

User's Guide June 2009

SN65LVCP408_418 EVM

ABSTRACT

The SN65LVCP408 is a 8x8 non-blocking crosspoint switch with each output driver including a 8:1 multiplexer allowing any input to be routed to any output. The SN65LVCP418 is a 8x8 signal conditioning buffer that does not have a multiplexer. On both parts, a flow-through pin-out allows for ease in PCB layout. VML signaling is used for the SN65LVCP408 and SN65LVCP418 to achieve a high-speed data throughput while using low power. Both parts' internal signal paths are fully differential to achieve high signaling speeds while maintaining low signal skews. The SN65LVCP408 and SN65LVCP418 incorporate $100\text{-}\Omega$ termination resistors for applications where board space is a premium. Transmit preemphasis and receive equalization are built in, enabling superior signal integrity performance.

The SN65LVCP408 and SN65LVCP418 are characterized for operation from -40°C to 85°C.

Contents

Introduction	2
SN65LVCP408_418 EVM Configuration	2
SN65LVCP408_418 EVM Kit Contents	2
Description of EVM Board	2
USB Interface Adapter EVM	4
PCB Construction	9
SN65LVCP408_418 EVM Board Schematics	9
SN65LVCP408_418 EVM Board Layout	11
SN65LVCP408_418 EVM Material Listing	18
SN65LVCP408_418 EVM Board Construction	18
Appendix A – Bill of Materials	18

List of Figures

1	SN65LVCP408_418 EVM Jumper Location	3			
2	Connection of Adapter, USB Cable, and Ribbon Cable4				
3	USB Adapter Status in Windows XP Device Manager	5			
4	USB Interface Adapter GUI	6			
5	I2C Portion of the Adapter GUI (Write Mode)				
6	I2C Portion of the Adapter GUI (Read Mode)	8			
7	SN65LVCP408_418 EVM Schematic Page 1	9			
8	SN65LVCP408_418 EVM Schematic Page 2	10			
9	SN65LVCP408_418 EVM Schematic Page 3	11			
10	SN65LVCP408_418 EVM Top Layer 1	12			
11	SN65LVCP408_418 EVM Ground Layer 2	13			
12	SN65LVCP408_418 EVM Power Layer 3	14			
13	SN65LVCP408_418 EVM Ground Layer 4				
14	SN65LVCP408_418 EVM Ground Layer 5	16			
15	SN65LVCP408_418 EVM Bottom Layer 6	17			
16	SN65LVCP408_418 EVM Layer Stack-up	18			
	List of Tables				
1	Jumper Functionality	3			
2	SN65LVCP402 EVM HDMI Bill of Materials	18			

Introduction

The SN65LVCP408 is a 8x8 non-blocking crosspoint switch with a 8:1 multiplexer. The SN65LVCP418 is a 8x8 signal conditioning buffer. This guide describes the construction and usage of the EVM for the SN65LVCP408 and SN65LVCP418. The EVM is meant to serve as an evaluation tool for the SN65LVCP408 and SN65LVCP418.

SN65LVCP408_418 Evaluation Module Configuration

SN65LVCP408_418 EVM Kit Contents

This EVM kit should contain the following items:

- SN65LVCP408_418 EVM board
- This user's manual
- USB to I2C adapter

2

Description of EVM Board

The SN65LVCP408_418 EVM's are designed to provide easy evaluation of the SN65LVCP408_418 devices.

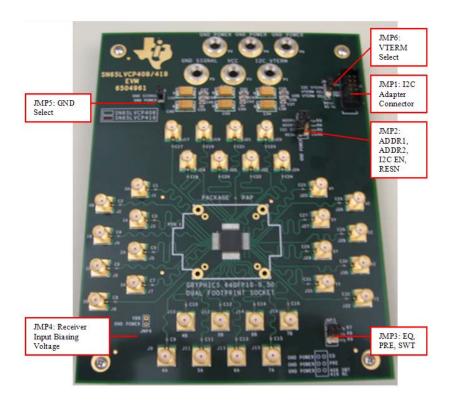


Figure 1. SN65LVCP408_418 EVM Jumper Location

Jumper Number/	Functionality			
Switch				
JMP1	I2C Adapter Connector			
JMP2	ADDR1/2, I2C_EN, RESN (I2C_EN open for enable, RESN jumpered for I2C			
	reset)			
JMP3	EQ, PRE, SWT (EQ open for 9dB, jumpered for 13dB; PRE open for 6dB,			
	jumpered for 0dB)			
JMP4 (Not Installed)	Reciever Input Biasing Voltage			
JMP5	GND Select (Jumpered for SIG_GND tied to DUT_GND)			
JMP6	VTERM Select			

Table 1. Jumper Functionality

The power supply required for this EVM is a +3.3V DC power supply. Banana-jack cables need to be used. The output voltage of the power supply should be within the range of +3.0V to +3.6V.

