

There are a number of SX2 registers which need to be initialized to define the communication
interface. The details of the SX2 register set can be found in Reference [2]. Some of the main
registers are highlighted below:

• Endpoint Packet Length Registers (EPxPKTLENH)

The WORDWIDE bit in the register needs to be set appropriately to indicate an 8 or 16 bit
interface.

• Endpoint Configuration Registers (EPxCFG)

The endpoints EP 2, 4, 6 and 8 share eight 512 byte buffers supporting bulk, interrupt and
isochronous transfers. EP2 and EP6 can be double-, triple- or quad buffered. EP4 and EP8
can only be double-buffered. The endpoints can be configured by setting the EPxCFG
registers with endpoint buffer size specified in EPxPKTLENH/L registers. The default
endpoint memory configuration is:

EP2: Bulk OUT, 512 bytes/packet, double buffered
EP4: Bulk OUT, 512 bytes/packet, double buffered
EP6: Bulk IN, 512 bytes/packet, double buffered
EP8: Bulk IN, 512 bytes/packet, double buffered

• FIFO Flag x Assignments Registers (FLAGSAB/FLAGSCD)

These registers need to be programmed to configure the various FIFO flags to reflect
appropriate status of the endpoint buffers.

• EP × Programmable Flag Registers (EPxPFH/L)

If a FIFO flag is selected to be a programmable flag, this register is configured to define the
threshold condition for the flag assertion.

SPRAA13A

9 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

4 Communication

4.1 Writing to SX2

For data writes, the FIFOADR pins should be selected to write to appropriate IN endpoint FIFO
buffer.

There are two types of command write sequences to SX2:

• The first is for downloading custom descriptor information into the SX2 which it uses for
subsequent enumerations. There are two types of descriptor downloads.
a. Downloading only Vendor ID (VID), Product ID (PID) and Device ID (DID) information. In

this case, the SX2 enumerates with its default interface and endpoint configurations.
b. Downloading complete descriptor information including interface and endpoint

configuration information.

• The second command write sequence is for programming the SX2 control registers. This
requires writing a command byte followed by two data bytes. Prior to writing the register, two
conditions must be met:
c. BED[13:11] pins must be [1 0 0].
d. Ready line must be HIGH. The DSP should not initiate a command if the READY line or

GP6 pin is not in a high state.

The command byte format is shown in Table 3.

Table 3. Command Address Write Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Address/Data
= 1

Read/Write
= 0

A5 A4 A3 A2 A1 A0

• Each byte written to SX2 is either an address or data byte as determined by Bit7. Bit7 = 1
specifies an address byte and Bit7 = 0 indicates a data byte.

• For an address byte, Bit6 determines whether it is a read or write request. Bit6 = 0 implies it
is a write request and Bit6 = 1 implies it is a read request.

• Bits[5:0] hold the register address of the request.

• For a data byte, the Bits[3:0] contain the data and Bits[6:5] are do not care.

To write a byte into SX2, the command address byte is followed by two data bytes. The first
command data byte contains the upper nibble of data (Table 4) and the second data byte has
the lower nibble of data (Table 5).

Table 4. Command Data Write Byte One

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 X X X D7 D6 D5 D4

Table 5. Command Data Write Byte Two

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 X X X D3 D2 D1 D0

SPRAA13A

10 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

For example:

To write the byte <00110110> into the IFCONFIG register (Address = 0x01), the sequence of
commands is as follows:

• Write the command address byte 1000 0001

• Once the byte has been received by the SX2, the READY pin of SX2 (GP6 pin of C6416)
goes low to inform that no more data should be sent. Once it is ready to receive data, the
READY pin goes high. Hence GP6 pin (interfaced to READY pin) should be polled for high
state before writing data bytes to SX2

• Write the first command data byte 0000 0011

• Write the second command data byte 0000 0110

4.2 Reading From SX2

For data reads, the FIFOADR pins should be selected to read from the appropriate OUT
endpoint FIFO buffer directly. Register reads require first setting the register address that is to
be read.

