
Using Serial Rapid I/O (SRIO)

Introduction
SRIO is one of the most high-speed connections available between two devices on the market
today. At top speed, you can obtain ~25Gbps bandwidth – not bad for 4 ports transmitting and
receiving differential data. The basic idea of how this peripheral works is not difficult to
understand. First, we designed this peripheral to meet or exceed the Rapid I/O spec. Second, there
are two ways to use SRIO: (1) direct I/O which is similar to doing a DMA transfer from a source
on one device to a destination on another device; (2) Message passing. The concepts are relatively
easy to understand, but sometimes is almost too abstract to get your hands around. Most users
prefer direct I/O due to speed, but we’ll cover both methods in this chapter.

Objectives
 Provide an introduction to what SRIO is and its basic terminology

 Explain an example using Direct I/O and using CSL to program the transfer.

 Discuss what Message Passing is and do a few examples. Then, compare/contrast the two
methods

 Lab: build, load and run a DSK example to watch data transfer from the DSK to the
Mezzanine card.

Outline
Introduction to SRIO
Basic Terminology
Example – Direct I/O & CSL
Programming Model
Intro to Message Passing
Message Passing Examples
Compare/Contrast Direct I/O vs.
Message Passing
Performance Tips, Collateral,
Software Support
Lab 9

Technical Training
Organization

T TO

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 1

Module Topics

Module Topics
Using Serial Rapid I/O (SRIO)... 9-1

Module Topics... 9-2
Introduction to SRIO... 9-3

Why Use C6455 SRIO ... 9-3
SRIO Topologies .. 9-4
SRIO Signals and Ports .. 9-4

Basic Terminology .. 9-5
Introduction .. 9-5
SCR and SRIO.. 9-6
SRIO Data Path .. 9-6
SRIO Block Diagram (Direct I/O and Message Passing) ... 9-7

Example – Direct I/O and CSL Programming .. 9-8
Example #1 – Direct I/O & CSL Programming Model .. 9-8
Direct I/O – Load Store Unit (LSU) ... 9-9
Step 1 – Initialize the SRIO Module... 9-9
Steps 2-3 – Configure LSU & Execute Command ..9-10
Step 5 – Issue Doorbell Interrupt to Target ...9-10

Message Passing..9-11
Introduction & Message Passing Basics..9-11
CPPI – Communication Port Programming...9-12

Message Passing Examples ...9-13
Example #1 – Receive a MSG...9-13
Example #2 – 3 C6455’s in One System ...9-14

Compare/Contrast Direct I/O vs. Message Passing ..9-15
Performance Tips, Collateral & Software Support..9-16
Lab 9: Using C6455 SRIO ...9-17

Lab Overview: ...9-17
Lab 9 Procedure ..9-18

Part 1 – Running the Code...9-18

9 - 2 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Introduction to SRIO

Introduction to SRIO

Why Use C6455 SRIO

Why Use C6455 SRIO?
Problem: Your application needs to share
data at a hi-speed to another processor.
Dual Access memories are expensive and
need external arbitration logic as well as
sharing EMIF bandwidth.

• Simplifies interconnects while using an
industry-supported high speed protocol

• C6455 is a high performance programmable
DSP allowing flexible system partitioning

• No arbitration logic thus your design can be
easily expandable for future growth

• All DSPs run in parallel thus maximizing
system throughput

• Two upper layer communication solutions
allowing you to pick the optimal method for
your system’s needs

