TMS320C28x Floating Point Unit and
Instruction Set

Reference Guide

I3 TEXAS

INSTRUMENTS

Literature Number: SPRUEO2A
June 2007—-Revised August 2008

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS

INSTRUMENTS
Contents
MG o 5|
1 TalideTe[Vle3iTe] o N T 1
11 Introduction to the Central Processing Unit (CPU) o oot oeeee e eeeeeeoeereeeeeaeeeeoeeeeoeeieoeesoeeseseeeoeeieees g
1.2 Compatibility with the C28x Fixed-PoOint CPUL i sotseeeteeeeraeeeaeeeeoeeieoeeeeseereseeroeeieseeeeeeeroseeroeeeneess g
1.2.1 Floating-Point Code Development] e o ueee e teeeeeeeieeeeeeseeeseeesseeseeeeeeeseeeeieesseeeiiesseeeieaens 9
1.3 Components of the C28x plus Floating-Point CPUL e st teetieereeeeeereeeeeeroeeeeeeorroeeeeeroereeioeioeeeeeeeeieees 9
OG0 A =1 o [0 =1 o o I e Yo o 17
IS 2 Y [T o (oo VA Y =T T 14
1.3.3 On-Chip Program and Data@lieseeeeeeeeseeeroeeoeeeeeoeeeeeeoreeeeeeeroeeeeeeoeroeeeeeeoeieeeeeroeeeseeoeioeees 10
1.34 CPUINterrupt VeCtOrS i.ueeeseeeeeeerenneeeereesueeetreseeereesseeeeiessseeesessseeeeeessseeeiessseeeriesseeeess 10
14 Y ISTe Lol YA L1 <1y 1= 1o s T 1J
1.4.1 Address and Data BUSES[e eereeereeeoereeeroeroeeeoeroeeeeeroreeeeeeeroreeeeoeioeeeeeeoeieeeoeroreeseeoeeeeees 17
1.4.2 Alignment of 32-Bit Accesses t0 Even AddreSSeS] e eeeoereereeerorreeerorioreeeeiorioseeoeroreeseroriaeees |
2 O W =T o [(=T T =Y o M 13
21 CPU REQISTOrS it teeeroeeeeeeoetaeeeeeeaetoeeeeeeeeeeseeoeeoeeeoeeoeeeeetoeeeeeeoetoeeeeeeoreeeeeetoreeeeeoreeeeroeeeeeees 14
2.1.1 Floating-Point Status Register (STF)[iieceteeeetearerereeeoeereeeieoeerereeroseeroreeeseereoeeroseeroseeeaeees 19
2.1.2 Repeat BIock RegiSter (RB)[ieieueeteeeteaereraeeieaeeieneeeeeeieseeeseeieseeieseeraseeesseerseeieseereseeeanees 13
3 I) 2]
3.1 PIpeliNg OVerViEW oo et e eieeeeeeeieoeeseeeeaneesoseeeoeeeeoeeeoseereseeeoseeioeeeoseeteseeeesteioseeeseeieseeeeseeses 27
3.2 General Guidelines for Floating-Point Pipeline Alignment ..o o oo eeeeeeeieeeereeeeeoeeeeoeeieseerereeeaeess 27
3.3 Moves from FPU Registers t0 C28X ReQISterS]ee e s uueeererreeeeerieeeeeeieeeseeereeeseeeeseesseeeisesseeeeiesseeeess 23
3.4 Moves from C28x Registers t0 FPU ReQiSterS s ieeeeeeeerroeeeeeroreeeeeeroreeeeoeioeeeeeeoeiereioeioeeeeeroeeeeees 23
3.5 Parallel INStrUCtONS et teeeeeeeeraeeeeoeeeeeeeeeneereeeeoseeeoeeeeseereseeeoseeroseeeoeereseeeeseetoseesosereneeeeeeses 29
3.6 Invalid Delay INStruCtiONS] et s et e teeeeeeeeeeeeeesieaseeeseeasseeessssseeessseseeeeesssseeeesesseeeeiesseeesss 24
3.7 Optimizing the PiPeliNe e e e teeeeeeeoeroeeeeeeareeeeeoeioeeeoeeoeeeeeroeeeeeeoeroeeeeeeoreeeeeeeroeeeeeorreeereeseeees 21
4 INSTFUCTION ST [Liuieuiuieureienrrerereitareieareieasrearereatereatereatarertareiearerearerearerearereererentarereaes 29
4.1 INStruction DeSCriPtIONS] e sttt et teeereneeraneeraeeraseteaeeeeseeianeeraseeeaseereseieseereseeeaseeroseeeseereseesaneeses 30
4.2 [a1S] (U ol o] 39
A REVISTION HiSTONY [t e ie it eeetetetaeeeeetetnteeeeetetaeaeeeeeteteaeeetetsraeeeeeeeisraeeeeeteraeeceeiereencnees 137
Al (@ g F= T Lo =2 I 137
SPRUEO2A-June 2007 —-Revised August 2008 Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
1-1 FPU Functional BlIOCK Diagram e e eeeeeeeeeteaeeeeeeraoeerareieoeeeeoeeroseeroeeeoeeeeoeeeoseereseeeoseesoeeeeseesanes g
2-1 C28x With Floating-Point RegiSters] ..o et ieeeeeeiseeeeeeseeeeeeeereaseeeeesesseeeeieeseeeiseseseessessseeesessnees 14
2-2 Floating-point Unit Status Register (STHF) oo oo ieeeeeeeeereereeoeereoeeeoneereseesoeeeeseeeesreioseeeoeeeseeeeeeeses 19
2-3 Repeat BIOCK ReQiSter (RB) e ieoeeteeeeeeneeraneeeaeeieoeeeeoeeroseeroseeeoeeeeoeetoneeroseeeaseeroeeioseereseeeaseeres 13
3-1 S N (o [[22
List of Tables
2-1 28x Plus Floating-Point CPU Register SUMMAIy[eieeeeeeeeeeoeereaeetereeroeeroeeieoeeroreeeoeeroeieseereseeeaness 13
2-2 Floating-point Unit Status (STF) Register Field DeSCriptionS i eeeeeeeeeeeeeereeeeoeereeeeeeseeioseeroeeieseeeeeeses 19
2-3 Repeat Block (RB) Register Field DeSCrptioNS e eeeeoeeeeeeereoeereeeeoeeeroeeieseereoeeeesreioeeeseereseeeeseeres 13
4-1 Operand NOMENCIAtUNE . et e e reseeeeeetieeeteneereneeteseeeaeeeeaeeieseeieseeissteieseieseeieseiesseeeeseieseereseeeneees 3d
4-2 SlininEl R RS i (el s 37
A-1 Technical Changes Made in ThiS REVISION| . tuttteerieaeereieeraseiiaeeeaeeieseereseeresreraeeieseereseesaeeraeeses 137
4 List of Figures SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS Preface
INSTRUMENTS SPRUEO2A—June 2007—Revised August 2008

Read This First

This document describes the CPU architecture, pipeline, instruction set, and interrupts of the C28x
floating-point DSP.

About This Manual
The TMS320C2000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family.
Notational Conventions

This document uses the following conventions.

« Hexadecimal numbers are shown with the suffix h or with a leading Ox. For example, the following
number is 40 hexadecimal (decimal 64): 40h or 0x40.

* Registers in this document are shown in figures and described in tables.
— Each register figure shows a rectangle divided into fields that represent the fields of the register.

Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

— Reserved bits in a register figure designate a bit that is used for future device expansion.
Related Documentation

The following books describe the TMS320x28x and related support tools that are available on the Tl
website:

Data Manual and Errata—

SPRS439— TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234]
[TMS320F28232 Digital Signal Controllers (DSCs) Data Manual contains the pinout, signall

descriptions, as well as electrical and timing specifications for the F2833x/2823x devices.

SPRZ272— [TMS320F28335, F28334, F28332, TMS320F28235, F28234, F28232 Digital Signal

Controllers S) Silicon Erratd describes the advisories and usage notes for different versions of
silicon.

CPU User's Guides—

SPRU430— X and Tnstruction Set Reference Guidg describes the central
processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point
digital signal processors (DSPs). It also describes emulation features available on these DSPs.

SPRUEO2— TMS320C28x Floating Point Unit and Instruction Set Reference Guidg describes the
floating-point unit and includes the instructions for the FPU.

Peripheral Guides—

SPRU566— TMS320x28xx, 28xxx Peripheral Reference Guidg describes the peripheral reference guides
of the 28x digital signal processors (DSPS).

SPRUFB0— TMS320x2833x, 2823x System Control and Interrupts Reference Guide describes the
various interrupts and system control features of the 2833x digital signal controllers (DSCs).

SPRU812— TMS320x2833x, 2823Xx Analog-to-Digital Converter (ADC) Reference Guidg describes how to
configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.

SPRUEO2A-June 2007 —-Revised August 2008 Read This First 5
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/sprs439
http://www-s.ti.com/sc/techlit/sprs439
http://www-s.ti.com/sc/techlit/sprz272
http://www-s.ti.com/sc/techlit/sprz272
http://www-s.ti.com/sc/techlit/spru430
http://www-s.ti.com/sc/techlit/sprueo2
http://www-s.ti.com/sc/techlit/spru566
http://www-s.ti.com/sc/techlit/spru812
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Related Documentation www.ti.com

SPRU949— TMS320x2833x, 282ax External Interface (XINTF) User's Guidg describes the XINTF, which

is a nonmultiplexed asynchronous bus, as it is used on the 2833x devices.

SPRU963— X X, X X Boot ser's Guidg describes the purpose and
features of the bootloader (factory-programmed boot-loading software) and provides examples of
code. It also describes other contents of the device on-chip boot ROM and identifies where all of
the information is located within that memory.

SPRUFB7— X X, x Multichannel Buffered Serial Port (Mc ser's Guidd describes
the McBSP available on the F2833x devices. The McBSPs allow direct interface between a DSP
and other devices in a system.

SPRUFB8— [TMS320x2833x, 2823x Direct Memory Access (DMA) Reference Guidd describes the DMA
on the 2833x devices.

SPRUG04— [TMS320x2833x%, 2823x Enhanced Pulse Width Modulator (ePWM) Module Reference Guidg
describes the main areas of the enhanced pulse width modulator that include digital motor control,
switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power
conversion.

SPRUG02— X X, X High-Resolution Pulse Width Modulator describes the
operation of the high-resolution extension to the pulse width modulator (HRPWM).

SPRUFG4— TMS320x2833x, 2823x Enhanced Capture (eCAP) Module Reference Guidd describes the
enhanced capture module. It includes the module description and registers.

SPRUGO05— [TMS320x2833X%, 2823x Enhanced Quadrature Encoder Pulse (eQEP) Reference Guidg
describes the eQEP module, which is used for interfacing with a linear or rotary incremental
encoder to get position, direction, and speed information from a rotating machine in high
performance motion and position control systems. It includes the module description and registers.

SPRUEU1— [TMS320x2833x, 2823x Enhanced Controller Area Network (eCAN) Reference Guidg
describes the eCAN that uses established protocol to communicate serially with other controllers in
electrically noisy environments.

SPRUFZ5— TMS320F2833x, 2823x Serial Communication Interface (SCI) Reference Guidg describes
the SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI
modules support digital communications between the CPU and other asynchronous peripherals that
use the standard non-return-to-zero (NRZ) format.

SPRUEU3— [TMS320x2833x, 2823x Serial Peripheral Interface (SPI) Reference Guidg describes the SPI
- a high-speed synchronous serial input/output (1/0) port - that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed
bit-transfer rate.

SPRUG03— [MS320x2833x, 2823x Inter-Integrated Circuit (12C) Reference Guidd describes the
features and operation of the inter-integrated circuit (12C) module.

Tools Guides—

SPRU513— TMS320C28x Assembly Language Tools Users Guidg describes the assembly language
tools (assembler and other tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the TMS320C28x device.

SPRU514— MS320C28x Optimizing C Compiler User's Guidg describes the TMS320C28x™ C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP
assembly language source code for the TMS320C28x device.

SPRU608— [The TMS320C28x Instruction Set Simulator Technical Overview] describes the simulator,
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction
set of the C28x™ core.

SPRU625— [TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guidg
describes development using DSP/BIOS.

Read This First SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spru949
http://www-s.ti.com/sc/techlit/spru963
http://www-s.ti.com/sc/techlit/sprufb7
http://www-s.ti.com/sc/techlit/sprufb8
http://www-s.ti.com/sc/techlit/sprufz6
http://www-s.ti.com/sc/techlit/sprug02
http://www-s.ti.com/sc/techlit/sprufg4
http://www-s.ti.com/sc/techlit/sprug05
http://www-s.ti.com/sc/techlit/sprueu1
http://www-s.ti.com/sc/techlit/sprufz5
http://www-s.ti.com/sc/techlit/spru059
http://www-s.ti.com/sc/techlit/sprug03
http://www-s.ti.com/sc/techlit/spru513
http://www-s.ti.com/sc/techlit/spru514
http://www-s.ti.com/sc/techlit/spru608
http://www-s.ti.com/sc/techlit/spru625
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 'TEXAS Chapter 1
INSTRUMENTS SPRUEO2A-June 2007—Revised August 2008

Introduction

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal controllers
(DSCs). TMS320C2000™ Digital Signal Controllers combine control peripheral integration and ease of
use of a microcontroller (MCU) with the processing power and C efficiency of TI's leading DSP
technology. This chapter provides an overview of the architectural structure and components of the C28x
plus floating-point unit CPU.

Topic Page
1.1 Introduction to the Central Processing Unit (CPU)oeeeeeeieieieieeeee.e... S|
1.2 Compatibility with the C28x Fixed-Point CPU[L.oeeeeeieieeeieieeieeeeene. g
1.3 Components of the C28x plus Floating-Point CPU[.....ceveveeeeeene..... 9
1.4 Memory INterfaCe] i eeeee it eeeae it ieeaeaeieieeaeaeieieineaeaeieincacaeeeinss 10
SPRUEO2A-June 2007 —-Revised August 2008 Introduction 7

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Introduction to the Central Processing Unit (CPU) www.ti.com

11

1.2

Introduction to the Central Processing Unit (CPU)

The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU
by adding registers and instructions to support IEEE single-precision floating point operations. This device
draws from the best features of digital signal processing; reduced instruction set computing (RISC); and
microcontroller architectures, firmware, and tool sets. The DSC features include a modified Harvard
architecture and circular addressing. The RISC features are single-cycle instruction execution,
register-to-register operations, and modified Harvard architecture (usable in Von Neumann mode). The
microcontroller features include ease of use through an intuitive instruction set, byte packing and
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

Throughout this document the following notations are used:
e (C28x refers to the C28x fixed-point CPU.

* (C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support
IEEE single-precision floating-point operations.

Compatibility with the C28x Fixed-Point CPU

No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU are completely compatible with the C28x+FPU and all of
the features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide

(literature number EPRU430) apply to the C28x+FPU.
shows basic functions of the FPU.

Figure 1-1. FPU Functional Block Diagram

Program address bus (22) >

Memory
bus |'Program data bus (32) |

O [
Read address bus (32)
[[[] F>

Read data bus (32)

C28x

2 Existing

memory,
peripherals,
interfaces

LVE 5
—LUF] PIE

Memory | Write data bus (32)
bus

\Write address bus (32)

8

Introduction SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Components of the C28x plus Floating-Point CPU

1.2.1 Floating-Point Code Development

When developing C28x floating-point code use Code Composer Studio 3.3, or later, with at least service
release 8. The C28x compiler V5.0, or later, is also required to generate C28x native floating-point
opcodes. This compiler is available via Code Composer Studio update advisor as a seperate download.
V5.0 can generate both fixed-point as well as floating-point code. To build floating-point code use the
compiler switches:-v28 and - -float_support = fpu32. In Code Composer Studio 3.3 the float_support
option is in the build options under compiler-> advanced: floating point support. Without the float_support
flag, or with float_support = none, the compiler will generate fixed-point code.

When building for C28x floating-point make sure all associated libraries have also been built for
floating-point. The standard run-time support (RTS) libaries built for floating-point included with the
compiler have fpu32 in their name. For example rts2800_fpu32.lib and rts2800_fpu_eh.lib have been built
for the floating-point unit. The "eh" version has exception handling for C++ code. Using the fixed-point
RTS libraries in a floating-point project will result in the linker issuing an error for incompatible object files.

To improve performance of native floating-point projects, consider using the C28x FPU Fast RTS Library
(EPRCG664). This library contains hand-coded optimized math routines such as division, square root,
atan2, sin and cos. This library can be linked into your project before the standard runtime support library
to give your application a performance boost. As an example, the standard RTS library uses a polynomial
expansion to calculate the sin function. The Fast RTS library, however, uses a math look-up table in the
boot ROM of the device. Using this look-up table method results in approximately a 20 cycle savings over
the standard RTS calculation.

1.3 Components of the C28x plus Floating-Point CPU

The C28x+FPU contains:

» A central processing unit for generating data and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory

» A floating-point unit for IEEE single-precision floating point operations.

» Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

» Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the

emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU central processing unit are:

» Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order. See

« Some floating-point instructions require pipeline alignment. This alignment is done through software to
allow the user to improve performance by taking advantage of required delay slots.

» Independent register space. These registers function as system-control registers, math registers, and
data pointers. The system-control registers are accessed by special instructions.

» Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

» Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.

» Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

» Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

» Fixed-Point Multiplier. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

SPRUEO2A-June 2007 —-Revised August 2008 Introduction 9
Eubmit Documentafion FeedbacH

http://focus.ti.com/docs/toolsw/folders/print/sprc664.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Memory Interface www.ti.com

13.1

1.3.2

133

134

1.4

Emulation Logic

The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features. For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number EPRUZ30:

» Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

e A counter for performance benchmarking.
» Multiple debug events. Any of the following debug events can cause a break in program execution:
— A breakpoint initiated by the ESTOPO or ESTOP1 instruction.

— An access to a specified program-space or data-space location.
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

* Real-time mode of operation.

Memory Map

Like the C28x, the C28x+FPU uses 32-bit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+FPU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data sheet for your device.

On-Chip Program and Data

All C28x+FPU based devices contain at least two blocks of single access on-chip memory referred to as
MO and M1. Each of these blocks is 1K words in size. MO is mapped at addresses 0x0000 — Ox03FF and
M1 is mapped at addresses 0x0400 — OxO7FF. Like all other memory blocks on the C28x+FPU devices,
MO and M1 are mapped to both program and data space. Therefore, you can use MO and M1 to execute
code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on the
device, it may also have additional random-access memory (RAM), read-only memory (ROM), external
interface zones, or flash memory.

CPU Interrupt Vectors

The C28x+FPU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to the top or
bottom of program space by way of the VMAP bit. For more information about the CPU vectors, see
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number EPRU430). For devices
with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector table
and this memory can be used as program memory.

Memory Interface

The C28x+FPU memory interface is identical to that on the C28x. The C28x+FPU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the C28x+FPU supports special byte-access instructions that can
access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe
signals indicate when such an access is occurring on a data bus.

10

Introduction SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spru430
http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Memory Interface
1.4.1 Address and Data Buses

Like the C28x, the memory interface has three address buses:
 PAB: Program address bus
The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
 DRAB: Data-read address bus
The 32-bit DRAB carries addresses for reads from data space.
« DWAB: Data-write address bus
The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
* PRDB: Program-read data bus
The PRDB carries instructions during reads from program space. PRDB is a 32-bit bus.
 DRDB: Data-read data bus
The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
« DWDB: Data-/Program-write data bus
The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

1.4.2 Alignment of 32-Bit Accesses to Even Addresses

The C28x+FPU CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or
write to an even address. If the address-generation logic generates an odd address, the CPU will begin
reading or writing at the previous even address. This alignment does not affect the address values
generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

SPRUEO2A-June 2007 —-Revised August 2008 Introduction 11
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

12 Introduction SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 'TEXAS Chapter 2
INSTRUMENTS SPRUEO2A-June 2007—Revised August 2008

CPU Register Set

The C28x+FPU architecture is the same as the C28x CPU with an extended register and instruction set to

support IEEE single-precision floating point operations. This section describes the extensions to the C28x
architecture.

Topic Page
2% B o =1 U N S = To [151 1S 14
SPRUEO2A-June 2007 —-Revised August 2008 CPU Register Set 13

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

CPU Registers

13 TEXAS
INSTRUMENTS

www.ti.com

2.1 CPU Registers
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point
unit registers. The additional floating-point unit registers are the following:
» Eight floating-point result registers, RnH (where n =0 - 7)
* Floating-point Status Register (STF)
» Repeat Block Register (RB)
All of the floating-point registers except the repeat block register are shadowed. This shadowing can be
used in high priority interrupts for fast context save and restore of the floating-point registers.
shows a diagram of both register sets and shows a register summary. For
information on the standard C28x register set, see the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number EPRUZ30).
Figure 2-1. C28x With Floating-Point Registers
Standard C28x Register Set Additional 32-bit FPU Registers
ACC (32-bit) ROH (32-bit)
P (32-bit)
XT (32010 R1H (32-bit)
XARO (32-bit) R2H (32-bit)
XAR1 (32-bit) R3H (32-bit)
XAR2 (32-bit)
XAR3 (32-bit) R4H (32-bit)
XAR4 (32-bit) RoH (32.01)
XARS5 (32-bit)
XARG (32-bit) R6H (32-bit)
XAR7 (32-bit)
R7H (32-bit)
PC (22-bit)
- FPU Status Register (STF)
RPC (22-bit)
DP (16-bit) Repeat Block Register (RB)
SP (16-bit) FPU registers ROH - R7H and STF
are shadowed for fast context
STO (16-bit) save and restore
ST1 (16-bit)
IER (16-bit)
IFR (16-bit)
DBGIER (16-bit)
14 CPU Register Set SPRUEO2A-June 2007 -Revised August 2008

Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com CPU Registers
Table 2-1. 28x Plus Floating-Point CPU Register Summary
Register C28x C28x+FPU Size Description Value After Reset
CPU
ACC Yes Yes 32 bits Accumulator 0x00000000
AH Yes Yes 16 bits High half of ACC 0x0000
AL Yes Yes 16 bits Low half of ACC 0x0000
XARO Yes Yes 16 bits Auxiliary register 0 0x00000000
XAR1 Yes Yes 32 bits Auxiliary register 1 0x00000000
XAR2 Yes Yes 32 bits Auxiliary register 2 0x00000000
XAR3 Yes Yes 32 bits Auxiliary register 3 0x00000000
XAR4 Yes Yes 32 bits Auxiliary register 4 0x00000000
XAR5 Yes Yes 32 bits Auxiliary register 5 0x00000000
XAR6 Yes Yes 32 bits Auxiliary register 6 0x00000000
XAR7 Yes Yes 32 bits Auxiliary register 7 0x00000000
ARO Yes Yes 16 bits Low half of XARO 0x0000
AR1 Yes Yes 16 bits Low half of XAR1 0x0000
AR2 Yes Yes 16 bits Low half of XAR2 0x0000
AR3 Yes Yes 16 bits Low half of XAR3 0x0000
AR4 Yes Yes 16 bits Low half of XAR4 0x0000
AR5 Yes Yes 16 bits Low half of XAR5 0x0000
AR6 Yes Yes 16 bits Low half of XAR6 0x0000
AR7 Yes Yes 16 bits Low half of XAR7 0x0000
DP Yes Yes 16 bits Data-page pointer 0x0000
IFR Yes Yes 16 bits Interrupt flag register 0x0000
IER Yes Yes 16 bits Interrupt enable register 0x0000
DBGIER Yes Yes 16 bits Debug interrupt enable register 0x0000
P Yes Yes 32 bits Product register 0x00000000
PH Yes Yes 16 bits High half of P 0x0000
PL Yes Yes 16 bits Low half of P 0x0000
PC Yes Yes 22 bits Program counter Ox3FFFCO
RPC Yes Yes 22 bits Return program counter 0x00000000
SP Yes Yes 16 bits Stack pointer 0x0400
STO Yes Yes 16 bits Status register 0 0x0000
ST1 Yes Yes 16 bits Status register 1 0x080BM
XT Yes Yes 32 bits Multiplicand register 0x00000000
T Yes Yes 16 bits High half of XT 0x0000
TL Yes Yes 16 bits Low half of XT 0x0000
ROH No Yes 32 bits Floating-point result register 0 0.0
R1H No Yes 32 bits Floating-point result register 1 0.0
R2H No Yes 32 bits Floating-point result register 2 0.0
R3H No Yes 32 bits Floating-point result register 3 0.0
R4H No Yes 32 bits Floating-point result register 4 0.0
R5H No Yes 32 bits Floating-point result register 5 0.0
R6H No Yes 32 bits Floating-point result register 6 0.0
R7H No Yes 32 bits Floating-point result register 7 0.0
STF No Yes 32 bits Floating-point status register 0x00000000
RB No Yes 32 bits Repeat block register 0x00000000

@) Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these
signals are tied high internal to the device.

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

CPU Register Set 15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

CPU Registers www.ti.com

2.1.1 Floating-Point Status Register (STF)

The floating-point status register (STF) reflects the results of floating-point operations. There are three
basic rules for floating point operation flags:

1.
2.

3.

Zero and negative flags are set based on moves to registers.
Zero and negative flags are set based on the result of compare, minimum, maximum, negative and
absolute value operations.

Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x.
These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device.
This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register
0 (STO) . If a decision needs to be made based on a floating-point operation, the information in the STF
register needs to be loaded into STO flags (Z,N,0OV,TC,C) so that the appropriate branch conditional
instruction can be executed. The MOVSTO FLAQ instruction is used to load the current value of specified
STF flags into the respective bits of STO. When this instruction executes, it will also clear the latched
overflow and underflow flags if those flags are specified.

Example 2-1. Moving STF Flags to the STO Register

Loop:

MOV32 ROH, * XAR4++

MOV32 R1H, * XAR3++

CWPF32 R1H, ROH

MOVSTO ZF, NF ; Move ZF and NF to STO
BF Loop, GT ; Loop if (RLH > ROH)

Figure 2-2. Floating-point Unit Status Register (STF)

31 30 16
‘ SHDWS ‘ Reserved
R/W-0 R-0
15 10 9 8 7 6 5 4 3 2 1 0
Reserved [RND32[Reseved | TF | 2zt [N | zp | NF [wF [LvF |
R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions

Bits Field Value Description
31 SHDWS Shadow Mode Status Bit
0 This bit is forced to 0 by the RESTORE instruction.
This bit is set to 1 by the SAVE instruction.
This bit is not affected by loading the status register either from memory or from the shadow values.
30-10 Reserved 0 Reserved for future use
9 RND32 Round 32-bit Floating-Point Mode
If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).
If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.
8-7 Reserved 0 Reserved for future use
16 CPU Register Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com CPU Registers

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)

Bits Field Value Description
6 TF Test Flag

The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE
instructions can also be used to modify this flag.

The condition tested with the TESTTF instruction is false.
The condition tested with the TESTTF instruction is true.
5 VAl Zero Integer Flag

The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to madify this flag.

The integer value is not zero.
1 The integer value is zero.

4 NI Negative Integer Flag

The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to madify this flag.

The integer value is not negative.
The integer value is negative.
3 ZF Zero Floating-Point Flag M©

The following instructions modify this flag based on the floating-point value stored in the destination
register:

MOV32, MOVD32, MOVDD32, ABSF32, NEGF32

The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to madify this flag

The floating-point value is not zero.

The floating-point value is zero.
2 NF Negative Floating-Point Flag W@

The following instructions modify this flag based on the floating-point value stored in the destination
register:

MOV32, MOVD32, MOVDD32, ABSF32, NEGF32

The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to madify this flag.

The floating-point value is not negative.

1 The floating-point value is negative.
1 LUF Latched Underflow Floating-Point Flag

The following instructions will set this flag to 1 if an underflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An underflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LUF will be cleared.

1 An underflow condition has been latched.
0 LVF Latched Overflow Floating-Point Flag

The following instructions will set this flag to 1 if an overflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An overflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LVF will be cleared.

1 An overflow condition has been latched.

() A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
@ A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

SPRUEO2A-June 2007 —-Revised August 2008 CPU Register Set 17
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

CPU Registers www.ti.com

2.1.2 Repeat Block Register (RB)

The repeat block instruction (RPTB) is a new instruction for C28x+FPU. This instruction allows you to
repeat a block of code as shown in Example 2-2.

Example 2-2. The Repeat Block (RPTB) Instruction uses the RB Register

find the largest elenent and put its address in XAR6
MOV32 ROH, *XARO++;

.align 2 ; Aligns the next instruction to an even address

NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RAis set to 1

MOVL ACC, XARO

MOV32 R1H, * XARO++ ; RSIZE reflects the size of the RPTB bl ock

MAXF32 ROH, R1H ; in this case the block size is 8

MOVSTO NF, ZF
MOVL XAR6, ACC, LT
VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x_FPU hardware automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 2-3. Repeat Block Register (RB)

31 30 29 23 2 16
[Ras | RA | RSIZE] RE
RO RO R-0 R-0
15 0
RC
R-0

LEGEND: R = Read only; -n = value after reset

Table 2-3. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
A repeat block was active when the interrupt was taken.
30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 lllegal block size.

8/9-0x7F | A RPTB block that starts at an even address must include at least 9 16-bit words and a block that
starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

18 CPU Register Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com CPU Registers
Table 2-3. Repeat Block (RB) Register Field Descriptions (continued)
Bits Field Value Description
22-16 RE Repeat Block End Address
This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.
RE = lower 7 bits of (PC + 1 + RSIZE)
15-0 RC Repeat Count
0 The block will not be repeated,; it will be executed only once. In this case the repeat active, RA, bit will
not be set.
1- This 16-bit value determines how many times the block will repeat. The counter is initialized when the
OxFFFF | RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.
SPRUEO2A-June 2007 —-Revised August 2008 CPU Register Set 19

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

20 CPU Register Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS

INSTRUMENTS

Chapter 3

SPRUEO2A—June 2007 -Revised August 2008

Pipeline

The pipeline flow for C28x instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (EPRUZ30). Some floating-point instructions, however,
use additional execution phases and thus require a delay to allow the operation to complete. This pipeline
alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of
delay slots allows you to improve performance of an application by taking advantage of the delay slots and
filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline
with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and
simple to follow and the C28x+FPU assembler will help you by issuing errors for conflicts.

Topic Page
3.1 Pipeline OVerVieW e ooeieiieieeeeieiiaeeeeeieiaeaeaeieiiaeaeeeieineaeeeeeiniaenen 22
3.2 General Guidelines for Floating-Point Pipeline Alignmentl............. 27
3.3 Moves from FPU Registers to C28x Registers[........cccoveieieeeeeeee.... 23
3.4 Moves from C28x Registers to FPU Registers[........coeeeieeeeeeennn..... 23
3.5 Parallel InStructionS] ..ottt rieae ez 24
3.6 Invalid Delay INStruCtioNS i e ieee i ieeeeeieieieeaeeeieieiaeaeeeiincaeaeeeinss 24
3.7 Optimizing the Pipelin€] oo e et ieieeeeieiiiiaeeeieiiaeaeaeieines 21
SPRUEO2A-June 2007 —-Revised August 2008 Pipeline 21

Bubmit Documentafion FeedbacK

http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Pipeline Overview www.ti.com

3.1

3.2

Pipeline Overview

The C28x FPU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode?2
stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit instruction. The
pipeline flow is shown in Eigure 3-7]. Notice that stalls due to normal C28x pipeline stalls (D2) and memory
waitstates (R2 and W) will also stall any C28x FPU instruction. Most C28x FPU instructions are single
cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline. Some instructions will
take an additional execute cycle (E2). For these instructions you must wait a cycle for the result from the
instruction to be available. The rest of this section will describe when delay cycles are required. Keep in
mind that the assembly tools for the C28x+FPU will issue an error if a delay slot has not been handled
correctly.

Figure 3-1. FPU Pipeline
Fetch Decode Read Exe Write
C28x pipeline| Fq F2 D1 D2 R1 R2 E W

I 1

FPU instruction D R E1

Load <

v

A4

A

Store
CMP/MIN/MAX/NEG/ABS

MPY/ADD/SUB/MACF32

h

A4

y
A

General Guidelines for Floating-Point Pipeline Alignment

While the C28x+FPU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+FPU assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p'
stands for 2 pipelined cycles. This means that an instruction can be started every cycle, but the result of
the instruction will only be valid one instruction later.

There are three general guidelines to determine if an instruction needs a delay slot:
1. Floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1 delay slot.
2. Conversion instructions between integer and floating-point formats require 1 delay slot.

3. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store,
negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special
pipeline alignment that is described later in this section. These operations are typically infrequent. Second,
the MACF32 R7H, R3H, mem32, *XAR?7 instruction has special requirements that make it easier to use.
Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 3-1. ADDF32 is a 2p instruction and
therefore requires one delay slot. The destination register for the operation, ROH, will be updated one
cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use ROH
must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit
aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a
memory block.

22

Pipeline SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

i3 TEXAS
INSTRUMENTS

www.ti.com Moves from FPU Registers to C28x Registers

Example 3-1. 2p Instruction Pipeline Alignment

ADDF32 ROH, #1.5, R1H ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, ROH updated

NOP ; Any instruction

3.3 Moves from FPU Registers to C28x Registers

When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline
alignment is required as shown in Example 3-2 and Example 3-3.

Example 3-2. Floating-Point to C28x Register Software Pipeline Alignment

;. MNF32: 32-bit floating- poi nt mnimum si ngl e-cycl e operation
; An alignment cycle is reqU| red before copying ROH to ACC

M NF32 ROH, R1H ; Single-cycle instruction
; <-- ROHis valid

NOP ; Alignnent cycle

MOV32 @ACC, ROH ; Copy ROH to ACC

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and
the transfer instruction as shown in Example 3-2. For 2p FPU instructions, two delay slots are required
between a write to the floating-point register and the transfer instruction as shown in Example 3-3.

Example 3-3. Floating-Point to C28x Register Software Pipeline Alignment

; ADDF32: 32-bit floating-point addition: 2p operation
; An alignment cycle is reqw red before copying ROH to ACC

ADDF32 ROH, R1H, #2 ; ROH = R1IH + 2, 2 pipeline cycle instruction

NOP ; 1 delay cycle or non-conflicting instruction
; <-- ROHis valid

NOP ; Alignnent cycle

MOV32 @\CC, ROH ; Copy ROH to ACC

3.4 Moves from C28x Registers to FPU Registers

Transfers from the standard C28x CPU registers to the floating-point registers require four alignment
cycles. In this case the four alignment cycles can be filled with NOPs or any non-conflicting instruction
except for FRACF32, UI16TOF32, I16TOF32, F32TOUI32, and F32TOI32. These instructions cannot
replace any of the four alignment NOPs.

Example 3-4. C28x Register to Floating-Point Register Software Pipeline Alignment

; Four alignnent cycles are required after copying a standard 28x CPU
; register to a floating-point register.

MOV32 ROH, @\CC ; Copy ACC to ROH
NOP

NOP

NOP

NOP ; Wait 4 cycles
ADDF32 R2H, R1H, ROH ; ROHis valid

SPRUEO2A-June 2007 —-Revised August 2008 Pipeline 23
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Parallel Instructions www.ti.com
3.5 Parallel Instructions
Parallel instructions are single opcodes that perform two operations in parallel. This can be a math
operation in parallel with a move operation, or two math operations in parallel. Math operations with a
parallel move are referred to as 2p/1 instructions. The math portion of the operation takes 2 pipelined
cycles while the move portion of the operation is single cycle. This means that NOPs or other non
conflicting instructions must be inserted to align the math portion of the operation. An example of an add
with parallel move instruction is shown in Example 3-5.
Example 3-5. 2p/1 Parallel Instruction Software Pipeline Alignment
; ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel nove
; ADDF32 is a 2p operation
; MOV32 is a 1 cycle operation
ADDF32 ROH, R1H, #2 ; ROH = R1IH + 2, 2 pipeline cycle operation
|| Mov32 R1H, @/al ; RLH gets the contents of Val, single cycle operation
; <-- MOV32 conpletes here (RLH is valid)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes here (ROH is valid)
NOP ; Any instruction
Parallel math instructions are referred to as 2p/2p instructions. Both math operations take 2 cycles to
complete. This means that NOPs or other non conflicting instructions must be inserted to align the both
math operations. An example of a multiply with parallel add instruction is shown in
Example 3-6. 2p/2p Parallel Instruction Software Pipeline Alignment
;. MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
;. MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
' MPYF32 ROH, R1H, R3H ; ROH = R1IH * R3H, 2 pipeline cycle operation
|| ADDF32 R1H, R2H, R4H ; RIH = R2H + R4H, 2 pipeline cycle operation
NOP ;1 cycle delay or non-conflicting instruction
; <-- MPYF32 and ADDF32 conplete here (ROH and R1H are vali d)
NOP ; Any instruction
3.6 Invalid Delay Instructions
Most instructions can be used in delay slots as long as source and destination register conflicts are
avoided. The C28x+FPU assembler will issue an error anytime you use an conflicting instruction within a
delay slot. The following guidelines can be used to avoid these conflicts.
Note: Destination register conflicts in delay slots:
Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 3-1.
In the MPYF32 instruction uses R2H as its destination register. The next instruction should
not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will
be issued by the assembler. This conflict can be resolved by using a register other than R2H for the
MOV32 instruction as shown in Example 3-8
24 Pipeline SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Invalid Delay Instructions

Example 3-7. Destination Register Conflict

Invalid delay instruction. Both instructions use the sane destination register
MPYF32 R2H, R1H, ROH ; 2p instruction
MOV32 R2H, nenB2 ; Invalid delay instruction

Example 3-8. Destination Register Conflict Resolved

; Valid delay instruction
MPYF32 R2H, R1H, ROH ; 2p instruction
MOV32 R1H, nenB2 ; Valid del ay
; <-- MPYF32 conpletes, R2H valid

Note: Instructions in delay slots cannot use the instruction's destination register as a source
register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 3-9. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 3-11].

In the MPYF32 instruction again uses R2H as its destination register. The next instruction
should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the
ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict
can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between
the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be
moved before the ADDF32 as shown in Example 3-10.

Example 3-9. Destination/Source Register Conflict

Invalid delay instruction. ADDF32 should not use R2H as a source operand
MPYF32 R2H, R1H, ROH ; 2p instruction

ADDF32 R3H, R3H, R2H ; Invalid delay instruction

SUBF32 R4H, R1H, ROH

Example 3-10. Destination/Source Register Conflict Resolved

Val id delay instruction.

MPYF32 R2H, R1H, ROH ; 2p instruction

SUBF32 R4H, R1H, ROH ; Valid delay for MPYF32

ADDF32 R3H, R3H, R2H ; <-- MPYF32 conpletes, R2H valid
NOP

; <-- SUBF32 conpletes, R4H valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider where
the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and
can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.

SPRUEO2A-June 2007 —-Revised August 2008 Pipeline 25
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Invalid Delay Instructions www.ti.com

Example 3-11. Parallel Instruction Destination/Source Exception

Valid parallel operation.

MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|| MOWV32 nmenB2, R2H ; <-- Uses R2H before the MPYF32
; <-- nenB2 updat ed
NOP ; <-- Delay for MPYF32

; <-- R2H updat ed

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The MPYF32 operation in uses the R1H register
as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will
use the value in R1H before the MOV32 updates it.

Example 3-12. Parallel Instruction Destination/Source Exception

; Valid parallel instruction

MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|] MOV32 R1H, nenB2 ; Valid
NOP ; <-- MOV32 conpletes, R1H valid

; <-- MPYF32, R2H valid

Note: Operations within parallel instructions cannot use the same destination register.
When two parallel operations have the same destination register, the result is invalid.

For example, see Example 3-13.

If both operations within a parallel instruction try to update the same destination register as shown in
the assembler will issue an error.

Example 3-13. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use the sane destination register
MPYF32 R2H, R1H, ROH ; 2p/ 1 instruction
|] MOV32 R2H, nenB2 ; Invalid

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also
be accessing the STF flags, these instructions should not be used in delay slots. These instructions are
SAVE, SETFLG, RESTORE and MOVSTO.

Note: Do not use SAVE, SETFLG, RESTORE, or the MOVSTO instruction in a delay slot.

Pipeline SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing the Pipeline

3.7 Optimizing the Pipeline

The following example shows how delay slots can be used to improve the performance of an algorithm.
The example performs two Y = MX+B operations. In , o optimization has been done. The
Y = MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the
delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions
must not cause a register conflict or access the STF register flags.

Example 3-14. Floating-Point Code Without Pipeline Optimization

Usi ng NOPs for alignnent cycles, calculate the follow ng:

Yl
Y2

ML*X1 + Bl
Me* X2 + B2

; Calculate Y1

MOV32 ROH, @ ; Load ROH with ML - single cycle
MovV32 R1H, @X1 Load RIHwith X1 - single cycle
MPYF32 R1H, R1H, ROH RIH = ML * X1 - 2p operation

] MWV32 ROH @1
NOP

Load ROH with Bl - single cycle
Wait for MPYF32 to conplete
<-- MPYF32 conpletes, RIHis valid

ADDF32 R1H, R1H, ROH R1IH = RIH + ROH - 2p operation

NOP Wait for ADDF32 to conplete
<-- ADDF32 conpletes, RIHis valid
MovV32 @1, R1H Save RIH in Y1 - single cycle
; Calculate Y2
MOV32 ROH, @p ; Load ROHwith M2 - single cycle
MOV32 R1H, @2 Load RIHwith X2 - single cycle
MPYF32 R1H, R1H, ROH RIH = M * X2 - 2p operation

[| MV32 ROH @2
NOP

Load ROH with B2 - single cycle
Wait for MPYF32 to conplete

<-- MPYF32 conpletes, RIHis valid
R1H = R1H + ROH

Wait for ADDF32 to conplete

<-- ADDF32 conpletes, RIHis valid
Save RIH in Y2

ADDF32 R1H, R1H, ROH
NOP

MOV32 @2, R1H

; 14 cycles
; 48 bytes

The code shown in was generated by the C28x+FPU compiler with optimization enabled.
Notice that the NOPs in the first example have now been filled with other instructions. The code for the
two Y = MX+B calculations are now interleaved and both calculations complete in only 9 cycles.

SPRUEO2A-June 2007 —-Revised August 2008 Pipeline 27
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Optimizing the Pipeline

I

TEXAS

INSTRUMENTS

www.ti.com

Example 3-15. Floating-Point Code With Pipeline Optimization

Usi ng non-conflicting instructions for alignnent cycles,

; calculate the follow ng:

Load RRHwith X1 - single cycle
Load RIH with ML - single cycle
R3H = ML * X1 - 2p operation
Load ROH with M2 - single cycle
Load RIHwith X2 - single cycle
<-- MPYF32 conpletes, RBHis valid
ROH = M2 * X2 - 2p operation
Load RAH with Bl - single cycle
<-- MOV32 conpletes, RAH is valid
R1IH = BL + ML*X1 - 2p operation
Load RRH with B2 - single cycle
<-- MPYF32 conpletes, ROHis valid
ROH = B2 + M2*X2 - 2p operation
<-- ADDF32 conpletes, RIHis valid
Store Y1

<-- ADDF32 conpletes, ROHis valid
Store Y2

28

© Y1 = M*XL + BL

Y2 = M*X2 + B2

" MovE2 ROH, @X1
MOV32 R1H, @i
MPYF32 R3H, R2H, R1H

[| MOV32 ROH, @2
MovV32 R1H, @X2
MPYF32 ROH, R1H, ROH

[| MOV32 RAH, @1
ADDF32 R1H, R4H, R3H

|| Mov32 R2H, @2
ADDF32 ROH, R2H, ROH
MovV32 @1, R1H
MovV32 @2, ROH

;9 cycles

; 36 bytes

Pipeline

SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS Chapter 4
INSTRUMENTS SPRUEO2A-June 2007—Revised August 2008

Instruction Set

This chapter describes the assembly language instructions of the TMS320C28x plus floating-point
processor. Also described are parallel operations, conditional operations, resource constraints, and
addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference

Guide (literature number EPRUZ30).
Topic Page
4.1 Instruction DescriptionSfeseeeeie it e eieieee e ieieiearareeeieiieieiens 30
4.2 INSErUCHIONS ettt ieieeeeeararee it ieieeeaeararererreiereeeaeararacerereierens 37
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 29

Bubmit Documentafion FeedbacK

http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instruction Descriptions

13 TEXAS
INSTRUMENTS

www.ti.com

4.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
* Operands
* Opcode
e Description
» Exceptions
* Pipeline
» Examples
» See also
The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FPU instructions, follow the same format as the
C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.
The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x
plus floating-point processor are given in [[able 4-1]. For information on the operands of standard C28x
instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (EPRU430).
Table 4-1. Operand Nomenclature
Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#RC 16-bit immediate value for the repeat count
*(0:16bitAddr) 16-bit immediate address, zero extended
CNDF Condition to test the flags in the STF register
FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change
label Label representing the end of the repeat block
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
RaH ROH to R7H registers
RbH ROH to R7H registers
RcH ROH to R7H registers
RdH ROH to R7H registers
ReH ROH to R7H registers
RfH ROH to R7H registers
RB Repeat Block Register
STF FPU Status Register
VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; 0 or 1
30 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Descriptions

INSTRUCTION destl, sourcel, source2 Short Description

Operands
destl description for the 1st operand for the instruction
sourcel description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction
Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).

Opcode This section shows the opcode for the instruction.

Description Detailed description of the instruction execution is described. Any constraints on the
operands imposed by the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Chapter 3.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 31

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
4.2 Instructions
The instructions are listed alphabetically, preceded by a summary.
Table 4-2. Summary of Instructions
Title Page
ABSF32 RaH, RbH 32-bit Floating-Point Absolute Valuel oo s oo ieeeeeeeeeraeeraeeieoeeeeseeroseeraeeeseeeeeeeioseeroeeeaeess 34
ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point AQditiON]eeessoeeeeeeeeroeeeeeeoeieeeroeeeeeeoeroeeeerorreeeeeeroeeeeeeoeioese 39
ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point AQditiON]ee s s eeeeeeeeroeeeeeeoeeaeeeeeroeeeeeeorroeeeeeroreeeeoeroeeeeeeaeieese 31
ADDF32 RaH, RbH, RcH 32-bit Floating-Point AdditioN] ..o e e s ieeeeesseeeeeeseeeaeeessesseeeeieesseeeeeesseesisesseeeiseees 39
ADDF32 RdH, ReH, RfH [MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move[e reoreoeeeeeeeeren.. 4Q
ADDF32 RdH, ReH, RfH [[MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel MOVe[rrersereoreeeoreereeeers Y|
CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than o oceeeoooeeeeeeoeeeeeeeeeeeee.. 1
CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than[oo oo e eeeeeeeereeeeeenes 44
CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than...oeeeeeeeeeeeeeeeeeeeieeeeee... 44
EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal ApproXimation] ... ueeeeeeeeeeeeeeeeeeeseeerieeseeeesiesseeeiseeseeeiseees Y|
EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal ApproXimationf...eeseeeereeeeeeeeereeeieseereieeeane.. 49
F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integen e veeeeeeeereeeeeaeereeeeeeeeeroeeeeeereseeeanees 5]
F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round[. oo veoooeeeeeeereeeeeeeneeeeeen.s 54
F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit INtegeN . sreeeeeereeeeeeeeeeeresseeeeeeeseeeeeesseeeeeees 53
F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer [...oeeeeieeeeeeeieeeeeeeeeeeeeees.... o4
F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round[...vvevveeeeee. ... 53
F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer [oeieeeeieeeereeeereeieneereneeiane.s 54
FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Valuecceviiiiiiiiiiiiiiii i 57
116 TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value [iorreieoooeeeeeeeeeeeeeesseeeereeseeeeeeeseeeeeenes 53
116 TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value [ioooceeeeeoreeeeeeeeeerieeseeeeeeeseeeeeenes 59
I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-PointValue [oo eeeeee e ieeeeeeeieeeeeeeieeeeeeees..s [0
I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value [oceuieeeeeeeeeeeeeeeieeeeeerieeseeeiieeeeeeeieees 6]
MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add [.ooeeeeeeeeeeeeieeeeeeeeeeeeeeee. 64
MACF32 R3H, R2H, RdH, ReH, RfH [MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel
o T T 64
MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate[.....ooeveeeeieeiieeeieieeraieerane.. 64
MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add[oo oo e e ereeeeene.s 63
MACF32 R7H, R6H, RdH, ReH, RfH [MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel
o) T 7Q
MAXF32 RaH, RbH 32-bit Floating-Point MaXimUmM oo e e eeeoeeeeeeeeeeeeeeneeeeeeesreeeeeosmeeeeesseeeeeeesseeeeeesseeeeeeees 74
MAXF32 RaH, #16FHi 32-bit Floating-Point MaXimUmoe oo e eeeeeeeeeeeneeieeeeaeeieeeeeeoeetoseeroreeeseeeeseeroseeraseeeeess 73
MAXF32 RaH, RbH [[MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel MOVE|l s ez eeezroecorrrroeereeorreces 74
MINF32 RaH, RbH 32-bit Floating-Point Minimumf .ottt e e e eeeeeeeeeeeeeeeeiesseeesieeseeeeseeseeeeenees 79
MINF32 RaH, #16FHi 32-bit Floating-Point MinimMUuM .o e et i e e e ieeeseeeieeeseeeeseasseeeteesseeesiesseeessseseeesseees 79
MINF32 RaH, RbH [MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel MOVel . oereeeoeeeereeeeeeaeeaeeeees 71
MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents t0 MemOry[eeseeeereeereeeereeeeeaeereeeieseereneeeane.s 79
MOV32 *(0:16bitAddr), loc32 Move the Contents of 10C32 t0 MeMOry [Looiieeiieeeeeeeereeeeeseereeeeeoeeroeieseereseeeaness 79
MOV32 ACC, RaH Move 32-hit Floating-Point Register Contents t0 ACC . ieeeeeeereeeeeeeeeeeeosreeereosreeeeeesseeeeeenes 3d
MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory t0 10C32] e ieueereeeieieeeieeeieneereeieieeieseeieseereseieieess el
MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory [ooeeeeeeeeeeeeeeeeeeeeerieeeeeiseeseeeeeeees ¥ |
MOV32 mem32, STF Move 32-bit STF Register t0 MemoOry[e seeeeueeeeeaeeieneeraseeeaeeeieeeieseereseeeaeereeieseereseeeaness 33
MOV32 P, RaH Move 32-bit Floating-Point Register Contents t0 Pl seoeieeeeeeeeeeeeeeeeeeroneeroeieeeeeeseeroseeraeeeneees % |
MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register [oreeieeoceeeeeeeeeeeieereeeeeeeseeeeeeees 89
MOV32 RaH, mem32 {, CNDF} Conditional 32-bit MOVE i i i et seeeeeeeereeeeeaeeeeeereeoeeioseeroeeeeseeeeseeioseesoseeeeees 39
MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register [ueeeeeeeeeeeeeeeeeeeeeeieeeeeieeeseeeeeees 89
32 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

Table 4-2. Summary of Instructions (continued)

MOV32 RaH, RbH {, CNDF} Conditional 32-Dit MOVE s eeeteeeeeeeeereeeeraeeieseeeeeeeosreroeeieseereseeeoseeroeeroseereseeeaeess
MOV32 RaH, XARn Move the Contents of XARnN to a 32-bit Floating-Point RegiSter [[oorieooeeeeeeereeeeeeeseeeieeseeeeeees
MOV32 RaH, XT Move the Contents of XT to a 32-bit Floating-Point Register [..oeeeeeeeeeeeeeeeeeeeerieeeeeeieeeeeeeeeees
MOV32 STF, mem32 Move 32-bit Value from Memory to the STF RegiSten. ..o uueeeeeereeeeeerreeeeerieeeeeiieeseeeiieees
MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents t0 XARN[Letotieeerieeeereneeieeieieeieeeeieseeraseieaness
MOV32 XT, RaH Move 32-bit Floating-Point Register Contents t0 X T eeieeeeeeeeeeaeeroeeeaeerereeeeseeroreeeoeereneeeenees
MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data COPY[eezeeeeeeereeeeeeseeeeeeeseeeeeesreeeeeeeseeeeeenes
MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Registen. . oo o eeee e eeeeereeeeeaeereeeeeseereseeeenees
MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediatel..............veeveee. ...
MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register .. oooeeeieeeeeerieeieeerieeeeeeeenes
MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register . .o eieeeereeereieereeeeianeerareieneen.
MOVSTO FLAG Load Selected STF Flags iNtO STO[e ieeeieueeraeeeeoeeeeoeeroneerareeeoeeeeoeeroseeroseeeeeeeeoeereseeraseeeaes

MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register .. eoeeooeeeeeeeeeeeeeeeeeeeee..

MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply[o oo et eeeeeeeeeeeeeereeeeaeeesoseeeneeroseeeees

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply [oo.ieeieesierieeieerieeeieeierieeeieeieseeeeiesieeeioeieseessieneeeees

MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply [t eee e e ieeeeeeeeseeeeeeeseeseeesiesseeesseeseeeess

MPYF32 RaH, RbH, RcH |ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add[. or oo eeene.o. ..

MPYF32 RdH, ReH, RfH [MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel MoVe[rrreorerrereoeerreeees.

MPYF32 RdH, ReH, RfH [[MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel MOVe[e sreererereroeeees

MPYF32 RaH, RbH, RcH [|[SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Subtrac
NEGF32 RaH, RbH{, CNDF} Conditional NegatioN . .e.seeeieeeeieeteeeeieaeeieseereeeeeseieseeieseereseeeeseeisseiessereseeeaes
POP RB Pop the RB Register from the Stack.....c.uoueeeeeesiieeereiieeeeeesieeeseeeieesseeeiseesseeeeessseeesiesseeesieeseeeess
PUSH RB Push the RB Register onto the StaCkl.io.ooeeoeeeeeeoeeaeeroreaeeeariaeeaeeeareaeeeeeroeeeeeeoreoeeroeeaseeseeaeeaeees
RESTORE Restore the Floating-Point RegiSters e eeeeeeieeeeeaeereoeeeeoeeroseeraereoeereoeeroseeroseeeaeeeeseereseerareeeaes
RPTB label, loc16 Repeat A BIOCK Of COOE it ieeereeeeeeeraneeeaeereoeeroeeroseeeaeeieeeeeeseeroseeroeeieneeeeseeroneeraeeeenes
RPTB label, #RC Repeat a BlOCK Of COOL .t i eeeeereeeeerarereeeeeeeeeeoeeroneeroeeeoeeeeoeeeesseroseeeaseeeoseeeseeroseeeaes
SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG o iieeeereereeeeeeeieeeeeeeieeeee...
SETFLG FLAG, VALUE Set or clear selected floating-point status flagS] .. veeeeeeeieeeeeeereeeseeereeeseeeriesseeeeieeseeeses
SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction]oouieeeeeereeeeeeereeeeeereeeeeeseeeaeeeeeesseeeeeeeeeeees
SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction] ..o oreeeoooeeeeeeeeeeeeeeeeeeeeeoeeeeeeoseeeeeesseeeeeeeeeeees
SUBF32 RdH, ReH, RfH [MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel MOVe[rrereerererrreees
SUBF32 RdH, ReH, RfH [MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel MOVe[iz s eeseeerreerees
SWAPF RaH, RDH{, CNDF} CoONdItiONal SWaP .. uueeiiuntieiiittesiiaasnesisassssssainsssssasnsessaaanssssaassesiaannnsss
TESTTF CNDF Test STF Register Flag CONAItiONuuiueeiiiiiiiiiiiiiirirss st raisss s sraass s ssannsssnaannessaannes
UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value[...vooeeveeereeereieeraneeraeeianes
UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point valuel ..o oo oo e eeees
UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value[..ooeeeoeeeeeeeeeeeeereeneee...
UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value[oo ooeeeeeeeeeereeseeeeeeeeeeee.
ZERO RaH Zero the Floating-Point Register RaH [liieeieeeeieeeeeeeiieeeieneeieieeeieeiisseeeseeieseeieseeieseeieseieseeieees

ZEROA Zero All Floating-PoiNt ReQiSterS|ee s seeeeeeeeeeeeereorereeeeaeeeeoeeeeseeroseeeoeeeroeeeeseeroseeeoseeroseeeseeieseeeasees

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 33
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

ABSF32 RaH, RbH

32-bit Floating-Point Absolute Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1001 0101
MSW 0000 0000 00bb baaa
Description The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is
modified by the ABSF32 instruction.
if (RoH < 0) {RaH = -RbH}
el se {RaH = RbH}
Flags This instruction modifies the following flags in the STF register:
Flag TF zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
NF = 0O;
ZF = 0;
if (RaH[30:23] == 0) ZF = 1;
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 R1H, #-2.0 ; RIH = -2.0 (0xC0000000)
ABSF32 RlH, RlH ; RLH = 2.0 (0x40000000), ZF = NF = 0
MOVl ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
ABSF32 ROH, ROH ; ROH = 5.0 (0x40A00000), ZF = NF = 0
MOVI ZF32 ROH, #0.0 ; ROH= 0.0
ABSF32 R1H, ROH ; RIH= 0.0 ZF=1, NF=0
See also NEGFE32 RaH, RbH], CNDF]
34 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

Operands

Opcode

Description

Flags

Pipeline

Example

RaH floating-point destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

RbH floating-point source register (ROH to R7H)

LSW 1110 1000 1011 1111
MSW 1111l 111l [Ilbb baaa

Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5

(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi : 0
This instruction can also be written as ADDF32 RaH, RbH, #16FHi.
This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF

Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.

This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FH , RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

; Add to RIH the value 2.0 in 32-bit floating-point format
ADDF32 ROH, #2.0, R1H ; ROH = 2.0 + R1H
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, ROH updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, #-2.5, R3H ; RH=-2.5 + R3H
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, R2H updated
NOP ;

; Add to R5H the val ue 0x3FC00000 (1.5)
ADDF32 R5H, #0x3FC0, RGH ; R6H = 1.5 + R5H
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, R5H updated
NOP ;

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set
Eubmit Documentafion FeedbacH

35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

See also

ADDF37 RaH, RbH, #I6FH]
aH, RbH, RcH

ADDF32 RdH, ReH, RTH] mem
MACF32 R3H, R2H, RdH, ReH, RfH

an, RKbHA, RC , R€e

ADDF32 RdH, ReH, RiH || MOV32 RaH, mem3

al

36

Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

Operands

Opcode

Description

Flags

Pipeline

Example

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

LSW 1110 1000 1011 1111
MSW 1111l 111l [Ilbb baaa

Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi : 0
This instruction can also be written as ADDF32 RaH, #16FHi, RbH.
This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF

Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.

This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FH , RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

; Add to RIH the value 2.0 in 32-bit floating-point format
ADDF32 ROH, R1H, #2.0 ; ROH = R1H + 2.0
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, ROH updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, R3H, #-2.5 ; RRH = R3H + (-2.5)
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, R2H updated
NOP ;

; Add to R5H the val ue 0x3FC00000 (1.5)
ADDF32 R5H, R5H, #0x3FCO ; R5H = RGH + 1.5
NOP ; Delay for ADDF32 to conplete
; <-- ADDF32 conpl etes, R5H updated
NOP ;

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set
Eubmit Documentafion FeedbacH

37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

Instructions www.ti.com

See also ADDF32 RaH, #16FHI, RbH
aH, RbH, RcH
ADDF32 RdH, ReH, RIH || MOV32 RaH, mem3
ADDF32 RdH, ReH, RTH] mem a
MACF32 R3H, RZ2H, RdH, ReH, RTH

an, RKbHA, RC , R€e

38 Instruction Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
RcH floating-point source register (ROH to R7H)
Opcode LSW 1110 0111 0001 0000
MSW 0000 000c ccbb baaa
Description Add the contents of RcH to the contents of RbH and load the result into RaH.
RaH = RoH + RcH
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.
Pipeline This is a 2 pipeline-cycle instruction (2p). That is:
ADDF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
<-- ADDF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y are all on the
same data page.
MOVW DP, #ML ; Load the data page
MOV32 ROH, @ ; Load ROH with M
MOV32 RLlH, @1 ; Load RIHwith X1
MPYF32 R1H RLH ROH ; Miltiply M*X1
|| MOv32 ROH, @1 ; and in parallel load ROH with Bl
NOP ; <-- MOV32 conplete
; <-- MPYF32 conplete
ADDF32 R1H, R1H, ROH ; Add MX1 to Bl and store in R1H
NOP
; <-- ADDF32 conplete
MOV32 @1, R1H ; Store the result
Calculate Y = A + B.
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load RILHwith B
ADDF32 ROH, RLH,ROH ; Add A + B ROH=ROH+RLH
MOVL XAR4, #Y
; <-- ADDF32 conplete
MOV32 * XAR4, ROH ; Store the result
See also ADDF32 RaH, #16FHI, Rb
ADDF32 RaH, RbH, #I6FH
ADDF32 RdH, ReH, RTH [MOV32 RaH, mem3
ADDF32 RdH, ReH, RTH [M mem32, Ra
MACF32 R3H, R2H, RdH, ReH, RfH
aH, . RC , Rren,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 39

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
ADDF32 RdH, ReH, RfH
[IMOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move
Operands
RdH floating-point destination register for the ADDF32 (ROH to R7H)
ReH floating-point source register for the ADDF32 (ROH to R7H)
RfH floating-point source register for the ADDF32 (ROH to R7H)
mema32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (ROH to R7H)
Opcode LSW 1110 0000 0001 fffe
MSW eedd daaa nens82
Description Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store
the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to
by mem32. mem32 addresses memory using any of the direct or indirect addressing
modes supported by the C28x CPU.
RdH = ReH + RfH,
[menB82] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.
Pipeline ADDF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOvV32 men82, RaH ; 1 cycle
; <-- MOV32 conpl etes, menB2 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.
Example ADDF32 R3H, R6H, R4H ; (A) RBH = R6H + R4H and R7H = 13
[| MOV32 R7H, *-SP[2] :
; <-- R7THvalid
SUBF32 R6H, R6H, R4H ; (B) RBH = R6H - R4H
; <-- ADDF32 (A) conpletes, R3H valid
SUBF32 R3H, R1H, R7H ;7 (O R3H = RlH - R7H and store R3H (A)
|| Mov32 *+XAR5[2], R3H :
; <-- SUBF32 (B) conpletes, R6H valid
; <-- MOV32 conpletes, (A) stored
ADDF32 R4H, R7H, R1H ; RAH = D = R7H + RlH and store R6H (B)
|| Mov32 * +XAR5[6], R6H :
; <-- SUBF32 (C) conpletes, R3H valid
; <-- MOV32 conpletes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (O
; <-- MOV32 conpletes, (C stored
; <-- ADDF32 (D) conpletes, R4H valid
MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 conpletes, (D) stored
40 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
See also ADDF32 RaH, #16FHI, Rb
aH, RbH, #I6FH]

ADDF32 RaH, RbH, RcH
MPYF32 RaH, RbH, RcH [ADDF32 RdH, ReH, R
ADDF32 RdH, ReH, RfH [MOV32 RaH, mem37

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 41

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
ADDF32 RdH, ReH, RfH
IMOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move
Operands
RdH floating-point destination register for the ADDF32 (ROH to R7H).
RdH cannot be the same register as RaH.
ReH floating-point source register for the ADDF32 (ROH to R7H)
RfH floating-point source register for the ADDF32 (ROH to R7H)
RaH floating-point destination register for the MOV32 (ROH to R7H).
RaH cannot be the same register as RdH.
mema32 pointer to a 32-bit memory location. This is the source for the MOV32.
Opcode LSW 1110 0011 0001 fffe
MSW eedd daaa nens82
Description Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH

Restrictions

and store the result in RdH. In parallel move the contents of the 32-bit location pointed to
by mem32 to RaH. mem32 addresses memory using any of the direct or indirect
addressing modes supported by the C28x CPU.

RdH ReH + RfH,
RaH = [nenB2]

The destination register for the ADDF32 and the MOV32 must be unique. That is, RaH
and RdH cannot be the same register.

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Flags This instruction modifies the following flags in the STF register:
Flag TF zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1, NF = 0; }
Nl = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The ADDF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, menB2 ;1 cycle
; <-- MOV32 conpl etes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, RdH updated
NOP
42 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example Calculate Y =A+B - C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load RIHwith B
MOVL XAR4, #C
ADDF32 ROH, R1IH, ROH ; Add A + B and in parallel
|] MOV32 R2H, *XAR4 ; Load RRHwith C
; <-- MOV32 conplete
MOVL XAR4, #Y
; ADDF32 conpl ete
SUBF32 ROH, ROH, R2H ; Subtract C from (A + B)
NOP
; <-- SUBF32 conpl etes
MOV32 * XAR4, ROH ; Store the result
See also
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 43

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

i3 TEXAS
INSTRUMENTS

www.ti.com

CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
RaH floating-point source register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1001 0100
MSW 0000 0000 00bb baaa
Description Set ZF and NF flags on the result of RaH - RbH. The CMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.
Special cases for inputs:
* Negative zero will be treated as positive zero.
* A denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.
Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
If(RaH == RbH) {ZF=1, NF=0}
If(RaH > RbH) {ZF=0, NF=0}
If(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example ; Behavior of ZF and NF flags for different conparisons
MOVI ZF32 R1H, #-2.0 ; RLH = -2.0 (0xC0000000)
MOVI ZF32 ROH, #5.0 ; ROH = 0 (0x40A00000)
CMPF32 R1H, ROH ; ZF =0, NF=1
CMPF32 ROH, RLH ;. ZF =0, NF=0
CMPF32 ROH, ROH ; ZF =1, NF=0
; Using the result of a conpare for |oop control
Loop:
MOV32 ROH, *XAR4++ ; Load ROH
MOV32 R1H, *XAR3++ ; Load R1H
CMPF32 R1H, ROH ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if RIH > ROH
See also CMPE3Z RaH, #16FH]
CMPE32 RaH, #0.0
MAXFE32 RaH, RbH
MINF32 RaH, #16FH]
MINF32 RaH, RbH
44 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point source register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

LSW 1110 1000 0001 OI11l
MBW 111 11T 111 laaa

Compare the value in RaH with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (RaH - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

The CMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:

» Negative zero will be treated as positive zero.

» Denormalized value will be treated as positive zero.

* Not-a-Number (NaN) will be treated as infinity.

This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:

I f(RaH == #16FH : 0) {ZF=1, NF=0}
If(RaH > #16FH :0) {ZF=0, NF=0}
If(RaH < #16FHi :0) {ZF=0, NF=1}

This is a single-cycle instruction
Behavi or of ZF and NF flags for different conparisons

MOVI ZF32 R1H, #-2.0 ; RIH = -2.0 (0xC0000000)
MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
CMPF32 R1H, #-2.2 ; ZF =0, NF =0
CWPF32 ROH, #6.5 ; ZF = 0, NF 1
CMPF32 ROH, #5.0 , ZF 1, NF=0

Using the result of a conpare for |oop control

Loop:
MOV32 R1H, * XAR3++ ; Load R1H
CVPF32 R1H, #2.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if RIH > #2.0

CMPE32 RaH, #0.4
CMPE3Z RaH, RbH
MAXF32 RaH, #I16FH]
MAXF32 RaH, RbH
MINF32 RaH, #I6FHi
MINF32 RaH, RbH

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 45
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than
Operands
RaH floating-point source register (ROH to R7H)
#0.0 zero
Opcode LSW 1110 0101 1010 Oaaa
Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a
logical compare operation. This is possible because of the IEEE floating-point format
offsets the exponent. Basically the bigger the binary number, the bigger the floating-point
value.
Special cases for inputs:
* Negative zero will be treated as positive zero.
» Denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.
Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
If(RaH == #0.0) {ZF=1, NF=0}
If(RaH > #0.0) {ZF=0, NF=0}
If(RaH < #0.0) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example ; Behavior of ZF and NF flags for different conparisons
MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 R1H, #-2.0 ; RLH = -2.0 (0xC0000000)
MOVI ZF32 R2H, #0.0 ; RRH = 0.0 (0x00000000)
CMPF32 ROH, #0.0 ;) ZF =0, NF=0
CVPF32 R1H, #0.0 ; ZF =0, NF=1
CMPF32 R2H, #0.0 ;) ZF =1, NF=0
; Using the result of a conpare for |oop control
Loop:
MOV32 R1H, *XAR3++ ; Load R1H
CVWPF32 R1H, #0.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if RLH > #0.0
See also CMP RaH, #0.0
EMPFE32 RaH, #I6FH]
MAXF32 RaH, #I6FH]
MAXF32 RaH, RbH
MINF32 RaH, #I6FH]
MINF3Z RaH, RbH
46 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation

Operands

Opcode

Description

Flags

Pipeline

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)

LSw 1110 0110 1001 0011
MSW 0000 0000 0O0bb baaa

This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:

Ye Estinate(1/X);

Ye = Ye*(2.0 - Ye*X)

Ye = Ye*(2.0 - Ye*X)

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EINVF32 operation will not generate a negative zero,
DeNorm or NaN value.

RaH = Estimate of 1/ RbH

This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF

Modified No No No No No Yes Yes

The STF register flags are modified as follows:
* LUF =1 if EINVF32 generates an underflow condition.
* LVF =1 if EINVF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

EI NVF32 RaH, RbH ;2p

NOP ; 1 cycle delay or non-conflicting instruction
; <-- EINVF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set
Eubmit Documentafion FeedbacH

47

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
Example Calculate Y = A/B. A fast division routine similar to that shown below can be found in the
C28x FPU Fast RTS Library (EPRC664).

MOVL XAR4, #A

MOV32 ROH, *XAR4 ; Load ROHwith A

MOVL XAR4, #B

MOV32 R1H, *XAR4 ; Load RIHwi th B

LCR Dl Vv ; Calculate ROH = ROH / R1H

MOV32 *XAR4, ROH :

DI V:

El NVF32 R2H, R1H R2H = Ye = Estimte(1/B)

CMPF32 ROH, #0.0 Check if A==0

MPYF32 R3H, R2H, RI1H R3H = Ye*B

NOP

SUBF32 R3H, #2.0, R3H R3H = 2.0 - Ye*B

NOP

MPYF32 R2H, R2H, R3H R2H = Ye = Ye*(2.0 - Ye*B)

NOP

MPYF32 R3H, R2H, RI1H R3H = Ye*B

CMPF32 R1H, #0.0 Check if B ==10.0

SUBF32 R3H, #2.0, R3H R3H = 2.0 - Ye*B

NEGF32 ROH, ROH, EQ Fi xes sign for A/0.0

MPYF32 R2H, R2H, R3H R2H = Ye = Ye*(2.0 - Ye*B)

NOP

MPYF32 ROH, ROH, R2H ROH =Y = A*Ye = A/B

LRETR
See also ETSORTF32 RaH, RbH
48 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://focus.ti.com/docs/toolsw/folders/print/sprc664.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)

Opcode LSW 1110 0110 1001 0010
MSW 0000 0000 O0O0Obb baaa

Description This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:

Ye Estinmate(1/sqrt(X));

Ye = Ye*(1.5 - Ye*Ye*X 2.0)
Ye = Ye*(1.5 - Ye*Ye*X/ 2.0)

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.

RaH = Estimate of 1/sqgrt (RbH)
Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1if EISQRTF32 generates an underflow condition.
 LVF =1 if EISQRTF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

El NVF32 RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- EI SQRTF32 conpl etes, RaH updat ed

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 49
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
Example Calculate the square root of X. A square-root routine similar to that shown below can be
found in the C28x FPU Fast RTS Library (EPRCG664).
;Y = sqrt(X)
; Ye = Estimate(1l/sqrt(X));
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
Y = X*Ye
_sgrt:
ROH = X on entry
El SQRTF32 R1H, ROH R1IH = Ye = Estimate(1/sqrt (X))
MPYF32 R2H, ROH, #0.5 R2H = X*0.5
MPYF32 R3H, R1H, R1H R3H = Ye*Ye
NOP
MPYF32 R3H, R3H, R2H R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H R3H = 1.5 - Ye*Ye*X*0.5
NOP
MPYF32 R1H, R1H, R3H R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MPYF32 R3H, R1H, R2H R3H = Ye*X*0.5
NOP
MPYF32 R3H, R1H, R3H R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H R3H = 1.5 - Ye*Ye*X*0.5
CMPF32 ROH, #0.0 Check if X ==
MPYF32 R1H, R1H, R3H R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MOV32 R1H, ROH, EQ If Xis zero, change the Ye estinate to O
MPYF32 ROH, ROH, R1H ROH = Y = X*Ye = sqrt(X)
LRETR
See also EINVE3Z RaH, RbH
50 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://focus.ti.com/docs/toolsw/folders/print/sprc664.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1100
MSW 0000 0000 O0Obb baaa
Description Convert a 32-bit floating point value in RbH to a 16-bit integer and truncate. The result
will be stored in RaH.
RaH(15:0) = F32TO 16(RbH)
RaH(31: 16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TA 16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ;1 cycle delay or non-conflicting instruction
<-- F32TA 16 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
F32TO 16 RIH, ROH ; RLH(15:0) = F32TQO 16(ROH)
; RIH(31:16) = Sign extension of RLH(15)
MOVI ZF32 R2H, #-5.0 ; RZH = -5.0 (0xCOA00000)
; <-- F32TA 16 conplete, RLH(15:0) = 5 (0x0005)
; R1H(31:16) = 0 (0x0000)
F32TO 16 R3H, R2H ; R3H(15:0) = F32TO 16(R2H)
; R3H(31:16) = Sign extension of R3H(15)
NOP ; 1 Cycle delay for F32TA 16 to conpl ete
; <-- F32TA 16 conplete, R3H(15:0) = -5 (OxFFFB)
: R3H(31: 16) = (OXFFFF)
See also E321T0I16R RaH, RbH
F32TOUIT6 RaH, RbH
F32TOUTI6R RaH, RbH
[T6TOF32 RaH, RbH
_010FS2 Ran, memlqy
JIT6TOF32 RaH, mem1q
JTT6TOF32 RaH, RbH
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 51

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1100
MSW 1000 0000 O0Obb baaa
Description Convert the 32-bit floating point value in RbH to a 16-bit integer and round to the nearest
even value. The result is stored in RaH.
RaH(15: 0) = F32Tol 16r ound(RbH)
RaH(31: 16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VA| NI NF LUF LVF
Modified No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TA 16R RaH, RbH 2 pipeline cycles (2p)
NOP ;1 cycle delay or non-conflicting instruction
<-- F32TA 16R conpl et es, RaH updat ed
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI Z ROH, #0x3FD9 ; ROH [31:16] 0x3FD9
MOVXI ROH, #0x999A ; ROH [15:0] = 0x999A
: ROH = 1.7 (O0x3FD9999A)
F32TA 16R R1H, ROH ; R1IH(15:0) F32TA 16r ound (ROH)
; RIH(31:16) = Sign extension of RLH(15)
MOVF32 R2H, #-1.7 ; RRH = -1.7 (OxBFD9999A)
; <-- F32TA 16R conplete, RLH(15:0) = 2 (0x0002)
; R1H(31:16) = 0 (0x0000)
F32TO 16R R3H, R2H : RBH(15: 0) F32TO 16round (R2H)
; R3H(31:16) = Sign extension of R2H(15)
NOP ;1 Cycle delay for F32TO 16R to conpl ete
; <-- F32TA 16R conpl ete, RLIH(15:0) = -2 (OxFFFE)
; RLH(31: 16) = (OxFFFF)
See also Ol1o RaH, RbH
F32TOUIT6 RaH, RbH
F32TOUTI6R RaH, RbH
[T6TOF32 RaH, RbH
_010FS2 Ran, memlqy
JIT6TOF32 RaH, mem1q
JTT6TOF32 RaH, RbH
52 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1000
MSW 0000 0000 O0O0Obb baaa
Description Convert the 32-bit floating-point value in RbH to a 32-bit integer value and truncate.
Store the result in RaH.
RaH = F32TA 32(RbH)
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TA 32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TA 32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVF32 R2H, #11204005.0 ; R2H = 11204005.0 (0x4B2AF5A5)
F32TO 32 R3H, R2H ; R3H = F32TA 32 (R2H)
MOVF32 R4H, #-11204005.0 ; R4H = -11204005.0 (OxCB2AF5A5)
; <-- F32TA 32 conpl ete,
: R3H = 11204005 (0x00AAF5A5)
F32TO 32 R5H, R4H ; RBH = F32TA 32 (R4H)
NOP ;1 Cycle delay for F32TO 32 to conpl ete
; <-- F32TA 32 conpl ete,
; R5H = -11204005 (OxFF550A5B)
See also F32TOUT3Z RaH, RbH
[32TOF32 RaH, RbH
[32TOF32 RaH, mem32
UTI32TOF32 RaH, RbH
JI32TOF32 Ra—, mem32
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 53

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1110
MSW 0000 0000 00bb baaa
Description Convert the 32-bit floating point value in RbH to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in RaH. To instead round the integer to the
nearest even value use the F32TOUIL16R instruction.
RaH(15:0) = F32ToU 16(RbH)
RaH(31:16) = 0x0000
Flags This instruction does not affect any flags:
Flag TF bd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TQUI 16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ;1 cycle delay or non-conflicting instruction
; <-- F32TQUI 16 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI ZF32 R4H, #9.0 ; R4H = 9.0 (0x41100000)
F32TOU 16 R5H, R4H ; R5H (15:0) = F32TOU 16 (R4H)
; R5H (31:16) = 0x0000
MOVI ZF32 R6H, #-9.0 ; R6H = -9.0 (0xCLl100000)
; <-- F32TOU 16 conplete, R5H (15:0) = 9.0 (0x0009)
; R5H (31:16) = 0.0 (0x0000)
F32TOU 16 R7H, R6H ; R7H (15:0) = F32TOU 16 (R6H)
; R7H (31:16) = 0x0000
NOP ;1 Cycle delay for F32TQUI 16 to conpl ete
; <-- F32TOUI 16 conpl ete, R7H (15:0) = 0.0 (0x0000)
; R7H (31:16) = 0.0 (0x0000)
See also F32TOI16 RaH, RbH
F32TOUII6R RaH, RbH
E32TOUTI6R RaH, RbH
6 . -] ») D -
aH, mem
OTI6TOF32 RaH, mem
OTI6TOF32 RaH,
54 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1110
MBW 1000 0000 0O0bb baaa
Description Convert the 32-bit floating-point value in RbH to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in RaH. To instead truncate the
converted value, use the F32TOUI16 instruction.
RaH(15: 0) = F32ToUl 16r ound(RbH)
RaH(31: 16) = 0x0000
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TQUI 16R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TQUl 16R conpl et es, RaH updat ed
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI Z R5H, #0x412C ; R5H = 0x412C
MOVXI R5H, #0xCCCD ; R5H = 0xCCCD
; RS5H = 10.8 (0x412CCCCD)
F32TOU 16R R6H, R5H ; R6H (15:0) = F32TOUl 16round (R5H)
; R6H (31:16) = 0x0000
MOVF32 R7H, #-10.8 ; R7H = -10.8 (0x0xCl2CCCCD)
; <-- F32TQUl 16R conpl et e,
; R6H (15:0) = 11.0 (0x000B)
; R6H (31:16) = 0.0 (0x0000)
F32TOU 16R ROH, R7H ; ROH (15:0) = F32TOUl 16round (R7H)
; ROH (31:16) = 0x0000
NOP ; 1 Cycle delay for F32TOU 16R to conplete
; <-- F32TQUI 16R conpl et e,
; ROH (15:0) = 0.0 (0x0000)
; ROH (31:16) = 0.0 (0x0000)
See also F32TOI16 RaH, RbH
E32TOIT6R RaH, RbH
F32TOUTL6 RaH, RbH
6 . - - ») D -
aH, mem
OTI6TOF32 RaH, mem
OTI6TOF32 RaH,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 55

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1010
MSW 0000 0000 O0O0Obb baaa
Description Convert the 32-bit floating-point value in RbH to an unsigned 32-bit integer and store the
result in RaH.
RaH = F32ToUl 32(RoH)
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TQUI 32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TQUI 32 conpl etes, RaH updat ed
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI ZF32 R6H, #12.5 ; R6H = 12.5 (0x41480000)
F32TOUI 32 R7H, R6H ; R7TH = F32TOU 32 (R6H)
MOVI ZF32 R1H, #-6.5 ; RlH = -6.5 (0xC0D00000)
; <-- F32TOU 32 conplete, R7H = 12.0 (0x0000000C)
F32TOUI 32 R2H, RIH : R2H = F32TOU 32 (R1H)
NOP ;1 Cycle delay for F32TQUI 32 to conplete
: <-- F32TOUI 32 conplete, R2H = 0.0 (0x00000000)
See also 3210132 RaH, Rb
a J
32TOF32 RaH, mem37
UT32TOF32 RaH, RbH
DI32TOF32 RaH, mem37
56 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value
Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1111 0001
MSW 0000 0000 O0Obb baaa
Description Returns in RaH the fractional portion of the 32-bit floating-point value in RbH
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
FRACF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- FRACF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVl ZF32 R2H, #19.625 ; R2H = 19. 625 (0x419D0000)
FRACF32 R3H, R2H ; R3H = FRACF32 (R2H)
NOP ;1 Cycle delay for FRACF32 to conplete
; <-- FRACF32 conplete, R3H = 0.625 (0x3F200000)
See also
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 57

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

I16TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1101
MSW 0000 0000 O0O0Obb baaa
Description Convert the 16-bit signed integer in RbH to a 32-bit floating point value and store the
result in RaH.
RaH = | 16ToF32 RbH
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
1 16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI Z ROH, #0x0000 ; ROH[31:16] = 0.0 (0x0000)
MOVXI ROH, #0x0004 ; ROH[15:0] = 4.0 (0x0004)
I 16TOF32 RIH, ROH : R1H = 116TOF32 (ROH)
MOVI Z R2H, #0x0000 ; R2H[31:16] = 0.0 (0x0000)
; <--116TOF32 conplete, RLH = 4.0 (0x40800000)
MOVXI R2H, #OXFFFC ; R2H 15:0] = -4.0 (OxFFFC)
| 16TOF32 R3H, R2H : R3H = | 16TOF32 (R2H)
NOP ; 1 Cycle delay for 116TOF32 to conpl ete
; <-- 116TOF32 conplete, R3H = -4.0 (0xC0800000)
See also
[I6TOF32 RaH, mem1q
DII6TOF32 RaH, mem1§
JIT6TOF32 RaH, RbH
58 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value
Operands
RaH floating-point destination register (ROH to R7H)
mem316 16-bit source memory location to be converted
Opcode LSW 1110 0110 1100 1000
MBW 0000 Oaaa memL6
Description Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit
floating-point value and store the result in RaH.
RaH = | 16ToF32[ment6]
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
|1 16TOF32 RaH, neml6 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @, #0x0004 ; [O0x00A000] = 4.0 (0x0004)
| 16TOF32 ROH, @ ; ROH = 1 16TOF32 [0x00A000]
MOV @, #OXFFFC ; [O0x00A001] = -4.0 (OxFFFC)
; <--116TOF32 conplete, ROH = 4.0 (0x40800000)
16TOF32 RIH, @ ; RLH = 1 16TOF32 [0x00A001]
NOP ;1 Cycle delay for 116TOF32 to conpl ete
; <-- 116TOF32 conplete, RLH = -4.0 (0xC0800000)
See also E32TOT16 RaH, RbH
F32TOIT6R RaH, RbH
. . O -] » D]
. ' 6 [|] [D -
[I6TOF32 RaH, RbH
OTI6TOF32 RaH, mem
OTI6TOF32 RaH, RbH
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 59

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value
Operands
RaH floating-point destination register (ROH to R7H)
mema32 32-bit source for the MOV32 operation. mem32 means that the operation can only
address memory using any of the direct or indirect addressing modes supported by the
C28x CPU
Opcode LSW 1110 0010 1000 1000
MBW 0000 Oaaa menB82
Description Convert the 32-bit signed integer indicated by the mem32 pointer to a 32-bit floating
point value and store the result in RaH.
RaH = | 32ToF32[menB2]
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
1 32TOF32 RaH, nenB2 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @, #0x1111 ; [Ox00A000] = 4369 (0x1111)
MOV @, #0x1111 ; [Ox00A001] = 4369 (0x1111)
; Value of the 32 bit signed integer present in
; Ox00A001 and O0xO00A000 is +286331153 (0x11111111)
132TOF32 R1H, @ ; RIH = 132TOF32 (0x11111111)
NOP ;1 Cycle delay for 132TOF32 to conpl ete
; <-- 132TOF32 conplete, RLH = 286331153 (0x4D3888888)
See also O RaH, RbH
F32TOUI32 RaH, RbH
[32TOF32 RaH, RbH
O132TOF32 RaH, RbH
JI32TOF32 RaFL memEZ
60 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1001
MSW 0000 0000 0O0bb baaa
Description Convert the signed 32-bit integer in RbH to a 32-bit floating-point value and store the
result in RaH.
RaH = | 32ToF32(RbH)
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
132TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVI Z RoH, #0x1111 ; R2H[31:16] = 4369 (0x1111)
MOVXI R2H, #0x1111 ; R2H 15:0] = 4369 (0x1111)
; Value of the 32 bit signed integer present
; in RRHis +286331153 (0x11111111)
1 32TOF32 R3H, R2H ; R3H = 132TOF32 (R2H)
NOP ; 1 Cycle delay for 132TOF32 to conpl ete
; <-- 132TOF32 conplete, R3H = 286331153 (0x4D888888)
See also O RaH, RbH
. ' -] ») D -
aH, mem
OT32TOF32 RaH, RbH
O132TOF32 RaH, mem37
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 61

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add
Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, RaH, RoH
|| ADDF32 R3H, R3H, R2H
R3H floating-point destination and source register for the ADDF32
R2H floating-point source register for the ADDF32 operation (ROH to R7H)
RdH floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (ROH to R7H)
RfH floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW 1110 0111 0100 00Of f
MBW feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = ReH * RfH
R3H = R3H + R2H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R3H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1if MPYF32 or ADDF32 generates an underflow condition.
* LVF=1if MPYF32 or ADDF32 generates an overflow condition.
Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ;1 cycle delay or non-conflicting instruction

<-- MPYF32, ADDF32 conplete, RaH RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

62 Instruction Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example ; Perform5 multiply and accumul ate operations:
© 1st multiply: A= X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4th multiply: D= X3 * Y3
; 5th multiply: E = X3 * Y3
. Result =A+B+C+D+E
MOV32 ROH, *XAR4++ ROH = X0
MOV32 R1H, *XAR5++ R1H = YO
R2H = A = X0 * YO
MPYF32 R2H, ROH, R1H In parallel ROH = X1
[| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ RIH = Y1
R3H =B = X1 * Y1
MPYF32 R3H, ROH, R1H In parallel ROH = X2
[| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ RIH = Y2
R3BH = A + B
; RRH=C = X2 * Y2
MACF32 R3H, R2H, R2H, ROH, R1IH ; In parallel ROH = X3
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
i RBH=(A+B) +C
; RRH=D = X3 * Y3
MACF32 R3H, R2H, R2H, ROH, RIH ; In parallel ROH = X4
[| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 . RIH = Y4
; The next MACF32 is an alias for
; MPYF32 || ADDF32
; RH=E = X4 * Y4
MACF32 R3H, R2H, RH, ROH, RIH ; in parallel RBH=(A+ B+ C + D
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R3H, R3H, R2H ; RBH=(A+B+C+ D +E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R3H ; Store the result
See also n e aH, mem
MACF32 R7H, R3H, mem32Z, *XAR7+
MACESZ R7H, RGH, RAH, ReH, RiF
MACF32 R7H, R6H, RdH, ReH, RTH [MOV32 RaH, mem37
an, , RC L Ren,

SPRUEO2A-June 2007 —-Revised August 2008

Bubmit Documentafion FeedbacK

Instruction Set

63

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R3H, R2H, RdH, ReH, RfH
IMOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel Move

Operands

Opcode

Description

Restrictions

R3H floating-point destination/source register R3H for the add operation

R2H floating-point source register R2H for the add operation

RdH floating-point destination register (ROH to R7H) for the multiply operation
RdH cannot be the same register as RaH

ReH floating-point source register (ROH to R7H) for the multiply operation

RfH floating-point source register (ROH to R7H) for the multiply operation

RaH floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same register as RdH.

mema32 32-bit source for the MOV32 operation

LSW 1110 0011 0011 fffe
MSW eedd daaa meng2

Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF32.

R3H = R3H + R2H,
RdH = ReH * RfH,
RaH = [menB2]

The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R3H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
MOV32 sets the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) ==0) { ZF=1; NF=0; }
Nl = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R3H, R2H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, menB2 ;1 cycle
; <-- MOV32 conpl etes, RaH updated
NOP ; 1 cycle delay for MACF32
; <-- MACF32 conpl etes, R3H, RdH updated
NOP
Any instruction in the delay slot for this version of MACF32 must not use R3H or RdH as
a destination register or R3H or RdH as a source operand.
64 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example ; Perform5 multiply and accumul ate operations:
. 1ST multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4TH nul tiply: D= X3 * Y3
; 5th multiply: E = X3 * Y3
. Result =A+B+C+D+E
MOV32 ROH, *XAR4++ ; ROH = X0
MOV32 R1H, *XAR5++ ; RIH = YO
; RRH= A= X0 * YO
MPYF32 R2H, ROH, R1H ; In parallel ROH = X1
|] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y1
; RBH=B = XL * VY1
MPYF32 R3H, ROH, R1H ; In parallel ROH = X2
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RBH= A+ B
; RH=C= X2 * Y2
MACF32 R3H, R2H, R2H, ROH, RIH ; In parallel ROH = X3
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
i RBH=(A+B) +C
; RRH=D= X3 * Y3
MACF32 R3H, R2H, R2H, ROH, RIH ; In parallel ROH = X4
|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
;s RH=E = X4 * Y4
MPYF32 R2H, ROH, R1H ; in parallel RBH= (A+B+ C + D
|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R3H, R3H, R2H s BH=(A+B+C+ D +E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R3H ; Store the result
See also . . LrRen,
mem +
e
MACF32 R7H, R6H, RdH, ReH, RiH [MOV32 RaH, mem32
ar, , xXC L eH,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 65

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate

Operands

Opcode

Description

Restrictions

R7H floating-point destination register
R3H floating-point destination register
mema32 pointer to a 32-bit source location
*XAR7 32-bit location pointed to by auxiliary register 7

LSW 1110 0010 0101 0000
MSW 00bb baaa menB2

Perform an multiply and accumulate operation. When used as a stand-alone operation,
the MACF32 will perform a single multiply as shown below:

Oycle 1: R3H = R3H + R2H, R2H = [menB2] * [XAR7++]

This instruction is the only floating-point instruction that can be repeated using the single
repeat instruction (RPT |[). When repeated, the destination of the accumulate will
alternate between R3H and R7H on each cycle and R2H and R6H are used as
temporary storage for each multiply.

Cycle 1: R3H = R3H + R2H, R2H = [nmenB2] * [XAR7++]
Cycle 2: R7/H = R7TH + R6H, R6H = [menB2] * [XAR7++]
Cycle 3: RBH = RBH + R2H, R2H = [nmenB2] * [XAR7++]
Cycle 4: R7H = R7H + R6H, R6H = [nmenB2] * [XAR7++]
etc...

R2H and R6H will be used as temporary storage by this instruction.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:

* LUF =1 if MACF32 generates an underflow condition.

* LVF =1 if MACF32 generates an overflow condition.

Pipeline When repeated the MACF32 takes 3 + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instructionl> ; No restriction

<instruction2> ; Cannot be a 2p instruction that wites
; to RRH, R3H, R6H or R7H

RPT #(N-1) ; Execute N tinmes, where Nis even

|| MACF32 R7H, R3H, *XARG++, *XAR7++

<instruction3> ; No restrictions.

; Can read RRH, R3H, R6H and R7H
66 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
MACF32 can also be used standalone. In this case, the insruction takes 2 cycles and the
following pipeline restrictions apply:
<instructionl> No restriction
<instruction2> Cannot be a 2p instruction that wites
to RRH, R3H, R6H or R7H
MACF32 R7H, R3H, *XAR6, *XAR7 R3H = R3H + R2H, R2H = [menB82] * [XAR7++]
<-- R2H and R3H are valid (note: no
del ay required)
NOP
Example ZERO R2H ; Zero the accunul ation registers
ZERO R3H ; and tenporary nmultiply storage registers
ZERO R6H
ZERO R7H
RPT #3 ; Repeat MACF32 N+1 (4) tines
|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H ; Final accunul ate
NOP
; <-- ADDF32 conpletes, R7H valid
NOP
Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:
ZERO R2H Zero the accurul ation registers
ZERO R3H ; and tenporary nmultiply storage registers
ZERO R6H
ZERO R7H
RPT #3 Execute MACF32 N+1 (4) tines
|| MACF32 R7H, R3H, *XAR6++, *XAR7++
RPT #5 Execute MACF32 N+1 (6) tines
|| MACF32 R7H, R3H, *XAR6++, *XAR7++
RPT #N Repeat MACF32 N+1 tines where N+1 is even
|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H Fi nal accunul ate
NOP
<-- ADDF32 conpl etes, R7H valid
See also MACEFSZ2 R3H, RZ2H, RdH, ReH, RTH || MOV32 RaH, mem34
MACF3Z2 R7H, R6H, RdH, ReH, RfH [MOV3Z RaH, mem
aH, , RC en,

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set 67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add
Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, RaH, RbH
|| ADDF32 R7H, R7H, R6H
R7H floating-point destination and source register for the ADDF32
R6H floating-point source register for the ADDF32 operation (ROH to R7H)
RdH floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (ROH to R7H)
RfH floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW 1110 0111 0100 00Of f
MBW feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = RaH * RbH
R7H = R6H + R6H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R7H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1if MPYF32 or ADDF32 generates an underflow condition.
* LVF=1if MPYF32 or ADDF32 generates an overflow condition.
Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ;1 cycle delay or non-conflicting instruction

<-- MPYF32, ADDF32 conplete, RaH RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

68 Instruction Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example ; Perform5 multiply and accumul ate operations:
; 1st nultiply: A= X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4th multiply: D= X3 * Y3
; 5th multiply: E = X3 * Y3
; Result = A+B+C+ D+ E
MOV32 ROH, *XAR4++ ROH = X0
MOV32 R1H, *XAR5++ R1H = YO
R6H = A = X0 * YO
MPYF32 R6H, ROH, R1H In parallel ROH = X1
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ RIH = Y1
R7TH =B = X1 * Y1
MPYF32 R7H, ROH, R1H In parallel ROH = X2
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ RIH = Y2
R7TH= A+ B
; RBH=C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X3
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
i RTIH= (A + B) + C
; RBH=D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, RlH ; In parallel ROH = X4
|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; Next MACF32 is an alias for
; MPYF32 || ADDF32
MACF32 R7H, R6H, R6H, ROH, RIH; R6H = E = X4 * Y4
; in parallel RTH= (A+ B+ C + D
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R7H, R7H, R6H i RIH=(A+ B+ C+ D) + E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R7H ; Store the result
See also ACF32 R3H, RZ2H, RdH, ReH, RT

MACF32 R3H, R
MACFE32 R7H, R3]
MACF32 R7H, R6H, RdH, Re

., mem

[RdH, ReH, RTH

e —

[MOV32 RaH,_mem32

+

ar, mem

an,

, RC

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set 69

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R7H, R6H, RdH, ReH, RfH
IMOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel Move

Operands

Opcode

Description

Restrictions

R7H floating-point destination/source register R7H for the add operation

R6H floating-point source register R6H for the add operation

RdH floating-point destination register (ROH to R7H) for the multiply operation.
RdH cannot be the same register as RaH.

ReH floating-point source register (ROH to R7H) for the multiply operation

RfH floating-point source register (ROH to R7H) for the multiply operation

RaH floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same as RdH.

mema32 32-bit source for the MOV32 operation

LSW 1110 0011 1100 fffe
MSW eedd daaa meng2

Multiply/accumulate the contents of floating-point registers and move from register to
memory. The destination register for the MOV32 cannot be the same as the destination
registers for the MACF32.

R7H = R7TH + R6H
RdH = ReH * RfH,
RaH = [nenB2]

The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R7H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
i f(RaH(30:23) == 0) {ZF = 1; NF = 0;}
Nl = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R7H, R6H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, menB2 ;1 cycle
; <-- MOV32 conpl etes, RaH updated
NOP ;1 cycle del ay
; <-- MACF32 conpl etes, R7H, RdH updated
NOP
70 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example ; Perform5 multiply and accumul ate operations:
© 1st multiply: A= X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4th multiply: D= X3 * Y3
; 5th multiply: E = X3 * Y3
. Result =A+B+C+D+E
MOV32 ROH, *XAR4++ ; ROH = X0
MOV32 R1H, *XAR5++ ; RIH = YO
; RBH= A = X0 * YO
MPYF32 R6H, ROH, R1H ; In parallel ROH = X1
|] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y1
; RTH=B = X1 * Y1
MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RTIH= A + B
; RBH=C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X3
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
i RTIH= (A + B) + C
; RBH=D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; RBH=E = X4 * Y4
MPYF32 R6H, ROH, R1H ; inparallel RFfH= (A + B+ C + D
|| ADDF32 R7H, R7H, R6H
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R7H, R7H, R6H i RIH=(A+ B+ C+ D + E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R7H ; Store the result
See also : ., mems32, +
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 71

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MAXF32 RaH, RbH 32-bit Floating-Point Maximum

Operands
RaH floating-point source/destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1001 0110
MSW 0000 0000 00bb baaa
Description i f(RaH < RoH) RaH = RbH
Special cases for the output from the MAXF32 operation:
« NaN output will be converted to infinity
» A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RoH) {ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 RlIH, #-2.0 ; RLH = -2.0 (0xC0000000)
MOVI ZF32 R2H, #-1.5 ; RH = -1.5 (0xBFC00000)
MAXF32 R2H, RLH ; RH=-1.5, ZF = NF =0
MAXF32 R1H, R2H ; RIH=-1.5, ZF =0, NF =1
MAXF32 R2H, ROH ; RH= 5.0, ZF=0, NF=1
MAXF32 ROH, R2H ; RH= 5.0, ZF=1, NF=0
See also EMPESZ RaH, RbH
CMPE32 RaH, #16FH]
CMPE3Z RaH, #0.0
MAXF32 RaH, RbH [[MOV32 RcH, RdH
MAXF32 RaH, #16FH]
MINF32 RaH, RbH
MINE3> RaH-Z16FH|
72 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point source/destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

LSW 1110 1000 0010 OI11
MBW 111 11T 111 laaa

Compare RaH with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into RaH.

i f(RaH < #16FHi : 0) RaH = #16FHi: 0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3FO00000), and
-1.5 (OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

Special cases for the output from the MAXF32 operation:

» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.

This instruction modifies the following flags in the STF register:

Flag TF ZIl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

i f(RaH == #16FHi : 0) {ZF=1, NF=0}

if(RaH > #16FH :0) {ZF=0, NF=0}

i f(RaH < #16FHi :0) {ZF=0, NF=1}

This is a single-cycle instruction.

MOVI ZF32 ROH, #5.0 ; ROH
MOVI ZF32 R1H, #4.0 ; R1H
MOVI ZF32 R2H, #-1.5 ; R2H
MAXF32 ROH, #5.5 ; ROH
MAXF32 R1H, #2.5 ; R1H
MAXF32 R2H, # 0 ; R2H
MAXF32 R2H, # 0 ;

MAXF37 RaH, RbH
MAXF32 RaH, RbH [MOV3Z RcH, RaH
MINF32 RaH, RbH
—

(0x40A00000)
(0x40800000)
(0xBFC00000)
0, NF
0, NF
0, NF
1, NF

PRRrOERRO

-1.
- 1.

o nn
OFr O

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 73
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MAXF32 RaH, RbH
[IMOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move
Operands
RaH floating-point source/destination register for the MAXF32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH floating-point source register for the MAXF32 operation (ROH to R7H)
RcH floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW 1110 0110 1001 1100
MSW 0000 dddc ccbb baaa
Description If RaH is less than RbH, then load RaH with RbH. Thus RaH will always have the

maximum value. If RaH is less than RbH, then, in parallel, also load RcH with the
contents of RdH.

if(RaH < RbH) { RaH = RoH, RcH = RdH, }

The MAXF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for the output from the MAXF32 operation:

» NaN output will be converted to infinity

* A denormalized output will be converted to positive zero.

Restrictions The destination register for the MAXF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

i f(RaH == RbH) {ZF=1, NF=0}

if(RaH > RbH) {ZF=0, NF=0}

if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.
Example MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOVI ZF32 R2H, #-1.5 : R2H = -1.5 (0xBFC00000)
MOVI ZF32 R3H, #-2.0 ; RBH = -2.0 (0xC0000000)
MAXF32 ROH, R1H ; ROH=5.0, RBH=-1.5, ZF =0, NF =0
|| Mov32 R3H, R2H
MAXF32 R1H, ROH ; RIH=5.0, RBH=-1.5 ZF =0, NF =1
|| Mov32 R3H, R2H
MAXF32 ROH, R1H ; ROH=5.0, RRH=-1.5, ZF =1, NF =0
|| Mov32 R2H, RIH
See also MAXESZ2 RaH, RbH
MAXFE3Z RaH, #I6FH]
74 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MINF32 RaH, RbH 32-bit Floating-Point Minimum

Operands
RaH floating-point source/destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1001 0111
MSW 0000 0000 00bb baaa
Description i f(RaH > RoH) RaH = RbH
Special cases for the output from the MINF32 operation:
« NaN output will be converted to infinity
» A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RoH) {ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOVI ZF32 R2H, #-1.5 ; RH = -1.5 (0xBFC00000)
M NF32 ROH, RLH ; ROH= 4.0, ZF =0, NF=0
M NF32 R1H, R2H ; RIH=-1.5, ZF =0, NF=0
M NF32 R2H, RLH ; RH=-1.5, ZF =1, NF=0
M NF32 R1H, ROH ; RRH=-1.5, ZF =0, NF =1
See also MAXES2 RaH, RbH
MAXF32 RaH, #16FHI
MINF32 RaH, #I6FH|
an, cH,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 75

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MINF32 RaH, #16FHi 32-bit Floating-Point Minimum
Operands
RaH floating-point source/destination register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW 1110 1000 0011 Ol 1|
MBW [[IIL IIIl |aaa
Description Compare RaH with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into RaH.
i f(RaH > #16FHi : 0) RaH = #16FHi: 0
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3FO00000), and
-1.5 (OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.
Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
i f (RaH == #16FHi : 0) {ZF=1, NF=0}
i f(RaH > #16FHi:0) {ZF=0, NF=0}
i f(RaH < #16FHi :0) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOVl ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 RLH, #4.0 ; RLH = 4.0 (0x40800000)
MOVI ZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
M NF32 ROH, #5.5 ; ROH= 5.0, ZF=0, NF=1
M NF32 RLH, #2.5 ; RIH= 2.5, ZF=0, NF=0
M NF32 R2H, #-1.0 ; RH=-1.5, ZF=0, NF=1
M NF32 R2H, #-1.5 ;i RRH=-1.5, ZF =1, NF=0
See also MAXESZ RaH, #16FH|
MAXFE32 RaH, RbH
MINF32 RaH, Rb
MINF32 RaH, RbH [TMOV32 RcH, RdH
76 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
MINF32 RaH, RbH
IMOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move
Operands
RaH floating-point source/destination register for the MIN32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH floating-point source register for the MIN32 operation (ROH to R7H)
RcH floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW 1110 0110 1001 1101
MSW 0000 dddc ccbb baaa
Description if(RaH > RoH) { RaH = RobH, RcH = RdH; }

Restrictions

Special cases for the output from the MINF32 operation:
« NaN output will be converted to infinity
» A denormalized output will be converted to positive zero.

The destination register for the MINF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
i f(RaH == RbH) {ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOV ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVl ZF32 RIH, #4.0 : RIH = 4.0 (0x40800000)
MOVI ZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MOVl ZF32 R3H, #-2.0 : R8H = -2.0 (0xC0000000)
M NF32 ROH, R1H : ROH= 4.0, RBH=-1.5, ZF =0, NF =0
[| MOv32 R3H, R2H
M NF32 R1H, ROH i RIH= 4.0, RBH=-1.5, ZF =1, NF=0
[| MOv32 R3H, R2H
M NF32 R2H, R1H i RH=-1.5, RIH=4.0, ZF =1, NF =1
|| Mov32 R1H, R3H
See also MINF32 RaH, RbH
! 1
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

Operands
mem16 points to the 16-bit destination memory
RaH floating-point source register (ROH to R7H)
Opcode LSW 1110 0010 0001 0011
MBW 0000 Oaaa meni6
Description Move 16-bit value from the lower 16-bits of the floating-point register (RaH[15:0]) to the
location pointed to by mem16.
[meml6] = RaH[15: 0]
Flags No flags STF flags are affected.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example MOVW DP, #0x02C0 ; DP = 0x0200
MOVXI R4H, #0x0003 ; R4H = 3.0 (0x0003)
MOV16 @, R4H ; [0x00B000] = 3.0 (0x0003)
See also aH, iHe
MOVIZE32 RaH, #I6FH]
aH, oHe
78 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory

Operands

Opcode

Description

Flags

Pipeline

Example

See also

0:16bitAddr 16-bit immediate address, zero extended
loc32 32 bit source location

LSW 1011 1101 | 0c32

MBW LI T Tl el

Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.

[0: 16bi t Addr] = [l 0c32]

This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF

LUF

LVF

Modified No No No No No

No

No

This is a two-cycle instruction.

MVIZ R5H, #0x1234
MOVXI R5H, #0xABCD
NOP

MV32 ACC, REH
MOV32 *(0xA000), @ACC :

R5H 31: 16] 0x1234
R5H[15: 0] 0xABCD
1 Alignment Cycle
ACC = 0x1234ABCD
[0Xx00A000] = ACC

= 0x1234

NOP 1 Cycle delay for MWV32 to conplete
<-- MOV32 *(0:16bitAddr), |oc32 conplete,
[0Xx00A000] = OxABCD, [0x00A001]
mem a
mem
0CsoZ, :1obit r

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

79

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 ACC, RaH

Move 32-bit Floating-Point Register Contents to ACC

Operands

ACC 28x accumulator
RaH floating-point source register (ROH to R7H)

Opcode LSW 1011 1111 | oc32
MBW IITL TLEE THEl 1l

Description If the condition is true, then move the 32-bit value referenced by mema32 to the
floating-point register indicated by RaH.

ACC = RaH

Flags No STF flags are affected.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Z and N flag in status register zero (STO) of the 28x CPU are affected.

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:

M NF32 ROH, R1H ; Single-cycle instruction
NOP ;1 alignnment cycle
MOV32 @\CC, ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ;1 cycle delay for ADDF32 to conplete
; <-- ADDF32 conpletes, RRH is valid
NOP ;1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 2 cycles
; <-- MOV32 conpletes, ACCis valid
NOP ; Any instruction
Example MOVI ZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI 32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion conplete, ROH valid
NOP ; Alignnent cycle
MOV32 P, ROH ; P =2 = 0x00000002

See also MOVS2 P, RaH
V n, Ra
MOV32 XT, RaH

80 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands
loc32 destination location
0:16bitAddr 16-bit address of the 32-bit source value
Opcode LSW 1011 1111 | oc32
MBW LI HIIL Lhi 11l
Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32.
[10c32] = [0:16bitAddr]
Flags No STF flags are affected. If loc32 is the ACC register, then the Z and N flag in status
register zero (STO) of the 28x CPU are affected.
Flag TF zZl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 cycle instruction.
Example MOVW DP, #0x0300 ; DP = 0x0300

MoV @, #OXFFFF ; [0x000000] = OxFFFF;
MoV @, #0x1111 ; [0x00C001] = O0x1111;
MOV32 @\CC, *(0xC000) ; AL = [0x00C000], AH = [0x000001]
;1 Cycle delay for MOV32 to conplete
; <-- MOV32 conplete, AL = OxFFFF, AH = Ox1111

See also | aH, mem
MOV 0:16bitAddr), loc32

. mem

ar, mem

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 81
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory
Operands
RaH floating-point register (ROH to R7H)
mema32 points to the 32-bit destination memory
Opcode LSW 1110 0010 0000 0011
MBW 0000 Oaaa menB82
Description Move from memory to STF.
[menB82] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ; Perform5 multiply and accumul ate operations:
© 1st multiply: A= X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4th multiply: D= X3 * Y3
; 5th nmultiply: E = X3 * Y3
. Result =A+B+C+D+E
MOV32 ROH, *XAR4++ ; ROH = X0
MOV32 R1H, *XAR5++ ; RLH = YO
; RBH = A = X0 * YO
MPYF32 R6H, ROH, R1H ; In parallel ROH = X1
|] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y1
; RTH=B = X1 * Y1
MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
[| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RLH = Y2
; RTH= A+ B
; RBH = C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X3
[| MOV32 ROH, *XAR4++
MOV32 RI1H, *XARG++ ; RLH = Y3
; RBH=(A+B) +C
; RBH =D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
[| MOV32 ROH, *XAR4
MOV32 RI1H, *XAR5 : RIH = Y4
; RBH=E = X4 * Y4
MPYF32 R6H, ROH, R1H ; in parallel RTIH= (A+ B+ C + D
|| ADDF32 R7H, R7H, R2H
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R7H, R7H, R6H ; RIH= (A+ B+ C+ D) + E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R7H ; Store the result
See also : It r), loc
mems<s,
82 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MOV32 mem32, STF Move 32-bit STF Register to Memory

Operands
STF floating-point status register
mema32 points to the 32-bit destination memory
Opcode LSW 1110 0010 0000 0000
MBW 0000 0000 menB82
Description Copy the floating-point status register, STF, to memory.
[men82] = STF
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example 1 MOVW DP, #0x0280 ; DP = 0x0280
MOVI ZF32 ROH, #2.0 ; ROH = 2.0 (0x40000000)
MOVl ZF32 R1H, #3.0 ; RIH = 3.0 (0x40400000)
CMPF32 ROH, R1H ; ZF =0, NF =1, STF = 0x00000004
MOV32 @, STF ;[OXxO0A000] = 0x00000004
Example 2 MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF =1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack
See also MOV32 memsZ, RaH
MOV 0:16bitAddr), loca32
MOVSTO FLAG
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 83

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P
Operands
P 28x product register P
RaH floating-point source register (ROH to R7H)
Opcode LSW 1011 1111 | oc32
MBW IITL TLEE THEl 1l
Description Move the 32-bit value in RaH to the 28x product register P.
P = RaH
Flags No flags affected in floating-point unit.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
M NF32 ROH, R1H ; Single-cycle instruction
NOP ;1 alignment cycle
MOV32 @\CC, ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ;1 cycle delay for ADDF32 to conplete
; <-- ADDF32 conpletes, RRHis valid
NOP ;1 alignnment cycle
MOV32 ACC, R2H ; copy RRH into ACC, takes 1 cycle
; <-- MOV32 conpletes, ACCis valid
NOP ; Any instruction
Example MOVI ZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI 32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion conplete, ROH valid
NOP ; Alignnent cycle
MOV32 P, ROH ; P =2 = 0x00000002
See also OV32 ACC, Ra
MOV32 XARn, RaH
MOV32 XT, RaH
84 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register
Operands
RaH floating-point destination register (ROH to R7H)
ACC accumulator
Opcode LSW 1011 1101 | oc32
MBW LI HIIL Lhi 11l
Description Move the 32-bit value in ACC to the floating-point register RaH.
RaH = ACC
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, 116 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, @\CC ; Copy ACC to ROH
NOP ; Wait 4 cycles
NOP ; Do not use FRACF32, Ul 16TOF32
NOP ; 116TOF32, F32TOUI 32 or F32TO 32
NOP ;
<-- RHis valid
Example MoV AH, #0x0000
MV AL, #0x0200 ; ACC = 512
MOV32 ROH, ACC
NOP
NOP
NOP
NOP Ul 32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, B
MOV32 RaH, XARH
MOV32 RaH, X1]
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 85

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

Operands
RaH floating-point destination register (ROH to R7H)
mema32 pointer to the 32-bit source memory location
CNDF optional condition.
Opcode LSW 1110 0010 1010 CNDF
MBW 0000 Oaaa menB82
Description If the condition is true, then move the 32-bit value referenced by mema32 to the
floating-point register indicated by RaH.
if (CNDF == TRUE) RaH = [nenB2]
CNDF is one of the following conditions:
Encode © CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag None
modification
@ values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This
condition will allow the ZF, NF, ZI, and NI flags to be modified when
a conditional operation is executed. All other conditions will not
modify these flags.
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
i f (CNDF == UNCF)
{
NF = RaH(31);
ZF = 0;
if(RaH[30:23] == 0) { ZF =1, NF =0; }
N = RaH 31];
ZI = 0;
if(RaH 31:0] == 0) zlI = 1;
el se No flags nodified;
Pipeline This is a single-cycle instruction.
86 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @, #0x5555 ; [0x000000] = 0x5555
MoV @, #0x5555 ; [0x000001] = 0x5555
MOVI ZF32 R3H, #7.0 ; R3H = 7.0 (0x40E00000)
MOVI ZF32 R4H, #7.0 ; R4H = 7.0 (0x40E00000)
MAXF32 R3H, R4H o ZF =1, NF =0
Mov32 R1H, @, EQ ; R1H = 0x55555555
See also aH,]
WGUDEQ RaH, mem32
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 87

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register
Operands
RaH floating-point register (ROH to R7H)
P product register
Opcode LSW 1011 1101 | oc32
MBW LI HIIL Lhi 11l
Description Move the 32-bit value in the product register, P, to the floating-point register RaH.
RaH = P
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, 116 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, @ ; Copy P to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, Ul 16TOF32
NOP ; 116TOF32, F32TOUI 32 or F32TO 32
NOP ;
; <-- ROHis valid
Instruction can use ROH as a source
Example MOV PH, #0x0000
MOV PL, #0x0200 ; P =512
MOV32 ROH, P
NOP
NOP
NOP
NOP
Ul 32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, ACQ
MOV32 RaH, XARH
MOV32 RaH, X1|
88 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
CNDF optional condition.
Opcode LSW 1110 0110 1100 CNDF
MSW 0000 0000 O0Obb baaa
Description If the condition is true, then move the 32-bit value referenced by mema32 to the
floating-point register indicated by RaH.
if (CNDF == TRUE) RaH = RbH
CNDF is one of the following conditions:
Encode © CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag None
modification
(@) values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This
condition will allow the ZF, NF, ZI, and NI flags to be modified when
a conditional operation is executed. All other conditions will not
modify these flags.
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
i f (CNDF == UNCF)
NF = RaH(31); ZF = O;
if(RaH 30:23] == 0) {ZF = 1, NF = 0;}
Nl = RaH(31); ZI = O;
if(RaH 31:0] == 0) zlI = 1;
el se No flags nodified;
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 R3H, #8.0 ; R3H = 8.0 (0x41000000)
MOVI ZF32 RA4H, #7.0 ; RAH = 7.0 (0x40E00000)
MAXF32 R3H, R4H ; ZF =0, NF =0
MOV32 R1H, R3H, GT ; R1H = 8.0 (0x41000000)
See also MOV32 RaH, mem32], CNDF]

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set 89

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XARN auxiliary register (XARO - XAR7)
Opcode LSW 1011 1101 | oc32
MBW LI HIIL Lhi 11l
Description Move the 32-bit value in the auxiliary register XARn to the floating point register RaH.
RaH = XARn
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, 116 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, @AR7 ; Copy XAR7 to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, Ul 16TOF32
NOP ; 116TOF32, F32TOUI 32 or F32TO 32
NOP ;
; <-- ROHis valid
ADDF32 R2H, R1H, ROH ; Instruction can use ROH as a source
Example MOVL XARL, #0x0200 ; XARL = 512
MOV32 ROH, XARL
NOP
NOP
NOP
NOP
U 32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV37 RaH, ACQ
MOV32 RaH, A
MOV32 RaH, XT|
90 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MOV32 RaH, XT

Move the Contents of XT to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XT auxiliary register (XARO - XAR7)
Opcode LSW 1011 1101 | oc32
MBW LI HIIL Lhi 11l
Description Move the 32-bit value in temporary register, XT, to the floating-point register RaH.
RaH = XT
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, 116 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, XT ; Copy XT to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, Ul 16TOF32
NOP ; 116TOF32, F32TOUI 32 or F32TO 32
NOP ;
; <-- ROHis valid
ADDF32 R2H, R1H, ROH ; Instruction can use ROH as a source
Example MOVI ZF32 R6H, #5.0 ; R6H = 5.0 (0x40A00000)
NOP ;1 Alignment cycle
MOV32 XT, R6H ; XT = 5.0 (0x40A00000)
MOV32 RLH, XT ; RLH = 5.0 (0x40A00000)
See also MOV32 RaH, ACQ
MOV32 RaH, A
MOV32 RaH, XARH
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 91

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register
Operands
STF floating-point unit status register
mema32 pointer to the 32-bit source memory location
Opcode LSW 1110 0010 1000 0000
MBW 0000 0000 meng2
Description Move from memory to the floating-point unit's status register STF.
STF = [nmenB2]
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Restoring status register will overwrite all flags.
Pipeline This is a single-cycle instruction.
Example 1 MOVW DP, #0x0300 ; DP = 0x0300
MOV @, #0x020C ; [0x00C002] = 0x020C
MOV @, #0x0000 ; [0x000003] = 0x0000
MV32 STF, @ ; STF = 0x0000020C
Example 2 MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; RZH = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CVWPF32 R2H, R3H ; ZF = 0, NF =1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack
See also MOV32 mem32, STH
MOVSTO FLAG
92 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn

Operands
XARN 28x auxiliary register (XARO - XAR7)
RaH floating-point source register (ROH to R7H)
Opcode LSW 1011 1111 | oc32
MBW IITL TLEE THEl 1l
Description Move the 32-bit value from the floating-point register RaH to the auxiliary register XARnN.
XARn = RaH
Flags No flags affected in floating-point unit.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
M NF32 ROH, R1H ; Single-cycle instruction
NOP ;1 alignment cycle
MOV32 @\CC, ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ;1 cycle delay for ADDF32 to conplete
; <-- ADDF32 conpletes, RRHis valid
NOP ;1 alignnment cycle
MOV32 ACC, R2H ; copy RRH into ACC, takes 1 cycle
; <-- MOV32 conpletes, ACCis valid
NOP ; Any instruction
Example MOVI ZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI 32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion conplete, ROH valid
NOP ; Alignnent cycle
MOV32 XAR0O, ROH ; XARO = 2 = 0x00000002
See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XT, RaH
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 93

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOV32 XT, RaH Move 32-bit Floating-Point Register Contents to XT
Operands
XT temporary register
RaH floating-point source register (ROH to R7H)
Opcode LSW 1011 1111 | oc32
MBW IITL TLEE THEl 1l
Description Move the 32-bit value in RaH to the temporary register XT.
XT = RaH
Flags No flags affected in floating-point unit.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
M NF32 ROH, R1H ; Single-cycle instruction
NOP ;1 alignment cycle
MOV32 @XT, ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ;1 cycle delay for ADDF32 to conplete
; <-- ADDF32 conpletes, RRHis valid
NOP ;1 alignnment cycle
MOV32 XT, R2H ; copy RRH into ACC, takes 1 cycle
; <-- MOV32 conpletes, ACCis valid
NOP ; Any instruction
Example MOVI ZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI 32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion conplete, ROH valid
NOP ; Alignnent cycle
MOV32 XT, ROH ; XT = 2 = 0x00000002
See also MOV32 ACC, RaH
MOV32 P, RaH
n, Ra
94 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point register (ROH to R7H)

mema32 pointer to the 32-bit source memory location

LSW 1110 0010 0010 0011
MSW 0000 Oaaa menB82

Move the 32-bit value referenced by mem32 to the floating-point register indicated by

RaH.

RaH = [menB2]
[menB2+2] = [menB2]

This instruction modifies the following flags in the STF register:

Flag TF ZIl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
NF = RaH 31];

ZF = 0;

if(RaH 30:23] == 0){ zZF = 1; NF = 0; }

N = RaH 31];

Zl = 0;

if(RaH 31:0] == 0) zI = 1;
This is a single-cycle instruction.

MOVW DP, #0x02C0 DP = 0x02C0
MoV @, #0x0000 [0x00B002] = 0x0000

MWVD32 R7H @ R7H = 0x41100000,
[0x00B004] = 0x0000,

MOV32 RaH, mem32 {,CNDF]

MOV @, #0x4110 : [0x00B003] = Ox4110

[0X00B005] = 0x4110

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

95

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVI Z RaH, #16FH Hex
MOVXI RaH, #16FLoHex
RaH floating-point destination register (ROH to R7H)
#32F immediate float value represented in floating-point representation
Opcode LSW 1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHi Hex)
MBW I LLLL 11l |aaa
LSW 1110 1000 0000 1I11 (opcode of MOVXI RaH, #16FLoHex)
MBW [LLLL [Tl |aaa
Description Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 RaH, #32FHex instruction.
Load the 32-bits of RaH with the immediate float value represented by #32F.
#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.
RaH = #32F
Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MOVF32 into only MOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MOVF32 into
MOVIZ and MOVXI instructions.
Example MOVF32 RLlH, #3.0 ; RLH = 3.0 (0x40400000)
; Assenbl er converts this instruction as
; MOVIZ RLH, #0x4040
MOVF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
; Assenbl er converts this instruction as
; MOVIZ R2H, #0x0
MOVF32 R3H, #12.265 ; R3H = 12.625 (0x41443D71)
; Assenbl er converts this instruction as
MOVI Z R3H, #0x4144
MOVXI R3H, #0x3D71
See also MOVIZ RaH, #16FHIHe
MOVXI RaH, #I6FLoHe
MOVI32 RaH, #32FHeX
MOVIZE32 RaH, #16FH]|
96 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVI Z RaH, #16FHi Hex
MOVXI RaH, #16FLoHex
RaH floating-point register (ROH to R7H)
#32FHex A 32-bit immediate value that represents an IEEE 32-bit floating-point value.
Opcode LSW 1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHi Hex)
MBW I LLLL 11l |aaa
LSW 1110 1000 0000 1I11 (opcode of MOVXI RaH, #16FLoHex)
MBW [LLLL [Tl |aaa
Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVF32 RaH, #32F
instruction.
Load the 32-bits of RaH with the immediate 32-bit hex value represented by #32Fhex.
#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point
value of a floating-point number. The assembler will only accept a hex immediate value.
That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.
RaH = #32FHex
Flags This instruction modifies the following flags in the STF register:
Flag TF bd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline Depending on #32FHex, this instruction takes one or two cycles. If all of the lower
16-bits of #32FHex are zeros, then assembler will convert MOVI32 to the MOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MOVIZ and a MOVXI instruction.
Example MOVI 32 R1H, #0x40400000 ; R1H = 0x40400000
; Assenbler converts this instruction as
; MOVIZ R1H, #0x4040
MOVI 32 R2H, #0x00000000 ; R2H = 0x00000000
; Assenbl er converts this instruction as
; MOVI Z R2H, #0x0
MOVI 32 R3H, #0x40004001 ; R3H = 0x40004001
; Assenbler converts this instruction as
; MOVIZ R3H, #0x4000
; MOVXI R3H, #0x4001
MOVI 32 R4H, #0x00004040 ; R4H = 0x00004040
; Assenbler converts this instruction as
; MOVIZ R4H, #0x0000
; MOVXI R4H, #0x4040
See also a IHe
a oHe
MOVF32 RaH, #32H
MOVIZF32 RaH, #16FH]|
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 97

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register
Operands
RaH floating-point register (ROH to R7H)
#16FHiHex A 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW 1110 1000 0000 Ol |
MBW [[IIL IIIl |aaa
Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVIZF32 pseudo
instruction.
Load the upper 16-bits of RaH with the immediate value #16FHiHex and clear the low
16-bits of RaH.
#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE
32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a hex immediate value. That is, -1.5 can only be represented
as #0xBFCO. #-1.5 will result in an error.
By itself, MOVIZ is useful for loading a floating-point register with a constant in which the
lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (0OXxBFC00000). If a constant requires all
32-bits of a floating-point register to be iniitalized, then use MOVIZ along with the MOVXI
instruction.
RaH[31: 16] = #16FHi Hex
RaH[15:0] = 0
Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example ; Load ROH with -1.5 (0xBFC00000)
MOVI Z ROH, #0xBFQ0 ; ROH = 0xBFC00000
Load ROH with pi = 3.141593 (0x40490FDB)
MOVI Z ROH, #0x4049 ; ROH = 0x40490000
MOVXI ROH, #0xOFDB ; ROH = 0x40490FDB
See also MOVIZF3Z RaH, #I6FH]
aH, oHe
98 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW 1110 1000 0000 Ol |
MBW [[IIL IIIl |aaa
Description Load the upper 16-bits of RaH with the value represented by #16FHi and clear the low
16-bits of RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). #16FHi can be specified in hex or float. That is, -1.5 can be
represented as #-1.5 or #0xBFCO.
MOVIZF32 is an alias for the MOVIZ RaH, #16FHiHex instruction. In the case of
MOVIZF32 the assembler will accept either a hex or float as the immediate value and
encodes it into a MOVIZ instruction. For example, MOVIZF32 RaH, #-1.5 will be
encoded as MOVIZ RaH, 0xBFCO.
RaH[31: 16] = #16FHi
RaH[15:0] = 0
Flags This instruction modifies the following flags in the STF register:
Flag TF zZl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 ROH, #3.0 ; ROH = 3.0 = 0x40400000
MOVI ZF32 R1H, #1.0 ; RLH = 1.0 = 0x3F800000
MOVI ZF32 R2H, #2.5 ; RRH = 2.5 = 0x40200000
MOVI ZF32 R3H, #-5.5 ; R3H = -5.5 = 0xC0B0000O
MOVI ZF32 R4H, #0xCOBO ; R4H = -5.5 = 0xC0B0O000O
Load R5H with pi = 3.141593 (0x40490000)
MOVI ZF32 R5H, #3.141593 ; R5H = 3.140625 (0x40490000)
Load ROH with a nore accurate pi = 3.141593 (0x40490FDB)
MOVI ZF32 ROH, #0x4049 ; ROH = 0x40490000
MOVXI ROH, #0x0FDB ; ROH = 0x40490FDB
See also | a iHe
aH, oHe
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 99

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MOVSTO FLAG

Operands

Opcode

Description

Restrictions

Flags

Pipeline

Example

See also

Load Selected STF Flags into STO

FLAG Selected flag

LSW 1010 1101 FFFF FFFF

Load selected flags from the STF register into the STO register of the 28x CPU where
FLAG is one or more of TF, Cl, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to
the STO register as follows:

e SetQV =1if LVF or LUF is set. Otherwise clear OV.

e« Set N =1if NF or Nl is set. Otherwise clear N.

e SetZ=1Iif ZF or Zl is set. Otherwise clear Z.

e SetC=1if TF is set. Otherwise clear C.

 SetTC =1if TF is set. Otherwise clear TF.
If any STF flag is not specified, then the corresponding STO register bit is not modified.

Do not use the MOVSTO instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the MOVSTO operation.

; The following is | NVALID

MPYF32 R2H, R1H, ROH
MOVSTO TF

2 pipeline-cycle instruction (2p)
I NVALI D, do not use MWVSTO in a delay slot

; The following is VALID
MPYF32 R2H, R1H, ROH 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
MOVSTO TF ; VALID

This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

When the flags are moved to the C28x STO register, the LUF or LVF flags are
automatically cleared if selected.

This is a single-cycle instruction.

Program flow is controlled by C28x instructions that read status flags in the status
register O (STO) . If a decision needs to be made based on a floating-point operation, the
information in the STF register needs to be loaded into STO flags (Z,N,0V,TC,C) so that
the appropriate branch conditional instruction can be executed. The MOVSTO FLAG
instruction is used to load the current value of specified STF flags into the respective bits
of STO. When this instruction executes, it will also clear the latched overflow and
underflow flags if those flags are specified.
Loop:

MOV32 ROH, * XAR4++

MOV32 RLH, * XAR3++

CMPF32 R1H, ROH

MOVSTO ZF, NF

BF Loop, GT Loop if (RLH > ROH)

mem
,mem

100 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register
Operands
Ra floating-point register (ROH to R7H)
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit
floating-point value. The upper 16-bits will not be modified.
Opcode LSW 1110 1000 0000 1I11
MBW 111 111l 111l laaa
Description Load the low 16-bits of RaH with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
RaH will not be modified. MOVXI can be combined with the MOVIZ or MOVIZF32
instruction to initialize all 32-bits of a RaH register.
RaH 15: 0] = #16FLoHex
RaH 31: 16] = Unchanged
Flags
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example ; Load ROH with pi = 3.141593 (0x40490FDB)
MOVI Z ROH, #0x4049 ; ROH = 0x40490000
MOVXI ROH, #0x0FDB ; ROH = 0x40490FDB
See also OVIZ RaH, #16FHiHeX
ar,

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

101

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
RcH floating-point source register (ROH to R7H)

LSW 1110 0111 0000 0000
MSW 0000 000c ccbb baaa

Multiply the contents of two floating-point registers.
RaH = RbH * RcH

This instruction modifies the following flags in the STF register:.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
<-- MPYF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Calculate Y = A * B:

MOVL XAR4, #A

MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, # B

MOV32 R1H, *XAR4 ; Load RIHwith B
MPYF32 ROH, RIH, ROH ; Miltiply A* B
MOVL XAR4, #Y

; <--MPYF32 conpl ete

MOV32 * XAR4, ROH ; Save the result

MPYF32 RaH, #Z16FHi, RbH

MPYF32 RaH, RbH, RcH]| ADDF37 RdH, ReH, RiH

MPYF32 RdH, ReH, RTH [MOV32 RaH, mem3aZ
PYF32 RdH, ReH, RH || MOV32 mem32, Ra

VMACF32 R3H, RZH, RdH, ReH, ar, mem

102 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

Operands
RaH floating-point destination register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.
RcH floating-point source register (ROH to R7H)
Opcode LSW 1110 1000 0111 1111
MSW 111l 111 1lbb baaa
Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.
RaH = RoH * #16FHi : 0
This instruction can also be written as MPYF32 RaH, RbH, #16FHi.
Flags This instruction modifies the following flags in the STF register:.
Flag TF bd| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
MPYF32 RaH, #16FH , RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example 1 MOVI ZF32 R3H, #2.0 ; R8H = 2.0 (0x40000000)
MPYF32 R4H, #3.0, R3H ; R4H = 3.0 * R3H
MOVL XAR1, #0xB006 ; <-- Non conflicting instruction
; <-- MPYF32 conplete, R4H = 6.0 (0x40000000)
MOV32 *XAR1, R4H ; Save the result in menory |ocation OxB006
Example 2 ; Same as above exanple but #16FH is represented in Hex
MOVI ZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, #0x4040, R3H ; R4H = 0x4040 * R3H
; 3.0 is represented as 0x40400000 in
; | EEE 754 32-bit format
MOVL XAR1, #0xB006 ; <-- Non conflicting instruction
; <-- MPYF32 conplete, R4AH = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in nenory |ocation 0xB006
See also MPYE32 RaH, RbH, #16FH]
aH, , RC
MPYF32 RaH, RbH, RcH , ReH,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 103

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply
Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW 1110 1000 0111 1111
MSW 111l 111 1lbb baaa
Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.
RaH = RoH * #16FHi : 0
This instruction can also be writen as MPYF32 RaH, #16FHi, RbH.
Flags This instruction modifies the following flags in the STF register:.
Flag TF bd| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
MPYF32 RaH, RbH, #16FH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example 1 MOVI ZF32 R3H, #2.0 ; R8H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #3.0 ; R4H = R3H * 3.0
MOVL XARL, #0xB008 ; <-- Non conflicting instruction
; <-- MPYF32 conplete, R4H = 6.0 (0x40000000)
MOV32 *XAR1, R4H ; Save the result in nmenory |ocation O0xB008
Example 2 ; Same as above exanple but #16FH is represented in Hex
MOVI ZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #0x4040 ; R4H = R3H * 0x4040
; 3.0 is represented as 0x40400000 in
; | EEE 754 32-bit format
MOVL XAR1, #0xB008 ; <-- Non conflicting instruction
; <-- MPYF32 conplete, R4AH = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in nenory |ocation 0xB008
See also MPYF32 RaH, #16FHi, RbH
aH, , RC

104 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

MPYF32 RaH, RbH, RcH
[ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands

Opcode

Description

Restrictions

RaH floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH

RbH floating-point source register for MPYF32 (ROH to R7H)

RcH floating-point source register for MPYF32 (ROH to R7H)

RdH floating-point destination register for ADDF32 (ROH to R7H)
RdH cannot be the same register as RaH

ReH floating-point source register for ADDF32 (ROH to R7H)

RfH floating-point source register for ADDF32 (ROH to R7H)

LSW 1110 0111 0100 0Of f
MSW feee dddc ccbb baaa
Multiply the contents of two floating-point registers with parallel addition of two registers.

RaH = RbH * RcH
RdH = ReH + RfH

This instruction can also be written as:
MACF32 RaH, RbH, RcH, RdH, ReH, RfH

The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
e LUF =1if MPYF32 or ADDF32 generates an underflow condition.
* LVF=1if MPYF32 or ADDF32 generates an overflow condition.
Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 conplete, RaH, RdH updated
NOP
Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 105

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
Example ; Perform5 multiply and accumul ate operations:
© 1st multiply: A= X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C= X2 * Y2
; 4th multiply: D= X3 * Y3
; 5th multiply: E = X3 * Y3
. Result =A+B+C+D+E
MOV32 ROH, *XAR4++ ; ROH = X0
MOV32 R1H, *XAR5++ ; RIH = YO
; RRH= A= X0 * YO
MPYF32 R2H, ROH, R1H ; In parallel ROH = X1
|] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y1
; RBH=B = XL * VY1
MPYF32 R3H, ROH, R1H ; In parallel ROH = X2
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RBH= A+ B
; RH=C= X2 * Y2
MACF32 R3H, R2H, R2H, ROH, RIH ; In parallel ROH = X3
|| MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
i RBH=(A+B) +C
; RRH=D= X3 * Y3
MACF32 R3H, R2H, R2H, ROH, RIH ; In parallel ROH = X4
|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
;s RH=E = X4 * Y4
MPYF32 R2H, ROH, R1H ; in parallel RBH= (A+B+ C + D
|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to conplete
ADDF32 R3H, R3H, R2H s BH=(A+B+C+ D +E
NOP ; Wait for ADDF32 to conplete
MOV32 @Result, R3H ; Store the result
See also . . Lren,
e ar, mem
mem +
MACF3Z R7H, R6H, RdH, ReH, RiH
106 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MPYF32 RdH, ReH, RfH
IMOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands
RdH floating-point destination register for the MPYF32 (ROH to R7H)
RdH cannot be the same register as RaH
ReH floating-point source register for the MPYF32 (ROH to R7H)
RfH floating-point source register for the MPYF32 (ROH to R7H)
RaH floating-point destination register for the MOV32 (ROH to R7H)
RaH cannot be the same register as RdH
mema32 pointer to a 32-bit memory location. This will be the source of the MOV32.
Opcode LSW 1110 0011 0000 fffe
MBW eedd daaa menB2
Description Multiply the contents of two floating-point registers and load another.
RdH = ReH * RfH
RaH = [men82]
Restrictions The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
N = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:
MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOvV32 RaH, nenB2 ; 1 cycle
; <-- MOV32 conpl etes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
<-- MPYF32 conpl etes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 107

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y1 are all on the
same data page.
MOVW DP, #ML ; Load the data page
MOV32 ROH, @ ; Load ROH with ML
MOV32 R1H, @1 ; Load RIH with X1
MPYF32 R1H, R1H, ROH i Ml tiply ML*X1
|| MOV32 ROH, @1 ; and in parallel load ROH with Bl
; <-- MOV32 conplete
NOP ; Wait 1 cycle for MPYF32 to conplete
; <-- MPYF32 conplete
ADDF32 R1H, R1H, ROH ; Add MX1 to Bl and store in R1H
NOP ; Wait 1 cycle for ADDF32 to conplete
; <-- ADDF32 conplete
MOV32 @1, R1H ; Store the result
Calculate Y = (A*B) * C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 Load RIH with B
MOVL XAR4, #C
MPYF32 R1H, R1H, ROH Cal culate RIH= A * B
|| MOV32 ROH, *XAR4 and in parallel load RRHwth C
<-- MOV32 conpl ete
MOVL XAR4, #Y
<-- MPYF32 conpl ete
MPYF32 R2H, R1H, ROH Cal culate Y = (A* B) * C
NOP Wait 1 cycle for MPYF32 to conplete
MPYF32 conpl ete
MOV32 *XAR4, R2H
See also e mem a
MACF32 R3H, RZH, RdH, ReH, RfH [T MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RTH [MOV32 RaH, memaZ
MACF32 R7H, R3H, mem32Z, +4
108 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

MPYF32 RdH, ReH, RfH
IMOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH floating-point destination register for the MPYF32 (ROH to R7H)

ReH floating-point source register for the MPYF32 (ROH to R7H)

RfH floating-point source register for the MPYF32 (ROH to R7H)

mema32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (ROH to R7H)

Opcode LSW 1110 0000 0000 fffe
MSW eedd daaa menB2

Description Multiply the contents of two floating-point registers and move from memory to register.

RdH = ReH * RfH,
[men82] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1 if MPYF32 generates an overflow condition.

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|l MOV32 men82, RaH ;1 cycle
; <-- MOV32 conpl etes, nenB2 updat ed
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 conpl etes, RdH updat ed
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example MOVL XAR1, #0xC003 ; XARL = 0xC003

MOVI ZF32 R3H, #2.0 ; RBH = 2.0 (0x40000000)

MPYF32 R3H, R3H, #5.0 ; R3H R3H * 5.0

MOVI ZF32 R1H, #5.0 ; RIH = 5.0 (0x40A00000)
; <-- MPYF32 conplete, R3H = 10.0 (0x41200000)

MPYF32 R3H, R1H R3H ; RBH = RIH * R3H

|| MOvV32 *XAR1, R3H ; and in parallel store previous R3 val ue

; MOV32 conpl ete, [0xC003] = 0x4120,
; [0xC002] = 0x0000

NOP ;1 cycle delay for MPYF32 to conplete
; <-- MPYF32 , R3H = 50.0 (0x42480000)

See also | e aH, mem
MACF32 R3H, R2H, RdH, ReH, RiH [MOV32 RaH, mem33
MACFE32 R7H, R3H, mem32, *XAR7+H

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 109
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, RcH
[SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Subtract

Operands

Opcode

Description

Restrictions

Flags

Pipeline

Example

See also

RaH floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH

RbH floating-point source register for MPYF32 (ROH to R7H)

RcH floating-point source register for MPYF32 (ROH to R7H)

RdH floating-point destination register for SUBF32 (ROH to R7H)
RdH cannot be the same register as RaH

ReH floating-point source register for SUBF32 (ROH to R7H)

RfH floating-point source register for SUBF32 (ROH to R7H)

LSW 1110 0111 0101 OOff
MSW feee dddc ccbb baaa

Multiply the contents of two floating-point registers with parallel subtraction of two

registers.
RaH = RbH * RcH,
RdH = ReH - RfH

The destination register for the MPYF32 and the SUBF32 must be unique. That is, RaH
cannot be the same register as RdH.

This instruction modifies the following flags in the STF register:.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1if MPYF32 or SUBF32 generates an underflow condition.
« LVF=1if MPYF32 or SUBF32 generates an overflow condition.

MPYF32 and SUBF32 both take 2 pipeline-cycles (2p). That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32, SUBF32 conplete. RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

MOVI ZF32 R4H, #5.0 ; R4H
MOVI ZF32 R5H, #3.0 ; RBH = 3.0 (0x40400000)
MPYF32 R6H, R4H, R5H ; R6H R4H * R5H
|| SUBF32 R7H, R4H, RSH ; R7H = R4H - R5H
NOP ; 1 cycle delay for MPYF32 || SUBF32 to conplete
; <-- MPYF32 || SUBF32 conpl ete,
; R6H = 15.0 (0x41700000), R7H = 2.0 (0x40000000)

5.0 (0x40A00000)

'. ' = »] - ?] »]
e TH [MOV32 RaH, mem3
, ReH, [mem32, Ra

110 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
NEGF32 RaH, RbH{, CNDF} Conditional Negation
Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
CNDF condition tested
Opcode LSW 1110 0110 1010 CNDF
MSW 0000 0000 O00bb baaa
Description if (CNDF == true) {RaH = - RbH}
el se {RaH = RbH }
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag None
modification
@ values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This
condition will allow the ZF, NF, ZI, and NI flags to be modified when
a conditional operation is executed. All other conditions will not
modify these flags.
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No
Pipeline This is a single-cycle instruction.
Example MOVI ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVI ZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOVI ZF32 R2H, #-1.5 ; RRH = -1.5 (0xBFC00000)
MPYF32 R4H, RIH, RRH; R4H = -6.0
MPYF32 R5H, ROH, R1H ; R5H = 20.0
; <-- R4H wvalid
CMPF32 R4H, #0.0 o NF =1
; <-- R5Hwvalid
NEGF32 R4H, R4H, LT ; if NF=1, RAH=6.0
CVWPF32 R5H, #0.0 i NF =0
NEGF32 R5H, R5H, GEQ; if NF =0, R4AH = -20.0
See also ABSF32 RaH, RbH

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

111

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

POP RB

Operands

Opcode

Description

Flags

Pipeline

Example

See also

Pop the RB Register from the Stack

RB repeat block register

LSW 1111 1111 1111 0001

Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

This instruction does not affect any flags floating-point Unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

This is a single-cycle instruction.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: 7 RAS = RA, RA=0

PUSH RB ; Save RB register only if a RPTB block is used in the
I SR
RPTB #Bl ockEnd, AL ; Execute the block AL+l tinmes

Bl ockEn;j” ; End of block to be repeated

P(]3 RB ; Restore RB register
| RET . RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a LowPriority Interrupt (Interruptible)
_Interrupt: i RAS = RA, RA=0

PUSH RB ; Always save RB register
CLRC I NTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB bl ock
SETC I NTM ; Disable interrupts before restoring RB
PCP RB ; Always restore RB register
| RET . RA = RAS, RAS = 0

PUSHREH

RPTB #RSTZE, RQ
RPTB #RSIZE, Ioc1g

112 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
PUSH RB Push the RB Register onto the Stack
Operands
RB repeat block register
Opcode LSW 1111 1111 1111 0000
Description Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.
Flags This instruction does not affect any flags floating-point Unit:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction for the first iteration, and zero cycles thereafter.
Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: 7 RAS = RA, RA=0
PUSH RB ; Save RB register only if a RPTB block is used in the
I SR
RPTB #Bl ockEnd, AL ; Execute the block AL+l tines
Bl ockEna” ; End of block to be repeated
P(]3 RB ; Restore RB register
| RET . RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a LowPriority Interrupt (Interruptible)
_Interrupt: 7 RAS = RA, RA=0
PUSH RB ; Always save RB register
CLRC I NTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB bl ock
SETC I NTM ; Disable interrupts before restoring RB
PCP RB ; Always restore RB register
| RET . RA = RAS, RAS = 0
See also POP RB
RPTB #RSIZE, RQ
RPTB #RSIZE, Toclq
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 113

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
RESTORE Restore the Floating-Point Registers
Operands
none This instruction does not have any operands
Opcode LSW 1110 0101 0110 0010
Description Restore the floating-point register set (ROH - R7H and STF) from their shadow registers.

Restrictions

Flags

Pipeline

The SAVE and RESTORE instructions should be used in high-priority interrupts. That is
interrupts that cannot themselves be interrupted. In low-priority interrupt routines the
floating-point registers should be pushed onto the stack.

The RESTORE instruction cannot be used in any delay slots for pipelined operations.
Doing so will yield invalid results. To avoid this, the proper number of NOPs or
non-pipelined instructions must be inserted before the RESTORE operation.

The following is | NVALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
RESTORE ; INVALI D, do not use RESTORE in a delay sl ot
The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
RESTORE ; VALID

Restoring the status register will overwrite all flags:

Flag TF ZIl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

This is a single-cycle instruction.

114 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

Example The following example shows a complete context save and restore for a high-priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC. If an interrupt is low priority (that is it can be
interrupted), then push the floating point registers onto the stack instead of using the

SAVE and RESTORE operations.

; Interrupt Save
_HighestPriorityl SR

ASP

PUSH RB

PUSH AR1H AROH

PUSH XAR2

PUSH XAR3

PUSH XAR4

PUSH XAR5

PUSH XAR6

PUSH XAR7

PUSH XT

SPM 0

nterrupt Restore

RESTORE

See also FAVE FLAG, VALUH

Uni nt errupt abl e
Align stack

Save RB register if used in the ISR

; Save other registers if used

Set default C28 nodes

Save all FPU registers
set default FPU nobdes

Restore all FPU registers
restore other registers

restore RB register
un-al i gn stack
return frominterrupt

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

115

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
RPTB label, loc16 Repeat A Block of Code
Operands
label This label is used by the assembler to determine the end of the repeat block and to
calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat
block.
loc16 16-bit location for the repeat count value.
Opcode LSW 1011 0101 Obbb bbbb
MSW 0000 0000 |l oc16
Description Initialize repeat block loop, repeat count from [loc16]

Restrictions

Flags

Pipeline

Example

» The maximum block size is <127 16-bit words.

* An even aligned block must be > 9 16-bit words.

* An odd aligned block must be > 8 16-bit words.

e Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

* Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

This instruction does not affect any flags in the floating-point unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-hit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

Repeat Bl ock of 8 Wirds (Interruptible)

; find the largest elenment and put its address in XAR6

.align 2

NOP

RPTB VECTOR_MAX_END, AR7 ; Execute the bl ock AR7+1 tinmes
MOVL ACC, XARO

MOV32 R1H, * XARO++ ;o mn size =8, 9 words

MAXF32 ROH, R1H ; max size = 127 words

MOVSTO NF, ZF
MOVL XARG, ACC, LT
VECTOR_MAX_END: ; label indicates the end
RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not

116 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
Interrupt: i RAS = RA, RA=0
PUSH RB ; Save RB register only if a RPTB block is used in the
I SR
RPTB #Bl ockEnd, AL ; Execute the block AL+l tirmes
Bl ockEn.d” ; End of block to be repeated
PO3 RB ; Restore RB register
| RET . RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a LowPriority Interrupt (Interruptible)
I nterrupt: 7 RAS = RA, RA=0
PUSH RB ; Always save RB register
OLRC I NTM ; Enable interrupts only after saving RB
I SR nay or nay not include a RPTB bl ock
SETC I NTM ; Disable interrupts before restoring RB
P(P RB ; Always restore RB register
| RET . RA = RAS, RAS = 0
See also POP RB

SPRUEO2A-June 2007 —-Revised August 2008

Bubmit Documentafion FeedbacK

Instruction Set

117

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
RPTB label, #RC Repeat a Block of Code
Operands
label This label is used by the assembler to determine the end of the repeat block and to
calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat
block.
#RC 16-bit immediate value for the repeat count.
Opcode LSW 1011 0101 1bbb bbbb
MSW cccc cccc ccce ccce
Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
» The maximum block size is <127 16-bit words.
* An even aligned block must be > 9 16-bit words.
* An odd aligned block must be > 8 16-bit words.
e Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

* Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

Flags This instruction does not affect any flags int the floating-point unit:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No

special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-hit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

Repeat Bl ock (Interruptible)

; find the largest elenment and put its address in XAR6

.align 2

NOP

RPTB VECTOR_MAX_END, #(4-1) ; Execute the block 4 tinmes

MOVL ACC, XARO

MOV32 R1H, * XARO++ ; 8 or 9 words < block size < 127 words

MAXF32 ROH, R1H
MOVSTO NF, ZF
MOVL XARG, ACC, LT
VECTOR_MAX_END: ; RE indicates the end address
RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not

118 Instruction Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
Interrupt: i RAS = RA, RA=0
PUSH RB ; Save RB register only if a RPTB block is used in the
I SR
RPTB #Bl ockEnd, #5 ; Execute the block 5+1 tines
Bl ockEn.d” ; End of block to be repeated
PO3 RB ; Restore RB register
| RET . RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a LowPriority Interrupt (Interruptible)
I nterrupt: 7 RAS = RA, RA=0
PUSH RB ; Always save RB register
OLRC I NTM ; Enable interrupts only after saving RB
I SR nay or nay not include a RPTB bl ock
SETC I NTM ; Disable interrupts before restoring RB
P(P RB ; Always restore RB register
| RET . RA = RAS, RAS = 0
See also POP RB

oc

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

119

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

Operands

Opcode

Description

Restrictions

Flags

Pipeline

Example

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; O or 1.

LSW 1110 0110 O1FF FFFF
MBW FFFF FVW WW WwW

This operation copies the current working floating-point register set (ROH to R7H and
STF) to the shadow register set and combines the SETFLG FLAG, VALUE operation in
a single cycle. The status register is copied to the shadow register before the flag values
are changed. The STF[SHDWM] flag is set to 1 when the SAVE command has been
executed. The SAVE and RESTORE instructions should be used in high-priority
interrupts. That is interrupts that cannot themselves be interrupted. In low-priority
interrupt routines the floating-point registers should be pushed onto the stack.

Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so can
yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SAVE operation.

The following is | NVALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SAVE RNDF32=1 ; INVALI D, do not use SAVE in a delay slot

The following is VALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SAVE RNDF32=1 ; VALID

This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Any flag can be modified by this instruction.
This is a single-cycle instruction.

To make it easier and more legible, the assembler will accept a FLAG=VALUE syntax for
the STFLG operation as shown below:
SAVE RNDF32=0, TF=1, ZF=0 ; FLAG = 01001000100, VALUE = XOXXOXXX1XX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; Note: X neans this flag will not be nodified.
The assenbler will set these X values to O.

The following example shows a complete context save and restore for a high priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC.

120 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

_HighestPriorityl SR

ASP

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
SPM

See also RESTORH

Al'i gn stack
Save RB register if used in the ISR
; Save other registers if used

Set default C28 nodes

Save all FPU registers
set default FPU nodes

Restore all FPU registers
restore other registers

restore RB register
un-al i gn stack
return frominterrupt

SPRUEO2A-June 2007 —-Revised August 2008

Bubmit Documentafion FeedbacK

Instruction Set

121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS

Instructions www.ti.com

SETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands
FLAG 11 bit mask indicating which floating-point status flags to change.

VALUE 11 bit mask indicating the flag value; O or 1.

Opcode LSW 1110 0110 OOFF FFFF
MBW FFFF FVW WW WW

Description The SETFLG instruction is used to set or clear selected floating-point status flags in the
STF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

10 9 8 7 6 5 4 3 2 1 0
reserved | RNDF32 ‘ reserved ‘ reserved ‘ TF ‘ Zl | NI | ZF ‘ NF ‘ LUF | LVF |
The VALUE field indicates the value the flag should be set to; O or 1.

Restrictions Do not use the SETFLG instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SETFLG operation.

; The following is I NVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SETFLG RNDF32=1 ; INVALI D, do not use SETFLG in a delay sl ot
; The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SETFLG RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF zZl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler will accept a FLAG=VALUE syntax for the
STFLG operation as shown below:

SETFLG RNDF32=0, TF=1, ZF=0 ; FLAG = 01001001000, VALUE = XOXX1XXOXXX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; X means this flag is not nodified.
The assenbler will set X values to O
See also BAVE FTAG, VALUH
122 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS

www.ti.com

Instructions

SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point destination register (ROH to R1)
RbH floating-point source register (ROH to R1)
RcH floating-point source register (ROH to R1)

LSW 1110 0111 0010 0000
MSW 0000 000c ccbb baaa

Subtract the contents of two floating-point registers
RaH = RbH - RcH

This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF

Modified No No No No No Yes Yes

The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, RbH, RcH 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
<-- SUBF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Calculate Y -A+ B -C:

MOVL XAR4, #A
MOV32 ROH, *XAR4
MOVL XAR4, #B
MOV32 R1H, *XAR4
MOVL XAR4, #C
ADDF32 ROH, RIH,ROH ; Add A + B and in parallel
|] MOV32 R2H, * XAR4 ; Load RRHwith C
; <-- MOV32 conplete

Load ROH with A

Load RIHwith B

MOVL XARY4, #_ xt

; <-- ADDF32 conplete
SUBF32 ROH, ROH, R2H ; Subtract C from (A + B)
NOP
; <-- SUBF32 conpl etes

MOV32 * XAR4, ROH Store the result

EUBF3Z RaH, #I6FHL, RbH

BUBF32 RdH, ReH, RTH [MOV3Z RaH, mem32
BUBF32 RdH, ReH, RTH [M mem32, Ra
an, , RC ReH,

Oy

SPRUEO2A-June 2007 —-Revised August 2008

Instruction Set

Bubmit Documentafion FeedbacK

123

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point destination register (ROH to R1)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

RbH floating-point source register (ROH to R1)

LSW 1110 1000 1111 1111
MSW 1111l 111l [Ilbb baaa

Subtract RbH from the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = #16FHi : 0 - RbH
This instruction modifies the following flags in the STF register:

Flag TF ZIl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1 if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
<-- SUBF32 conpl etes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Calculate Y =2.0 - (A + B):

MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load RIH with B
ADDF32 ROH, R1IH,ROH ; Add A + B and in parallel
NOP

; <-- ADDF32 conplete
SUBF32 ROH, #2.0, R2H ; Subtract (A + B) from2.0
NOP

; <-- SUBF32 conpl etes
MOV32 * XAR4, ROH ; Store the result

EUBF32 RaH, RbH, RcH
suwma ReH, RTH [MOV3Z RaH, mem37

124 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

SUBF32 RdH, ReH, RfH
IMOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH floating-point destination register (ROH to R7H) for the SUBF32 operation
RdH cannot be the same register as RaH

ReH floating-point source register (ROH to R7H) for the SUBF32 operation
RfH floating-point source register (ROH to R7H) for the SUBF32 operation

RaH floating-point destination register (ROH to R7H) for the MOV32 operation
RaH cannot be the same register as RdH

mema32 pointer to 32-bit source memory location for the MOV32 operation

Opcode LSW 1110 0011 0010 fffe
MSW eedd daaa menB2

Description Subtract the contents of two floating-point registers and move from memory to a
floating-point register.

RdH = ReH - RiH,
RaH = [menB2]

Restrictions The destination register for the SUBF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZIl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
* LUF =1 if SUBF32 generates an underflow condition.
* LVF =1 if SUBF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);

ZF ;
if(RaH(30:23) ==0) { ZF =1, NF=0; }
NI = RaH(31);

ZI = 0;

if(RaH(31:0) == 0) ZI = 1;

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfFH ; 2 pipeline cycles (2p)
|| MOvV32 RaH, nenB2 ; 1 cycle
; <-- MOV32 conpl etes, RaH updated
NOP ;1 cycle delay or non-conflicting instruction
; <-- SUBF32 conpl etes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 125
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
Example MOVL XAR1, #0xC000 ; XARl1 = 0xC000
SUBF32 ROH, RIH, RRH ; (A) ROH = R1H - R2H
|| MOvV32 R3H, *XAR1l ;
; <-- RBH valid
MOV32 R4H, *+XAR1[2] ;
; <-- (A) conpletes, ROH valid, R4H valid
ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H
|| Mov32 *+XAR1[4], ROH ;
; <-- ROH stored
MOVL XAR2, #OxEO000 ;
; <-- (B) conpletes, R5H valid
MOV32 *XAR2, R5H ;
; <-- R5H stored
See also aH, , RC
SUBF32 RaH, #16FHi, RbH
aHd, , RC , ReH,
126 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

SUBF32 RdH, ReH, RfH
IMOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

Operands
RdH floating-point destination register (ROH to R7H) for the SUBF32 operation
ReH floating-point source register (ROH to R7H) for the SUBF32 operation
RfH floating-point source register (ROH to R7H) for the SUBF32 operation
mema32 pointer to 32-bit destination memory location for the MOV32 operation
RaH floating-point source register (ROH to R7H) for the MOV32 operation
Opcode LSW 1110 0000 0010 fffe
MSW eedd daaa nens82
Description Subtract the contents of two floating-point registers and move from a floating-point
register to memory.
RdH = ReH - RfH,
[menB82] = RaH
Flags This instruction modifies the following flags in the STF register:;SUBF32 RdH, ReH, RTH
[[MOV32 RaH, mem37
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if SUBF32 generates an underflow condition.
 LVF =1 if SUBF32 generates an overflow condition.
Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 menB82, RaH ;1 cycle
; <-- MOV32 conpl etes, menB2 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 conpl etes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
Example ADDF32 R3H, R6H, R4H ; (A) RBH = R6H + R4H and R7H = 13
[| MOV32 R7H, *-SP[2] :
; <-- R7H valid
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) conpletes, R3H valid
SUBF32 R3H, R1H, R7H : (O R3H = RIH - R7H and store R3H (A)
|| MoV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) conpletes, R6H valid
; <-- MOV32 conpletes, (A) stored
ADDF32 R4H, R7H, R1H ; RAH = D = R7H + R1H and store R6H (B)
|| MoV32 *+XAR5[6], R6H ;
; <-- SUBF32 (C) conpletes, R3H valid
; <-- MOV32 conpletes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (O
; <-- MOV32 conpletes, (C stored
; <-- ADDF32 (D) conpletes, R4H valid
MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 conpletes, (D) stored
See also aH, . RC
B B DDAl 6 []
bUBF32 RdH, ReH, RTH [| MOV32 RaH, mem32
an, , _C , ReH,
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 127

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

SWAPF RaH, RbH{, CNDF} Conditional Swap

Operands
RaH floating-point register (ROH to R7H)
RbH floating-point register (ROH to R7H)
CNDF condition tested
Opcode LSW 1110 0110 1110 CNDF
MSW 0000 0000 0O0bb baaa
Description Conditional swap of RaH and RbH.
if (CNDF == true) swap RaH and RbH
CNDF is one of the following conditions:
Encode ® CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag None
modification
(@) values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This
condition will allow the ZF, NF, ZI, and NI flags to be modified when
a conditional operation is executed. All other conditions will not
modify these flags.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected
Pipeline This is a single-cycle instruction.
Example ;find the largest element and put it in R1H
MOVL XAR1, #0xB000 ;
MOV32 R1H, *XARLl Initialize RIH
.align 2
NOP
RPTB LOOP_END, #(10-1); Execute the block 10 times
MOV32 R2H, *XARl++ ; Update R2H with next el enent
CMPF32 R2H, R1H ; Conmpare R2H with R1H
SWAPF R1H, R2H, GT ; Swap RIH and RRH if R2 > R1
NOP ; For minimmrepeat block size
NOP ; For mini numrepeat block size
LOOP_END:
See also
128 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com Instructions

TESTTF CNDF Test STF Register Flag Condition

Operands
CNDF condition to test
Opcode LSW 1110 0101 1000 CNDF
Description Test the floating-point condition and if true, set the TF flag. If the condition is false, clear
the TF flag. This is useful for temporarily storing a condition for later use.
if (CNDF == true) TF = 1; else TF = O;
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF==0
0001 EQ Equal to zero ZF==1
0010 GT Greater than zero ZF == 0AND NF ==0
0011 GEQ Greater than or equal to zero NF ==0
0100 LT Less than zero NF==1
0101 LEQ Less than or equal to zero ZF==1ANDNF==1
1010 TF Test flag set TF==1
1011 NTF Test flag not set TF==0
1100 LU Latched underflow LUF==1
1101 LV Latched overflow LVF==1
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag None
modification
@) values not shown are reserved.
@) This is the default operation if no CNDF field is specified. This
condition will allow the ZF, NF, ZI, and NI flags to be modified when
a conditional operation is executed. All other conditions will not
modify these flags.
Flags This instruction modifies the following flags in the STF register:
Flag TF zl ZF NF LUF LVF
Modified Yes No No No No No
TF=0; if (CNDF==true) TF=1,
Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.
Pipeline This is a single-cycle instruction.
Example CVPF32 ROH, #0.0 Conpare ROH agai nst 0
TESTTF LT Set TF if ROH less than 0 (NF == 0)
ABS ROH, ROH CGet the absolute val ue of ROH
; Performcal cul ati ons based on ABS ROH
MOVSTO TF Copy TF to TC in STO
SBF End, NTC Branch to end if TF was not set
NEGF32 ROH, ROH
End
See also

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentafion FeedbacH

Instruction Set

129

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

Opcode

Description

Flags

Pipeline

Example

See also

RaH floating-point destination register (ROH to R7H)
mem16 pointer to 16-bit source memory location

LSW 1110 0010 1100 0100
MSW 0000 Oaaa meni6

When converting F32 to 116/U116 data format, the F32TOI16/UI16 operation truncates to
zero while the F32TOI16R/UI16R operation will round to nearest (even) value.

RaH = Ul 16ToF32[nent6]
This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

This is a 2 pipeline cycle (2p) instruction. That is:
U 16TOF32 RaH, nenil6 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- U 16TOF32 conpl etes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

; float32 y, mb;
AdcRegs. RESULTO i s an unsigned int
; Calculate: y = (float)AdcRegs. ADCRESULTO * m + b;

MOVW DP @x01C4
U 16TOF32 ROH, @ ; ROH = (fl oat) AdcRegs. RESULTO
MOV32 R1H, *-SP[6] ; RIH=M
; <-- Conversion conplete, ROH valid
MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 R1H, *-SP[8] ; RIH=B
; <-- MPYF32 conplete, ROH valid
ADDF32 ROH, ROH, R1H i ROH=Y = (float)X * M+ B
NOP
; <-- ADDF32 conplete, ROH valid
MOV32 *-[SP], ROH ; Store Y
[IT6TOF32 RaH, RbH
[I6TOF32 RaH, mem1§
JIT6TOF32 RaH, RbH

130 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS
INSTRUMENTS

www.ti.com

Instructions

UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1111
MBW 0000 0000 0Obb baaa
Description When converting F32 to 116/U116 data format, the F32TOI16/UI16 operation truncates to
zero while the F32TOI16R/UI16R operation will round to nearest (even) value.
RaH = Ul 16ToF32[RoH]
Flags This instruction does not affect any flags:
Flag TF bd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
U 16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- U 16TOF32 conpl etes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MOVXI R5H, #0x800F ; R5H[15:0] = 32783 (0x800F)
U 16TOF32 R6H, R5H ; R6H = Ul 16TOF32 (RSH 15:0])
NOP ;1 cycle delay for U 16TOF32 to conplete
; R6H = 32783.0 (0x47000F00)
See also E32TOM16 RaH, RbH
F32TOIT6R RaH, RbH
OTI6TOF32 RaH, mem1q
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 131

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value
Operands
RaH floating-point destination register (ROH to R7H)
mema32 pointer to 32-bit source memory location
Opcode LSW 1110 0010 1000 0100
MBW 0000 Oaaa menB82
Description RaH = Ul 32ToF32[nenB2]
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
U 32TOF32 RaH, nenB2 2 pipeline cycles (2p)
NOP ; 1 cycle delay non-conflicting instruction
; <-- Ul 32TOF32 conpl etes, RaH updat ed
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example unsi gned | ong X
; float Y, M B
Céiculate Y = (float) X * M+ B
" UI32TOF32 ROH, *-SP[2] . ROH = (float)X
MOV32 R1H, *-SP[6] i RIH= M
; <-- Conversion conplete, ROH valid
MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 RLH, *-SP[8] : RIH=B
; <-- MPYF32 conplete, ROH valid
ADDF32 ROH, ROH, R1H ; ROH=Y = (float)X * M+ B
NOP
; <-- ADDF32 conplete, ROH valid
MOV32 *-[SP], ROH : Store Y
See also O RaH, RbH
. ' - - » . -
|32|UF32 RaFI, mem32
[32TOF32 RaH, RbH
J132TOF32 RaH, RbH

132 Instruction Set

SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value
Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW 1110 0110 1000 1011
MSW 0000 0000 O0O0Obb baaa
Description RaH = Ul 32ToF32 RbH
Flags This instruction does not affect any flags:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
U 32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- Ul 32TOF32 conpl etes, RaH updat ed
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MoVl Z R3H, #0x8000 ; R3H 31:16] = 0x8000
MOVXI R3H, #0x1111 ; R3H 15:0] = Ox1111
; RBH = 2147488017
U 32TOF32 R4H, R3H ; R4H = Ul 32TOF32 (R3H)
NOP ;1 cycle delay for U 32TOF32 to conplete
; R4H = 2147488017.0 (0x4F000011)
See also
D|32 TOF32 RaFI, mem32
SPRUEO2A-June 2007 —-Revised August 2008 Instruction Set 133

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Instructions www.ti.com
ZERO RaH Zero the Floating-Point Register RaH
Operands
RaH floating-point register (ROH to R7H)
Opcode
LSW 1110 0101 1001 Oaaa
Description Zero the indicated floating-point register:
RaH = 0
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example sfor(i = 0; i < n; i++4)
o
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
)
; Assume AR7 = n-1
ZERO R4H ; RAH =real =0
ZERO R5H ; RBH=img = 0
LooP
MOV AL, ARY
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MOV32 RLH, *+XAR5[ARO] ; RIH = y[2*i]
ADD ARO, #2
MPYF32 R6H, ROH, Ri1H, ; RBH = x[2*i] * y[2*i]
|| MOv32 R2H, *+XAR4[ARO] ;o RRH = x[2*i +1]
MPYF32 RLH, R1H, R2H ; RIH = y[2*i] * x[2*i+2]
|| MOV32 R3H, *+XAR5[ARQ] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H i RRH = x[2*i+1] * y[2*i+1]
|| ADDF32 R4H, R4H, R6H i RAH += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|| ADDF32 R5H, R5H, RILH ; RBH += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; RAH -= x[2*i +1] * y[2*i +1]
ADDF32 R5H, R5H, ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also EEROA
134 Instruction Set SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
www.ti.com Instructions
ZEROA Zero All Floating-Point Registers
Operands
none
Opcode LSW 1110 0101 0110 0011
Description Zero all floating-point registers:
ROH = 0
RIH =0
RH =0
R3H = 0
R4H = 0
R5H = 0
R6H = 0
RTH=0
Flags This instruction modifies the following flags in the STF register:
Flag TF zl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example sfor(i = 0; i < n; i++4)
real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
;ooimag 4= (x[2%i] * oy[2%i+1]) + (x[2%i+1] * y[2*i]);
it
; Assume AR7 = n-1
ZEROA ; Clear all RaH registers
LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MV32 RIH, *+XAR5[ARQ] ; RIH = y[2*i]
ADD ARO, #2
MPYF32 R6H, ROH, RILH; ; RBH = x[2*i] * y[2*i]
|| MV32 R2H, *+XAR4[ARO] ; RH = x[2*i+1]
MPYF32 R1H, R1H, R2H ; RIH = y[2*i] * x[2*i+2]
|| MWV32 R3H, *+XAR5[ARO] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H i RH = x[2*i+1] * y[2*i+1]
|| ADDF32 R4H, R4H, R6H i R4H += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|| ADDF32 R5H, R5H, R1H ; RBH += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; RAH -= x[2*i +1] * y[2*i +1]
ADDF32 R5H, R5H, ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also

SPRUEO2A-June 2007 —-Revised August 2008

Instruction Set

Bubmit Documentafion FeedbacK

135

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

136 Instruction Set SPRUEO2A-June 2007 -Revised August 2008
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

I3 TEXAS
INSTRUMENTS

A.1 Changes

Appendix A

SPRUEO2A-June 2007—-Revised August 2008

Revision History

This revision history lists the technical changes made in the most recent revision.

Table A-1. Technical Changes Made in This Revision

Location Additions, Deletions, Maodifications
Modified the functional block diagram
Added this section.
Deleted part of the last bullet in Emulation Logic section
Modified bullets in Address and Data Buses section
Modified code in The Repeat Block Instruction example
D 3 Modified text following Destination Register Conflict Resolved example
EDDF3Z RaH, #16FHT, RbH Modified operand for instruction ADDF32 RaH, #16FHi, RbH. Updated the description.
BDDFE32 RaH, RbH, #I6FH]
EDDF32 RdH, ReH, RIH [MOV32 RaH] | Modified the instruction ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
CEMPE3Z RaH, #I6FH Modified the CMPF32 RaH, #16FHi instruction

CMPF32 RaH, #0.0

Modified the CMPF32 RaH, #0.0 instruction

F32TOI32 RaH, RbH

Modified the F32TO132 RaH, RbH instruction

E32TOUI37 RaH. RbH Modified the F32TOUI32 RaH, RbH instruction
[I6TOF32 RaH, RbH Modified the IL6TOF32 RaH, RbH instruction
MACF32 R3H, R2H, RdH, ReH Modified the MACF32 R3H, R2H, RdH, ReH, RfH instruction
MAXF3Z RaH, #I6FH] Modifed the syntax of the immediate operand. Modified the desciption.
MINF3Z RaH, #I6FH] Modified the syntax of the immediate operand. Modified the description.
VTN RaH, RbH Modified the MINF32 RaH, RbH instruction

MOV16 mem16, RaH

Modified the MOV16 mem16, RaH instruction

MOQOV32 loc32, *(0:16bitAddr)

Modified the MOV32 loc32, #(0:16bitAddr) instruction

memogZz, Ral

Modified the MOV32 mem32, RaH instruction

mem

Modified the MOV32 mem32, STF instruction

Modified the MOV32 RaH, XT instruction

MOVF3Z RaH. #32H Added the MOV32 RaH, #32 instruction
MOVISZ RaH, #372FHex Added the MOVI32 RaH, #32FHex instruction
a IHe Modified the syntax for the immediate operand. Modified the description. Modified the
example.
MOVIZF32 RaH, #16FH] Modified the syntax for the immediate operand. Modified the description.

MOVXI RaH, #16FLo

Modified the MOVXI RaH, #16FLo instruction. Modified the syntax of the immediate
operand. Modified the description.

MPYF32 RaH, #I6FHI, RbH Modified the syntax of the immediate operand. Modified the instruction description.
MPYF32 RaH, RbH, #16FH]
MPYF32 RdH, ReH, RfH Modified the MPYF32 RdH, ReH, RfH [[MOV32 RaH, mem32 instruction
EAVE FLAG, VALUH Modified the SAVE FLAG, VALUE instruction
EUBFE32 RaH, #16FHi, RbH Modified the syntax for the immediate operand. Modified the description.

SPRUEO2A-June 2007 —-Revised August 2008
Eubmit Documentation Feedbacl

Revision History 137

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

13 TEXAS

INSTRUMENTS
Changes www.ti.com
Table A-1. Technical Changes Made in This Revision (continued)
Location Additions, Deletions, Modifications
Modified the SUBF32, RdH, ReH, RfH ||[MOV32 mem32, RaH instruction
Modified the UI16TOF32 RaH, RbH instruction
Modified the UI32TOF32 RaH, RbH instruction
Globally The syntax sections of the #16F, #161 and #immF32 immediate addressing modes
modes were changed to #16FHi, #16FHiHex, and #16FLoHex to be more descriptive
and consistent. The descriptions for instructions using these modes were updated for
clarity.
Changed first instruction in example
Updated the operand nomenclature table
Modified the register figure introduction and register figure
Modified the example
Modified the example
Added instructions to the See Also area of various instructions
138 Revision History SPRUEO2A-June 2007 -Revised August 2008

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEO2A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers Emplifier-i.com Audio [pww Ti.com/audid

Data Converters Fataconverterir.com Automotive [vww Tr.com/automofiv

DSP Esp-ii.con Broadband [pww i.com/broadband

Clocks and Timers [www i-com/clocky Digital Control [pww ir-com/digitalcontrol

Interface [nierface-fi.com Medical [pww Ti.com/medical

Logic [ogicircon Military [vww i-com/militany

Power Mgmt power-i.com Optical Networking [xww Ti.com/opficalnetwor

Microcontrollers [nicrocontroller-t.com Security [nww r-com/secur

RFID ‘ i .CO Telephony lvww.tr.com/telephony

RF/IF and ZigBee® Solutions [WWw.ir.com/Ipr Video & Imaging vww Tr.com/vided
Wireless [vww T.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction
	1.1 Introduction to the Central Processing Unit (CPU)
	1.2 Compatibility with the C28x Fixed-Point CPU
	1.2.1 Floating-Point Code Development

	1.3 Components of the C28x plus Floating-Point CPU
	1.3.1 Emulation Logic
	1.3.2 Memory Map
	1.3.3 On-Chip Program and Data
	1.3.4 CPU Interrupt Vectors

	1.4 Memory Interface
	1.4.1 Address and Data Buses
	1.4.2 Alignment of 32-Bit Accesses to Even Addresses

	2 CPU Register Set
	2.1 CPU Registers
	2.1.1 Floating-Point Status Register (STF)
	2.1.2 Repeat Block Register (RB)

	3 Pipeline
	3.1 Pipeline Overview
	3.2 General Guidelines for Floating-Point Pipeline Alignment
	3.3 Moves from FPU Registers to C28x Registers
	3.4 Moves from C28x Registers to FPU Registers
	3.5 Parallel Instructions
	3.6 Invalid Delay Instructions
	3.7 Optimizing the Pipeline

	4 Instruction Set
	4.1 Instruction Descriptions
	4.2 Instructions

	A Revision History
	A.1 Changes