The INT# pin signals a USB event occurrence when in non-register read mode. When in a
register read mode as explained in Section 2 [Interrupts], the INT pin signals the DSP that the
requested register status byte is available for reading from the lower portion of data bus.
Remember in order to read the control register content, the Ready signal should be asserted.

Table 6. Command Address Read Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Address/Data
 = 1

Read/Write
 = 1

A5 A4 A3 A2 A1 A0

For example:

To read the contents of IFCONFIG register (0x01), the sequence of commands is as follows:

• Poll GP6 pin for high state to check if SX2 is ready to receive the information

• Send command address byte 1100 0001

• Poll GP5 pin (INT# pin of SX2) for low state. If in asserted state, read the data from the data
bus

SPRAA13A

11 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

5 Timing Requirements

Table 7. TMS320C6416 Timing Requirements

Min Max

tsu(EDV-AREH) Setup time, EDx valid before ARE* high 6.2

th(AREH-EDV) Hold time, EDx valid after ARE* high 1

tosu(SELV-AREL) Output setup time, select signals valid to ARE* low RS*E − 1.6

toh(AREH-SELIV) Output hold time, ARE* high to select signals invalid RH*E − 1.7

td(EK01H–AREV) Delay time, ECLKOUT high to ARE* valid 0.8 6.6

tosu(SELV-AWEL) Output setup time, select signals valid to AWE* low WS*E – 1.9

toh(AWEH-SELIV) Output hold time, AWE* high to select signals valid WH*E – 1.7

td(EK01H-AWEV) Delay time, ECLKOUT high to AWE* valid 0.9 6.7

tw(GPIH) Pulse duration for GPIO Inputs high 16.66

tw(GPIL) Pulse duration for GPIO Inputs low 16.66

NOTE: RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold, E = ECLKOUT Time
Period

Table 8. SX2Timing Requirements

Min Max

tRDpwl Pulse width low, SLRD 50

tRDpwh Pulse width high, SLRD 50

tIRD Interrupt to SLRD 0

tXINT SLRD to interrupt/FLAGS output prop delay 70

tXFD SLRD to command/FIFO data output propagation delay 15

tOEon SLOE turn on to FIFO data valid 10.5

tOEoff SLOE turn-off to FIFO data hold 10.5

tWR(pwl) Pulse low, SLWR 50

tWR(pwh) Pulse high, SLWR 70

tSFD Setup time, SLWR to command/FIFO DATA 10

tFDH Hold time, Command/FIFO DATA to SLWR 10

tRDYWR READY to SLWR time 0

tRDY SLWR to READY/FLAGS output propagation delay 70

tSFA Setup time, FIFOADR[2:0] to RD/WR/PKTEND 10

tFAH_RD Hold time, SLRD/PKTEND to FIFOADR[2:0] 20

tFAH_WR SLWR to FIFOADR[2:0] hold time [TBD] 70

SPRAA13A

12 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

1 2 3 4 5 6 7 8

Byte Enable

FIFO Address

N

tXINT

th(AREH−EDV)
tXFD tsu(EDV−AREH)tOEon

tRDpwl
td(EKO1H−AREV)

tosu(SELV−AREL)

toh(AREH−SELIV)

Hold = 2Hold = 2Strobe − 3Strobe − 3Setup = 1Setup = 1

N+1

BECLKOUT2

BCE3

BBE[1:0]*

BEA[13:11]

AOE/SDRAS/SOE*

ARE/SDCAS/SADS/SRE*

BED[15:0]

FLAGS/INT

Figure 4. Timing Diagram for Asynchronous Read

1 2 3 4 5 6 7 8 9 10 11

Byte Enable

FIFO Address

Data

tRDY

tFDH
tSFD

tWRpwl

td(EKO1H−AWEV)
tosu(SELV−AWEL)

toh(AWEH−SELIV)

Hold = 5Hold = 5Strobe = 3Strobe = 3Setup = 1Setup = 1

BECLKOUT2

BCE3

BBE[1:0]*

BEA[13:11]

AWE/SDWE/SWE*

BED[15:0]

READY/FLAGS

Figure 5. Timing Diagram for Asynchronous Write

SPRAA13A

13 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

6 Firmware

The firmware driver code shows low−level communication between the SX2 device and the
TMS320C6416 DSP. The code implements the initialization and data handling that is required
for a typical USB application. The code can be used as a starting framework for any customized
application. It is by no means intended to be an extensive implementation of the USB protocol.

