

4.4. DSP [Pass] / [Fail]

4.4.1. Clock [Pass]

Goal:

Qualify the DSP board clock

Initials	JVA	Board release:	R01
Date	24-10-2012	SN	12-28-001-828
		POC release	N/A

Measurement setup:

Master: Setup 1 – no master EEQDM: Setup 1 – default

10

15

Method:

- Follow the measurement preparations as described with the setup.
- Measure at clock target
 - o DC levels
 - Duty cycle

Results:

Figure 4-175: DSP_CLK_U300_max_min

Goal: Determine SI of DSP_CLK input at the DSP.

S1 (PA2596): DSP_CLK@U300 (Via near L19)

Scope DPO7254; SN1799

Parameter	Value	Measured
V _{il}	<0.24V	0.054V
V_{ih}	>0.96V	1.054V
V_{min}	>-0.3V	-0.056V
V_{max}	<1.5V	1.16V
Duty cycle	4060%	+50.44 %
		-49.56 %

Conclusion: DSP Clock is OK

Figure 4-176: DSP_CLK_U300_jitter

Goal: Determine jitter of DSP_CLK input at the DSP(informative)

S1 (PA0786): DSP_CLK@U300 (Via near L19) Scope DPO7254; SN0747

Parameter	Value	Measured
Period jitter	N/A	28.75ps

Conclusion: Jitter is small as expected

Conclusion: clock of the DSP is OK

4.4.2. JTAG [Pass]

Goal:

20

Qualify the DSP JTAG (only functional)

Initials	MVK	Board release:	R01
Date	2012	SN	12-28-001-828
		POC release	N/A

Conclusion: HPI Timing and SI is OK

4.4.4. **DRAM** [Pass] / [FAIL]

Goal: Verify SI and of the DRAM interface

Initials	JVA	SN	12-30-011-400
Date	04-12-2012	POC DSP	

Measurement setup:

Master: Setup 1 – no master EEQDM: Setup 1 – default

Measurement:

5

10

- Power EEDQM
- Create DRAM Activity (DSP Code)
- Use Tektronix DDR Analysis tool to analyze the DRAM interface

so there are no real timing requirements → Pass

4.4.4.1. Voltage levels [PASS]

Goal: Measure the voltage levels, slew rate and jitter of the DDR interface.

4.4.4.1.1.Clock [FAIL]

Initials	JVA	SN	12-30-011-400
Date	04-12-2012	POC DSP	Debug version with
			read/write loop

Measurement remarks:

5

10

- Measure CK on DRAM
- CK must be measured single ended and differential according to the picture below

Figure 4.191: DDR_CK_DC

Goal: Verify the crossing levels of the DDR2 clock

S3 (Pu, PA827): DDR_CK_P@ U501(J8) S4 (Gn, PA828): DDR_CK_N@ U501(K8)

Scope SN2848

Parameter		Required	Measured
$V_{IN,DC}$	Max	< 2.1V	1.98V
	Min	> -300mV	-156mV
$V_{ID,DC}$	Max	< 2.1V	NA
	Min	> 250mV	
$V_{IX,AC}$	Max	<1075mV	PASS
	Min	>725mV	

Note: the VID(DC) is the minimum value when the differential signal is static incase if there is an overshoot or undershoot in the signal.

No overshoot and undershoot, measure VID(AC)

Conclusion: Voltage levels are OK
The single ended voltage levels are OK

Figure 4.192: DDR_CK_AC

Goal: Verify the AC voltage levels of the DDR2 clock POC FPGA: B160

S2 (Pu, PA827): DDR_CK_p @ U501 (J8) S3 (Gn, PA827): DDR_CK_n @ U501 (K8) Scope SN2848

Parame	ter	Required	Measured
$V_{ID,AC}$	Max	< 2.1	1.085V
	Min	> 500mV	

Conclusion:

The voltage levels are OK

Figure 4.193: DDR_CK_DUTY_CYCLE

Goal: Verify the frequency and duty cycle of the clock

S1 (Ye, PD2375): DDR_CK @ U501(J8/K8) (differential) Scope SN2848

Param	Required	Measured
-Duty-cycle	>48%	49.99%
+Duty-cycle	<52%	50.01%
Frequency	150MHz	150MHZ

Conclusion:

Duty cycle and frequency are OK (multiplier set to 12)

Figure 4.194: DDR_CK_RISE

Goal: Verify the slew rate of the clock

POC FPGÁ: B160

S1 (Ye, PD2375): DDR_CK @ U501(J8/K8) (differential)

Scope SN2848

Param	Required	Measured
Rise	Used for derating	4.68V/ns

Figure 4.195: DDR_CK_FALL

Goal: Verify the slew rate of the clock

POC FPGA: B160

S1 (Yel, PD2375): DDR_CK @ U501(J8/K8) (differential)

Scope SN2848

Param	Required	Measured
Fall	Used for derating	4.92V/ns

Note that the measurements are done with a differential probe so the slew rate must be divided by 2.

4.4.4.1.1.1.Clock Jitter [FAIL]

Figure 4.196: DDR_CK0_PERJITTER_MAN

Goal: Measure the period jitter using the Manual method (informative)

S3 (Pu, PA2366): DDR_CK_p @ U501(J8) Scope SN2848

Param	Required	Measured
$T_{PJ(max)}$	-100ps < T _{PJ(max)} < 100ps	167 (pk-pk)

Conclusion: The peak peak period jitter is within requirements but on the high side

Description	Mean	Std Dev	Max	Min	р-р	Max-cc	Min-cc
tJIT(per), CK	NA	NA	93.711ps	-87.383ps	NA	NA	NA
tJIT(duty), CK	NA	NA	61.827ps	-58.027ps	NA	NA	NA
tJIT(cc), CK	2.0161fs	29.286ps	138.88ps	-124.12ps	263.00ps	222.40ps	-231.36ps
tERR(2per), CK	NA	NA	120.22ps	-145.35ps	NA	NA	NA
tERR(3per), CK	NA	NA	163.73ps	-175.78ps	NA	NA	NA
tERR(4per), CK	NA	NA	210.30ps	-192.25ps	NA	NA	NA
tERR(5per), CK	NA	NA	246.67ps	-242.30ps	NA	NA	NA
tERR(6-10per), CK	NA	NA	448.78ps	-427.11ps	NA	NA	NA
tCH(avg), CK	501.11mtCK(avg)	106.05utCK(avg)	501.41mtCK(avg)	500.73mtCK(avg)	682.69utCK(avg)	37.818utCK(avg)	-31.491utCK(avg)
tCL(avg), CK	498.89mtCK(avg)	106.05utCK(avg)	499.27mtCK(avg)	498.59mtCK(avg)	682.69utCK(avg)	31.491utCK(avg)	-37.818utCK(avg)

Figure 4.197: DDR_CK0_PERJITTER

Goal: Measure the period jitter using the DPOJET (DDR Software)

S1 (Ye, PD2375): DDR_CK_p @ U501(J8/K8) (Diff) Scope SN2848

Param	Required (DDR-800)	Required DDR-400	Measured
tJIT(per), CK	Min: -100ps	Min: -125ps	-87.383ps
	Max +100ps	Max +125ps	+93.711ps
tJIT(duty), CK	Min: -100ps	Min: -125ps	-58.027ps
	Max +100ps	Max +114 ps	61.827ps
tJIT(cc), CK	Max 200 ps	Max 250 ps	222.40ps
tERR(2per), CK	Min: -150ps	Min: -175ps	-145.35ps
	Max +150ps	Max +175ps	120.22ps