Solution: Use SRIO

MSG Passing Direct I/O
Technical Training

Organization

T TO

SRIO
SWITCH

C64x
Motion

Est

FPGA

ASIC

10G.EMAC/OC1/OC3

Fiber Optic Switch

Front-end
Decode &
Back-end
Encode

Medium Speed Switch

G.EMAC/T1/E1

C64x C64x

C64x

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 3

Introduction to SRIO

SRIO Topologies

SRIO – Flexible Topologies

SWITCH

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64x

C64xC64x

C64x

SWITCHC64x

C64x

C64x

C64x

C64x

C64x

FPGA

ASIC

C64xC64xC64x

Ring via 2 1x links

1x Connection to Switch

1x Switch Connection w/Locals

Mesh with 4 1x Links

5 DSPs – Complete Connection

SRIO Signals and Ports
SRIO – Serial Interface w/Differential Signals

Rx

Rx

Rx

Rx

DSP1

Clock
Recovery

Clock
Recovery

Clock
Recovery

Clock
Recovery

S2P 8b/10b
Decode

S2P 8b/10b
Decode

S2P 8b/10b
Decode

S2P 8b/10b
Decode

P2S

P2S

P2S

P2S

Tx

Tx

Tx

Tx

8b/10b
Coding

8b/10b
Coding

8b/10b
Coding

8b/10b
CodingRx

SRIO Block

Clock
Recovery

Clock
Recovery

Clock
Recovery

Clock
Recovery

S2P8b/10b
Decode

S2P8b/10b
Decode

S2P8b/10b
Decode

S2P8b/10b
Decode

P2S

P2S

P2S

P2S

1.25 - 3.125Gbps
Differential Data

8b/10b
Coding

8b/10b
Coding

8b/10b
Coding

8b/10b
Coding

Rx

Rx

Rx

Tx

Tx

Tx

Tx

DSP0
SRIO Block

Technical Training
Organization

T TO

Actual data rate is (0.80 * raw rate) shown above (due to 8b/10b decoding)
Total combined data rate is 2 (Tx/Rx) * 4 ports x 3.125 Gbps * 0.8 = 20Gbps
A Tx/Rx pair on a single device is called a “link” or “lane”

9 - 4 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Basic Terminology

Basic Terminology

Introduction

Basic Terminology

Technical Training
Organization

T TO

Architecture

Programming/Features
• Device ID: Identifier of an end point connected to the RapidIO interconnect.

• DoorBell: Method for the Sender to interrupt the destination (target) device
• DirectIO: Sender can write directly to the target device

• Message Passing: Method to send packets between src/dst using packet’s dest
for a mail box.

• Packet Forwarding: Send packets to a target not directly connected to the sender
• RapidIO (for more info): www.rapidio.org

• Port: Internal to the SRIO Module on the C6455 (it has 4 physical ports: 0-3)
• Link/Lane: Each Rx/Tx pair is a “link” or “lane”

• Point-to-Point: Two devices directly connected to each other

• LSU: Load/Store Unit – controls the transmission of DirectIO packets,
Doorbell and maintenance packets.

• CPPI: “Communication Port Programming Interface” used for Message Passing

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 5

Basic Terminology

SCR and SRIO

SCR & SRIO
EDMA3

TC0
TC1
TC2
TC3

EMAC
HPI
PCI

SRIO

TCP2

VCP2
McBSP

PCI
Utopia

DDR2

L2
Mem
Ctrl

L2

L1P

L1D

D
S
M
L

D
S
M
L

CPU

C64x+ MegaModule

M

S

S

M M

S

IDMA

L1P
Mem
Ctrl

L1D
Mem
Ctrl

AET

DATA
SCR CFG

SCR

EMIF

128

128

Cfg

PERIPH
M S

M S
Master Slave

SRIO: has its own DMA engine – can initiate a transfer (has access to all memory locations)
SRIO configuration registers are connected to the CFG SCR

32

PERIPH =
All peripheral’s
Cfg registers

SCR = Switched Central Resource
32

External
Mem
Cntl

CC

SRIO Data Path

SRIO Data Path

SRIO DDR2

SCR

C64x+
Core L2

DSP0

SRIO DDR2

SCR

C64x+
Core L2

DSP1

Some Benefits to Know
• SRIO can access entire DSP address space

from DSP0 to DSP1 or vice versa
• Interfaces directly to Switch Central Resource (SCR)
• Can use EDMA to queue multiple transactions (>4KB)
• DSP0 can boot or reset DSP1 thru SRIO ports and

vice versa
• Can use Direct I/O or Message Passing to pass

packets between the 2 DSPs

Some Facts to Know
• All physical connections are point-to-point
• Lanes are ALWAYS bi-directional
• Each lane can run at 3 speeds (1.25, 2.5, 3.125 Gbps) –