USB Interface Adapter EVM

The SN65LVCP408_418 EVM has two modes of control: GPIO control by setting jumpers on the EVM or local I2C control through the USB Interface Adapter EVM. This section gives a brief description on the operation of the USB Interface Adapter. For a detailed description of the adapter EVM, including GUI, schematics, firmware, and etc, please refer to literature number SLLU093 on Tl's website.

Before using the USB Interface Adapter, please have the following item ready:

- 1. Download and extract the <u>USB Interface Adapter Software</u> from TI's website to a PC with Windows XP.
- Connect the 10 Pin ribbon cable to the I/O port of the USB adapter, and connect the mini-B side of the USB cable to the USB port of the USB adapter. Refer to 0 or <u>SLLU093</u> for detailed illustration.

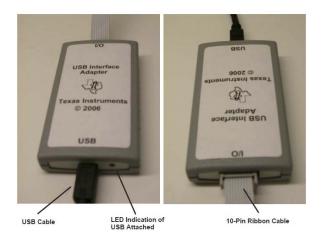


Figure 2. Connection of Adapter, USB Cable, and Ribbon Cable

In order to use local I2C to control the SN65LVCP408_418 EVM, please follow the instructions below:

- 1. Plug USB Adapter to the PC
- Start USB SAA GUI.exe on the PC
- 3. Strap JMP6 to 1-2 to select I2C Mode
- 4. Connect the 10 pin ribbon cable from the USB adapter to the SN65LVCP408 418 EVM

1. Plug USB adapter to the PC

The adapter is powered through PC's USB port, and the PC should recognize the USB interface adapter as a generic "Human Interface Device." To access the status, go to Start>Control Panel>System. Click on the "Hardware" tab and click on the "Device Manager" button.

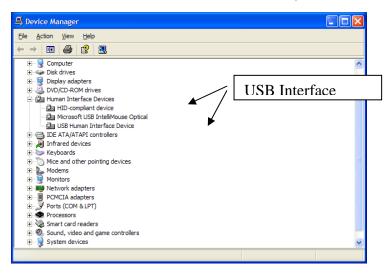


Figure 3. USB Adapter Status in Windows XP Device Manager

2. Start "USB SAA GUI.exe" on the PC.

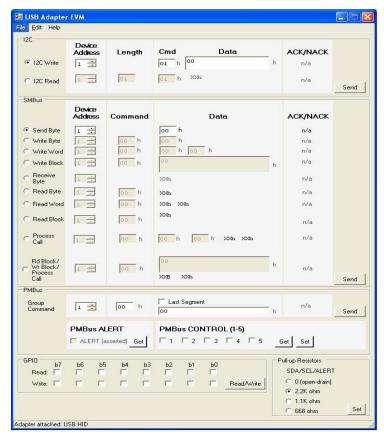


Figure 4. USB Interface Adapter GUI

- 3. Strap 1-2 on JMP6 to enable local I2C control.
- 4. Connect the 10-pin ribbon cable from the USB adapter to the SN65LVCP408_418 EVM.

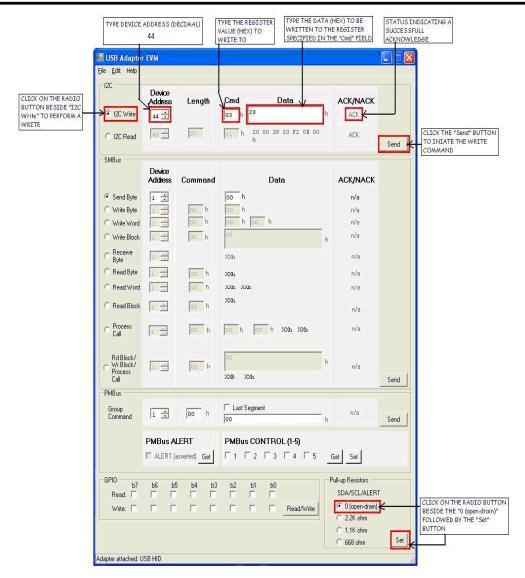


Figure 5. I2C Portion of the Adapter GUI (Write Mode)