Figure 6 shows the block diagram of a typical USB application. The USB host is typically a PC
and the USB device is the TMS320C6416 DSP interfaced to the SX2 device. The PC application
used for host−side communication is the Cypress EZ−USB Control Panel [Reference 7]. The PC
application (Cypress EZ−USB Control Panel) sends out the USB requests to perform a certain
operation (specified in Chapter 9 of USB 2.0 Specification) and the SX2 device responds to
these requests. If these requests can not be handled by the SX2 device (a slave device) alone, it
interrupts the external master (TMS320C6416 DSP) to service those requests.

USB Device

TMS320C6416

D
ev

ic
e

D
riv

er

CY7C68001
SX2 U

S
B

U
S

B

USB Host

HOST PC
APPLICATION

(Cypress EZ USB Control Panel)

Figure 6. System Setup

The firmware code is written in the C language and structured for reuse in any application. Table
9 describes the function of each files in the firmware:

File Name Function

Vectors.asm Defines the interrupt vector table

C6416_sx2_descriptors.c Defines the default descriptor that is loaded to the SX2 for
enumeration

C6416_sx2_low_level_io.c Implements low level I/O functions for communication be-
tween the TMS320C6416 DSP and the SX2 device

C6416_sx2_regs_init.c Defines initialization values for SX2 registers

C6416_sx2_setup.c Implements the data handling for endpoint 0

C6416_sx2_process.c Implements data loopback between the USB device and PC.

C6416_sx2_main.c Implements the main function that enumerates SX2 and calls
data handling functions.

Figure 7 shows the firmware code flow:

The different components in the flowchart (Figure 7) are explained in further detail:

SPRAA13A

14 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

Initialization of
C6416 DSP EMIF B and

GPIO registers

Enable the
EXT_INT5 of the DSP that

is connected to the INT pin
of the SX2

Initialize the SX2 registers
and load the descriptor

information on SX2

Wait for SX2
enumeration

?

If SETUP interrupt
?

Service the command
request (standard, vector,
class) as per the SETUP

interrupt

If Output data on the
BUS

?

Perform the data handling
request as per the user

specified command
request

Figure 7. Firmware Code Flowchart

SPRAA13A

15 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

6.1 C6416 Initalization

The EMIF B and GPIO registers are initialized on the TMS320C6416 DSP as per Section 3.1.

6.2 Interrupt

The interrupt EXT_INT5 of the TMS320C6416 DSP (connected to the INT pin of SX2 device) is
enabled to identify the SX2 interrupt requests. The interrupt service routine int_isr() services the
SX2 interrupts.

The Interrupt Service Routine distinguishes between the two types of interrupts (requested data
ready or asynchronous interrupt) by examining the read_interrupt flag. If the ISR finds
read_interrupt to be true, it clears the interrupt and does no further processing. This indicates to
the c6416_sx2_read_reg () function that the data is available to read. If read_interrupt is FALSE,
then this interrupt is an asynchronous interrupt that needs to be parsed. Depending on the
source of the interrupt, some flags are set or toggled to tell the other code sections what is
happening. Every time the interrupt occurs, data is ready to be read, and the SX2 calls the
c6416_sx2_low_level_read() function. This is true whether it is requested data or an interrupt
source.

6.3 Enumeration

 The SX2 registers are initialized and the descriptor information is loaded to the SX2 for
enumeration. The descriptor used for this application is defined in the SX2 datasheet. The user
should change the descriptor information as per their application. The SX2 asserts the ENUMOK
interrupt to signal the completion of the enumeration process.

6.4 Low Level I/O Functions

 The low−level I/O functions like reading/writing from SX2 are defined in the file
c6416_sx2_usb_io.c. They are implemented as per Section 4.

6.5 Endpoint 0 Transfer

The SX2 automatically responds to all USB standard requests covered in chapter 9 of the USB
2.0 specification except the Set/Clear Feature Endpoint requests. Some of the standard
requests that are handled automatically by the SX2 device are GET_CONFIGURATION,
GET_DESCRIPTOR, GET_INTERFACE, SET_CONFIGURATION, SET_DESCRIPTOR and
SET_INTERFACE.

When the host issues a Set Feature or a Clear feature request, the SX2 will trigger a SETUP
interrupt to the external master. The USB spec requires that the device respond to the Set/Clear
endpoint feature request by setting/clearing the STALL condition on that endpoint.

The c6416_sx2_setup.c file implements the above functionality. In addition, it also demonstrates
how to handle the Endpoint 0 USB data transfer for standard, class or vendor specific requests.

This example acknowledges the vendor request 0xAA and 0xAB. This vendor request could be
used by the host application to indicate application specific status. The example also uses
vendor requests 0xB6 and 0xB8 to signify a short packet.

SPRAA13A

16 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

All other requests are currently stalled. To stall a request, the external master initiates a write
request for the SETUP register, 0x32, and writes any non−zero value to the register.

To complete endpoint zero data transfers, the ep0buf_ready flag is used. If the SX2 receives a
setup request with a non−zero length, it asserts the EP0BUF interrupt. For an IN request, this
interrupt indicates that the EP0 buffer is available to be written to. For an OUT request, this
interrupt indicates that a packet was transferred from the host to the SX2.

6.6 Data Loopback

The file c6416_sx2_process.c performs bulk data transfers between different endpoints. If there
is bus activity, then the DSP checks to see if the SX2 asserted the FLAGS interrupt. This
indicates that the host sent data to one of the OUT endpoints, EP2 or EP4. If there is OUT data
available, the DSP reads the EP24FLAGS register. This register checks the empty status of EP2
and EP4. If one of the endpoints contains data, the DSP reads data out of the endpoint, one
byte at a time, and subsequently writes the bytes into one of the endpoints used for USB IN
data. EP2 data is looped into EP6, and EP4 data is looped into EP8. The DSP continues to read
and write data until the endpoint becomes empty.

The example can also be used to send an IN data packet of size less than the configured IN
packet size. To do this, use the vendor request 0xB6 or 0xB8 which will write to the INPKTEND
register, thereby committing any data already in EP6 or EP8 to the USB, regardless of the
configured IN packet size.

SPRAA13A

17 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

7 Conclusion

The application note described the interface between the TMS320C6416 DSP and the Cypress
CY7C68001. It provided details about the device configuration and communication protocol for
this interface. The timing requirements were also provided for this interface. Finally, it delved into
the firmware code associated with this interface.

SPRAA13A

18 TMS320C6000� EMIF to USB Interfacing Using Cypress EZ-USB SX2

8 References
1. TMS320C6414,TMS320C6415,TMS320C6416 Fixed-Point Digital Signal Processors Data

Sheet (literature number SPRS146H)

2. CY7C68001 EZ-USB SX2� High-Speed USB Interface Design, Cypress Semiconductor
Corporation http://www.cypress.com/products/datasheet.cfm?partnum=SX2-56PVC

3. TMS320C6000 EMIF to External FIFO Interface Application Report (literature number
SPRA543)

4. Bulk Transfers with the Cypress EZ-USB SX2� Connected to a Hitachi SH3� DMA
Interface, Cypress Semiconductor Corporation
http://www.cypress.com/products/datasheet.cfm?partnum=SX2-56PVC

5. TMS320C6000 EMIF to External Asynchronous SRAM Interface Application Report
(literature number SPRA542A)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