tERR(3per), CK	Min: -175ps	Min: -225ps	<mark>-175.78ps</mark>
	Max +175ps	Max +225ps	163.73ps
tERR(4per), CK	Min: -175ps	Min: -250ps	-192.25ps
	Max +175ps	Max +250ps	210.30ps
tERR(5per), CK	Min: -175ps	Min: -250ps	-242.30ps
	Max +175ps	Max +250ps	246.67ps
tERR(6-10per), CK	Min: -300ps	Min: -350ps	-427.11ps
	Max +300ps	Max +350ps	448.78ps
tCH(avg), CK	0.480.52 tCK (avg)	0.480.52 tCK (avg)	500.73501.41 mtCK(avg)
tCL(avg), CK	0.480.52 tCK (avg)	0.480.52 tCK (avg)	498.59499.27 mtCK(avg)

Conclusion: Jitter is too high (even when the DRAM is only doing refresh cycles). Input clock jitter and supply noise are OK

Conclusion:

4.4.4.1.2.DQS [PASS]

Initials	JVA	SN	12-30-011-400
Date	04-12-2012	POC DSP	

5 Measurement remarks:

- Measure DQS as close as possible to the BGA balls
- Use P7313 for measuring DQS

10

Figure 4.198: DDR_LDQS_WRITE

Goal: Verify the crossing levels of the DQS

S3 (Pu, PA2366): DDR_LDQS@ U501(B7) Scope SN2848

Param	Required	Measured
$V_{IH,AC}$	< 2.1V	2.016V
$V_{IL,AC}$	>-0.3 V	-336 mV
$V_{IH,DC}$	> V _{REF} + 0.125	Pass
$V_{IL,DC}$	< V _{REF} – 0.125	Pass

3) 200mV Offset 300mV 500 %g 6 50 3 1 1 225V (A 10 1 1 1 225V (A 10 1 1 1 1 225V (A 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C3 Max	2.016V -360.0mV	Mean 2.0087885 -350.83812m		Max 2.028 -336.0m	\$t Dev 6.9m 8.495m	67.0 67.0	Info			
	300mV			VZ ΔV	775.0mV -250.0mV				A (13) / 900mV	Stopped 85 760 acqs	RL:1.0k
		<u> </u>		<u> </u>		<u></u>	. ‡ .		<u>, iî i</u>	سسنب	<u> </u>
•											
											L
							1				
		6									
									1		1.
					-						
				<u> </u>							(

Figure 4.199: DDR_L DQS_READ

Goal: Verify the levels of the DQS (reduced drive strength)

S3 (Pu, PA2366): DDR_LDQS@ U300(T14) Scope SN2848

Param	Required	Measured	Remarks
$V_{IH,AC}$	< 2.1V	2.028V	
$V_{IL,AC}$	>-0.3 V	-275 mV	Zoomed in
$V_{IH,DC}$	> V _{REF} + 0.125	Pass	
$V_{IL,DC}$	$< V_{REF} - 0.125$	Pass	

Conclusion: Levels are OK

Conclusion: Some crosstalk cause by the data signals but outside the threshold levels (cursors). The undershoot (caused by the crosstalk) is too high but within absolute max values (-0.5V) → OK

Figure 4.200: DDR_LDQS_RISE

Goal: Verify the slew rate of the DQS

S3 (Purple, PA2366): DDR_LDQS @U501(B7)

Scope SN2848

Param	Required	Measured
Rise	Used for derating	2.609V/ns

Figure 4.201: DDR_LDQS_FALL

Goal: Verify the slew rate of the DQS

S3 (Purple, PA2366): DDR_LDQS @U501(B7)

Scope SN2848

Param	Required	Measured
Fall	Used for derating	2.931V/ns

Conclusion: DQS is OK

4.4.4.1.3.DQ [PASS]

Initials	JVA	SN	12-30-011-400
Date	05-12-2012	POC DSP	

Measurement remarks:

- Measure DQ as close as possible to the BGA balls
- DQ must be measured single ended according to the picture below