To program SN65LVCP408_418 EVM would only require the I2C portion of the GUI (refer to Figure 5 for illustration). *To write to one of the SN65LVCP408_18 registers*, click on "*I2C Write*". The "*Device Address*" is the Local I2C Address of the SN65LVCP408_418, which is adjustable between 44 and 47 (decimal) via jumpering the ADDR1 and ADDR2 pins. The "*Cmd*" refers to the register number to write to. Kindly refer to the register map in the SN65LVCP408 and SN65LVCP418 datasheets. Input the command you would like to write to in hexadecimal form to the "*Data*" section and click "*Send*." The GUI should show "*ACK*" to show that the command is acknowledged.

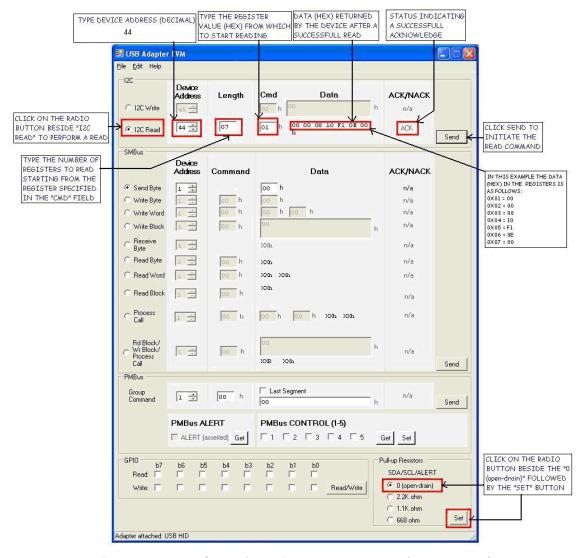


Figure 6. I2C Portion of the Adapter GUI (Read Mode)

To read one of the SN65LVCP408_418 registers, click on "I2C Read" and input the proper Local I2C Address (refer to 06 for illustration). The "Length" section will give you the number of registers to read starting from register value you input to the "Cmd". To read a particular register, set "Length" to be 1 and set "Cmd" to be the register you want to start the read in hexadecimal format. To read the entire 7 registers of the SN65LVCP408_418, set "Length" to be 7 and set "Cmd" to be register 0x01h.

PCB Construction

This section discusses the construction of the EVM boards. It includes the board schematics and Gerber files to show how the board was built.

SN65DPLVCP408_418 EVM Board Schematics

This section shows the board schematic sheets for the EVM.