Tx or Rx
• Lanes can be used individually (1x link) or can be

bundled together for a faster link (4x link)
• Lanes are 8b/10b encoded
• Packet payload is 256 bytes (max). Can send up to 4K

bytes (16 packets) without CPU/EDMA intervention

Technical Training
Organization

T TO

9 - 6 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Basic Terminology

SRIO Block Diagram (Direct I/O and Message Passing)

SRIO Conceptual block diagram

• Load/Store Units
• DirectIO
• Doorbell
• Maintenance

Tx
• Message Passing

(CPPI)

Tx
• MAU – Memory

Access Unit
• DirectIO

Rx Rx

Tx Buffer Rx BufferDMA Interface
& Controller

SCR

Tx Buffering Transaction MappingLogical Layer

Port 0

SerDes 0

Port 1

SerDes 1

Port 2

SerDes 2

Port 3

SerDes 3

Technical Training
Organization

T TO
1.25-3.125Gbps

Differential
Signals

• Message Passing
(CPPI)

Note: 4 LSUs (any LSU can
be mapped to any port)

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 7

Example – Direct I/O and CSL Programming

Example – Direct I/O and CSL Programming

Example #1 – Direct I/O & CSL Programming Model

SRIO – Direct I/O Example
Direct I/O Features
• Direct transfer of data to the target (must be aware of target’s memory map)
• Must specify: Target (DeviceID), Memory Address (Destination), Command
• Can read (pull) or write (push) from/to the Target
• Use CSL to program registers
• Can send interrupts via DoorBell to target (Doorbells are a simple way to

tell the target device that it has data to process)

Direct I/O Example – Let’s learn how to program
this…

Link 0
MASTER_WRITE_BUFF

SRC

MASTER_READ_BUFF
RBUF

SRIO

TX
RX

DSP_0: DSK

SRIO

RX
TX

DSP_1: Mezzanine
SLAVE_BUFF

DST

Technical Training
Organization

T TO

SRIO Programming Model
1. Initialize SRIO Module

2. Configure Load Store Unit (LSU)

• Choose LSU to process

• Fill Source info

• Fill Destination info

• Fill Packet info

• Either poll for status or use interrupt

3. Execute the command

Technical Training
Organization

T TO

CSL_srioInit()
CSL_srioOpen()
CSL_srioHwSetup()

CSL_srioLsuSetup ()

Doorbell

CSL_srioGetHwStatus()

Config the LSU Structure

4. Do step 2 & 3 for each command

5. Signal target DSP via 1 of 16 Doorbells

CSL_srioClose()

9 - 8 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Example – Direct I/O and CSL Programming

Direct I/O – Load Store Unit (LSU)

Direct I/O – Load Store Unit (LSU)

Interrupt ReqDestIDxambsOutPortID
31 30 27 26 23 8 0

LSU_Reg4

Packet Type
0

LSU_Reg5 Hop CountDoorbell Info
31 16 15 8 7

Byte_count
31 0

LSU_Reg3
1112

DSP Address (SRC)
31 0

LSU_Reg2
1112

RapidIO Address LSB (DST)/Config_offset
31 0

LSU_Reg1

RapidIO Address MSB (DST)
31 0

LSU_Reg0

There are 4 selectable LSUs to process SRIO commands
• Reg 0-3: SRC, DST address and size of transfer
• Reg 4: Various packet info + interrupt CPU/EDMA event when command completes (if necessary)
• Reg 5: Issues command and triggers the action/transfer
• Interrupt Req: can be used to interrupt CPU or generate an EDMA event once the

command completes (useful if you want to send packets > 4K bytes)
• OutportId: port # the LSU cmd goes out on – all 4 LSUs can be used by the same port
• Byte_count: #bytes to send out (max is 4Kbytes) – packet size is 256 bytes

Packet Types
“Commands”