10

5

t_{DH} nominal slew rate for a rising signal is defined as the slew rate between the last
crossing of V_{IL(DC) MAX} and the first crossing of V_{REF(DC)}. T_{DH} nominal slew rate for a falling
signal is defined as the slew rate between the last crossing of V_{IH(DC) MIN} and the first
crossing of V_{REF (DC)}. For more information see the picture below

Figure 4.202: DDR__DQ_WRITE

Goal: Verify the voltage levels of the DQ. $\ensuremath{\mathsf{DQ}}$ is measured while writing

S3 (Pu, PA2366): DDR_DQ0 @U501(B9) Scope SN2848

Param	Required	Measured
$V_{IH,AC}$	< 2.1V	2.04V
$V_{IL,AC}$	>-0.3 V	-0.264V
$V_{IH,DC}$	> V _{REF} + 0.125	Pass
$V_{IL,DC}$	< V _{REF} - 0.125	Pass

Conclusion: Write DQ SI is OK

Figure 4.203: DDR_DQ_READ

Goal: Verify the voltage levels of the DQ. DQ is measured while reading

S3 (Pu, PA2366): DDR_DQ @U300(U15) Scope SN2848

Param	Required	Measured	Remarks
$V_{IH,AC}$	< 2.1V	2.011V	Zoomed in
$V_{IL,AC}$	>-0.3 V	-240mV	
$V_{IH,DC}$	> V _{REF} + 0.125	Pass	
$V_{IL,DC}$	$< V_{REF} - 0.125$	Pass	

Conclusion: Read DQ SI is OK

Conclusion: DQ levels are OK

4.4.4.1.4.Address/Control [PASS]

Initials	JVA	;	SN	12-30-011-400
Date	05-12-2012		POC DSP	

Measurement remarks:

- Measure Address and control as close as possible to the BGA balls
- Address and control must be measured single ended according to the picture below

10

5

Figure 4.207: DDR_A0_SI_FALL

Goal: Verify the voltage levels of the address/control

S3 (Pu, PA2366): DDR_A0 @ U501(M8)

Scope SN2848

	Param	Required	Measured	Remarks
	$V_{IH,AC}$	< 2.1V	2.004V	
	$V_{IL,AC}$	>-0.3 V	-0.28V	Zoomed in
Г	$V_{IH,DC}$	> V _{REF} + 0.125	PASS	
	$V_{IL,DC}$	$< V_{REF} - 0.125$	PASS	

Conclusion: SI of Address / Control is OK

Figure 4.208: DDR_A0_RISE

Goal: Verify the slew rate of the address/control signals

S3 (Pu, PA2366): DDR_A0 @ U501(M8)

Scope SN2848

Param	Required	Measured
Rise	Used for derating	3.738V/ns

Figure 4.209: DDR_A0_FALL

Goal: Verify the slew rate of the address/control signals

S3 (Pu, PA2366): DDR_A0 @ U501(M8) Scope SN2848

Param	Required	Measured
Fall	Used for derating	3.846V/ns

Conclusion: SI of Address /Control is OK

4.4.4.2.<mark>Timing [PASS</mark>]

Goal: Measure the timing of the DDR2 interface

I	Initials	JVA	SN	12-30-011-400
ı	Date	05-12-2012	POC DSP	

4.4.4.2.1.Address/Control [PASS]

Measurement remarks:

- Measure Address and control as close as possible to the BGA balls
- · Address and control must be measured single ended
- t_{IS} is referenced from V_{IH(AC)} for a rising signal and V_{IL(AC)} for a falling signal, while t_{IS} is referenced from V_{IL(DC)} for a rising signal and V_{IH(DC)} for a falling signal (see the figure below).