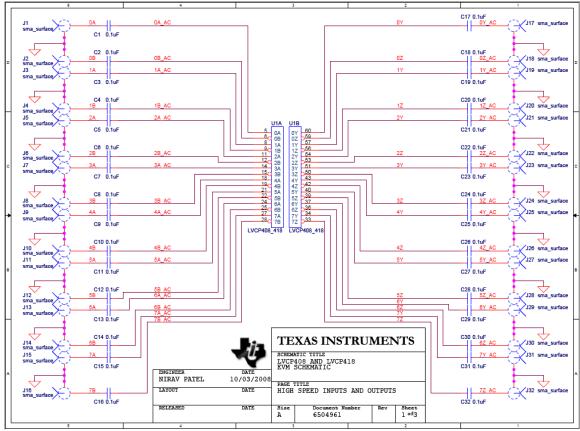


Figure 7. SN65LVCP408_418 EVM Schematic Page 1

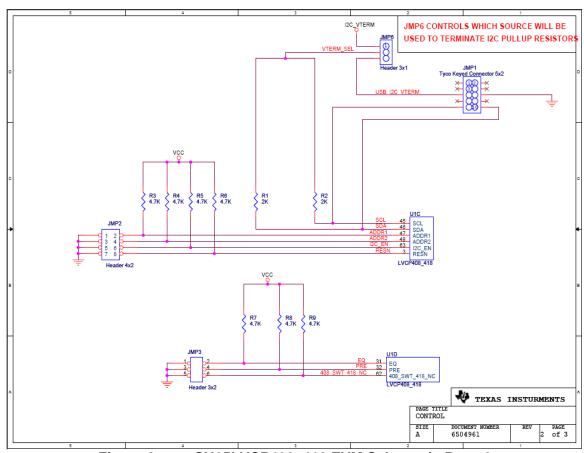


Figure 8. SN65LVCP408_418 EVM Schematic Page 2

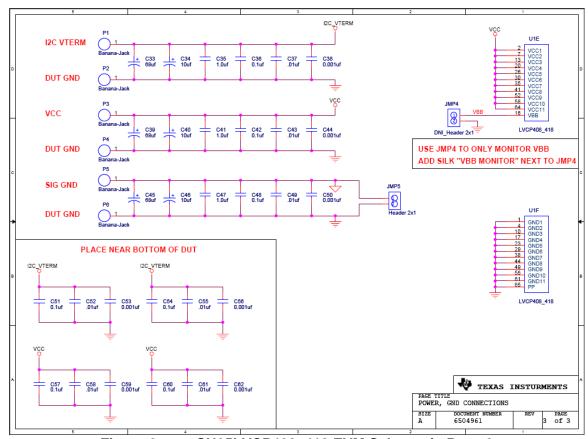


Figure 9. SN65LVCP408_418 EVM Schematic Page 3

SN65LVCP408_418 EVM Board Layout

This EVM was designed to show the implementation of these devices on a 6-layer board.

