Lab 5 : Introduction to Code Composer Studio

1

and the C6713 DSK.

September, 2006

Overview

The purpose of this lab is to familiarize you with the C6713 DSK and Code
Composer Studio (CCS). This lab involves generating and plotting a sine wave

in CCS.

2 DSP development system overview

A PC is required to run Code Composer Studio which is required to compile
and download code to(run on)the DSP.

2.1

DSP Board highlights
Texas Instruments TMS320C6713 DSP operating at 225 MHz

An AIC23 stereo codec

8 MB of synchronous DRAM

512 KB of non-volatile Flash memory

4 user accessible LEDs and DIP switches
Configurable boot options

Standard expansion connectors for daughter card use

JTAG emulation through on-board JTAG emulator with USB host inter-
face or external emulator

Single voltage power supply (+5V)

Microphone

To Microphone in

igna To Line Out Speaker

Generator

TRigm

Speaker

Figure 1: Typical lab setup

2.2 Functional Overview of DSP Board

The DSP on the 6713 DSK interfaces to on-board peripherals through a 32-
bit wide EMIF (External Memory Interface). The SDRAM, Flash and CPLD
are all connected to the bus. EMIF signals are also used for daughter cards.
The DSP interfaces to analog audio signals through an on-board AIC23 codec
and four 3.5 mm audio jacks (microphone input, line input, line output, and
headphone output). The codec can select the microphone or the line input as
the active input. The analog output is sent to both the line out and headphone
out connectors. The line out has a fixed gain, while the headphone out allows
for an adjustable gain. connectors.

A programmable logic device called a CPLD (Complex Programmable Logic
Device)is used to implement logic that ties the board components together. The
DSK includes 4 LEDs and a 4 position DIP switch which allow for interactive
feedback.

2.3 Software

In this lab, CCS is used to write, compile and download code on to the C6713
DSK. CCS includes a C compiler, an assembler and a linker. It also has graphical
abilities and supports real-time debugging.

The compiler compiles a C source program with extension .c to produce

z 5
LI
HEE o
e
=
z ; =
r___-_-_AE':-.‘-.-:Q.‘{------ RIS nc:
i ;._.._:"E':”‘-__E‘_-;?}i_______ —
b I
e i (=]
Ao
Voltage L
Reg
Embedded o Peripheral Exp
~ JTAG zz==z
: EEEG
G E l % E g E L "'--""--""'—__—|
[s Wwoo L ! I
. AR EEE : L .
g 11] Ext. ! lalololo "35“1,’.‘:;“ | LED | | DIP |
0 .
= 3 JTAG e 0123 0123

Figure 2: C6713 DSK block diagram

an assembly source file with extension .asm. The assembler assembles an.asm
source file to produce a machine language object file with extension .obj. The
linker combines object files and object libraries to produce an executable file
with extension.out.This executable file represents a linked common object file
format(COFF).This executable file can be loaded and run directly on the C6713
DSP.

3 Setting up the system

Follow the instructions below to ensure that CCS and the C6713 DSK are set
up properly.

e Launch CCS from the icon on the desktop.
e In the GEL menu, select Check DSK — Quick test.

e The message diplayed is Switches:15 Board Revision:1 CPLD Re-
vision:2. This assumes the four DIP switches (0,1,2,3) are in the up
position. Depress switch 3 and run the quick test again. The message
now displayed should be Switches:7 Board Revision:1 CPLD Revi-
sion:2.

4 Programming the C6713 DSK

We now write a program to generate a sine wave at 1KHz using a lookup table.
This program uses the AIC23 codec in the 6713 Board Support Library to
generate a tone. The tone is generated based on the state of DIP switch 0.
When the switch is depressed, the tone is generated and LED#0 turns on. The
program also creates a buffer to store the output data in memory. As long as
DIP#0 is in the on position, the program outputs a tone and a graph. This
program uses an infinite loop to poll the DIP switch.