• NWRITE
• NWRITE_R
• NREAD
• DOORBELL
• MESSAGE
• MAINTENANCE
• ATOMIC
• SWRITE

Step 1 – Initialize the SRIO Module

Step 1 – Initialize SRIO Module
#include <csl_srio.h>

CSL_SrioContext context;
CSL_Status status;
CSL_SrioHandle hSrio;
CSL_SrioObj srioObj;

// Initialization and Open of the SRIO
status = CSL_srioInit(&context);
hSrio = CSL_srioOpen(&srioObj, srioNum, &srioParam, &status);

// Create the setup parameters for the SRIO module. Use default Param
srio_Create_Setup (&setup, 1, 1);
// configure the SRIO Hardware with the above setup Parameters
status = CSL_srioHwSetup(hSrio, &setup);

CSL_srioGetHwStatus (hSrio, CSL_SRIO_QUERY_SP_ERR_STAT,
&response);

CSL_srioGetHwStatus(hSrio, CSL_SRIO_QUERY_DOORBELL_INTR_STAT,
&dbStatus);

CSL_srioHwControl(hSrio, CSL_SRIO_CMD_DOORBELL_INTR_CLEAR,
&dbStatus);

CSL_srioHwControl(hSrio, CSL_SRIO_CMD_INTDST_RATE_CNTL, 0);

Function call to create setup
structure for SRIO H/W
(Note: not a CSL function call.
You can modify to fit your needs)

Verify h/w was set
up properly

Set other control bits

1 Initialize SRIO Module

Technical Training
Organization

T TO

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 9

Example – Direct I/O and CSL Programming

Steps 2-3 – Configure LSU & Execute Command

Steps 2 & 3 – Configure LSU & Execute
Uint8 lsuNum = LSU_0;

CSL_SrioDirectIO_ConfigXfr lsuConf ;

lsuConf.srcNodeAddr = src;
lsuConf.outPortId = PORT_0;
lsuConf.dstNodeAddr.addressLo = dst;
lsuConf.dstNodeAddr.addressHi = 0;
lsuConf.xambs = 0;
lsuConf.idSize = 1;
lsuConf.dstId = DSP_1;
lsuConf.pktType = SRIO_PKT_NWRITE;
lsuConf.byteCnt = len;
lsuConf.priority = 2;
lsuConf.hopCount = 0;
lsuConf.intrReq = 0;
lsuConf.doorbellInfo = 0;

CSL_srioLsuSetup (hSrio, &lsuConf, lsuNum);

Local Device Info

Signaling
Mechanism

Remote Device Info

Packet Info

LSU that processes
the Command

2 Configure LSU

3 Execute the command

Step 5 – Issue Doorbell Interrupt to Target

Step 5 – Issue Doorbell

CSL_srioLsuSetup (hSrio, &lsuConf, lsuNum);

Local Device Info

Remote Device Info

Packet Info

LSU that process
the Command

2 Configure LSU

3 Execute the command

Uint8 lsuNum = LSU_0;

CSL_SrioDirectIO_ConfigXfr lsuConf;
lsuConf.srcNodeAddr = 0;
lsuConf.outPortId = PORT_0;
lsuConf.xambs = 0;
lsuConf.idSize = 1;
lsuConf.dstId = DSP_1;
lsuConf.pktType = SRIO_PKT_DOORBELL;
lsuConf.byteCnt = 0;
lsuConf.priority = 2;
lsuConf.hopCount = 0;
lsuConf.intrReq = 0;
lsuConf.doorbellInfo = info;

Technical Training
Organization

T TO

9 - 10 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Message Passing

Message Passing

Introduction & Message Passing Basics

Intro to Message Passing

Technical Training
Organization

T TO

DSP_0 DSP_1

A Message is simply “Data”.

Message Passing is a method to send data from one device to another
without requiring the sender to know the target’s memory map.

From a high-level point of view, DSP_0 simply specifies a location (SRC) of
MSG0 in DSP_0’s memory map and a mailbox number on DSP_1. DSP_1 fills
out a table that connects a specific mailbox to a memory location (DST) on DSP_1.

Needs to know:

Mbx 0 Mbx 1

MSG 0 MSG 0

How each mailbox is mapped to a specific
destination address in memory
If mailbox1 gets a message, e.g., it places
the data (MSG) at a specific address

Which DSP_0 mailbox?
Which DSP_1 mailbox?
Src addr of MSG0
Len of MSG0
Misc: DestID, PortID, etc.

Needs to know:

Message Passing – Basics

Technical Training
Organization

T TO

The Rapid I/O spec dictates that a device must have a minimum of 4 mailboxes
TI’s implementation uses 4 Tx and 4 Rx mailboxes per physical port (0,1,2,3). In
addition, there are 16 Tx and 16 Rx queues that can be assigned to any mailbox.
Similar to Direct I/O, the max payload is 256 bytes. If a MSG is larger than 256 bytes,
but smaller than 4KB, the message is broken into multiple segments.
TI’s implementation uses DESCRIPTORS (similar to EMAC descriptors) to describe
the transfer (src, dst, len, options). There is one descriptor per MSG (regardless of the
number of segments)

DSP_0 DSP_1

Mbx 0 Mbx 1

MSG 0 MSG 0

Tx Buffer Descriptor
Pointer to next descriptor
Pointer to SRC location of MSG 0
Routing info (DST deviceID, portID,
segment size, DST mailbox)
MSG length + flags/status

Rx Buffer Descriptor
Pointer to next descriptor
Pointer to DST location of MSG 0
Routing info (SRC deviceID, DST mailbox)
MSG length + flags/status

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 11

Message Passing

CPPI – Communication Port Programming

CPPI – Communication Port Programming
The RapidIO Message Passing uses CPPI to DMA data between the
RapidIO device and the memory system.
The Buffer Descriptor is used to interface to the CPPI DMA engine:
• Transmit: filled-in buffer descriptor is given to one

of the Tx CPPI queues.
• Receive: ISR processes a filled-in buffer descriptor

that points to a received message.

next
buffer
routing
Len+flags

CPPI Buffer Descriptor

Buffer Descriptor
• next: ptr to next buffer descriptor – allows chaining during xmt/rcv
• buffer: ptr to the physical location of the message
• routing: routing info (Rx – src device ID, priority, dest mailbox)

(Tx – dest device ID, priority, port ID, SSIZE, dest mailbox)
• len+flags: length info (Rx – start/end of msg, end of queue, ownership, len, completion code)

(Tx – start/end of msg, end of queue, ownership, len, completion code, retry count)

Technical Training
Organization

T TO

9 - 12 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Message Passing Examples

Message Passing Examples

Example #1 – Receive a MSG
Example #1 – Receive MSG

Technical Training
Organization

T TO

C645x ChipBuffer Descriptor
dual-port SRAM

RX HDP 10

RX CP 0 POOL (set of buffers in mem)

RapidIO Peripheral

nextDescPtr

bufferPtr

routing

len+flags

CPPI

RX HDP x: Header Descriptor Pointer Per Queue (points to the top of the first descriptor)
RX CP x: Completion Pointer Per Queue (points to the top of the descriptor that has been completed)

Snapshot of system before MSG comes in.
CPU assigns a free buffer descriptor and fills it in. The bufferPtr points to the DST location
of the MSG on the target device.
Then, the CPU writes to the RX HDP to point to the first descriptor. The target is now ready
to receive MSGs.

Example #1 – Receive MSG

Technical Training
Organization

T TO

C645x ChipBuffer Descriptor
dual-port SRAM

RX HDP 0

RX CP 10 POOL (set of buffers in mem)

RapidIO Peripheral

nextDescPtr

bufferPtr

routing

len+flags

CPPI

RX HDP x: Header Descriptor Pointer Per Queue (points to the top of the first descriptor)
RX CP x: Completion Pointer Per Queue (points to the top of the descriptor that has been completed)

When MSG comes in, the RapidIO peripheral DMA’s the MSG into the buffer,
updates routing info & flags, updates its HDP/CP, then sets the ICSR bit
(bit 0 in this example), then interrupts the processor.
Part of the packet header that is being received contains status, length, etc. regarding
the MSG being received. This info is used to update the buffer descriptor.