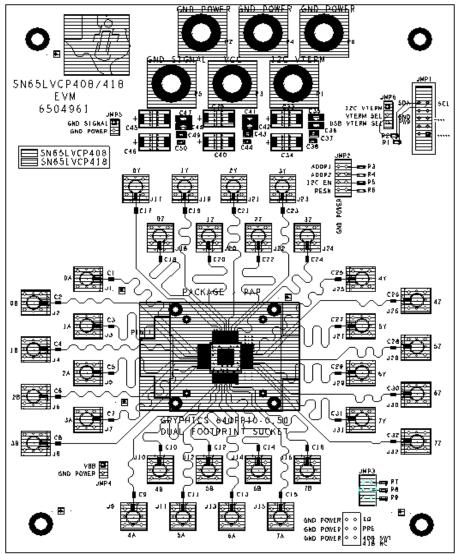


Figure 10. SN65LVCP408_418 EVM Top Layer 1

Figure 11. SN65LVCP408_418 EVM Ground Layer 2

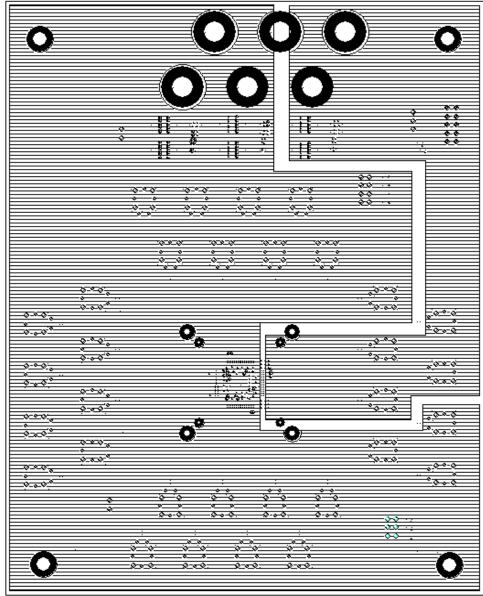


Figure 12. SN65LVCP408_418 EVM Power Layer 3

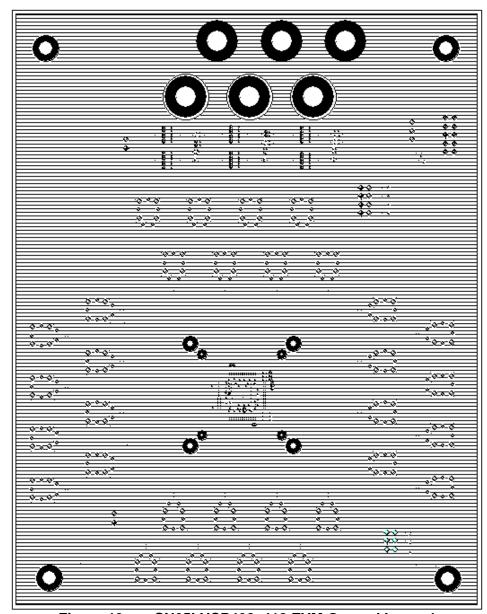


Figure 13. SN65LVCP408_418 EVM Ground Layer 4

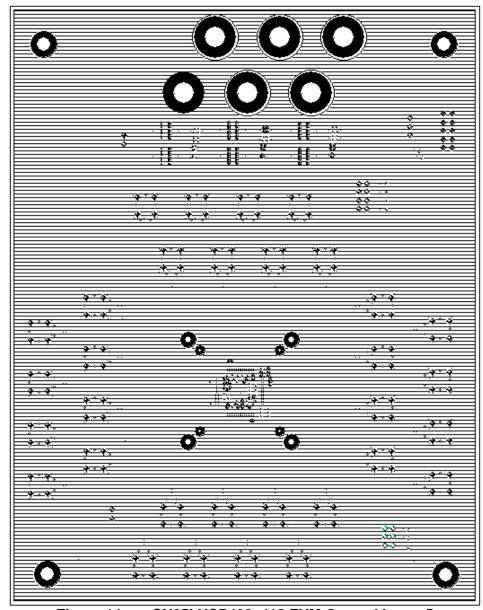


Figure 14. SN65LVCP408_418 EVM Ground Layer 5

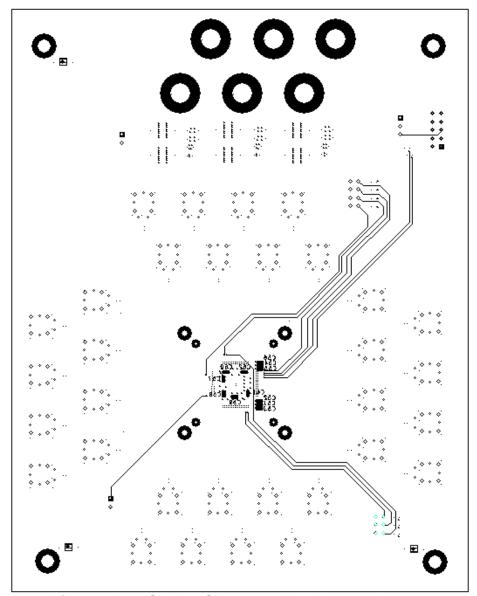


Figure 15. SN65LVCP408_418 EVM Bottom Layer 6

SN65LVCP408_418 EVM Material Listing

The complete Bill of Material for the EVM is listed in Appendix A.

SN65LVCP408_418 EVM Board Construction

The SN65LVCP408_418 EVM board is a 6-layer board constructed of FR-4 TurboClad 370 material. The board stackup consists of a signal layer on top, a ground layer, power, two additional ground layers and a signal layer on bottom.

Figure 16. EVM Layer Stack-up

Appendix A – Bill of Materials

Below is a table of the complete BOM for the SN65LVCP408_418 EVM.

Item	Quantity		Reference	Value
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	32 3 3 3 3 3 4 4 4 4 1 1 1 1	C1,C2,C3,C4,C5,C6 ,C7,C8,C9,C10,C11 ,C12,C13,C14,C15, C16,C17,C18,C19, C20,C21,C22,C23, C24,C25,C26,C27, C28,C29,C30,C31, C32 C33,C39,C45 C34,C40,C46 C35,C41,C47 C36,C42,C48 C37,C43,C49 C38,C44,C50 C51,C54,C57,C60 C52,C55,C58,C61 C52,C55,C58,C61 C53,C56,C59,C62 JMP1 JMP2 JMP3 JMP4 JMP5	0.1uF 68uf 10uf 1.0uf 0.1uf 0.1uf 0.01uf 0.01uf 0.001uf Tyco Keyed Connector 5x2 Header 4x2 Header 3x2 DNI_Header 2x1 Header 2x1
	17 18 19 20 21	32 6 2 7	JMP6 J1,J2,J3,J4,J5,J6,J7 ,J8,J9,J10,J11,J12, J13,J14,J15,J16,J1 7,J18,J19,J20,J21,J 22,J23,J24,J25,J26, J27,J28,J29,J30,J3 1,J32 P1,P2,P3,P4,P5,P6 R1,R2 R3,R4,R5,R6,R7,R8 ,R9	sma_surface Banana-Jack 2K 4.7K LVCP408 418

Table 2. SN65LVCP408_418 EVM Bill of Materials