- If the differential CK slew rate is not equal to 2 V/ns, then the baseline values must be derated as seen in the table below
- If the single ended address/command slew rate is not equal to 1 V/ns, then the baseline values must be derated as seen in the table below

Signal	Measured Slew Rate	Slew rate derating according to Ref [3.1] table 29	Derating value	Remarks
CK,CK#	2.34V/ns=4.68ns/2	2.0V/ns	Derating setup: +150ps Derating hold: +94ps	A lower slew rate corresponds to a higher setup/hold margin
Address	3.846V/ns	4V/ns		A higher slew rate corresponds to a higher setup/hold margin

5

Param	Required	Measured	Param	Required	Measured
T _{IS}	>0.175ns +150ps (derating)	3.709ns	T _{IH}	>0.250ns + 94ps (derating)	2.78ns
Conclusion: Setup time is OK			Conclusion:	Hold time is OK	

Conclusion: Address/control timing is OK

4.4.4.2.2.Write timing (DQS to CK) [PASS]

Measurement remarks:

5

• Measure DQS and CK as close as possible to the BGA balls

Figure 4.212: DDR_DQS_CK_SETUP

Goal: Verify the setup time of the DQS falling edge to the CLK rising edge

S1 (Ye, PD2375): DDR_CK @ U510(J8/K8)(diff) S3 (Pu, PA2366): DDR_LDQS @ U510(B7) Scope SN2848

Param	Required	Measured	Remarks
т	× 1 22na	2.02055	0.0*T

Conclusion: Setup time is OK

Figure 4.213: DDR_DQS_CK_HOLD

Goal: Verify the hold time of the DQS falling edge from the CLK rising edge

S1 (Ye, PD2375): DDR_CK @ U510(J8/K8)(diff) S3 (Pu, PA2366): DDR_LDQS @ U510(B7) Scope SN2848

Param	Required	Measured	Remarks
T _{DSS}	>1.33ns	3.45ns	0.2*T _{CK}

Conclusion: Hold time is OK

Conclusion: timing is OK

4.4.4.2.3. Write timing (DQ to DQS) [PASS]

10 Measurement remarks:

- Measure DQS and DQ as close as possible to the BGA balls
- Deskew probes
- t_{DSb} is referenced from V_{IH(AC)} for a rising signal and V_{IL(AC)} for a falling signal, while t_{DHb} is referenced from V_{IL(DC)} for a rising signal and V_{IH(DC)} for a falling signal (see the figure below).

5

- If the differential DQS slew rate is not equal to 2 V/ns, then the baseline values must be derated as seen in the table below
- If the single ended DQ slew rate is not equal to 1 V/ns, then the baseline values must be derated as seen in the table below

Signal Measured Slew Rate Slew rate derating Derating value Remarks 2.609V/ns 2.0V/ns Derating setup: +330ps A lower slew rate DQS Derating hold: +291ps corresponds to a higher setup/hold margin. From Micron datasheet Table 33 DQ 2.597V/ns A higher slew rate 2.0V/ns corresponds to a higher setup/hold margin From Micron datasheet Table 33

Conclusion: Write timing is OK

10

4.4.4.2.4.Read timing (DQ to DQS) [PASS]

No read timing specified for DSP (only PCB requirements)

Conclusion: No read timing requirements specified, DQ and DQS are edge aligned

4.4.5. Supply noise [Pass]

5 Goal: Verify noise on supplies of DSP (without DRAM activity)

Initials	JVA	SN	12-30-011-373
Date	01-11-2012	POC FPGA	R04
		POC DSP	R01

Measurement setup:

Master: Setup 1 – no master EEQDM: Setup 1 – default

Measurement:

- Power EEDQM
- Connect 4 motors to RTME
- Run scrip for all four motors:
 - o ./encoder_commutation X 50 0x803 0x803
- Measure the DSP Supplies.

Result:

10

15

Figure 4-219: +3V3_noise

Goal: Verify noise on DVDD3318 supply of DSP.

S1 (Ye, PA2596): +3V3 @U300(P6)

Scope DPO7254; SN1799

Param	Min	Тур	Max	Measured
V_{CC}	3.15V	3.3V	3.45V	3.2893.344V
Noise			100mV	55.55mV

Conclusion: Supply noise is OK (same result with DDR memory test)

Figure 4-221: +1V2 _noise

Goal: Verify noise on CVDD supply of DSP.