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 13

Message Passing Examples

Example #2 – 3 C6455’s in One System

Example #2 – 3 6455’s in One System

C6455 Chip: Processor 0

mbox 0 on Rx Q2(From 0x0211

RapidIO Q0
Dst Device Id = 0x0211
Tx MailBox = 0

RapidIO Q1
Dst Device Id = 0x0820
Tx Mailbox = 0

Buffer Descriptor

C6455 Chip: Processor 1

RapidIO Q0
Dst Device Id = 0x0525
Tx Mailbox = 0

RapidIO Q1
Dst Device Id = 0x0820
Tx Mailbox = 1

Buffer Descriptor

C6455 Chip: Processor 2

RapidIO

Device

Id:

0x0211

RapidIO

Device

Id:

0x0820

Technical Training
Organization

T TO

mbox 1 on Rx Q3(From 0x0820

mbox 0 on Rx Q2(From 0x0525)

mbox 1 on Rx Q3(From 0x0820)

RapidIO Q0
Dst Device Id = 0x0525
Tx Mailbox = 1

RapidIO Q1
Dst Device Id = 0x0211
Tx Mailbox = 1

Buffer Descriptor

mbox 0 on Rx Q2(From 0x0211)

mbox 1 on Rx Q3(From 0x0525)

RapidIO

Device

Id:

0x0525

“You can have different queues
being processed at the same time…”

9 - 14 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Compare/Contrast Direct I/O vs. Message Passing

Compare/Contrast Direct I/O vs. Message Passing
Direct I/O vs. Message Passing

Best Performance
Target buffering scheme is
known at design time
Application partitioning is fixed
Push data flow (NWRITE) has
the best performance
Want a low-level interface
to data movement
Easier to set up

Most Flexible
Target buffering scheme is unknown
Target provides abstract buffers –
“mailboxes” & “letters”
Application partitioning is unknown
Abstract interface to data movement
More difficult to set up, easier once
the set up is done.

Direct I/O Message Passing

DSP/BIOS: MSGQ
• BIOS MSGQ Module supports SRIO Message Passing
• Portable code for intra- and inter-processor support
• www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 15

Performance Tips, Collateral & Software Support

Performance Tips, Collateral & Software Support
SRIO Performance - Tips

NWRITE is faster than NREAD
NWRITE_R is faster than NREAD
Signal integrity is very important (SPRAAA8)
Can combine all 4 Lanes into one lane for transfer
rate improvement. This is a special mode in SRIO.
Data is “TDMed” across the 4 ports.
Can use more than 1 lane to increase the bit rate
between 2 devices. This has to be managed by
software.
Internal lookup table for packet forwarding
so there may be no need for a switch.

Technical Training
Organization

T TO

TI Supplied Collateral

SPRU976 – RapidIO Peripheral Module Guide
• Detailed functional description

SPRAAA8 – Hi-speed Board Design Guidelines
• Board layout and stack up requirements

TI DSP Starter Kit / Evaluation Module
• Reference design board with two C6455 devices

Functional Layer CSL for Configuration & Direct IO

MSGQ Documentation

Technical Training
Organization

T TO

9 - 16 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Lab 9: Using C6455 SRIO

Lab 9: Using C6455 SRIO
Lab9 – SRIO Direct I/O

DSP_0: DSK

MASTER_WRITE_BUFF

DSP_1: Mezzanine

TX
RX TX

RX
Link 0

Loop forever wand wait for Master device to send doorbell interrupts.
Doorbell interrupts cause slave’s ISR to response

SRIO SRIO
MASTER_READ_BUFF

SLAVE_BUFF

0x90 0000

0x90 0100

0x90 0000

writes 1 SRIO packet (256 bytes) to the slave device
After write , it sends doorbell 0 to the slave device
In this file, read the note about the reason for the delay between write
and read back completion
After the delay, master reads 1 SRIO packet (256 bytes) from the
slave device
After read completion, it sends doorbell 1 to the slave device

srio_master.c

srio_slave.c

1. Analyze code example
2. View data transfer between DSPs

Lab’s Objective

Lab Overview:
The goal of this lab is for you to be familiarized with the process of using the Serial Rapid Input
Output (SRIO) for C6455. You will learn to use Direct IO to access the SRIO. To gain this basic
knowledge you will:

 Observe and analyze the master-slave example
 Observe the Direct IO programming method used with CSL and SRIO
 Run some tests

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 17

Lab 9 Procedure

Lab 9 Procedure

Part 1 – Running the Code
You will be running code on the DSK and on the Mezzanine card. It does not matter which
one is the master device and which one is the slave device. In the lab procedure, we pick
CPU_0 (the DSK) as the master and the CPU_1 (the Mezzanine card) as the slave. This is
intended so that in the future, we will port this code example to the audio project we used in
previous labs.

1. Connect C6455 DSK to the Mezzanine EVM card (with power disconnected).

 Quit CCS

 Remove power from the DSK

 Connect the Mezzanine card.

 Plug back in the power connection to the DSK.

Note: if the Mezzanine card does not work properly, make sure the card is seated firmly in the
socket. If it is, you may need to pull it out slightly to get it to work. We’ve seen this happen on
multiple boards. Spectrum Digital is aware of the issue and is working to resolve this.

9 - 18 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Lab 9 Procedure

2. Set up the Parallel Debug Manager

• Start the CCS Setup utility using its desktop icon.

Be aware there are two CCS icons, one for setup, and the other to start the CCS
application. You want the Setup CCSStudio v3.2 icon.

 When you open CC_Setup, you should see a screen similar to this:

• Clear any old system configurations.

 If there are any boards/simulators listed under My System under System Configuration,
click the Remove All button to clear the configuration.

• Use the filters to select the correct Factory Board.

 To the right of Available Factory Boards, you will see 3 filters (Family, Platform and
Endianness). Use the drop down boxes and make the selections shown to select the
correct board.

• Add the proper factory board.

 Click on the “C6455 DSK with Mezzanine” and select << Add. This board should
now show up under My System.

• Select Save and Quit.

• When prompted to start CCS, click Yes (or click on the CCS 3.2 icon to launch CCS
with Parallel Debug Manager).

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 19

Lab 9 Procedure

3. Connect the boards and open CCS windows for each CPU.

 Select:

 Debug → Connect

 This should connect both boards (no red circle with slash on cpu_0 and cpu_1).

 Select:

 Open → cpu_0

 This will open a CCS window pointing to cpu_0 (i.e. the DSK). Now open cpu_1 as well (the
CPU on the Mezzanine card). Now you have two CCS windows open – one for each CPU:

 cpu_0: DSK

 cpu_1: Mezzanine card

4. Open master project for cpu_0 (DSK).

Make sure you have the active CCS window for cpu_0 on your screen. For cpu_0, open the
project srio_master.pjt under the directory path:

C:\IW64x+\labs\SRIO_MasterSlave_DIO\master

5. Open slave project for cpu_1 (Mezzanine).

Now, switch to the CCS window for cpu_1. Open the project srio_slave.pjt under the
directory path:

C:\IW64x+\labs\SRIO_MasterSlave_DIO\slave

9 - 20 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

 Lab 9 Procedure

6. Scan through and analyze the source files

In master.pjt, there are 3 source files. In slave.pjt, there are 2 source files. Note that the
SetUp_Srio.c is the same exact source file for both projects. These files are stored under:

C:\iw64x+\labs\SRIO_MasterSlave_DIO\src

The code flow under main() in srio_master.c is as follows:

 Master writes 1 SRIO packet (256 bytes) to the slave device

 After write completion, it sends doorbell 0 to the slave device

 After the delay, master reads 1 SRIO packet (256 bytes) from the slave device

 After read completion, it sends doorbell 1 to the slave device

The main code has 2 loops. The inner loop runs 10 times to send 10 SRIO packets then stops.
The outer loop waits for a user input. You can trigger this command via any means that you
can think off. In this lab, we will use the GEL command which is shown in the steps below.

Note: For SRIO, you want to optimize it by architecting your system to do only writes, never
reads. For example, rather than trying to read a buffer from another device through SRIO, you
would instead do a write to let that device know to write that buffer to you. The reason for this is
that you get CPU stalls while waiting for each read to complete whereas having the other device
write the data into your memory allows the CPU to keep crunching along and then you can get an
interrupt at the end of the transfer.

The code flow in srio_slave.c is as follows:

 Loop forever and wait for the Master device to send a doorbell interrupt.

Look into the slave ISR to see how the doorbells are handled.

Note: This is the portion of the code that you will need to modify to handle doorbell messaging. If
you did not have the master do the read, then you can use doorbells to signal the slave to write the
data back to the master device.

7. Build, Load, & Run.

First, build the code on slave side (cpu_1), then run it.

Second, build code on the master side (cpu_0), then run it.

Observe the messages in the stdout for both master & slave CCS windows.

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9 - 21

Lab 9 Procedure

8. Re-run the test

Load GEL file for master (cpu_0) project:

File Load GEL …

C:\iw64x+\labs\SRIO_MasterSlave_DIO\src\Control.GEL

Run GEL command:

GEL Next Run Dialog – Set_NextRun.

 Enter a 1 then click on the Execute button.

You should see another set of 10 runs. Click Done.

9. Open Memory Windows

In the master project, open a Memory window address at 0x90 0000. This is the location of
MASTER_WRITE_BUFF (pSrioData = 0x90 0000). Look in the header file, srio_Lab.h,
and see the definition of MASTER_WRITE_BUFF. Also, look in srio_master.c (line 22) and
you can see the pointer (*pSrioData) set to MASTER_WRITE_BUFF.

In the slave project, open a Memory window address at 0x90 0000 (SLAVE_BUFF).

Re-size the memory windows of both CCS windows so that you can see both memory
windows (master and slave) at the same time.

10. View the data transfer

 To see the data transfer, we need to set a breakpoint in both projects. First, if the master and
slave are running, halt both processors. The animate key (instead of run) will run to a
breakpoint in the slave code, then halt and display the results in the memory window, then it
will run again.

 Set a breakpoint in srio_master.c at line 40 (while loop). Set a breakpoint in srio_slave.c on
line 100 (while loop).

 Click on the slave’s (cpu_1) animation button (just underneath the Halt button).

 Run the master (cpu_0). If needed, click on Set_NextRun Execute to continue with the
transfer.

 To observe how the data transfers from the master’s CPU memory to slave’s CPU memory,
use the GEL command in the master code to re-run the loop.

 You’re Done

9 - 22 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

	Using Serial Rapid I/O (SRIO)
	Module Topics
	Introduction to SRIO
	Why Use C6455 SRIO
	SRIO Topologies
	SRIO Signals and Ports

	Basic Terminology
	Introduction
	SCR and SRIO
	SRIO Data Path
	SRIO Block Diagram (Direct I/O and Message Passing)

	Example – Direct I/O and CSL Programming
	Example #1 – Direct I/O & CSL Programming Model
	Direct I/O – Load Store Unit (LSU)
	Step 1 – Initialize the SRIO Module
	Steps 2-3 – Configure LSU & Execute Command
	Step 5 – Issue Doorbell Interrupt to Target

	Message Passing
	Introduction & Message Passing Basics
	CPPI – Communication Port Programming

	Message Passing Examples
	Example #1 – Receive a MSG
	Example #2 – 3 C6455’s in One System

	Compare/Contrast Direct I/O vs. Message Passing
	Performance Tips, Collateral & Software Support
	Lab 9: Using C6455 SRIO
	Lab Overview:

	Lab 9 Procedure
	Part 1 – Running the Code