4.1 What the program does

The main loop of the code writes each data point in the sine wave table out
to the codec using the AIC23 codec package of the BSL. Each write function
sends a single 16 bit sample to the codec. In this case the same data is sent
out twice, once to the left channel and once to the right channel. The codec is
configured to accept data at a rate of 48,000 stereo samples per second. Since
the sine table is 48 entries long, the resulting output wave will be a 1KHz sine
wave with the same output on both the left and right channels.

The serial port is used to transmit data to the codec at a much slower rate
than the DSP can process data. It accepts data 16 bits at a time and shifts them
out slowly one at a time. The write function returns a 1 if the write is completed
successfully or a 0 if the serial channel is busy. The while() loop around the

writes waits while the serial port is busy so program can be synchronized to the
data rate of the codec.

// sinegraph.c

// The C6713 Board Support Library(BSL) has several
// modules, each of which has it’s own include file.
// The file dsk6713.h must be used in every program
// that uses the BSL. This example also includes

// dsk6713_led.h and dsk6713_dip.h because it wuses

// the LED and DIP control on the board

#include 7 dsk6713.h”
#include 7 dsk6713_aic23.h”
#include 7 dsk6713_led .h”
#include ”dsk6713_dip.h”

//table index

short loop = 0;

//gain factor

short gain = 10;

//output buffer

Intl6 out_buffer [256]

//size of buffer

const short BUFFERLENGTH = 256;
//counter for buffer

int i = 0;

// Codec configuration
DSK6713_AIC23_Config config = { \

0x0017, /+ 0 DSK6715.AIC23.LEFTINVOL\
020017, /+ 1 DSK6713-AIC23.RIGHTINVOL\
020048, /« 2 DSK6713.AIC25.LEFTHPVOL\
020048, /+ 8 DSK6715.AIC23-RIGHTHPVOL\
020011, /« / DSK6715.AIC23-ANAPATH\
020000, /« 5 DSK6713.AIC25_.DIGPATH\
020000, /« 6 DSK6713.AIC25 POWERDOWN\
020043, /+ 7 DSK6715.AIC23_DIGIF\
020081, /+ 8 DSK6713-AIC25.SAMPLERATE\
020001 /« 9 DSK6715.AIC23.DIGACT\

}

// Lookup table

Int16 sine_table [48] = {
0x0000, 0x10b4, 0x2120, 0x30fb, 0x3fff, Ox4dea,
0x5a81, 0x658b, 0x6ed8, 0x763f, 0x7bal, O0xT7eed,
0x7ffd, O0x7eeb, 0x7bal, O0x76ef, Ox6ed8, 0x658b,

0x5a81, Ox4dea, 0x3fff, 0x30fb, 0x2120, 0x10b4,
0x0000, Oxefdc, OxdeeO, 0xcf06, 0xc002, 0xb216,
Oxab7f, 0x9a75, 0x9128, 0x89cl, 0x845f, 0x81lb,
0x8002, 0x811b, 0x845f, 0x89cl, 0x9128, 0x9a76,
Oxab7f, 0xb216, 0xc002, Oxcf06, Oxdee0, Oxefdc

}s
Uint32 fs = DSK6713_AIC23 FREQ 48KHZ :

// main() — Main code routine, initializes BSL and
// runs LED application
void main ()

DSK6713_AIC23_CodecHandle hCodec;

// Initialize the board support library, must be first
// BSL call
DSK6713_init ();

// Initialize the LED and DIP switch modules of the BSL
DSK6713_LED_init ();
DSK6713_DIP_init ();

// Start the codec
hCodec = DSK6713_AIC23 openCodec (0, &config);

// DIP Switch API

// DSK6718_DIP_get(Uint32 dipNum)

// Return value 0 Specified switch is off
// Return value 1 Specified switch is on

//infinite loop
while (1)
{
if (DSK6713_DIP _get(0) = 0)
{
//turn LED#0 on
DSK6713_-LED_on (0);
out_buffer[i] = sine_table [loop];
// while(return_value is not zero)
// see DSK6713_AIC23 write (...)
// send data to left channel
//output every Ts SWO

while (!DSK6713_AIC23_write(
hCodec, sine_table[loop]*gain));
// send data to right channel
while (!DSK6713_AIC23_write(
hCodec, sine_table[loop]*gain));

T
if (i=BUFFERLENGTH) i=0;
//check for end of table
if (++loop > 47) loop = 0;
}
JJLED#0 off
else DSK6713_LED _off (0);
} //end of while (1)
}

The array out_buffer [Istores the sine data for plotting within CCS The state-
ment while(1) within the function main creates an infinite loop. When dip
switch #0 is pressed, LED#0 turns on and the sinusoid is generated.

The loop index is incremented until the end of the table is reached, after
which it is re-initialized to zero.

The following two commands are used to initialize and shut down the audio
codec and are found at the beginning and end of all programs that use the BSL
codec module.

DSK6713_openCodec ()

returns a handle that is passed to each of the other codec functions.

hCodec = DSK6713_AIC23 openCodec (0, &config);

opens the codec and

hCodec = DSK6713_AIC23_closeCodec (0, &config);

closes the codec.

4.2 Create a project in CCS

1. Type the code and save as sinegraph.c
2. Create a project in CCS (Project — New). Save the project as sinegraph.pjt

Add sinegraph.c to the project.

- W

Add the required library files to project (ti/c6000/dsk6713/lib/).

5. Scan file dependencies (Project — Scan file dependencies).

6. Set the appropriate compiler options (Project — Build options). The
following compiler options are suggested.

e For the 'Basic’ category:
target version : C670x
gen. debug info : full
opt speed vs size: speed most critical
prog level opt :none

e For 'Feedback’ category:
interlisting : opt/c and ASM(-s)

e For 'Preprocessor’ category :
Define symbols:CHIP_6713

4.3 Building and Running the Project

The project can now be built and run.

1. Select Project — Rebuild All or press the toolbar with the three down
arrows.This compiles and assembles the source file(s). The resulting object
files are then linked with the library files. This creates an executable file
sinegraph.out. that can be loaded into the C6713 processor and run.
The building process causes all the dependent files to be included (in case
one forgets to scan for all the file dependencies).

2. Select File — Load Program in order to load sinegraph.outto the DSK.
It should be in the folder sinegraph\Debug.Select Debug — Run or use
the toolbar with the running man. Connect a speaker to the LINE OUT
connector on the DSK. Press the dip switch #0.

Plotting with CCS The output buffer is updated continuously every 256
points .CCS can be used to plot the current output data stored in the buffer
out_buffer.

1. Select View—Graph—Time/Frequency. Change the Graph Property Dia-
log so that the options are as indicated in figure 3. The starting address of
the output buffer is out_buffer.The other options can be left as default.

2. Choose a fast Fourier transform (FFT) order so that the frame size is 2
order. Press OK and verify that the FFT magnitude plot is as shown
(figure 4) .The spike at 1000 Hz represents the frequency of the sinusoid
generated.

B Graph Property Dialog

Dizplay Type

Graph Title

Stat Address
Acquizibon Buffer See
Index Increment
Dizplaw Data Sze
DSP Data Type
[]-value

Sampling A ate [Hz)
Plet Doata From
Lefi-zhifted Diata Display
Altoscala

DC Valee

Axes Lizplay

Time Dizphay Unit
Ctatuz Bar Display

[Single Time

Graphical Display
out_buffer

il

1

B4

1E-hit sigried nleger
]

200

Laft 1o Right

Tes

On

D r—
Un

5

o =
Hepp |

Figure 3: Time domain graph property dialog

B2 Graph Property Dialag Fi

Graph Title

Signal Type

Start Address
Acquisibon Buffer See
Ind=x Increment

FFT Framesize

FFT Order

FFT "W indavang Funchan
Dizplay Peak and Hald
DSP Data Type

U-value

Sampling A ate [Hz)

Plot Drata From
Left-zhifted Data Dizplay
ALtoscals

FET Magriude =il =
Graphical Display

Real

oult_buffer

256

1

1

a

Rectange

CIiE

16-bit signed mteger —
]

000

Leit to Flight

h=

On ﬂ
[ok | cancel| Hep |

Figure 4: Frequency domain graph property dialog