S1 (Ye, PA2596): +1V2@ U300 (J12) Scope DPO7254; SN1799

Param	Min	Тур	Max	Measured
V _{CC}	0.9V	1.2V	1.32V	1.1741.24V
Noise			100mV	66.67mV

Conclusion: Supply noise is OK (same result with DDR memory test)

Figure 4-220: +1V8 _noise

Goal: Verify noise on DVDD18 supply of DSP.

S1 (Ye, PA2596): +1V8@U300(K5) Scope DPO7254; SN1799

Param	Min	Тур	Max	Measured
Vcc	1.71V	1.8V	1.89V	1.7851.836mV
Noise			100mV	50.79mV

Conclusion: Supply noise is OK (same result with DDR memory test)

Figure 4-222: +1V2_PLL_noise

Goal: Verify noise on PLL supply of DSP.

S1 (Ye, PA2596): +1V2_DSP+PLL@ U300 (L15/M147) Scope DPO7254; SN1799

Param	Min	Тур	Max	Measured
V_{CC}	1.14V	1.2V	1.32V	1.1841.225V
Noise			100mV	40.47mV

Conclusion: Supply noise is OK (same result with DDR memory test)

Goal: Verify noise on supplies of DRAM and DSP

Initials	JVA	Board release:	R01
Date	17-12-2012	SN	12-30-011-410
		POC release	

Measurement setup:

Master: Setup 1 – no master EEQDM: Setup 1 – default

Measurement:

- Power EEDQM
- Create DRAM activity
- Measure the DSP Supplies.

5

Result:

Figure 4-223: +1V8_noise_DDR

Goal: Verify noise on VDD supply of DRAM.

S3 (Pu, PA2366): +1V8 @U501(E1)

Scope SN2848

Param	Min	Тур	Max	Measured
V_{CC}	1.7V	1.8V	1.9	1.7811.837V
Noise			100mV	56mV

Conclusion: OK

Figure 4-224: +DDR_VREF_noise_DRAM

Figure 4-225: +DDR_VREF_Probe_noise

Goal: Verify noise on VREF supply of DRAM.

S1 (Ye, Passive): +1V8@U300(K5) Scope SN0747

Param	Min	Тур	Max	Measured
V_{CC}	0.882	0.9	0.918	0.8690.963V
Noise			48mV	67.2mV

Conclusion: ripple is too large. Taken the probe noise of 37mV into account the ripple is OK and Vcc is within range.

Figure 4-226: +1V8 _noise_DSP

Goal: Verify noise on DDR_DVDD18 supply of DSP.

S3 (Pu, PA2599): +1V8 @U300(K5)

Scope SN0748

Param	Min	Тур	Max	Measured
V_{CC}	1.71V	1.8V	1.89V	1.7841.832V
Noise			100mV	48mV

Conclusion: OK

Figure 4-227: +DDR_VREF_noise_DSP

Goal: Verify noise on VREF supply of DSP.

S1 (Ye, Passive): +1V8@U300(R6) Scope SN747

Param	Min	Тур	Max	Measured
V_{CC}	0.882	0.9	0.918	0.8920.94V
Noise			48mV	48.8mV

Conclusion: ripple is too large. Taken the probe noise of 37mV into account the ripple is OK and Vcc is within range.

Conclusion: Supply noise is OK

4.5. EtherCAT [Pass]

4.5.1. Clocks [Pass]

5 <u>Goal</u>:

Qualify the PHY0/1 board clocks.

Initials	JVA	Board release:	R01
Date	24-10-2012	SN	12-28-001-828
		POC release	N/A

Measurement setup:

10 Master: Setup 1 – no master EEQDM: Setup 1 – default

Method:

15

- Follow the measurement preparations as described with the setup.
- Measure at clock target
 - o DC levels

Results: