F2806x USB Library

USER’S GUIDE

I3 TEXAS

INSTRUMENTS

F2806x-USBL-UG-V136 Copyright © 2013 Texas Instruments Incorporated.

Copyright

Copyright © 2013 Texas Instruments Incorporated. All rights reserved. ControlSUITE is a registered trademark of Texas Instruments. Other names and
brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

12203 Southwest Freeway
Houston, TX 77477 INSTRUMENTS

http://www.ti.com/c2000

Revision Information

This is version V136 of this document, last updated on April 8, 2013.

2 April 8, 2013

Table of Contents

Table of Contents

CopyHght . . . e e e e e e e e e e e e e e e e e 2
Revision Information L L e e e e e e e e e e e e e e e e 2
1 Introduction e 5
2 General Purpose Functions i i e e e 7
2.1 Introduction L e e 7
2.2 Porting Summary e e 8
2.3 02000 Specific Software e e 9
2.4 Function Definitions e e 16
2.5 USB Chapter 9 Definitions e 30
2.6 USBBufferand Ring Buffer APIs 38
3 Device FUNCHIONS o it it et e 57
3.1 IntroducCtion L e e e e e e 57
3.2 APlchoicesforUSBdevices e 58
3.3 Bulk Device Class Driver e e e 61
3.4 Bulk Device Class Driver Definitions e 74
3.5 CDC Device Class Driver e 81
3.6 CDC Device Class Driver Definitions e 91
3.7 Composite Device Class Driver e 101
3.8 Composite Device Class Driver Definitions 108
3.9 HID Device Class Driver e e 111
3.10 HID Device Class Driver Definitions e 123
3.11 HID Mouse Device Class APl e 146
3.12 HID Mouse Device Class API Definitions e 149
3.13 HID Keyboard Device Class APl 156
3.14 HID Keyboard Device Class API Definitions 158
3.15 Using the USB Device APl 166
3.16 USB Device API Definitions e 177
4 HosSt FUNCHIONS o i s e e e e e e e e e e e e e e e e e 189
4.1 IntroduCtion e e e e e 189
4.2 Host Controller Driver e e e e e 191
4.3 Host Controller Driver Definitions e 193
4.4 HostClass Driver e e 207
4.5 Host Class Driver Definitions e 211
4.6 HostDevice Interface L e 225
4.7 Host Device Interface Definitions 227
4.8 Host Programming Examples e 232
IMPORTANT NOTICE i i e e et e e e e e e e e s e e e e et e e e e 242

April 8, 2013 3

Table of Contents

4 April 8, 2013

Introduction

1 Introduction

The Texas Instruments® C2000® USB Library is a set of data types and functions for creating
USB device or host applications on C2000 microcontroller-based boards. The contents of the USB
library and its associated header files fall into four main groups:

m General purpose functions used by both device and host applications. These include functions
to parse USB descriptors and set the operating mode of the application.

m Device specific functions providing the class-independent features required by all USB de-
vice applications such as host connection signaling and responding to standard descriptor
requests.

m Host specific functions providing class-independent features required by all USB host applica-
tion such as device detection and enumeration, and endpoint management.

m Class specific functions and data types to aid development of applications conforming to sev-
eral commonly-used USB classes.

The capabilities and organization of the USB library functions are governed by the following design
goals:

m They are written entirely in C.

m They are easy to understand.

m They are reasonably efficient in terms of memory and processor usage.
m They are as self-contained as possible.

m Where possible, computations that can be performed at compile time are done there instead
of at run time.

Some consequences of these design goals are:

m To ensure ease of use and understandability, the USB functions are not necessarily as efficient
as they could be (from a code size and/or execution speed point of view).

m The APIs have a means of removing all error checking code. Since the error checking is
usually only useful during initial program development, it can be removed to improve code size
and speed.

Directory Structure Overview

The following is an overview of the organization of the USB library source code, along with refer-
ences to where each portion is described in detail.

usblib The main directory under DriverLib contains source files and headers for
functions and data types which are of general use to device and host appli-
cations. The contents of this directory are described in chapter 2.

usblib/device/ This directory contains source code and header files relating to operation
as a USB device. The contents of this directory are described in chapter 3.

usblib/host/ This directory contains source code and header files relating to operation
as a USB host. The contents of this directory are described in chapter 4.

April 8, 2013 5

Introduction

6 April 8, 2013

General Purpose Functions

2.1

General Purpose Functions

It OAUCH ON . e e aa e 7
POtING SUMIMIAIY . .ot e e et e e e e e 8
C2000 SPECITIC SOMWAIEottt e e et e e e e e e 9
FUNCHON DefiNitioNS e 16
USB Chapter 9 Definitions e e e 30
USB Buffer and Ring Buffer AP IS e s 38
Introduction

This chapter describes the set of USB library data types and functions which are of general use
in the development of USB applications running on C2000 microcontroller-based boards. These
elements are not specific to USB host or device.

The functions and types described here fall into three main categories:

m Definitions of USB standard types (as found in Chapter 9 of the USB 2.0 specification) and
functions to parse them.

m Functions relating to host/device mode switching for dual mode applications.
m USB device class header files.

Source Code Overview

Source code and headers for the general-purpose USB functions can be found in the top level
directory of the USB library tree, typically DriverLib/usblib.

usblib.h The main header file for the USB library containing all data types
and definitions which are common across the library as a whole.
Prototypes for general-purpose API functions are also included. All
clients of the USB Library should include this header.
Special type definitions were added to this file in the effort to port
the Stellarisware USB stack to the C2000 platform. Special attention
should be paid to the types tShort and tLong and their respective
accesses.

£2806x_usbWrapper.h The header file containing definitions related to the interrupt service
routines belonging to the USB stack. Also contains externs for vari-
ous USB support functions specific to the f2806x series of devices.

usb-ids.h The header file containing labels defining the Texas Instruments USB
vendor ID (VID) and product IDs (PIDs) for each of the example de-
vices provided in USB-capable evaluation kits.

usbmsc.h The header file containing definitions specific to the USB Mass Stor-
age Class.

April 8, 2013

General Purpose Functions

2.2

usbcde.h The header file containing definitions specific to the USB Communi-
cation Device Class.

usbhid.h The header file containing definitions specific to the USB Human
Interface Device Class.

£2806x_usbWrapper.c The source code for f2806x specific interrupt wrappers, and support
functions related to: VBus Detection, ID Detection, External Power
Control, and External Power Fault Detection.

usbdesc.c The source code for a set of functions allowing parsing of USB de-
scriptors.
usbbuffer.c The source code for a set of functions use to support buffering of

USB endpoint data streams in some applications.

usbringbuf.c The source code for a set of functions implementing simple ring
buffers.
usbmode. ¢ The source code for a set of functions related to switching between

host and device modes of operation.

usbtick.c The source code for internal USB library tick handler functions. This
file does not include any functions accessible by applications.

usblibpriv.h The private header file used to share variables and definitions be-
tween the various components of the USB Library. Client applica-
tions must not include this header.

Porting Summary

The porting strategy focused on three main differences between the Stellaris and C2000 devices.

m Memory Widths
m |nterrupt Controllers
m Support Function Pins

The stack underwent much change because of the different memory widths of the Stellaris and
C2000 devices. On a Stellaris device the smallest addressable location is 8 bits, while on a C2000
device the smallest addressable location is 16 bits. In software this means that a char on C2000 is
16 bits while on most other devices a char is 8 bits. Because of this and the way the USB descriptors
are passed up and down the stack, all data read from and written to the USB controller is done a
byte (8 bits) at a time and is stored in memory a byte (8 bits) per address. This is inefficient because
data may be read from the USB FIFOs 32 bits at a time and half of the buffer memory is wasted.

Minor changes were made to the stack such that it would function with the C28x style PIE interrupt
controller. Most changes are invisible to the user as much of the functionality of the interrupt
controller driver from driverlib was ported to work with the C28x PIE. The one change you might
see are the interrupt service routine wrappers in usblib/£2806x_usbWrapper.c.

April 8, 2013

General Purpose Functions

Because of design constraints, extra pins were not alotted on this device for function such as VBus
detection, ID detection, extenal power enable, and power fault detection. All of these functions can
easily be implemented in software using GPIOs. As development kits are released for USB, look
for software that implements these functions in usb1lib/f2806x_usbWrapper.c.

2.3 C2000 Specific Software

Data Structures

m tLong
m tShort

Defines

m readlLong(ptr)
m readShort(ptr)
m writeLong(ptr, value)
m writeShort(ptr, value)

Functions

void f2806x_ExtPowerlnit (tUSBCallback *Callback)

void f2806x_IDInit (void)

__interrupt void f2806x_USBO0DevicelntHandler (void)
__interrupt void f2806x_USBO0DualModelntHandler (void)
__interrupt void f2806x_USBOHostIntHandler (void)
__interrupt void f2806x_USBIDIntHandler (void)
__interrupt void f2806x_USBPFLTIntHandler (void)

void f2806x_USBSupportMain (void)

__interrupt void f2806x_USBVBuslIntHandler (void)

void f2806x_VBuslntlInit (tDevicelnfo xpsDevice)

void USBHostPwrConfig (unsigned long ulBase, unsigned long ulFlags)
void USBHostPwrDisable (unsigned long ulBase)

void USBHostPwrEnable (unsigned long ulBase)

void USBHostPwrFaultDisable (unsigned long ulBase)
void USBHostPwrFaultEnable (unsigned long ulBase)

2.3.1 Detailed Description

This software was added to the Stellarisware USB protocol stack to add compatability with C2000
devices.

April 8, 2013 9

General Purpose Functions

2.3.2

2.3.2.1

23.2.2

2.3.3

2.3.3.1

2.3.3.2

Data Structure Documentation

tLong

Definition:
typedef struct
{
tShort LSW;
tShort MSW;

}
tLong

Members:
LSW

Msw

Description:
This struct is used to ensure that data passed up from the driver layer is interpretted correctly
by the protocol stack. This is a workaround specifically for C2000 devices.

tShort

Definition:
typedef struct

{
unsigned short LSB;
unsigned short MSB;

}
tShort

Members:
LSB

MSB

Description:
This struct is used to ensure that data passed up from the driver layer is interpretted correctly
by the protocol stack. This is a workaround specifically for C2000 devices.

Define Documentation

readLong

This define is used to read data from a tLong variable. This is a is a workaround specific to C2000
devices.

#define readShort(ptr)

Definition:
#define readLong (ptr)

10

April 8, 2013

General Purpose Functions

Description:
This define is used to read data from a tShort variable. This is a is a workaround specific to
C2000 devices.

2.3.3.3 #define writeLong(ptr, value)

This define is used to write data to a tLong variable. This is a is a workaround specific to C2000
devices.

2.3.3.4 #define writeShort(ptr, value)

This define is used to write data to a tShort variable. This is a is a workaround specific to
C2000 devices.

2.3.4 Function Documentation

2.3.4.1 void f2806x_ExtPowerlnit (tUSBCallback x Callback)

Sets up GPIOs for use for External Power Enable and Power Fault

Parameters:
Callback USB Points to callback for Power Fault events.

Returns:
Returns void.

2.3.4.2 12806x_IDInit

Definition:
void £2806x_IDInit (void)

Description:
Sets up a GPIO for use for ID detection

Returns:
Returns void.

2.3.4.3 2806x_USBO0DevicelntHandler

Definition:
_ _interrupt void f2806x_USBODeviceIntHandler (void)

Description:
Device interrupt service routine wrapper to make ISR compatable with C2000 PIE controller.

April 8, 2013 11

General Purpose Functions

2.3.4.4

2.3.4.5

2.3.4.6

2.3.4.7

2.3.4.8

f2806x_USBO0ODualModelntHandler

Definition:
__interrupt void £2806x_USBODualModeIntHandler (void)

Description:
Dual mode interrupt service routine wrapper to make ISR compatable with C2000 PIE con-
troller.

f2806x_USBOHostIntHandler

Definition:
__interrupt void f2806x_USBOHostIntHandler (void)

Description:
Host interrupt service routine wrapper to make ISR compatable with C2000 PIE controller.

f2806x_USBIDIntHandler

Definition:
__interrupt void £2806x_USBIDIntHandler (void)

Description:
Interrupt handler for ID state change events. Configures USB controller appropriately when the
USB ID signal changes.

f2806x_USBPFLTIntHandler

Definition:
__interrupt void f2806x_USBPFLTIntHandler (void)

Description:
Interrupt handler for Power Fault interrupts. Turns off power if fault is detected, and turns power
back on after fault is cleared.

f2806x_USBSupportMain

Definition:
void f2806x_USBSupportMain (void)

Description:
Polling function for use when support function aren’t implemented with interrupts. Call this
function periodically from the main application.

Returns:
Returns void.

12

April 8, 2013

General Purpose Functions

2.3.49 {2806x_USBVBusIntHandler

Definition:
__interrupt void £2806x_USBVBusIntHandler (void)

Description:
Interrupt handler for VBus triggered interrupts. Enables USB controller if VBus is detected,
otherwise removed the controller from the bus.

2.3.4.10 f2806x_VBusintlnit

Definition:
void f£2806x_VBusIntInit (tructtDeviceInfo tDevicelInfo xpsDevice)

Description:
Sets up a GPIO for use for VBus detection

Parameters:
psDevicelnfo USB device to be initialized when VBus is detected.

When using a GPIO for VBus detection don’t forget to put a resistance in series with the in-
tended GPIO. GPIOs are not 5V tolerant, so neglecting the series resistance will potentially
damage the device

Returns:
Returns void.

2.3.4.11 USBHostPwrConfig

Definition:
void USBHostPwrConfig (unsigned long ulBase , unsigned long ulFlags
)

Description:
Sets the configuration for USB power fault.

Parameters:
ulBase specifies the USB module base address.

ulFlags specifies the configuration of the power fault.

This function controls how the USB controller uses its external power control pins(USBnPFTL
and USBnEPEN). The flags specify the power fault level sensitivity, the power fault action, and
the power enable level and source.

One of the following can be selected as the power fault level sensitivity:

m USB_HOST_PWRFLT_LOW - An external power fault is indicated by the pin being driven
low.

m USB_HOST_PWRFLT_HIGH - An external power fault is indicated by the pin being driven
high.

One of the following can be selected as the power fault action:

April 8, 2013 13

General Purpose Functions

m USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault detected.
m USB_HOST_PWRFLT_EP_TRI - Automatically Tri-state the USBnEPEN pin on a power

fault.

m USB_HOST_PWRFLT_EP_LOW - Automatically drive USBnEPEN pin low on a power
fault.

m USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBnEPEN pin high on a power
fault.

One of the following can be selected as the power enable level and source:

m USB_HOST_PWREN_MAN_LOW - USBEPEN is driven low by the USB controller when
USBHostPwrEnable() is called.

m USB_HOST_PWREN_MAN_HIGH - USBEPEN is driven high by the USB controller when
USBHostPwrEnable() is called.

m USB_HOST_PWREN_AUTOLOW - USBEPEN is driven low by the USB controller auto-
matically if USBOTGSessionRequest() has enabled a session.

m USB_HOST_PWREN_AUTOHIGH - USBEPEN is driven high by the USB controller auto-
matically if USBOTGSessionRequest() has enabled a session.

On devices that support the VBUS glitch filter, the USB_HOST_PWREN_FILTER can be
added to ignore small short drops in VBUS level caused by high power consumption. This
is mainly used to avoid causing VBUS errors caused by devices with high in-rush current.

Note:
The following values have been deprecated and should no longer be used.

m USB_HOST_PWREN_LOW - Automatically drive USBnEPEN low when power is en-
abled.

m USB_HOST_PWREN_HIGH - Automatically drive USBnEPEN high when power is
enabled.

m USB_HOST_PWREN_VBLOW - Automatically drive USBnEPEN low when power is
enabled.

m USB_HOST_PWREN_VBHIGH - Automatically drive USBnEPEN high when power is
enabled.

This function should only be called on microcontrollers that support host mode or OTG
operation.

Returns:
None.

2.3.4.12 USBHostPwrDisable

Definition:
void USBHostPwrDisable (unsigned long ulBase)

Description:
Disables the external power pin.

Parameters:
ulBase specifies the USB module base address.

This function disables the USBEPEN signal to disable an external power supply in host mode
operation.

14 April 8, 2013

General Purpose Functions

Note:
This function should only be called in host mode.

Returns:
None.

2.3.4.13 USBHostPwrEnable

Definition:
void USBHostPwrEnable (unsigned long ulBase)

Description:
Enables the external power pin.

Parameters:
ulBase specifies the USB module base address.

This function enables the USBEPEN signal to enable an external power supply in host mode
operation.

Note:
This function should only be called in host mode.

Returns:
None.

2.3.4.14 USBHostPwrFaultDisable

Definition:
volid USBHostPwrFaultDisable (unsigned long ulBase)

Description:
Disables power fault detection.

Parameters:
ulBase specifies the USB module base address.

This function disables power fault detection in the USB controller.

Note:
This function should only be called in host mode.

Returns:
None.

2.3.4.15 USBHostPwrFaultEnable

Definition:
void USBHostPwrFaultEnable (unsigned long ulBase)

Description:
Enables power fault detection.

April 8, 2013 15

General Purpose Functions

Parameters:
ulBase specifies the USB module base address.

This function enables power fault detection in the USB controller. If the USBPFLT pin is not in
use this function should not be used.

Note:
This function should only be called in host mode.

Returns:
None.

2.4 Function Definitions

Defines

USB_DESC_ANY
USB_EVENT_COMP_CONFIG
USB_EVENT_COMP_EP_CHANGE
USB_EVENT_COMP_IFACE_CHANGE
USB_EVENT_COMP_STR_CHANGE
USB_EVENT_CONNECTED
USB_EVENT_DATA_REMAINING
USB_EVENT_DISCONNECTED
USB_EVENT_ERROR
USB_EVENT_POWER_DISABLE
USB_EVENT_POWER_ENABLE
USB_EVENT_POWER_FAULT
USB_EVENT_REQUEST_BUFFER
USB_EVENT_RESUME
USB_EVENT_RX_AVAILABLE
USB_EVENT_SCHEDULER
USB_EVENT_STALL
USB_EVENT_SUSPEND
USB_EVENT_TX_COMPLETE
USBERR_DEV_RX_DATA_ERROR
USBERR_DEV_RX_FIFO_FULL
USBERR_DEV_RX_OVERRUN
USBERR_HOST_EPO0_ERROR
USBERR_HOST_EPO0_NAK_TO
USBERR_HOST_IN_DATA_ERROR
USBERR_HOST_IN_ERROR
USBERR_HOST_IN_FIFO_FULL
USBERR_HOST_IN_NAK_TO
USBERR_HOST_IN_NOT_COMP
USBERR_HOST_IN_PID_ERROR
USBERR_HOST_IN_STALL

16 April 8, 2013

General Purpose Functions

2.4.1

2.4.2

2421

USBERR_HOST_OUT_ERROR
USBERR_HOST_OUT_NAK_TO
USBERR_HOST_OUT_NOT_COMP
USBERR_HOST_OUT_STALL

Enumerations
= t{USBMode

Functions

m void USBODualModelntHandler (void)

m tDescriptorHeader x USBDescGet (tDescriptorHeader xpsDesc, unsigned long ulSize, un-
signed long ulType, unsigned long ulindex)

m tInterfaceDescriptor x USBDescGetlInterface (tConfigDescriptor xpsConfig, unsigned long
ullndex, unsigned long ulAlt)

m tEndpointDescriptor x« USBDescGetlnterfaceEndpoint (tinterfaceDescriptor «psinterface, un-
signed long ullndex, unsigned long ulSize)

m unsigned long USBDescGetNum (tDescriptorHeader xpsDesc, unsigned long ulSize, un-
signed long ulType)

m unsigned long USBDescGetNumAlternatelnterfaces (tConfigDescriptor «psConfig, unsigned
char uclnterfaceNumber)

m void USBDualModelnit (unsigned long ulindex)
m void USBDualModeTerm (unsigned long ullndex)

m void USBStackModeSet (unsigned long ullndex, tUSBMode eUSBMode, tUSBModeCallback
pfnCallback)

Detailed Description

This group of functions relates to standard USB descriptor parsing and host/device mode con-
trol. Source for these functions can be found in files usbenum.c and usbmode.c. Header file
usblib.h contains prototypes for these functions along with all data type definitions which are not
device or host specific.

Define Documentation

USB_DESC_ANY

Definition:
#define USB_DESC_ANY

Description:
The USB_DESC_ANY label is used as a wild card in several of the descriptor parsing APIs to
determine whether or not particular search criteria should be ignored.

April 8, 2013

17

General Purpose Functions

2422 USB_EVENT_COMP_CONFIG
Definition:
#define USB_EVENT_COMP_CONFIG
Description:
This define is used with a device class’s pfnDeviceHandler handler function to indicate that the
USB library has changed the configuration descriptor. This allows the class to make final ad-
justments to the configuration descriptor. This event is typically due to the class being included
in a composite device.
The pvinstance is a pointer to an instance of the device being accessed.
The ulRequest is USB_EVENT_COMP_CONFIG.
The pvRequestData is a pointer to the beginning of the configuration descriptor for the device
instance.
2423 USB_EVENT_COMP_EP_CHANGE
Definition:
#define USB_EVENT_COMP_EP_CHANGE
Description:
This define is used with a device class’s pfnDeviceHandler handler function to indicate that the
USB library has changed the endpoint number. This event is typically due to the class being
included in a composite device.
The pvinstance is a pointer to an instance of the device being accessed.
The ulRequest is USB_EVENT_COMP_EP_CHANGE.
The pvRequestData is a pointer to a two byte array where the first value is the old endpoint
number and the second is the new endpoint number. The endpoint numbers should be ex-
actly as USB specification defines them and bit 7 set indicates an IN endpoint and bit 7 clear
indicates an OUT endpoint.
2424 USB_EVENT_COMP_IFACE_CHANGE
Definition:
#define USB_EVENT_COMP_IFACE_CHANGE
Description:
This define is used with a device class’s pfnDeviceHandler handler function to indicate that the
USB library has changed the interface number. This event is typically due to the class being
included in a composite device.
The pvinstance is a pointer to an instance of the device being accessed.
The ulRequest is USB_EVENT_COMP_IFACE_CHANGE.
The pvRequestData is a pointer to a two byte array where the first value is the old interface
number and the second is the new interface number.
18 April 8, 2013

General Purpose Functions

2.4.25

2.4.2.6

2427

2428

USB_EVENT_COMP_STR_CHANGE

Definition:
#define USB_EVENT_COMP_STR_CHANGE

Description:
This define is used with a device class’s pfnDeviceHandler handler function to indicate that the
USB library has changed the string index number for a string. This event is typically due to the
class being included in a composite device.

The pvinstance is a pointer to an instance of the device being accessed.
The ulRequest is USB_EVENT_COMP_STR_CHANGE.

The pvRequestData is a pointer to a two byte array where the first value is the old string index
and the second is the new string index.

USB_EVENT_CONNECTED

Definition:
#define USB_EVENT_CONNECTED

Description:
The device is now attached to a USB host and ready to begin sending and receiving data (used
by device classes only).

USB_EVENT DATA REMAINING

Definition:
#define USB_EVENT_ DATA REMAINING

Description:
This event is sent by a lower layer to inquire about the amount of unprocessed data buffered in
the layers above. It is used in cases where a low level driver needs to ensure that all preceding
data has been processed prior to performing some action or making some notification. Clients
receiving this event should return the number of bytes of data that are unprocessed or 0 if no
outstanding data remains.

USB_EVENT_DISCONNECTED

Definition:
#define USB_EVENT_DISCONNECTED

Description:
The device has been disconnected from the USB host (used by device classes only).

Note: Due to a hardware erratum in revision A of LM3S3748, this event is not posted to self-
powered USB devices when they are disconnected from the USB host.

April 8, 2013

19

General Purpose Functions

2.4.2.9

2.4.210

2.4.2.11

24212

24213

USB_EVENT_ERROR

Definition:

#define USB_EVENT_ERROR

Description:

An error has been reported on the channel or pipe. The ulMsgValue parameter indicates the
source(s) of the error and is the logical OR combination of "USBERR_" flags defined below.

USB_EVENT_POWER_DISABLE

Definition:

#define USB_EVENT_POWER_DISABLE

Description:

The controller needs power removed, This is only generated on OTG parts if automatic power
control is disabled.

USB_EVENT_POWER_ENABLE

Definition:

#define USB_EVENT_POWER_ENABLE

Description:

The controller has detected a A-Side cable and needs power applied This is only generated on
OTG parts if automatic power control is disabled.

USB_EVENT_POWER_FAULT

Definition:

#define USB_EVENT_POWER_FAULT

Description:

The host detected a power fault condition.

USB_EVENT_REQUEST_BUFFER

Definition:

#define USB_EVENT_REQUEST_BUFFER

Description:

This event is sent by a lower layer supporting DMA to request a buffer in which the next received
packet may be stored. The ulMsgValue parameter indicates the maximum size of packet that
can be received in this channel and pvMsgData points to storage which should be written with
the returned buffer pointer. The return value from the callback should be the size of the buffer
allocated (which may be less than the maximum size passed in ulMsgValue if the client knows
that fewer bytes are expected to be received) or 0 if no buffer is being returned.

20

April 8, 2013

General Purpose Functions

24214

24215

2.4.2.16

2.4.217

24218

2.4.219

USB_EVENT_RESUME

Definition:
#define USB_EVENT_RESUME

Description:
The bus has left suspend state.

USB_EVENT_RX_AVAILABLE

Definition:
#define USB_EVENT_ RX_ AVAILABLE

Description:

Data has been received and is in the buffer provided.

USB_EVENT_SCHEDULER

Definition:
#define USB_EVENT_SCHEDULER

Description:
A scheduler event has occurred.

USB_EVENT_STALL

Definition:
#define USB_EVENT_STALL

Description:
A device or host has detected a stall condition.

USB_EVENT_SUSPEND

Definition:
#define USB_EVENT_SUSPEND

Description:
The bus has entered suspend state.

USB_EVENT_TX_COMPLETE

Definition:
#define USB_EVENT_TX_COMPLETE

April 8, 2013

21

General Purpose Functions

Description:
Data has been sent and acknowledged. If this event is received via the USB buffer callback, the
ulMsgValue parameter indicates the number of bytes from the transmit buffer that have been
successfully transmitted and acknowledged.

2.4.2.20 USBERR_DEV_RX_DATA_ERROR

Definition:
#define USBERR_DEV_RX_ DATA_ ERROR

Description:
The device detected a CRC error in received data.

24221 USBERR_DEV_RX_FIFO_FULL

Definition:
#define USBERR_DEV_RX_FIFO_FULL

Description:
The device receive FIFO is full.

2.4.2.22 USBERR_DEV_RX OVERRUN

Definition:
#define USBERR_DEV_RX_OVERRUN

Description:
The device was unable to receive a packet from the host since the receive FIFO is full.

2.4.2.23 USBERR_HOST_EPO_ERROR

Definition:
#define USBERR_HOST_EP0O_ERROR

Description:
The host failed to communicate with a device via an endpoint zero.

2.4.2.24 USBERR_HOST_EPO_NAK_TO

Definition:
#define USBERR_HOST_EPO_NAK_TO

Description:
The host received NAK on endpoint 0 for longer than the configured timeout.

22 April 8, 2013

General Purpose Functions

2.4.2.25 USBERR_HOST_IN_DATA_ERROR

Definition:
#define USBERR_HOST_IN_ DATA_ERROR

Description:
The host detected a CRC or bit-stuffing error (isochronous mode).

2.4.2.26 USBERR_HOST_IN_ERROR

Definition:
#define USBERR_HOST_ IN_ERROR

Description:
The host failed to communicate with a device via an IN endpoint.

2.4.2.27 USBERR_HOST IN_FIFO FULL

Definition:
#define USBERR_HOST_IN_FIFO_FULL

Description:
The host receive FIFO is full.

2.4.2.28 USBERR_HOST_IN_NAK_TO

Definition:
#define USBERR_HOST_IN_NAK_TO

Description:
The host received NAK on an IN endpoint for longer than the specified timeout period (interrupt,
bulk and control modes).

2.4.2.29 USBERR_HOST IN_NOT COMP

Definition:
#define USBERR_HOST_IN_NOT_COMP

Description:
The host did not receive a response from a device.

2.4.2.30 USBERR_HOST_IN_PID_ERROR

Definition:
#define USBERR_HOST_IN_PID_ ERROR

Description:
The host received an invalid PID in a transaction.

April 8, 2013 23

General Purpose Functions

2.4.2.31

2.4.2.32

2.4.2.33

2.4.2.34

2.4.2.35

2.4.3

2.4.3.1

USBERR_HOST_IN_STALL

Definition:
#define USBERR_HOST_IN_STALL

Description:
The host received a stall on an IN endpoint.

USBERR_HOST_OUT_ERROR

Definition:
#define USBERR_HOST_OUT_ERROR

Description:
The host failed to communicate with a device via an OUT endpoint.

USBERR_HOST_OUT_NAK_TO

Definition:
#define USBERR_HOST_OUT_NAK_TO

Description:
The host received NAK on an OUT endpoint for longer than the specified timeout period (bulk,
interrupt and control modes).

USBERR_HOST_OUT_NOT_COMP

Definition:
#define USBERR_HOST_OUT_NOT_COMP

Description:
The host did not receive a response from a device (isochronous mode).

USBERR_HOST_OUT_STALL

Definition:
#define USBERR_HOST_OUT_STALL

Description:
The host received a stall on an OUT endpoint.

Typedef Documentation

tUSBCallback

Definition:
typedef unsigned long() tUSBCallback (void *pvCBData,
unsigned long ulEvent,

24

April 8, 2013

General Purpose Functions

unsigned long ulMsgParam,
void xpvMsgData)

Description:
USB callback function.
Parameters:
pvCBData is the callback pointer associated with the instance generating the callback.
This is a value provided by the client during initialization of the instance making the
callback.
ulEvent is the identifier of the asynchronous event which is being notified to the client.
ulMsgParam is an event-specific parameter.
pvMsgData is an event-specific data pointer.

A function pointer provided to the USB layer by the application which will be called to notify it
of all asynchronous events relating to data transmission or reception. This callback is used by
device class drivers and host pipe functions.

Returns:
Returns an event-dependent value.

2.4.4 Enumeration Documentation

2441 tUSBMode

Description:
The operating mode required by the USB library client. This type is used by applications which
wish to be able to switch between host and device modes by calling the USBStackModeSet()
API.

Enumerators:
USB_MODE_DEVICE The application wishes to operate as a USB device.

USB_MODE_HOST The application wishes to operate as a USB host.

USB_MODE_OTG The application wishes to operate as both a host and device using On-
The-Go protocols to negotiate.

USB_MODE_NONE A marker indicating that no USB mode has yet been set by the applica-
tion.

2.4.5 Function Documentation

2.4.5.1 USBO0ODualModelntHandler

Steers USB interrupts from controller to the correct handler in the USB stack.

Prototype:
void
USBODualModeIntHandler (void)

Description:
This interrupt handler is used in applications which require to operate in both host and device
mode. It steers the USB hardware interrupt to the correct handler in the USB stack depending
upon the current operating mode of the application, USB device or host.

April 8, 2013 25

General Purpose Functions

For successful dual mode operation, an application must register USBODualModelntHandler()
in the CPU vector table as the interrupt handler for the USBO interrupt. This handler is respon-
sible for steering interrupts to the device or host stack depending upon the chosen mode.

Note:
Devices which do not require dual mode capability should register ei-
ther USBODevicelntHandler() or USBOHostintHandler() instead. Registering

USBODualModelntHandler() for a single mode application will result in an application bi-
nary larger than required since library functions for both USB operating modes will be included
even though only one mode is actually required.

Returns:
None.
2.4.5.2 USBDescGet
Determines the number of individual descriptors of a particular type within a supplied buffer.
Prototype:
tDescriptorHeader x*
USBDescGet (tDescriptorHeader *psDesc,
unsigned long ulSize,
unsigned long ulType,
unsigned long ulIndex)
Parameters:
psDesc points to the first byte of a block of standard USB descriptors.
ulSize is the number of bytes of descriptor data found at pointer psDesc.
ulType identifies the type of descriptor that is to be found. If the value is USB_DESC_ANY,
the function returns a pointer to the n-th descriptor regardless of type.
ulindex is the zero based index of the descriptor whose pointer is to be returned. For example,
passing value 1 in ullndex returns the second matching descriptor.
Description:
Return a pointer to the n-th descriptor of a particular type found in the block of ulSize bytes
starting at psDesc.
Returns:
Returns a pointer to the header of the required descriptor if found or NULL otherwise.
2.4.5.3 USBDescGetlnterface
Returns a pointer to the n-th interface descriptor in a configuration descriptor that applies to the
supplied alternate setting number.
Prototype:
tInterfaceDescriptor =
USBDescGetInterface (tConfigDescriptor xpsConfig,
unsigned long ullIndex,
unsigned long ulAlt)
26 April 8, 2013

General Purpose Functions

2454

Parameters:

psConfig points to the first byte of a standard USB configuration descriptor.

ulindex is the zero based index of the interface that is to be found. If ulAlt is set to a value other
than USB_DESC_ANY, this will be equivalent to the interface number being searched for.

ulAlt is the alternate setting number which is to be searched for. If this value is
USB_DESC_ANY, the alternate setting is ignored and all interface descriptors are con-
sidered in the search.

Description:

Return a pointer to the n-th interface descriptor found in the supplied configuration descriptor.
If ulAlt is not USB_DESC_ANY, only interface descriptors which are part of the supplied alter-
nate setting are considered in the search otherwise all interface descriptors are considered.

Note that, although alternate settings can be applied on an interface-by- interface basis, the
number of interfaces offered is fixed for a given config descriptor. Hence, this function will
correctly find the unique interface descriptor for that interface’s alternate setting number ulAlt
if ullndex is set to the required interface number and ulAlt is set to a valid alternate setting
number for that interface.

Returns:

Returns a pointer to the required interface descriptor if found or NULL otherwise.

USBDescGetlnterfaceEndpoint

Return a pointer to the n-th endpoint descriptor in the supplied interface descriptor.

Prototype:

tEndpointDescriptor *

USBDescGetInterfaceEndpoint (tInterfaceDescriptor xpslInterface,
unsigned long ullndex,
unsigned long ulSize)

Parameters:

psinterface points to the first byte of a standard USB interface descriptor.
ullndex is the zero based index of the endpoint that is to be found.

ulSize contains the maximum number of bytes that the function may search beyond psinter-
face while looking for the requested endpoint descriptor.

Description:

Return a pointer to the n-th endpoint descriptor found in the supplied interface descriptor. If
the ullndex parameter is invalid (greater than or equal to the bNumEndpoints field of the inter-
face descriptor) or the endpoint cannot be found within ulSize bytes of the interface descriptor
pointer, the function will return NULL.

Note that, although the USB 2.0 specification states that endpoint descriptors must follow the
interface descriptor that they relate to, it also states that device specific descriptors should
follow any standard descriptor that they relate to. As a result, we cannot assume that each
interface descriptor will be followed by nothing but an ordered list of its own endpoints and,
hence, the function needs to be provided ulSize to limit the search range.

Returns:

Returns a pointer to the requested endpoint descriptor if found or NULL otherwise.

April 8, 2013

27

General Purpose Functions

2.4.5.5 USBDescGetNum
Determines the number of individual descriptors of a particular type within a supplied buffer.
Prototype:
unsigned long
USBDescGetNum (tDescriptorHeader =*psDesc,
unsigned long ulSize,
unsigned long ulType)
Parameters:
psDesc points to the first byte of a block of standard USB descriptors.
ulSize is the number of bytes of descriptor data found at pointer psDesc.
ulType identifies the type of descriptor that is to be counted. If the value is USB_DESC_ANY,
the function returns the total number of descriptors regardless of type.
Description:
This function can be used to count the number of descriptors of a particular type within a block
of descriptors. The caller can provide a specific type value which the function matches against
the second byte of each descriptor or, alternatively, can specify USB_DESC_ANY to have the
function count all descriptors regardless of their type.
Returns:
Returns the number of descriptors found in the supplied block of data.
2.4.5.6 USBDescGetNumAlternatelnterfaces
Determines the number of different alternate configurations for a given interface within a configura-
tion descriptor.
Prototype:
unsigned long
USBDescGetNumAlternateInterfaces (tConfigDescriptor xpsConfig,
unsigned char ucInterfaceNumber)
Parameters:
psConfig points to the first byte of a standard USB configuration descriptor.
ucinterfaceNumber is the interface number for which the number of alternate configurations
is to be counted.
Description:
This function can be used to count the number of alternate settings for a specific interface
within a configuration.
Returns:
Returns the number of alternate versions of the specified interface or 0 if the interface number
supplied cannot be found in the config descriptor.
28 April 8, 2013

General Purpose Functions

2.4.5.7 USBDualModelnit

Initializes the USB controller for dual mode operation.

Prototype:
void
USBDualModeInit (unsigned long ullIndex)

Parameters:
ulindex specifies the USB controller that is to be initialized for dual mode operation. This
parameter must be set to 0.

Description:
This function initializes the USB controller hardware into a state suitable for dual mode op-
eration. Applications may use this function to ensure that the controller is in a neutral state
and able to receive appropriate interrupts before host or device mode is chosen using a call to
USBStackModeSet().

Returns:
None.

2.45.8 USBDualModeTerm

Returns the USB controller to the default mode when in dual mode operation.

Prototype:
void
USBDualModeTerm (unsigned long ullIndex)

Parameters:
ulindex specifies the USB controller whose dual mode operation is to be ended. This param-
eter must be set to 0.

Description:
Applications using both host and device modes may call this function to disable interrupts in
preparation for shutdown or a change of operating mode.

Returns:
None.

2.45.9 USBStackModeSet

Allows a dual-mode application to switch between USB device and host modes.

Prototype:
void
USBStackModeSet (unsigned long ullndex,
tUSBMode eUSBMode,
tUSBModeCallback pfnCallback)

April 8, 2013 29

General Purpose Functions

2.5

Parameters:

ullindex specifies the USB controller whose mode of operation is to be set. This parameter
must be set to 0.

eUSBMode indicates the mode that the application wishes to operate in. Valid values are
USB_MODE_DEVICE to operate as a USB device and USB_MODE_HOST to operate as
a USB host.

pfnCallback is a pointer to a function which the USB library will call each time the mode is
changed to indicate the new operating mode. In cases where eUSBMode is set to either
USB_MODE_DEVICE or USB_MODE_HOST, the callback will be made immediately to
allow the application to perform any host or device specific initialization.

Description:

This function allows a USB application, which can operate in host or device mode, to indicate
to the USB stack the mode that it wishes to use. The caller is responsible for cleaning up the
interface and removing itself from the bus prior to making this call and reconfiguring afterwards.

For successful dual mode mode operation, an application must register
USBODualModelntHandler() as the interrupt handler for the USBO interrupt. This han-
dler is responsible for steering interrupts to the device or host stack depending upon
the chosen mode. Devices which do not require dual mode capability should reg-
ister either USBODevicelntHandler() or USBOHostintHandler() instead. Registering
USBO0ODualModelntHandler() for a single mode application will result in an application bi-
nary larger than required since library functions for both USB operating modes will be included
even though only one mode is required.

Single mode applications (those offering exclusively USB device or USB host functionality)
need not call this function since no interrupt steering is required if the appropriate single mode
interrupt handler is installed.

Returns:

None.

USB Chapter 9 Definitions

Data Structures

m tConfigDescriptor

m tDescriptorHeader

m tDeviceDescriptor

m tDeviceQualifierDescriptor
m tEndpointDescriptor

m tInterfaceDescriptor

m tStringODescriptor

m tStringDescriptor

m tUSBRequest

Defines
m NEXT_USB_DESCRIPTOR(ptr)

30

April 8, 2013

General Purpose Functions

2.5.1

2.5.2

2.5.2.1

m USB3Byte(ulValue)
m USBLong(ulValue)
m USBShort(usValue)

Detailed Description

This section describes the various data structures and labels relating to standard USB descriptors
and requests as defined in chapter 9 of the USB 2.0 specification. These definitions can be found
inusblib.h.

For ease of use alongside the USB specification, members of the structures defined here are named
to according to the equivalent field in the USB documentation.

It is important to be aware that all the structures described in this section are byte packed. Appro-
priate typedef modifiers are included in usblib.h to ensure the correct packing.

The USB 2.0 specification may be downloaded from the USB Implementers Forum (USB-IF) web
site at http://www.usb.org/developers/docs/.

Data Structure Documentation

tConfigDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
tShort wTotallength;
unsigned char bNumInterfaces;
unsigned char bConfigurationValue;
unsigned char iConfiguration;
unsigned char bmAttributes;
unsigned char bMaxPower;

}

tConfigDescriptor

Members:
bLength The length of this descriptor in bytes. All configuration descriptors are 9 bytes long.

bDescriptorType The type of the descriptor. For a configuration descriptor, this will be
USB_DTYPE_CONFIGURATION (2).

wTotalLength The total length of data returned for this configuration. This includes the com-
bined length of all descriptors (configuration, interface, endpoint and class- or vendor-
specific) returned for this configuration.

bNuminterfaces The number of interface supported by this configuration.

bConfigurationValue The value used as an argument to the SetConfiguration standard re-
quest to select this configuration.

iConfiguration The index of a string descriptor describing this configuration.
bmATttributes Attributes of this configuration.

April 8, 2013

31

http://www.usb.org/developers/docs/.

General Purpose Functions

bMaxPower The maximum power consumption of the USB device from the bus in this con-
figuration when the device is fully operational. This is expressed in units of 2mA so, for
example, 100 represents 200mA.

Description:
This structure describes the USB configuration descriptor as defined in USB 2.0 specification
section 9.6.3. This structure also applies to the USB other speed configuration descriptor
defined in section 9.6.4.

2.5.2.2 tDescriptorHeader
Definition:
typedef struct
{
unsigned char bLength;
unsigned char bDescriptorType;
}
tDescriptorHeader
Members:
bLength The length of this descriptor (including this length byte) expressed in bytes.
bDescriptorType The type identifier of the descriptor whose information follows. For stan-
dard descriptors, this field could contain, for example, USB_DTYPE_DEVICE to identify a
device descriptor or USB_DTYPE_ENDPOINT to identify an endpoint descriptor.
Description:
This structure describes a generic descriptor header. These fields are to be found at the
beginning of all valid USB descriptors.
2.5.2.3 tDeviceDescriptor
Definition:
typedef struct
{
unsigned char bLength;
unsigned char bDescriptorType;
tShort bcdUSB;
unsigned char bDeviceClass;
unsigned char bDeviceSubClass;
unsigned char bDeviceProtocol;
unsigned char bMaxPacketSizeO;
tShort idVendor;
tShort idProduct;
tShort bcdDevice;
unsigned char iManufacturer;
unsigned char iProduct;
unsigned char iSerialNumber;
unsigned char bNumConfigurations;
}
tDeviceDescriptor
32 April 8, 2013

General Purpose Functions

2524

Members:

bLength The length of this descriptor in bytes. All device descriptors are 18 bytes long.

bDescriptorType The type of the descriptor. For a device descriptor, this will be
USB_DTYPE_DEVICE (1).

bcdUSB The USB Specification Release Number in BCD format. For USB 2.0, this will be
0x0200.

bDeviceClass The device class code.

bDeviceSubClass The device subclass code. This value qualifies the value found in the bDe-
viceClass field.

bDeviceProtocol The device protocol code. This value is qualified by the values of bDevice-
Class and bDeviceSubClass.

bMaxPacketSize0 The maximum packet size for endpoint zero. Valid values are 8, 16, 32 and
64.

idVendor The device Vendor ID (VID) as assigned by the USB-IF.

idProduct The device Product ID (PID) as assigned by the manufacturer.
bcdDevice The device release number in BCD format.

iManufacturer The index of a string descriptor describing the manufacturer.
iProduct The index of a string descriptor describing the product.

iSerialNumber The index of a string descriptor describing the device’s serial number.

bNumConfigurations The number of possible configurations offered by the device. This field
indicates the number of distinct configuration descriptors that the device offers.

Description:

This structure describes the USB device descriptor as defined in USB 2.0 specification section
9.6.1.

tDeviceQualifierDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
tShort bcdUSB;
unsigned char bDeviceClass;
unsigned char bDeviceSubClass;
unsigned char bDeviceProtocol;
unsigned char bMaxPacketSizeO;
unsigned char bNumConfigurations;
unsigned char bReserved;

}

tDeviceQualifierDescriptor

Members:

bLength The length of this descriptor in bytes. All device qualifier descriptors are 10 bytes
long.

bDescriptorType The type of the descriptor. For a device descriptor, this will be
USB_DTYPE_DEVICE_QUAL (6).

bcdUSB The USB Specification Release Number in BCD format. For USB 2.0, this will be
0x0200.

April 8, 2013

33

General Purpose Functions

bDeviceClass The device class code.

bDeviceSubClass The device subclass code. This value qualifies the value found in the bDe-
viceClass field.

bDeviceProtocol The device protocol code. This value is qualified by the values of bDevice-
Class and bDeviceSubClass.

bMaxPacketSize0 The maximum packet size for endpoint zero when operating at a speed
other than high speed.

bNumConfigurations The number of other-speed configurations supported.
bReserved Reserved for future use. Must be set to zero.

Description:
This structure describes the USB device qualifier descriptor as defined in the USB 2.0 specifi-
cation, section 9.6.2.

2.5.2.5 tEndpointDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
unsigned char bEndpointAddress;
unsigned char bmAttributes;
tShort wMaxPacketSize;
unsigned char bInterval;

}

tEndpointDescriptor

Members:

bLength The length of this descriptor in bytes. All endpoint descriptors are 7 bytes long.

bDescriptorType The type of the descriptor. For an endpoint descriptor, this will be
USB_DTYPE_ENDPOINT (5).

bEndpointAddress The address of the endpoint. This field contains the endpoint number
ORed with flag USB_EP_DESC_OUT or USB_EP_DESC_|IN to indicate the endpoint di-
rection.

bmAttributes The endpoint transfer type, USB_EP_ATTR_CONTROL,
USB_EP_ATTR_ISOC, USB_EP_ATTR_BULK or USB_EP ATTR_INT and, if
isochronous, additional flags indicating usage type and synchronization method.

wlMaxPacketSize The maximum packet size this endpoint is capable of sending or receiving
when this configuration is selected. For high speed isochronous or interrupt endpoints, bits
11 and 12 are used to pass additional information.

binterval The polling interval for data transfers expressed in frames or micro frames depend-
ing upon the operating speed.

Description:
This structure describes the USB endpoint descriptor as defined in USB 2.0 specification sec-
tion 9.6.6.

34 April 8, 2013

General Purpose Functions

2.5.2.6

2.5.2.7

tinterfaceDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
unsigned char bInterfaceNumber;
unsigned char bAlternateSetting;
unsigned char bNumEndpoints;
unsigned char bInterfaceClass;
unsigned char bInterfaceSubClass;
unsigned char bInterfaceProtocol;
unsigned char ilInterface;

}

tInterfaceDescriptor

Members:
bLength The length of this descriptor in bytes. All interface descriptors are 9 bytes long.

bDescriptorType The type of the descriptor. For an interface descriptor, this will be
USB_DTYPE_INTERFACE (4).

binterfaceNumber The number of this interface. This is a zero based index into the array of
concurrent interfaces supported by this configuration.

bAlternateSetting The value used to select this alternate setting for the interface defined in
binterfaceNumber.

bNumEndpoints The number of endpoints used by this interface (excluding endpoint zero).

binterfaceClass The interface class code as assigned by the USB-IF.

binterfaceSubClass The interface subclass code as assigned by the USB-IF.

binterfaceProtocol The interface protocol code as assigned by the USB-IF.

ilnterface The index of a string descriptor describing this interface.

Description:
This structure describes the USB interface descriptor as defined in USB 2.0 specification sec-
tion 9.6.5.

tString0Descriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
tShort wLANGIDI[1];

}

tString0Descriptor

Members:
bLength The length of this descriptor in bytes. This value will vary depending upon the number
of language codes provided in the descriptor.
bDescriptorType The type of the descriptor. For a string descriptor, this will be
USB_DTYPE_STRING (3).

April 8, 2013

35

General Purpose Functions

wLANGID The language code (LANGID) for the first supported language. Note that this de-
scriptor may support multiple languages, in which case, the number of elements in the
WLANGID array will increase and bLength will be updated accordingly.

Description:
This structure describes the USB string descriptor for index 0 as defined in USB 2.0 specifi-
cation section 9.6.7. Note that the number of language IDs is variable and can be determined
by examining bLength. The number of language IDs present in the descriptor is given by
((bLength - 2) / 2).

2.5.2.8 tStringDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
unsigned char bString;

}

tStringDescriptor

Members:
bLength The length of this descriptor in bytes. This value will be 2 greater than the number of
bytes comprising the UNICODE string that the descriptor contains.
bDescriptorType The type of the descriptor. For a string descriptor, this will be
USB_DTYPE_STRING (3).
bString The first byte of the UNICODE string. This string is not NULL terminated. lts length
(in bytes) can be computed by subtracting 2 from the value in the bLength field.

Description:
This structure describes the USB string descriptor for all string indexes other than 0 as defined
in USB 2.0 specification section 9.6.7.

2.5.29 tUSBRequest

Definition:

typedef struct

{
unsigned char bmRequestType;
unsigned char bRequest;
tShort wValue;
tShort wIndex;
tShort wLength;

}

tUSBRequest

Members:
bmRequestType Determines the type and direction of the request.

bRequest |dentifies the specific request being made.
wValue Word-sized field that varies according to the request.

36 April 8, 2013

General Purpose Functions

2.5.3

2.5.3.1

2.5.3.2

2.5.3.3

windex Word-sized field that varies according to the request; typically used to pass an index
or offset.

wLength The number of bytes to transfer if there is a data stage to the request.

Description:
The standard USB request header as defined in section 9.3 of the USB 2.0 specification.

Define Documentation

NEXT_USB_DESCRIPTOR

Traverse to the next USB descriptor in a block.

Definition:
#define NEXT_USB_DESCRIPTOR (ptr)

Parameters:
ptr points to the first byte of a descriptor in a block of USB descriptors.

Description:
This macro aids in traversing lists of descriptors by returning a pointer to the next descriptor in
the list given a pointer to the current one.

Returns:
Returns a pointer to the next descriptor in the block following pir.

USB3Byte

Write a 3 byte unsigned long value to a USB descriptor block.

Definition:
#define USB3Byte (ulValue)

Parameters:
ulValue is the three byte unsigned value that is to be written to the descriptor.

Description:
This helper macro is used in descriptor definitions to write three-byte values. Since the con-
figuration descriptor contains all interface and endpoint descriptors in a contiguous block of
memory, these descriptors are typically defined using an array of bytes rather than as packed
structures.

Returns:
Not a function.

USBLong

Write a 4 byte unsigned long value to a USB descriptor block.

April 8, 2013

37

General Purpose Functions

2.5.3.4

2.6

Definition:
#define USBLong (ulValue)

Parameters:
ulValue is the four byte unsigned long that is to be written to the descriptor.

Description:
This helper macro is used in descriptor definitions to write four-byte values. Since the con-
figuration descriptor contains all interface and endpoint descriptors in a contiguous block of
memory, these descriptors are typically defined using an array of bytes rather than as packed
structures.

Returns:
Not a function.

USBShort

Write a 2 byte unsigned short value to a USB descriptor block.

Definition:
#define USBShort (usValue)

Parameters:
usValue is the two byte unsigned short that is to be written to the descriptor.

Description:
This helper macro is used in descriptor definitions to write two-byte values. Since the con-
figuration descriptor contains all interface and endpoint descriptors in a contiguous block of
memory, these descriptors are typically defined using an array of bytes rather than as packed
structures.

Returns:
Not a function.

USB Buffer and Ring Buffer APIs

Data Structures

= tUSBBuffer
= tUSBRingBufObject

Defines
= USB_BUFFER_WORKSPACE_SIZE

38

April 8, 2013

General Purpose Functions

Functions

void x USBBufferCallbackDataSet (tUSBBuffer «psBuffer, void «pvCBData)
unsigned long USBBufferDataAvailable (const tUSBBuffer xpsBuffer)

void USBBufferDataRemoved (const tUSBBuffer xpsBuffer, unsigned long ulLength)
void USBBufferDataWritten (const tUSBBuffer xpsBuffer, unsigned long ulLength)

unsigned long USBBufferEventCallback (void «pvCBData, unsigned long ulEvent, unsigned
long ulMsgValue, void xpvMsgData)

void USBBufferFlush (const tUSBBuffer xpsBuffer)
void USBBufferInfoGet (const tUSBBuffer xpsBuffer, tUSBRingBufObject xpsRingBuf)
const tUSBBuffer « USBBufferlnit (const tUSBBuffer xpsBuffer)

unsigned long USBBufferRead (const tUSBBuffer xpsBuffer, unsigned char xpucData, un-
signed long ulLength)

m unsigned long USBBufferSpaceAvailable (const tUSBBuffer xpsBuffer)
m unsigned long USBBufferWrite (const tUSBBuffer «psBuffer, const unsigned char «xpucData,

unsigned long ulLength)

void USBRingBufAdvanceRead (tUSBRingBufObject xptUSBRingBuf, unsigned long ulNum-
Bytes)

void USBRingBufAdvanceWrite (tUSBRingBufObject xptUSBRingBuf, unsigned long ulNum-
Bytes)

unsigned long USBRingBufContigFree (tUSBRingBufObject «ptUSBRingBuf)

unsigned long USBRingBufContigUsed (tUSBRingBufObject «ptUSBRingBuf)

tBoolean USBRingBufEmpty (tUSBRingBufObject «ptUSBRingBuf)

void USBRingBufFlush (tUSBRingBufObject xptUSBRingBuf)

unsigned long USBRingBufFree (tUSBRingBufObject xptUSBRingBuf)

tBoolean USBRingBufFull (tUSBRingBufObject «+ptUSBRingBuf)

void USBRingBuflnit (tUSBRingBufObject «ptUSBRingBuf, unsigned char xpucBuf, unsigned
long ulSize)

void USBRingBufRead (tUSBRingBufObject xptUSBRingBuf, unsigned char s«pucData, un-
signed long ulLength)

unsigned char USBRingBufReadOne (tUSBRingBufObject «ptUSBRingBuf)

unsigned long USBRingBufSize (tUSBRingBufObject +ptUSBRingBuf)

unsigned long USBRingBufUsed (tUSBRingBufObject «ptUSBRingBuf)

void USBRingBufWrite (tUSBRingBufObject +ptUSBRingBuf, const unsigned char xpucData,
unsigned long ulLength)

void USBRingBufWriteOne (tUSBRingBufObject «ptUSBRingBuf, unsigned char ucData)

2.6.1 Detailed Description

At the lowest level, USB communication is packet-based with the size of each packet dependent
upon the configuration of the USB endpoint. In addition, when a packet is in transit, no more data
may be sent on that endpoint until the transmission completes so state machines are required to
ensure that data is only sent when it is safe to do so.

This model is suitable for some applications but in other cases a simple read/write model allowing
arbitrarily sized blocks of data to be received or transmitted at times suitable to the application is
more appropriate. The USB buffer API allows an application to chose this type of operation when
used in conjunction with particular host- or device-class drivers.

April 8, 2013

39

General Purpose Functions

2.6.2

A USB buffer provides a unidirectional buffer for a single endpoint and may be configured for op-
eration as either a receive buffer (accepting data from the USB controller and passing it to an
application) or a transmit buffer (accepting data from the application and passing it to the USB
controller for transmission). In each case, the buffer handles all packetization or depacketization of
data and allows the application to read or write arbitrarily-sized blocks of data (subject to the space
limitations in the buffer, of course) at times suitable to it.

Each USB buffer makes use of a ring buffer object to store the buffered data. The ring buffer object is
not USB-specific and does not interact directly with any USB drivers but the APl is made available
since the functionality may be useful to an application in areas outside USB communication, for
example to buffer data from a UART or other peripheral. If attempting to buffer a USB data stream,
however, the USB buffer API should be used since it handles the USB driver-side interaction on
behalf of the application. An application must not mix calls to the two APIs for the same object -
if using a USB buffer, only APIs of the form USBBufferXxx() should be used to access that buffer
and, similarly, if using a plain ring buffer, only USBRingBufXxx() calls must be used.

Source for the USB buffer and ring buffer functions can be found in files usbbuffer.c and
usbringbuf.c. Header file usblib.h contains prototypes and data type definitions for these
functions.

Using USB Buffers

The USB buffer object is designed to allow insertion between a USB device class driver and the de-
vice application or between the USB host controller driver and a host class driver in an application-
and class-independent way. Driver data transfer APls all use a common prototype as do event call-
backs so the USB buffer is inserted into the data path using driver function and instance pointers
provided in static structures during application initialization. This method has the advantage that
the USB buffer is not directly dependent upon any specific functions in the USB library and, as a
result, using it does not pull extraneous code into the final application image.

During operation, events from the layer below the buffer are inspected in the buffer’s event han-
dler. If they are unrecognized or have no effect on the flow of data, they are passed to the higher
layer unaltered. If they relate to data flow, however, the buffer intercepts them and performs the
necessary actions to transmit or receive data before passing appropriate events to the layer above.

To insert a buffer for use on a transmit or receive channel or pipe, a tUSBBuf fer structure must
be initialized as follows.

bTransmitBuffer This field must be set to true if the buffer is passing data from the appli-
cation code to the USB controller or false if passing data from the USB
controller to the application.

pfnCallback This field should point to the event handler callback function in the appli-
cation code. Notifications of asynchronous events relating to the buffer
will be made by calls to this function.

pvCBData The callback data pointer written to this field will be passed as the first
parameter on all future calls to the application event handler (set in
pfnCallback). Typically an application will set this pointer to some value
allowing it easy access to data associated with the channel, for example
a pointer to an internal instance data structure. The actual content is
application specific and the USB buffer merely stores the value and
passes it back to the caller when required.

40

April 8, 2013

General Purpose Functions

pfnTransfer This field informs the USB buffer of the function to call whenever data is
to be transferred between the buffer and the lower layer. This is used to
transmit a packet of data if this is a transmit buffer (bTransmitBuffer set
to true) or to receive a packet of data if this is a receive buffer (bTrans-
mitBuffer set to false). Taking the example of a buffer used to transmit
data to the USB generic bulk device class driver, this would be set to
point to USBDBulkPacketWrite(). A receive buffer used with the same
driver would have this field set to point to USBDBulkPacketRead().

pfnAvailable For a transmit buffer, this function pointer must be set to point to the
lower layer function that can be called to determine whether the rele-
vant USB endpoint or pipe is ready to accept a new packet for transmis-
sion. For a receive buffer, this field points to the function that should be
called to determine the size of buffer required to read a newly-received
packet. Using the same example, a transmit buffer above the USB
generic bulk device class driver would have this field set to point to US-
BDBulkTxPacketAvailable() and a receive buffer above the same driver
would set the field to point to USBDBulkRxPacketAvailable().

pvHandle This field must be set to the handle which should be passed as the first
parameter to the functions provided in pfnTransfer and pfnAvailable.
This will typically be a pointer to the instance structure for the lower
layer object in use. In the case of the USB generic bulk device class,
this would be the tUSBDBulkDevice pointer originally passed to (and
returned from) USBDBulklInit().

pcBuffer This field must be initialized to point to the block of RAM that will be
used to buffer data on this channel. The buffer will be managed as a
ring buffer. If the application wishes to access the buffer directly rather
than via the USBBufferRead() and USBBufferWrite() APIs (thus avoid-
ing a copy operation), it is vital to ensure that ring wrap conditions are
correctly handled in the application code.

ulBufferSize This field provides the size of the buffer pointed to by pcBuffer in bytes.

pvWorkspace The USB buffer requires a block of RAM in which it can store state vari-
ables. This field points to application-supplied RAM that can be used
as workspace by the buffer object. This RAM must not be accessed
by the application and must remain accessible to the USB buffer for
as long as the buffer exists (between calls to USBBufferlnit() and USB-
BufferTerm()). The label USB_BUFFER_WORKSPACE_SIZE defines
the number of bytes of workspace required.

Once a transmit buffer is initialized, the application can write data to it using function USBBuffer-
Write() whenever space is available and the USB buffer driver will handle packet transmission to the
lower layer. Similarly USBBufferRead() can be called to read received data from a receive buffer at
any time. In both cases, the USB buffer uses the same event protocol that the lower layers use to
indicate to the application when more data can be transferred or when data has been sent. When
data from the USB controller is added to a receive buffer, USB_EVENT_RX_AVAILABLE is passed
to the application and when data is removed from a transmit buffer after having been sent to the
lower layer, USB_EVENT_TX_COMPLETE is sent.

April 8, 2013 41

General Purpose Functions

Applications usb_dev_bulk and usb_dev_serial provide examples of how to use USB buffers
in a device application.

2.6.3 Data Structure Documentation
2.6.3.1 tUSBBuffer
Definition:
typedef struct
{
tBoolean bTransmitBuffer;
tUSBCallback pfnCallback;
void xpvCBData;
tUSBPacketTransfer pfnTransfer;
tUSBPacketAvailable pfnAvailable;
void xpvHandle;
unsigned char xpcBuffer;
unsigned long ulBufferSize;
void xpvWorkspace;
}
tUSBBuffer
Members:
bTransmitBuffer This field sets the mode of the buffer. If true, the buffer operates as a transmit
buffer and supports calls to USBBufferWrite by the client. If false, the buffer operates as a
receive buffer and supports calls to USBBufferRead.
pfnCallback A pointer to the callback function which will be called to notify the application of
all asynchronous events related to the operation of the buffer.
pvCBData A pointer that the buffer will pass back to the client in the first parameter of all
callbacks related to this instance.
pfnTransfer The function which should be called to transmit a packet of data in transmit mode
or receive a packet in receive mode.
pfnAvailable The function which should be called to determine if the endpoint is ready to
accept a new packet for transmission in transmit mode or to determine the size of the
buffer required to read a packet in receive mode.
pvHandle The handle to pass to the low level function pointers provided in the pfnTransfer and
pfnAvailable members. For USB device use, this is the psDevice parameter required by
the relevant device class driver APls. For USB host use, this is the pipe identifier returned
by USBHCDPipeAlloc.
pcBuffer A pointer to memory to be used as the ring buffer for this instance.
ulBufferSize The size, in bytes, of the buffer pointed to by pcBuffer.
pvWorkspace A pointer to USB_BUFFER_WORKSPACE_SIZE bytes of RAM that the buffer
object can use for workspace.
Description:
The structure used by the application to initialize a buffer object that will provide buffered access
to either a transmit or receive channel.
42 April 8, 2013

General Purpose Functions

2.6.3.2

2.6.4

2.6.4.1

2.6.5

2.6.5.1

2.6.5.2

tUSBRingBufObject

Definition:
typedef struct
{
unsigned long ulSize;
unsigned long ulWriteIndex;
unsigned long ulReadIndex;
unsigned char *pucBuf;

}
tUSBRingBufObject

Members:
ulSize The ring buffer size.
ulWriteIndex The ring buffer write index.
ulReadlIndex The ring buffer read index.
pucBuf The ring buffer.

Description:
The structure used for encapsulating all the items associated with a ring buffer.

Define Documentation

USB_BUFFER_WORKSPACE_SIZE

Definition:
#define USB_BUFFER_WORKSPACE_SIZE

Description:
The number of bytes of workspace that each USB buffer object requires. This workspace
memory is provided to the buffer on USBBufferlnit() in the pvWorkspace field of the tUSBBuffer
structure.

Typedef Documentation

tUSBPacketAvailable

Definition:
typedef unsigned long(*x) tUSBPacketAvailable (void xpvHandle)

Description:
A function pointer type which describes either a class driver transmit or receive packet available
function (both have the same prototype) to the USB buffer object.

tUSBPacketTransfer

Definition:
typedef unsigned long() tUSBPacketTransfer (void xpvHandle,
unsigned char =*pcData,

April 8, 2013

43

General Purpose Functions

unsigned long ulLength,
tBoolean blast)

Description:
A function pointer type which describes either a class driver packet read or packet write function
(both have the same prototype) to the USB buffer object.

2.6.6 Function Documentation
2.6.6.1 USBBufferCallbackDataSet
Sets the callback pointer supplied to clients of this buffer.
Prototype:
void =
USBBufferCallbackDataSet (tUSBBuffer xpsBuffer,
void xpvCBData)
Parameters:
psBuffer is the pointer to the buffer instance whose callback data is to be changed.
pvCBData is the pointer the client wishes to receive on all future callbacks from this buffer.
Description:
This function sets the callback pointer which this buffer will supply to clients as the pvCBData
parameter in all future calls to the event callback.
Note:
If this function is to be used, the application must ensure that the tUSBBuffer structure used
to describe this buffer is held in RAM rather than flash. The pvCBData value passed is written
directly into this structure.
Returns:
Returns the previous callback pointer set for the buffer.
2.6.6.2 USBBufferDataAvailable
Returns the number of bytes of data available in the buffer.
Prototype:
unsigned long
USBBufferDataAvailable (const tUSBRBuffer xpsBuffer)
Parameters:
psBuffer is the pointer to the buffer instance which is to be queried.
Description:
This function may be used to determine the number of bytes of data in a buffer. For a receive
buffer, this indicates the number of bytes that the client can read from the buffer using USB-
BufferRead(). For a transmit buffer, this indicates the amount of data that remains to be sent to
the USB controller.
44 April 8, 2013

General Purpose Functions

2.6.6.3

2.6.6.4

Returns:
Returns the number of bytes of data in the buffer.

USBBufferDataRemoved

Indicates that a client has read data directly out of the buffer.

Prototype:
void
USBBufferDataRemoved (const tUSBBuffer *psBuffer,
unsigned long ulLength)

Parameters:
psBuffer is the pointer to the buffer instance from which data has been read.

ulLength is the number of bytes of data that the client has read.

Description:

This function updates the USB buffer read pointer to remove data that the client has read di-
rectly rather than via a call to USBBufferRead(). The function is provided to aid a client wishing
to minimize data copying. To read directly from the buffer, a client must call USBBufferInfoGet()
to retrieve the current buffer indices. With this information, the data following the current read
index can be read. Once the client has processed much data as it needs, USBBufferDataRe-
moved() must be called to advance the read pointer past the data that has been read and free
up that section of the buffer. The client must take care to correctly handle the wrap point if
accessing the buffer directly.

Returns:
None.

USBBufferDataWritten

Indicates that a client has written data directly into the buffer and wishes to start transmission.

Prototype:

void
USBBufferDataWritten (const tUSBBuffer x*psBuffer,
unsigned long ulLength)

Parameters:

psBuffer is the pointer to the buffer instance into which data has been written.
ulLength is the number of bytes of data that the client has written.

Description:

This function updates the USB buffer write pointer and starts transmission of the data in the
buffer assuming the lower layer is ready to receive a new packet. The function is provided to aid
a client wishing to write data directly into the USB buffer rather than using the USBBufferWrite()
function. This may be necessary to control when the USB buffer starts transmission of a large
block of data, for example.

A transmit buffer will immediately send a new packet on any call to USBBufferWrite() if the un-
derlying layer indicates that a transmission can be started. In some cases this is not desirable

April 8, 2013

45

General Purpose Functions

and a client may wish to write more data to the buffer in advance of starting transmission to
the lower layer. In such cases, USBBufferinfoGet() may be called to retrieve the current ring
buffer indices and the buffer accessed directly. Once the client has written all data it wishes
to send (taking care to handle the ring buffer wrap), it should call this function to indicate that
transmission may begin.

Returns:
None.

2.6.6.5 USBBufferEventCallback
Called by the USB buffer to notify the client of asynchronous events.
Prototype:
unsigned long
USBBufferEventCallback (void xpvCBData,
unsigned long ulEvent,
unsigned long ulMsgValue,
void xpvMsgData)
Parameters:
pvCBData is the client-supplied callback pointer associated with this buffer instance.
ulEvent is the identifier of the event being sent. This will be a general event identi-
fier of the form USBD_EVENT xxxx or a device class-dependent event of the form
USBD_CDC_EVENT_xxx or USBD_HID_EVENT_xxx.
ulMsgValue is an event-specific parameter value.
pvMsgData is an event-specific data pointer.
Description:
This function is the USB buffer event handler that applications should register with the USB
device class driver as the callback for the channel which is to be buffered using this buffer.
Note:
This function will never be called by an application. It is the handler that allows the USB buffer
to be inserted above the device class driver or host pipe driver and below the application to
offer buffering support.
Returns:
The return value is dependent upon the event being processed.
2.6.6.6 USBBufferFlush
Flushes a USB buffer, discarding any data that it contains.
Prototype:
void
USBBufferFlush (const tUSBBuffer x*psBuffer)
Parameters:
psBuffer is the pointer to the buffer instance which is to be flushed.
46 April 8, 2013

General Purpose Functions

2.6.6.7

2.6.6.8

Description:
This function discards all data currently in the supplied buffer without processing (transmitting
it via the USB controller or passing it to the client depending upon the buffer mode).

Returns:
None.

USBBUufferinfoGet

Returns the current ring buffer indices for this USB buffer.

Prototype:
void
USBBufferInfoGet (const tUSBBuffer xpsBuffer,
tUSBRingBufObject xpsRingBuf)

Parameters:
psBuffer is the pointer to the buffer instance whose information is being queried.

psRingBuf is a pointer to storage that will be written with the current ring buffer control struc-
ture for this USB buffer.

Description:
This function is provided to aid a client wishing to write data directly into the USB buffer rather
than using the USBBufferWrite() function. This may be necessary to control when the USB-
Buffer starts transmission of a large block of data, for example.

A transmit buffer will immediately send a new packet on any call to USBBufferWrite() if the un-
derlying layer indicates that a transmission can be started. In some cases this is not desirable
and a client may wish to wishes to write more data to the buffer in advance of starting trans-
mission to the lower layer. In such cases, this function may be called to retrieve the current ring
buffer indices and the buffer accessed directly. Once the client has written all data it wishes to
send, it should call function USBBufferDataWritten() to indicate that transmission may begin.

Returns:
None.

USBBUufferlnit

Initializes a USB buffer object to be used with a given USB controller and device or host class driver.

Prototype:
const tUSBBuffer =«
USBBufferInit (const tUSBBuffer xpsBuffer)

Parameters:
psBuffer points to a structure containing information on the buffer memory to be used and the
underlying device or host class driver whose data is to be buffered. This structure must
remain accessible for as long as the buffer is in use.

Description:
This function is used to initialize a USB buffer object and insert it into the function and callback
interfaces between an underlying driver and the application. The caller supplies information on

April 8, 2013

47

General Purpose Functions

2.6.6.9

2.6.6.10

both the RAM to be used to buffer data, the type of buffer to be created (transmit or receive)
and the functions to be called in the lower layer to transfer data to or from the USB controller.

Returns:
Returns the original buffer structure pointer if successful or NULL if an error is detected.

USBBUufferRead

Reads a block of data from a USB receive buffer into storage supplied by the caller.

Prototype:
unsigned long
USBBufferRead (const tUSBBuffer xpsBuffer,
unsigned char xpucData,
unsigned long ullLength)

Parameters:
psBuffer is the pointer to the buffer instance from which data is to be read.

pucData points to a buffer into which the received data will be written.
ulLength is the size of the buffer pointed to by pucData.

Description:
This function reads up to ulLength bytes of data received from the USB host into the supplied
application buffer. If the receive buffer contains fewer than ulLength bytes of data, the data that
is present will be copied and the return code will indicate the actual number of bytes copied to
pucData.

Returns:
Returns the number of bytes of data read.

USBBufferSpaceAvailable

Returns the number of free bytes in the buffer.

Prototype:
unsigned long
USBBufferSpaceAvailable (const tUSBBuffer xpsBuffer)

Parameters:
psBuffer is the pointer to the buffer instance which is to be queried.

Description:
This function returns the number of free bytes in the buffer. For a transmit buffer, this indicates
the maximum number of bytes that can be passed on a call to USBBufferWrite() and accepted
for transmission. For a receive buffer, it indicates the number of bytes that can be read from
the USB controller before the buffer will be full.

Returns:
Returns the number of free bytes in the buffer.

48

April 8, 2013

General Purpose Functions

2.6.6.11 USBBufferWrite

Writes a block of data to the transmit buffer and queues it for transmission to the USB controller.

Prototype:
unsigned long
USBBufferWrite (const tUSBBuffer x*psBuffer,
const unsigned char *pucData,
unsigned long ulLength)

Parameters:
psBuffer points to the pointer instance into which data is to be written.

pucData points to the first byte of data which is to be written.
ulLength is the number of bytes of data to write to the buffer.

Description:
This function copies the supplied data into the transmit buffer. The transmit buffer data will
be packetized according to the constraints imposed by the lower layer in use and sent to
the USB controller as soon as possible. Once a packet is transmitted and acknowledged,
a USB_EVENT_TX_COMPLETE event will be sent to the application callback indicating the
number of bytes that have been sent from the buffer.

Attempts to send more data than there is space for in the transmit buffer will result in fewer
bytes than expected being written. The value returned by the function indicates the actual
number of bytes copied to the buffer.

Returns:
Returns the number of bytes actually written.

2.6.6.12 USBRingBufAdvanceRead

Removes bytes from the ring buffer by advancing the read index.

Prototype:
void
USBRingBufAdvanceRead (tUSBRingBufObject xptUSBRingBuf,
unsigned long ulNumBytes)

Parameters:
ptUSBRingBuf points to the ring buffer from which bytes are to be removed.

ulNumBYytes is the number of bytes to be removed from the buffer.

Description:
This function advances the ring buffer read index by a given number of bytes, removing that
number of bytes of data from the buffer. If u/lNumBytes is larger than the number of bytes
currently in the buffer, the buffer is emptied.

Returns:
None.

April 8, 2013 49

General Purpose Functions

2.6.6.13

2.6.6.14

2.6.6.15

USBRingBufAdvanceWrite

Adds bytes to the ring buffer by advancing the write index.

Prototype:
void
USBRingBufAdvanceWrite (tUSBRingBufObject xptUSBRingBuf,
unsigned long ulNumBytes)

Parameters:
ptUSBRingBuf points to the ring buffer to which bytes have been added.

ulNumBytes is the number of bytes added to the buffer.

Description:
This function should be used by clients who wish to add data to the buffer directly rather than
via calls to USBRingBufWrite() or USBRingBufWriteOne(). It advances the write index by a
given number of bytes.

Note:
It is considered an error if the uINumBytes parameter is larger than the amount of free space
in the buffer and a debug build of this function will fail (ASSERT) if this condition is detected. In
a release build, the buffer read pointer will be advanced if too much data is written but this will,
of course, result in some of the oldest data in the buffer being discarded and also, depending
upon how data is being read from the buffer, may result in a race condition which could corrupt
the read pointer.

Returns:
None.

USBRingBufContigFree

Returns number of contiguous free bytes available in a ring buffer.

Prototype:
unsigned long
USBRingBufContigFree (tUSBRingBufObject xptUSBRingBuf)

Parameters:
ptUSBRingBuf is the ring buffer object to check.

Description:
This function returns the number of contiguous free bytes ahead of the current write pointer in
the ring buffer.

Returns:
Returns the number of contiguous bytes available in the ring buffer.

USBRingBufContigUsed

Returns number of contiguous bytes of data stored in ring buffer ahead of the current read pointer.

50

April 8, 2013

General Purpose Functions

Prototype:
unsigned long
USBRingBufContigUsed (tUSBRingBufObject xptUSBRingBuf)

Parameters:
ptUSBRingBuf is the ring buffer object to check.

Description:
This function returns the number of contiguous bytes of data available in the ring buffer ahead
of the current read pointer. This represents the largest block of data which does not straddle
the buffer wrap.

Returns:
Returns the number of contiguous bytes available.

2.6.6.16 USBRingBufEmpty

Determines whether a ring buffer is empty or not.

Prototype:
tBoolean
USBRingBufEmpty (tUSBRingBufObject *ptUSBRingBuf)

Parameters:
ptUSBRingBuf is the ring buffer object to empty.

Description:
This function is used to determine whether or not a given ring buffer is empty. The structure
is specifically to ensure that we do not see warnings from the compiler related to the order of
volatile accesses being undefined.

Returns:
Returns true if the buffer is empty or false otherwise.

2.6.6.17 USBRIingBufFlush

Empties the ring buffer.

Prototype:
void
USBRingBufFlush (tUSBRingBufObject *ptUSBRingBuf)

Parameters:
ptUSBRingBuf is the ring buffer object to empty.

Description:
Discards all data from the ring buffer.

Returns:
None.

April 8, 2013 51

General Purpose Functions

2.6.6.18 USBRIingBufFree
Returns number of bytes available in a ring buffer.
Prototype:
unsigned long
USBRingBufFree (tUSBRingBufObject *ptUSBRingBuf)
Parameters:
ptUSBRingBuf is the ring buffer object to check.
Description:
This function returns the number of bytes available in the ring buffer.
Returns:
Returns the number of bytes available in the ring buffer.
2.6.6.19 USBRIingBufFull
Determines whether a ring buffer is full or not.
Prototype:
tBoolean
USBRingBufFull (tUSBRingBufObject *ptUSBRingBuf)
Parameters:
ptUSBRingBuf is the ring buffer object to empty.
Description:
This function is used to determine whether or not a given ring buffer is full. The structure is
specifically to ensure that we do not see warnings from the compiler related to the order of
volatile accesses being undefined.
Returns:
Returns true if the buffer is full or false otherwise.
2.6.6.20 USBRingBufInit
Initializes a ring buffer object.
Prototype:
void
USBRingBufInit (tUSBRingBufObject *ptUSBRingBuf,
unsigned char =xpucBuf,
unsigned long ulSize)
Parameters:
ptUSBRingBuf points to the ring buffer to be initialized.
pucBuf points to the data buffer to be used for the ring buffer.
ulSize is the size of the buffer in bytes.
52 April 8, 2013

General Purpose Functions

2.6.6.21

2.6.6.22

2.6.6.23

Description:
This function initializes a ring buffer object, preparing it to store data.

Returns:
None.

USBRingBufRead

Reads data from a ring buffer.

Prototype:
void
USBRingBufRead (tUSBRingBufObject xptUSBRingBuf,
unsigned char xpucData,
unsigned long ulLength)

Parameters:
ptUSBRingBuf points to the ring buffer to be read from.

pucData points to where the data should be stored.
ulLength is the number of bytes to be read.

Description:
This function reads a sequence of bytes from a ring buffer.

Returns:
None.

USBRingBufReadOne

Reads a single byte of data from a ring buffer.

Prototype:
unsigned char
USBRingBufReadOne (tUSBRingBufObject *ptUSBRingBuf)

Parameters:
ptUSBRingBuf points to the ring buffer to be written to.

Description:
This function reads a single byte of data from a ring buffer.

Returns:
The byte read from the ring buffer.

USBRingBufSize

Returns the size in bytes of a ring buffer.

April 8, 2013

53

General Purpose Functions

Prototype:
unsigned long
USBRingBufSize (tUSBRingBufObject *ptUSBRingBuf)

Parameters:
ptUSBRingBuf is the ring buffer object to check.

Description:
This function returns the size of the ring buffer.

Returns:
Returns the size in bytes of the ring buffer.

2.6.6.24 USBRingBufUsed
Returns number of bytes stored in ring buffer.
Prototype:
unsigned long
USBRingBufUsed (tUSBRingBufObject *ptUSBRingBuf)
Parameters:
ptUSBRingBuf is the ring buffer object to check.
Description:
This function returns the number of bytes stored in the ring buffer.
Returns:
Returns the number of bytes stored in the ring buffer.
2.6.6.25 USBRingBufWrite
Writes data to a ring buffer.
Prototype:
void
USBRingBufWrite (tUSBRingBufObject xptUSBRingBuf,
const unsigned char *pucData,
unsigned long ulLength)
Parameters:
ptUSBRingBuf points to the ring buffer to be written to.
pucData points to the data to be written.
ulLength is the number of bytes to be written.
Description:
This function write a sequence of bytes into a ring buffer.
Returns:
None.
54 April 8, 2013

General Purpose Functions

2.6.6.26 USBRingBufWriteOne

Writes a single byte of data to a ring buffer.

Prototype:
void
USBRingBufWriteOne (tUSBRingBufObject xptUSBRingBuf,
unsigned char ucData)

Parameters:
ptUSBRingBuf points to the ring buffer to be written to.

ucData is the byte to be written.

Description:
This function writes a single byte of data into a ring buffer.

Returns:
None.

April 8, 2013

55

General Purpose Functions

56

April 8, 2013

Device Functions

3

3.1

Device Functions

INEOAUCH ON L e e 57
APIchoices for USB AeVICESvi it e e e e e e e e e 58
BUIK DeVice Class DriVert e e e e e e e e e e 61
Bulk Device Class Driver Definitionso.oiii e e e e e 74
CDC DeVviCe Class DVl ...t e e e e e e e e e e e 81
CDC Device Class Driver Definitions e e 91
Composite DeVICe Class DIVETt ettt 101
Composite Device Class Driver Definitions ... e 108
HID DeViCe Class DIiVert e et e e e e e e e et e e e 111
HID Device Class Driver Definitionsooiiii i e e et 123
HID Mouse Device Class APl e e e e e e e e 146
HID Mouse Device Class AP Definitions i 149
HID Keyboard Device Class APl e e 156
HID Keyboard Device Class API Definitionsooiii et eieeeans 158
Using the USB Device APl e e e 166
Device Function Definitions e e e e 177
Introduction

This chapter describes the various API layers within the USB library that offer support for applica-
tions wishing to present themselves as USB devices. Several programming interfaces are provided
ranging from the thinnest layer which merely abstracts the underlying USB controller hardware to
high level interfaces offering simple APIs supporting specific devices.

Source Code Overview

Source code and headers for the device specific USB functions can be found in the device directory
of the USB library tree, typically DriverLib/usblib/device.

usbdevice.h The header file containing device mode function prototypes and data types
offered by the library. This file is the main header file defining the USB Device
API.

usbdbulk.h The header file defining the USB generic bulk device class driver API.

usbdcdc.h The header file defining the USB Communication Device Class (CDC) device

class driver API.

usbdhid.h The header file defining the USB Human Interface Device (HID) device class
driver API.
usbdhidkeyb.h The header file defining the USB HID keyboard device class API.
usbdhidmouse.h The header file defining the USB HID keyboard device class API.
April 8, 2013 57

Device Functions

3.2

usbdenum.c

usbdhandler.c
usbdconfig.c

usbdcdesc.c

usbdbulk.c

usbdcdc.c

usbdhid.c

usbdhidkeyb.c
usbdhidmouse.c

usbdevicepriv.h

The source code for the USB device enumeration functions offered by the
library.

The source code for the USB device interrupt handler.
The source code for the USB device configuration functions.

The source code for functions used to parse configuration descriptors defined
in terms of an array of sections (as used with the USB Device API).

The source code for the USB generic bulk device class driver.

The source code for the USB Communication Device Class (CDC) device
class driver.

The source code for the USB Human Interface Device (HID) device class
driver.

The source code for the USB HID keyboard device class.
The source code for the USB HID keyboard device class.

The private header file containing definitions shared between various source
files in the device directory. Applications must not include this header.

API choices for USB devices

The USB library contains four API layers relevant to the development of USB device applications.
Moving down the stack, each API layer offers greater flexibility to an application but this is balanced
by the greater effort required to use the lower layers. The available programming interfaces, starting
at the highest level and working downwards, are:

m Device Class APIs

m Device Class Driver APIs

m The USB Device API
m The USB DriverLib API

58

April 8, 2013

Device Functions

3.2.1

3.2.2

Device Class
Driver API

1 1
-— o\l 1 '
8 8 " Application 3 1 | Application 4
O o . '
© T ' .
1S O ' '
= = ' '
& % 1 5_ 1
< < : . UsB : Device Class
' : Buffer { API
1 i 1
1
1
1
1
1
1
1
1

USB Device API

USB DriverLib API

In the above diagram, bold horizontal lines represent APIs that are available for application use.
Four possible applications are shown, each using a different programming interface to implement
their USB functionality. The following sections provide an overview of the features and limitations
of each layer and indicate the kinds of application which may choose to use that layer.

USB DriverLib API

The lowest layer in the USB device stack is the USB driver which can be found within the Control-
Suite MWare Driver Library (DriverLib) with source code in usb.c and header file usb.h. "Appli-
cation 1" in the previous diagram offers device functionality by writing directly to this API.

Due to the fact that this APl is a very thin layer above the USB controller’s hardware registers and,
hence, does not offer any higher level USB transaction support (such as endpoint zero transaction
processing, standard descriptor and request processing, etc.), applications would not typically use
this API as the only way to access USB functionality. This driver would, however, be a suitable
interface to use if developing, for example, a third-party USB stack.

USB Device API

The USB Device API offers a group of functions specifically intended to allow development of fully-
featured USB device applications with as much of the class-independent code as possible con-
tained in the USB Library. The API supports device enumeration via standard requests from the
host and handles the endpoint zero state machine on behalf of the application.

April 8, 2013

59

Device Functions

3.2.3

An application using this interface provides the descriptors that it wishes to publish to the host during
initialization and these provide the information that the USB Device API requires to configure the
hardware. Asynchronous events relating to the USB device are notified to the application by means
of a collection of callback functions also provided to the USB Device API on initialization.

This APl is used in the development of USB device class drivers and can also be used directly
by applications which want to provide USB functionality not supported by an existing class driver.
Examples of such devices would be those requiring complex alternate interface settings.

The USB Device API can be thought of as a set of high level device extensions to the USB DriverLib
API rather than a wrapper over it. When developing to the USB Device API, some calls to the
underlying USB DriverLib API are still necessary.

The header file for the USB Device APl is device/usbdevice.h.

USB Device Class Driver APls

Device Class Drivers offer high level USB function to applications wishing to offer particular USB
features without having to deal with most of the USB transaction handling and connection manage-
ment that would otherwise be required. These drivers provide high level APls for several commonly-
used USB device classes with the following features.

m Extremely easy to use. Device setup involves creating a set of static data structures and
calling a single initialization API.

m Configurable VID/PID, power parameters and string table to allow easy customization of the
device without the need to modify any library code.

m Consistent interfaces. All device class drivers use similar APIs making it very straightforward
to move between them.

m Minimal application overhead. The vast majority of USB handling is performed within the class
driver and lower layers leaving the application to deal only with reading and writing data.

m May be used with optional USB buffer objects to further simplify data transmission and recep-
tion. Using USB buffers, interaction with the device class driver can become as simple as a
read/write API with no state machine required to ensure that data is transmitted or received at
the correct time.

m Device Class Driver APIs completely wrap the underlying USB Device and USB Driver APIs
so only a single API interface is used by the application.

Balancing these advantages, application developers should note the following restrictions that apply
when using the Device Class Driver APIs.

m No calls may be made to any other USB layer while the device class driver APl is in use.
m Alternate configurations are not supported by the supplied device class drivers.

Device class drivers are currently provided to allow creation of a generic bulk device, a Communi-
cation Device Class (virtual serial port) device and a Human Interface Device class device (mouse,
keyboard, joystick, etc.). A special class driver for composite devices is also included. This acts as
a wrapper allowing multiple device class drivers to be used in a single device. Detailed information
on each of these classes can be found later in this document.

60

April 8, 2013

Device Functions

3.2.4

3.3

USB Device Class APIs

In some cases, a standard device class may offer the possibility of creating a great number of
different and varied devices using the same class and in these cases an additional APl layer can
be provided to further specialize the device operation and simplify the interface to the application.

The Human Interface Device (HID) class is one such class. It is used to support a wide variety
of devices including keyboards, joysticks, mice and game controllers but the interface is specified
in such a way that it could be used for a huge number of vendor-specific devices offering data
gathering capability. As a result, the HID device class driver is extremely general to allow support
for as wide a range of devices as possible. To simplify the use of the interface, specific APls are
provided to support BIOS-compatible keyboard and mouse operation. Using the mouse class API
instead of the base HID class driver API, an application can make itself visible to the USB host as
a mouse using an extremely simple interface consisting of an initialization call and a call to inform
the host of mouse movement or button presses. Similarly, using the keyboard device class API, the
application can use a single APl to send key make and break information to the host without having
to be aware of the underlying HID structures and USB protocols.

Example applications usb_dev_mouse and usb_dev_keyboard make use of the HID mouse and
keyboard device class APIs respectively.

Bulk Device Class Driver

Although not offering support for a particular standard device class, the generic bulk device class
driver offers a very simple method for an application to set up USB communication with a paired
application running on the USB host system. The class driver offers a single bulk receive channel
and a single bulk transmit channel and, when coupled with USB buffers on each channel, provides
a straightforward read/write interface to the application.

The device supports a single interface containing bulk IN and bulk OUT endpoints. The configu-
ration and interface descriptors published by the device contain vendor specific class identifiers so
an application on the host will have to communicate with the device using either a custom driver or
a subsystem such as WinUSB or libusb-win32 on Windows to allow the device to be accessed. An
example of this is provided in the usb_dev_bulk application.

This class driver is particularly useful for applications which intend to pass high volumes of data via
USB and where host-side application code is being developed in partnership with the device.

April 8, 2013

61

Device Functions

3.3.1

3.3.1.1

3.3.1.2

3.3.2

USB Generic Bulk Device Model

Receive Channel

Bulk OUT 5
>
£

o
17 5| < | &
o 2 @ =
T = Q o
(a] > X
1] m [=
7] Bulk IN ol ol 3
> <« S| @ |
n | 8
=) @
c
Endpoint 0 8

§Opti0naI§
——®» USB —»
i Buffer |

Optional
4—— USB w——
i Buffer |

Application Code

The usb_dev_bulk example application makes use of this device class driver.

Generic Bulk Device Class Events

The generic bulk device class driver sends the following events to the application callback functions:

Receive Channel Events

USB_EVENT_RX_AVAILABLE

USB_EVENT_ERROR
USB_EVENT_CONNECTED

USB_EVENT_DISCONNECTED

USB_EVENT_SUSPEND
USB_EVENT_RESUME

Transmit Channel Events

B USB_EVENT_TX_COMPLETE

Using the Generic Bulk Device Class

To add USB bulk data transmit and receive capability to your application via the Generic Bulk Device

Class Driver, take the following steps.

m Add the following header files to the source file(s) which are to support USB:

62

April 8, 2013

Device Functions

#include "src/usb.h"

#include "usblib/usblib.h"

#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"

m Define the 5 entry string table which is used to describe various features of your new device
to the host system. The following is the string table taken from the usb_dev_bulk example
application. Edit the actual strings to suit your application and take care to ensure that you
also update the length field (the first byte) of each descriptor to correctly reflect the length of
the string and descriptor header. The number of strings you include must be 5 x (number
of languages listed in string descriptor 0, g_pLangDescriptor, and the strings for each
language must be grouped together with all the language 1 strings before all the language 2
strings and so on.

//***
// The languages supported by this device.

//***
const unsigned char g_pLangDescriptor[] =
{
4!
USB_DTYPE_STRING,
USBShort (USB_LANG_EN_US)
}i

//***
// The manufacturer string.

//

//***
const unsigned char g_pManufacturerStringl[] =

{

2+ (22 % 2),
USB_DTYPE_STRING,

rtr, 0, 'e’, 0, 'x’, O, 'a’, 0, 's’, 0, ' ', 0, "I', O, 'n’, O,
rs’, 0, 't’, 0, 'r’, 0, 'u’, 0, 'm’, O, ’e’, O, 'n’, 0, 't’, O,
rs’, 0, " ', 0, 'I', 0, 'n

}i

//***
// The product string.

//***
const unsigned char g_pProductStringl[] =
{
(19 + 1) * 2,
USB_DTYPE_STRING,
r¢’, 0, 'e’, 0, 'n’, 0, ’e’, 0, 'x’, 0, ’i’, 0, '¢’, O, * ', O, 'B", O,
'w', 0, "1, 0, "k’, 0, * ', 0O, 'D’", O, 'e'", O, 'v', O, "i", O, 'c’, O,
re”, 0O

April 8, 2013 63

Device Functions

//***
// The serial number string.

//

//***
const unsigned char g_pSerialNumberString[] =
{

(8 + 1) = 2,

USB_DTYPE_STRING,

r1*, o0, 2, 0, 3", 0, 4", 0, '5", 0, '6", O, 7", 0, '8, O

//***
//
// The data interface description string.
//
//***
const unsigned char g_pDatalInterfaceStringl[] =
{

(19 + 1) ~ 2,

USB_DTYPE_STRING,

's’, 0, 'u’, 0, ", 0, "k*, 0, ", 0, 'D', O, Ta&a’, 0, 't’, O,

ra*, 0, ", 0, ', 0, 'n*, 0, 't’, 0, 'e", O, 'x’, 0, "£", O,

"a’”, 0, 'c’, 0, 'e’", O

//***
//
// The configuration description string.
//
//***
const unsigned char g_pConfigStringl[] =
{
(23 + 1) = 2,
USB_DTYPE_STRING,
‘", 0, 'u’, 0, "1, 0, 'k, O, ", O, 'D", 0, Ta
ra’, 0, ~r, o, 'c, 0, o', 0, 'n*, 0, £, 0, *i’*, 0, ’'g’, 0,
'w’, 0, "', 0, 'a&a", 0, 't*, 0, 'i", 0, 'o', 0, ’'n

//***
// The descriptor string table.

//***
const unsigned char x const g_pStringDescriptors|[] =
{

g_pLlangDescriptor,

g_pManufacturerString,

g_pProductString,

64

April 8, 2013

Device Functions

g_pSerialNumberString,
g_pDbataInterfaceString,
g_pConfigString

}i

#define NUM_STRING_DESCRIPTORS (sizeof (g_pStringDescriptors) / \
sizeof (unsigned char x))

m Define an area of RAM of for the private data for the bulk device class driver. This structure
should never be accessed by the application.

//***
// The bulk device private data.

//***

tBulkInstance g_sBulkInstance;

m Define a tUSBDBulkDevice structure and initialize all fields as required for your application.
The following example illustrates a simple case where no USB buffers are in use. For an ex-
ample using USB buffers, see the source file usb_bulk_structs.c inthe usb_dev_bulk
example application.

const tUSBDBulkDevice g_sBulkDevice =
{

//

// The Vendor ID you have been assigned by USB-IF.
//

USB_VID_YOUR_VENDOR_ID,

//

// The product ID you have assigned for this device.
//

USB_PID_YOUR_PRODUCT_ID,

//

// The power consumption of your device in milliamps.
//

POWER_CONSUMPTION_mA,

//

// The value to be passed to the host in the USB configuration descriptor’s
// bmAttributes field.

//

USB_CONF_ATTR_SELF_PWR,

//

// A pointer to your receive callback event handler.

//
YourUSBReceiveEventCallback,

//

April 8, 2013 65

Device Functions

// A value that you want passed to the receive callback alongside every

// event.

//

(void *)&g_sYourInstanceData,

//

// A pointer to your transmit callback event handler.
//

YourUSBTransmitEventCallback,

//

// A value that you want passed to the transmit callback alongside every
// event.

//

(void *) &g_sYourInstanceData,

//

// A pointer to your string table.

//

g_pStringDescriptors,

//

// The number of entries in your string table.

//

NUM_STRING_DESCRIPTORS,

//

// A pointer to the private memroy allocated for the class driver to use.
//

&g_sBulkInstance
}i

m Add a receive event handler function, YourUSBReceiveEventCallback in the previous exam-
ple, to your application taking care to handle all messages which require a particular response.
For the generic bulk device class, only the USB_EVENT_RX_AVAILABLE MUST be handled by
the receive event handler. In response to USB_EVENT_RX_AVAILABLE, your handler should
check the amount of data received by calling USBDBulkRxPacketAvailable() then read it us-
ing a call to USBDBulkPacketRead(). This causes the newly received data to be acknowl-
edged to the host and instructs the host that it may now transmit another packet. If you
are unable to read the data immediately, return 0 from the callback handler and you will be
called back once again a few milliseconds later. Although no other events must be handled,
USB_EVENT_CONNECTED and USB_EVENT_DISCONNECTED will typically be required since
these indicate when a host connects or disconnects and allow the application to flush any
buffers or reset state as required. Attempts to send data when the host is disconnected will
fail.

m Add a transmit event handler function, YourUSBTransmitEventCallback in the previous exam-
ple, to your application taking care to handle all messages which require a particular response.
For the generic bulk device class, there are no events sent to the transmit callback which MUST
be handled but applications will usually want to note USB_EVENT_TX_COMPLETE since this is
an interlock message indicating that the previous packet sent has been acknowledged by the
host and a new packet can now be sent.

m From your main initialization function call the generic bulk device class driver initialization

66 April 8, 2013

Device Functions

3.3.3

function to configure the USB controller and place the device on the bus.
pDevice = USBDBulkInit (0, &g_sBulkDevice);

m Assuming pDevice returned is not NULL, your device is now ready to communicate with a
USB host.

m Once the host connects, your receive event handler will be sent USB_EVENT_CONNECTED and
the first packet of data may be sent to the host using USBDBulkPacketWrite() with following
packets transmitted as soon as USB_EVENT_TX_COMPLETE is received.

Using the Composite Bulk Device Class

When using the bulk device class in a composite device, the configuration of the device is very
similar to how it is configured as a non-composite device. Follow all of the configuration steps in the
previous section with the exception of calling USBDBulkCompositelnit() instead of USBDBulklInit().
This will prepare an instance of the bulk device class to be enumerated as part of a composite
device. The return value from the USBDBulkCompositelnit() function should be placed in the pvin-
stance member of the tCompositeEntry structure for the bulk device. The code example below
provides an example of how to initialize the tCompositeEntry structure.

//

// These should be initialized with valid values for each class.
//

extern tUSBDCompositeDevice g_sCompDevice;

extern tUSBDBulkDevice g_sBulkDevice;

//

// The OTHER_SIZES here are the sizes of the descriptor data for other classes
// that are part of the composite device.

//

#define DESCRIPTOR_DATA_SIZE (COMPOSITE_DBULK_SIZE + OTHER_SIZES)

unsigned char g_pucDescriptorData[DESCRIPTOR_DATA_SIZE];

tCompositeEntry psCompEntries[2];

//

// Set the generic bulk device information.

//

psCompEntries[0] .psDevice = g_sBulkDevicelInfo;

//

// Save the instance data for this bulk device.

//

psCompEntries[0] .pvInstance = USBDBulkCompositeInit (0, &g_sBulkDevice);
//

// Initialize other devices to add to the composite device.
//

April 8, 2013

67

Device Functions

//
// Save the device entries in the composite device.
//

g_sCompDevice.psDevices = psCompEntries;

USBDCompositeInit (0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
g_pucDescriptorData) ;

All other API calls to the USB bulk device class should use the value returned by USBDBulk-
Compositelnit() when the API calls for a pvinstance pointer. Also when using the bulk device
in a composite device the COMPOSITE_DBULK_SIZE value should be added to the size of the
g_pucDescriptorData array as shown in the example above.

3.3.4 Windows Drivers for Generic Bulk Devices

Since generic bulk devices appear to a host operating system as vendor-specific devices, no device
drivers on the host system will be able to communicate with them without some help from the device
developer. This help may involve writing a specific Windows kernel driver for the device or, if kernel
driver programming is too daunting, steering Windows to use one of several possible generic kernel
drivers that can manage the device on behalf of a user mode application.

Using this second model, a device developer need not write any Windows driver code but would
need to write an application or DLL that interfaces with the device via the user-mode API offered by
whichever USB subsystem they chose to manage their device. The developer is also responsible
for producing a suitable INF file to allow Windows to associate the device (identified via its VID/PID
combination) with a particular driver.

A least two suitable USB subsystems are available for Windows - WinUSB from Microsoft or open-
source project libusb-win32 available from SourceForge.

WinUSB supports WindowsXP, Windows Vista and Windows7 systems. Further information can
be obtained from MSDN at http://msdn.microsoft.com/en-us/library/aa476426.aspx. To develop
applications using the WinUSB interface, the Windows Driver Development Kit (DDK) must be
installed on your build PC. This interface is currently used by the ControlSUITE USB Windows
example application "USB Bulk Example". This application can be found in the "tools" directory of
MWare.

libusb-win32 supports Windows98SE, Windows2000, WindowsNT and WindowsXP and can be
downloaded from http:/libusb-win32.sourceforge.net/. It offers a straightforward method of access-
ing the device and also provides a very helpful INF file generator.

3.3.4.1 Sample WinUSB INF file

This file illustrates how to build an INF to associate your device with the WinUSB subsystem on
WindowsXP or Vista. Note that the driver package for the device must include not only this INF
file but the Microsoft-supplied coinstallers listed in the files section. These can be found within the
Windows Driver Development Kit (DDK).

68 April 8, 2013

http://msdn.microsoft.com/en-us/library/aa476426.aspx.
http://libusb-win32.sourceforge.net/.

Device Functions

; TI Generic Bulk USB device driver installer

This INF file may be used as a template when creating customized applications
; based on the generic bulk device class. Areas of the file requiring
; customization for a new device are commented with NOTEs.

; NOTE: When you customize this INF for your own device, create a new class
; name (Class) and a new GUID (ClassGuid). GUIDs may be created using the
; guidgen tool from Windows Visual Studio.

[Version]

Signature = "$Windows NTS$"

Class = TIBulkDeviceClass
ClassGuid={F5450C06-EB58-420e-8F98-A76C5D4AFB18}
Provider = %ProviderName$%
CatalogFile=MyCatFile.cat

[Manufacturer]
%$ProviderName% = TIBulkDevice_WinUSB,NTx86,NTamdé64

; NOTE: Replace the VID and PID in the following two sections with the
; correct values for your device.

[TIBulkDevice_WinUSB.NTx86]
%$USB\TIBulkDevice.DeviceDesc% =USB_Install, USB\VID_1CBE&PID_0003

[TIBulkDevice WinUSB.NTamd64]
$USB\TIBulkDevice.DeviceDesc% =USB_Install, USB\VID_1CBE&PID_0003

; = Installation = =

[ClassInstall32]
AddReg=AddReg_ClassInstall

[AddReg_ClassInstall]
HKR, ,,,"%DeviceClassDisplayName%"
HKR,, Icon,,"-20"

[USB_Install]
Include=winusb.inf
Needs=WINUSB.NT

[USB_Install.Services]
Include=winusb.inf

AddService=WinUSB, 0x00000002,WinUSB_ServicelInstall

[WinUSB_ServicelInstall]

April 8, 2013 69

Device Functions

DisplayName = $WinUSB_SvcDesc$%
ServiceType =1

StartType = 3

ErrorControl =1

ServiceBinary = %$12%\WinUSB.sys

[USB_Install.wdf]
KmdfService=WINUSB, WinUsb_Install

[WinUSB_Install]
KmdfLibraryVersion=1.5

[USB_Install.HW]
AddReg=Dev_AddReg

; NOTE: Create a new GUID for your interface and replace the following one
; when customizing for a new device.

[Dev_AddReqg]
HKR, ,DevicelInterfaceGUIDs, 0x10000, "{6E45736A-2B1B-4078-B772-B3AF2B6FDE1IC}"

[USB_Install.ColInstallers]
AddReg=CoInstallers_AddReg
CopyFiles=CoInstallers_CopyFiles

[CoInstallers_AddReqg]
HKR, ,CoInstallers32,0x00010000, "WdfCoInstaller01005.d11,WdfCoInstaller", "WinUSBColIn

[CoInstallers_CopyFiles]
WinUSBCoInstaller.dll
WdfCoInstaller01005.d11

[DestinationDirs]
CoInstallers_CopyFiles=11

; == Source Media Section ===

[SourceDisksNames]
1 $DISK_NAME%, ,, \1386
2 = %$DISK_NAMES%,,, \amdé64

[SourceDisksFiles.x86]
WinUSBCoInstaller.dll=1
WdfCoInstaller01005.d11=1

[SourceDisksFiles.amd64]
WinUSBCoInstaller.dll=2
WdfCoInstaller01005.d11=2

; = Strings ===

; Note: Replace these as appropriate to describe your device.

70 April 8, 2013

Device Functions

[Strings]

ProviderName="Texas Instruments"
USB\TIBulkDevice.DeviceDesc="Generic Bulk Device"
WinUSB_SvcDesc="WinUSB"

DISK_NAME="TI Install Disk"
DeviceClassDisplayName=TI Bulk Devices"

3.3.4.2 Sample libusb-win32 INF File

The following is an example of an INF file that can be used to associate the usb_dev_bulk ex-
ample device with the libusb-win32 subsystem on Windows systems and to install the necessary
drivers. This was created using the "INF Wizard" application which is included in the libusb-win32
download package.

[Version]
Signature = "$Chicagos$"
provider = %Smanufacturer$%

DriverVer = 03/20/2007,0.1.12.1

CatalogFile = usb_dev_bulk_libusb.cat
CatalogFile.NT = usb_dev_bulk_ libusb.cat
CatalogFile.NTAMD64 = usb_dev_bulk_libusb_x64.cat

Class = LibUsbDevices
ClassGUID = {EB781AAF-9C70-4523-A5DF-642A87ECA567}

[ClassInstall]
AddReg=libusb_class_install_add_reg

[ClassInstall32]
AddReg=libusb_class_install_add_reg

[libusb_class_install_add_reqg]
HKR, ,,, "LibUSB-Win32 Devices"
HKR, ,Icon,,"-20"

[Manufacturer]
$manufacturer%=Devices, NT,NTAMD64

[SourceDisksNames]
1 = "Libusb-Win32 Driver Installation Disk",,

[SourceDisksFiles]
libusb0O.sys = 1,,
libusb0.d11 = 1,,
libusb0_x64.sys = 1,,
libusb0_x64.d11 = 1,,

April 8, 2013 71

Device Functions

[DestinationDirs]

libusb_files_sys = 10,system32\drivers
libusb_files_sys_x64 = 10,system32\drivers
libusb_files_dll = 10,system32
libusb_files_dll_wow64 = 10, syswowb64
libusb_files_dll_x64 = 10,system32

[libusb_files_sys]
libusb0.sys

[libusb_files_sys_x64]
libusb0.sys, libusb0_x64.sys

[libusb_files_dl1]
libusb0.dl1l

[libusb_files_dll_wow64]
libusb0.d1l1l

[libusb_files_dll_x64]
libusb0.dll, libusb0_x64.d11l

[LIBUSB_DEV]
CopyFiles = libusb_files_sys, libusb_files_dl1l
AddReg = libusb_add_reg

[LIBUSB_DEV.NT]
CopyFiles = libusb_files_sys, libusb_files_dl1l

[LIBUSB_DEV.NTAMDG6G4]
CopyFiles = libusb_files_sys_x64, libusb_files_dll_wow64, libusb_files_dll_ x64

[LIBUSB_DEV.HW]
DelReg = libusb_del_reg_hw
AddReg = libusb_add_reg_hw

[LIBUSB_DEV.NT.HW]
DelReg = libusb_del_reg_hw
AddReg = libusb_add_reg_hw

[LIBUSB_DEV.NTAMDG64 .HW]
DelReg = libusb_del_reg_hw
AddReg = libusb_add_reg_hw

[LIBUSB_DEV.NT.Services]
AddService = libusb0, 0x00000002, libusb_add_service

72 April 8, 2013

Device Functions

[LIBUSB_DEV.NTAMD64.Services]
AddService = libusb0, 0x00000002, libusb_add_service

[libusb_add_reqg]
HKR, ,DevLoader, , xntkern
HKR, ,NTMPDriver,, libusb0.sys

; Older versions of this .inf file installed filter drivers. They are not
; needed any more and must be removed

[libusb_del_reg_hw]

HKR, , LowerFilters

HKR, ,UpperFilters

; Device properties

[libusb_add_reg_hw]
HKR, , SurpriseRemovalOK, 0x00010001, 1

[libusb_add_service]

DisplayName = "LibUsb-Win32 - Kernel Driver 03/20/2007, 0.1.12.1"
ServiceType =1

StartType =3

ErrorControl =0

ServiceBinary = %12%\1libusb0.sys

[Devices]
"Generic Bulk Device"=LIBUSB_DEV, USB\VID_lcbe&PID 0003

[Devices.NT]
"Generic Bulk Device"=LIBUSB_DEV, USB\VID_lcbe&PID_0003

[Devices.NTAMD64]
"Generic Bulk Device"=LIBUSB_DEV, USB\VID_lcbe&PID_ 0003

[Strings]
manufacturer = "Texas Instruments"

April 8, 2013 73

Device Functions

3.4 Bulk Device Class Driver Definitions

Data Structures
m tUSBDBulkDevice

Defines
m COMPOSITE_DBULK_SIZE

Functions

m void + USBDBulkCompositelnit (unsigned long ullndex, const tUSBDBulkDevice «psDevice)

m void * USBDBulkInit (unsigned long ullndex, const tUSBDBulkDevice xpsDevice)

m unsigned long USBDBulkPacketRead (void «pvinstance, unsigned char xpcData, unsigned
long ulLength, tBoolean bLast)

m unsigned long USBDBulkPacketWrite (void xpvinstance, unsigned char xpcData, unsigned

long ulLength, tBoolean bLast)

void USBDBulkPowerStatusSet (void xpvinstance, unsigned char ucPower)

tBoolean USBDBulkRemoteWakeupRequest (void xpvinstance)

unsigned long USBDBulkRxPacketAvailable (void xpvinstance)

void x USBDBulkSetRxCBData (void xpvinstance, void «xpvCBData)

void x USBDBulkSetTxCBData (void xpvinstance, void xpvCBData)

void USBDBulkTerm (void xpvinstance)

unsigned long USBDBulkTxPacketAvailable (void xpvinstance)

3.4.1 Detailed Description

The macros and functions defined in this section can be found in header file device/usbdbulk.h.

3.4.2 Data Structure Documentation

3.4.2.1 tUSBDBulkDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
tUSBCallback pfnRxCallback;
void xpvRxCBData;
tUSBCallback pfnTxCallback;

74 April 8, 2013

Device Functions

3.4.3

3.4.3.1

void xpvIxCBDataj;

const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
tBulkInstance *psPrivateBulkData;

}
tUSBDBulkDevice

Members:
usVID The vendor ID that this device is to present in the device descriptor.

usPID The product ID that this device is to present in the device descriptor.

usMaxPowermA The maximum power consumption of the device, expressed in milliamps.

ucPwrAttributes Indicates whether the device is self- or bus-powered and whether or
not it supports remote wakeup. Valid values are USB_CONF_ATTR_SELF_PWR or

USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

pfnRxCallback A pointer to the callback function which will be called to notify the application

of events related to the device’s data receive channel.

pVvRxCBData A client-supplied pointer which will be sent as the first parameter in all calls

made to the receive channel callback, pfnRxCallback.

pfnTxCallback A pointer to the callback function which will be called to notify the application

of events related to the device’s data transmit channel.

pvTxCBData A client-supplied pointer which will be sent as the first parameter in all calls

made to the transmit channel callback, pfnTxCallback.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain pointers to the following string descriptors in this order. Language descriptor, Man-
ufacturer name string (language 1), Product name string (language 1), Serial number string
(language 1), Interface description string (language 1) and Configuration description string

(language 1).

If supporting more than 1 language, the strings for indices 1 through 5 must be repeated

for each of the other languages defined in the language descriptor.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-

ray. This must be 1 + (5 * number of supported languages).

psPrivateBulkData A pointer to private instance data for this device. This memory must re-
main accessible for as long as the bulk device is in use and must not be modified by any

code outside the bulk class driver.

Description:
The structure used by the application to define operating parameters for the bulk device.

Define Documentation

COMPOSITE_DBULK_SIZE

Definition:
#define COMPOSITE_DBULK_SIZE

Description:

The size of the memory that should be allocated to create a configuration descriptor for a single
instance of the USB Bulk Device. This does not include the configuration descriptor which is

automatically ignored by the composite device class.

April 8, 2013

75

Device Functions

3.4.4 Function Documentation
3.4.41 USBDBulkCompositelnit
Initializes bulk device operation for a given USB controller.
Prototype:
void =*
USBDBulkCompositeInit (unsigned long ulIndex,
const tUSBDBulkDevice xpsDevice)
Parameters:
ulindex is the index of the USB controller which is to be initialized for bulk device operation.
psDevice points to a structure containing parameters customizing the operation of the bulk
device.
Description:
This call is very similar to USBDBulkInit() except that it is used for initializing an instance of the
bulk device for use in a composite device.
Returns:
Returns zero on failure or a non-zero value that should be used with the remaining USB HID
Bulk APIs.
3.4.4.2 USBDBulkInit
Initializes bulk device operation for a given USB controller.
Prototype:
void =
USBDBulkInit (unsigned long ulIndex,
const tUSBDBulkDevice xpsDevice)
Parameters:
ulindex is the index of the USB controller which is to be initialized for bulk device operation.
psDevice points to a structure containing parameters customizing the operation of the bulk
device.
Description:
An application wishing to make use of a USB bulk communication channel must call this func-
tion to initialize the USB controller and attach the device to the USB bus. This function performs
all required USB initialization.
On successful completion, this function will return the psDevice pointer passed to it. This must
be passed on all future calls to the device driver related to this device.
The USBDBuIK interface offers packet-based transmit and receive operation. If the application
would rather use block based communication with transmit and receive buffers, USB buffers
may be used above the bulk transmit and receive channels to offer this functionality.
Transmit Operation:
Calls to USBDBulkPacketWrite must send no more than 64 bytes of data at a time and may
only be made when no other transmission is currently outstanding.
76 April 8, 2013

Device Functions

3.4.4.3

3.44.4

Once a packet of data has been acknowledged by the USB host, a
USB_EVENT_TX _COMPLETE event is sent to the application callback to inform it that
another packet may be transmitted.

Receive Operation:

An incoming USB data packet will result in a call to the application callback with event
USBD_EVENT_RX_AVAILABLE. The application must then call USBDBulkPacketRead(),
passing a buffer capable of holding 64 bytes, to retrieve the data and acknowledge reception
to the USB host.

Note:
The application must not make any calls to the low level USB Device API if interacting with USB
via the USB bulk device class API. Doing so will cause unpredictable (though almost certainly
unpleasant) behavior.

Returns:
Returns NULL on failure or the psDevice pointer on success.

USBDBulkPacketRead

Reads a packet of data received from the USB host via the bulk data interface.

Prototype:
unsigned long
USBDBulkPacketRead (void xpvInstance,
unsigned char =*pcData,
unsigned long ulLength,
tBoolean bLast)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulKInit().

pcData points to a buffer into which the received data will be written.
ulLength is the size of the buffer pointed to by pcData.

bLast indicates whether the client will make a further call to read additional data from the
packet.

Description:
This function reads up to ulLength bytes of data received from the USB host into the supplied
application buffer. If the driver detects that the entire packet has been read, it is acknowledged
to the host.

The bLast parameter is ignored in this implementation since the end of a packet can be deter-
mined without relying upon the client to provide this information.

Returns:
Returns the number of bytes of data read.

USBDBulkPacketWrite

Transmits a packet of data to the USB host via the bulk data interface.

April 8, 2013

77

Device Functions

3.4.45

Prototype:
unsigned long
USBDBulkPacketWrite (void xpvInstance,
unsigned char =*pcData,
unsigned long ulLength,
tBoolean blast)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulkInit().
pcData points to the first byte of data which is to be transmitted.
ulLength is the number of bytes of data to transmit.
bLast indicates whether more data is to be written before a packet should be scheduled for
transmission. If true, the client will make a further call to this function. If false, no further
call will be made and the driver should schedule transmission of a short packet.

Description:
This function schedules the supplied data for transmission to the USB host in a single USB
packet. If no transmission is currently ongoing, the data is immediately copied to the relevant
USB endpoint FIFO for transmission. Whenever a USB packet is acknowledged by the host,
a USB_EVENT_TX_COMPLETE event will be sent to the transmit channel callback indicating
that more data can now be transmitted.

The maximum value for ulLength is 64 bytes (the maximum USB packet size for the bulk end-
points in use by the device). Attempts to send more data than this will result in a return code
of 0 indicating that the data cannot be sent.

The bLast parameter allows a client to make multiple calls to this function before scheduling
transmission of the packet to the host. This can be helpful if, for example, constructing a packet
on the fly or writing a packet which spans the wrap point in a ring buffer.

Returns:
Returns the number of bytes actually sent. At this level, this will either be the number of bytes
passed (if less than or equal to the maximum packet size for the USB endpoint in use and no
outstanding transmission ongoing) or 0 to indicate a failure.

USBDBulkPowerStatusSet

Reports the device power status (bus- or self-powered) to the USB library.

Prototype:
void
USBDBulkPowerStatusSet (void spvInstance,
unsigned char ucPower)

Parameters:
pvinstance is the pointer to the bulk device instance structure.
ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus- or self-powered operation should call this
function whenever the power source changes to indicate the current power status to the USB
library. This information is required by the USB library to allow correct responses to be provided
when the host requests status from the device.

78

April 8, 2013

Device Functions

3.4.4.6

3.4.4.7

3.4.4.8

Returns:
None.

USBDBulkRemoteWakeupRequest

Requests a remote wake up to resume communication when in suspended state.

Prototype:
tBoolean
USBDBulkRemoteWakeupRequest (void xpvInstance)

Parameters:
pvinstance is the pointer to the bulk device instance structure.

Description:
When the bus is suspended, an application which supports remote wake up (advertised to the
host via the configuration descriptor) may call this function to initiate remote wake up signaling
to the host. If the remote wake up feature has not been disabled by the host, this will cause
the bus to resume operation within 20mS. If the host has disabled remote wake up, false will
be returned to indicate that the wake up request was not successful.

Returns:
Returns true if the remote wake up is not disabled and the signaling was started or false if
remote wake up is disabled or if signaling is currently ongoing following a previous call to this
function.

USBDBulkRxPacketAvailable

Determines whether a packet is available and, if so, the size of the buffer required to read it.

Prototype:
unsigned long
USBDBulkRxPacketAvailable (void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulkInit().

Description:
This function may be used to determine if a received packet remains to be read and allows the
application to determine the buffer size needed to read the data.

Returns:
Returns 0 if no received packet remains unprocessed or the size of the packet if a packet is
waiting to be read.

USBDBulkSetRxCBData

Sets the client-specific pointer parameter for the receive channel callback.

April 8, 2013

79

Device Functions

Prototype:
void =*
USBDBulkSetRxCBData (void xpvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulKInit().

pvCBData is the pointer that client wishes to be provided on each event sent to the receive
channel callback function.

Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnRxCallback function passed on USBDBulkInit().

If a client wants to make runtime changes in the callback pointer, it must ensure that the pvin-
stance structure passed to USBDBulkInit() resides in RAM. If this structure is in flash, callback
pointer changes will not be possible.

Returns:
Returns the previous callback pointer that was being used for this instance’s receive callback.

3.4.49 USBDBulkSetTxCBData
Sets the client-specific pointer parameter for the transmit callback.
Prototype:
void =
USBDBulkSetTxCBData (void xpvInstance,
void xpvCBData)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulKInit().
pvCBData is the pointer that client wishes to be provided on each event sent to the transmit
channel callback function.
Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnTxCallback function passed on USBDBulkInit().
If a client wants to make runtime changes in the callback pointer, it must ensure that the pvin-
stance structure passed to USBDBulkInit() resides in RAM. If this structure is in flash, callback
pointer changes will not be possible.
Returns:
Returns the previous callback pointer that was being used for this instance’s transmit callback.
3.4.4.10 USBDBulkTerm
Shut down the bulk device.
Prototype:
void
USBDBulkTerm(void xpvInstance)
80 April 8, 2013

Device Functions

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulKInit().

Description:
This function terminates device operation for the instance supplied and removes the device
from the USB bus. This function should not be called if the bulk device is part of a composite
device and instead the USBDCompositeTerm() function should be called for the full composite
device.

Following this call, the pvinstance instance should not me used in any other calls.

Returns:
None.

3.4.4.11 USBDBulkTxPacketAvailable

Returns the number of free bytes in the transmit buffer.

Prototype:
unsigned long
USBDBulkTxPacketAvailable (void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDBulkInit().

Description:
This function returns the maximum number of bytes that can be passed on a call to USBD-
BulkPacketWrite and accepted for transmission. The value returned will be the maximum USB
packet size (64) if no transmission is currently outstanding or 0 if a transmission is in progress.

Returns:
Returns the number of bytes available in the transmit buffer.

3.5 CDC Device Class Driver

The USB Communication Device Class (CDC) class driver supports the CDC Abstract Control
Model variant and allows a client application to be seen as a virtual serial port to the USB host
system. The driver provides two channels, one transmit and one receive. The channels may be
used in conjunction with USB buffers to provide a simple read/write interface for data transfer to and
from the host. Additional APIs and events are used to support serial-link-specific operations such as
notification of UART errors, sending break conditions and setting communication line parameters.

The data transmission capabilities of this device class driver are very similar to the generic
bulk class but, since this is a standard device class, the host operating system will likely
be able to access the device without the need for any special additional device drivers.
On Windows, for example, a simple INF file is all that is required to make the USB de-
vice appear as a COM port which can be accessed by any serial terminal application.

April 8, 2013 81

Device Functions

USB CDC Device Model

Receive Channel

Bulk OUT
Interrupt IN
@
o
T
m Bulk IN
7
o
Endpoint 0I

USB Driver

USB Device API

CDC Class Driver

§Opti0naI§
——®» USB —»
i Buffer |

§Opti0naI§
4—— USB €—
i Buffer |

Control Channel

Application Code

This device class uses three endpoints in addition to endpoint zero. Two bulk endpoints carry data
to and from the host and an interrupt IN endpoint is used to signal any serial errors such as break,
framing error or parity error detected by the device. Endpoint zero carries standard USB requests
and also CDC-specific requests which translate to events passed to the application via the control

channel callback.

The usb_dev_serial example application makes use of this device class driver.

3.51 CDC Device Class Events

The CDC device class driver sends the following events to the application callback functions:

3.5.1.1 Receive Channel Events

B USB_EVENT_RX_AVAILABLE

B USB_EVENT_DATA_REMAINING

B USB_EVENT_ERROR

3.5.1.2 Transmit Channel Events

B USB_EVENT_TX_COMPLETE

3.5.1.3 Control Channel Events

B USB_EVENT_CONNECTED

B USB_EVENT_DISCONNECTED
B USB_EVENT_SUSPEND

B USB_EVENT_RESUME

82

April 8, 2013

Device Functions

B USBD_CDC_EVENT_SEND_BREAK
B USBD_CDC_EVENT_CLEAR_BREAK
USBD_CDC_EVENT_SET_LINE_CODING
USBD_CDC_EVENT_GET_LINE_CODING

USBD_CDC_EVENT_SET_CONTROL_LINE_STATE

3.5.2 Using the CDC Device Class Driver

To add USB CDC data transmit and receive capability to your application via the CDC Device Class
Driver, take the following steps.

m Add the following header files to the source file(s) which are to support USB:

#include "src/usb.h"

#include "usblib/usblib.h"

finclude "usblib/device/usbdevice.h"
#include "usblib/device/usbdcdc.h"

m Define the 6 entry string descriptor table which is used to describe various features of your new
device to the host system. The following is the string table taken from the usb_dev_serial
example application. Edit the actual strings to suit your application and take care to ensure
that you also update the length field (the first byte) of each descriptor to correctly reflect the
length of the string and descriptor header. The number of string descriptors you include must
be (1 + (5 * num languages)) where the number of languages agrees with the list published in
string descriptor 0, g_pLangDescriptor. The strings for each language must be grouped
together with all the language 1 strings before all the language 2 strings and so on.

//***
//

// The languages supported by this device.

//

//***k*k*********k*k*********k*k***********k*k***
const unsigned char g_pLangDescriptor([] =
{
4/
USB_DTYPE_STRING,
USBShort (USB_LANG_EN_US)
bi

//***

//
// The manufacturer string.

//

//***
const unsigned char g_pManufacturerStringl[] =

{

2 + (22 = 2),
USB_DTYPE_STRING,
ITI, O’ IeI, O, IXI, O, IaI’ O, ISI, O’ 4 I, O, III, O, InI’ O,

April 8, 2013 83

Device Functions

//***

//
// The product string.
//

//***

const unsigned char g_pProductString|]
{
2 + (16 = 2),
USB_DTYPE_STRING,
‘v, 0, i, 0, 'x’, 0, 't*, 0, 'u’, 0, &', 0, 717, 0, " ', O,
rc*, o, 'o’, 0, '@¥', 0, ', 0, e, 0, o', 0, 'xr’, 0, 't’, O

//***
// The serial number string.

//

//***
const unsigned char g_pSerialNumberString[] =
{

2 + (8 « 2),

USB_DTYPE_STRING,

ri, o, 2, 0, 3", 0, 4", 0, '5", 0, '6", O, 7", 0, '8, O

//***
// The control interface description string.

//

//***
const unsigned char g_pControlInterfaceString[] =
{

2 + (21 % 2),

USB_DTYPE_STRING,

'a*, 0, ’c’, 0, '™, 0, ', 0, 'c, 0, 0o, 0, 'n’, 0, 't’, O,

"vr*, 0, '0o’, O, "1, O, * ', O, "1, 0, 'n*, O, 't’, 0, 'e’", O,

"y, 0, £, 0, 'a’, 0, 'c’, 0, 'e'", O

//***
//
// The configuration description string.

//

//***
const unsigned char g_pConfigStringl[] =

{
2 + (26 x 2),

84

April 8, 2013

Device Functions

USB_DTYPE_STRING,

rs, 0, e, 0, "1, 0, £, 0, ", 0O, 'P", 0, 'O, O, "W, O,
e, 0, "', 0, 'e", 0, a4, 0, ", 0O, 'Cc", 0, 'O, 0, 'n’, O,
r¢r, 0, i, 0, 'g’, 0, 'u’, 0, ', 0, ', 0, 't’, O, "i’, O,
"o", 0, 'n’", O

}i

//****~k~k*********~k~k**
//
// The descriptor string table.
//
//***
const unsigned char x const g_pStringDescriptors|[] =
{

g_pLangDescriptor,

g_pManufacturerString,

g_pProductString,

g_pSerialNumberString,

g_pControlInterfaceString,

g_pConfigString
bi

#define NUM_STRING_DESCRIPTORS (sizeof (g_pStringDescriptors) / \
sizeof (unsigned char «*))

m Define a tCDCSerlInstance structure which the USB CDC serial device class driver uses to
store its internal state information. This should never be accessed by the application.

//**‘k‘k*‘k*k‘k*****‘k‘k‘k‘k******‘k‘k*‘k*k******‘k*k‘k‘k‘k*****‘k‘k‘k‘k*k*******‘k‘k‘k***‘k‘k**‘k**‘k‘k**‘k‘k**
// The CDC serial device private data.
//**************k**********************k***

tCDCSerInstance g_sSeriallnstance;

m Define a tUSBDCDCDevice structure and initialize all fields as required for your application.
The following example illustrates a simple case where no USB buffers are in use. For an exam-
ple using USB buffers, see the source file usb_bulk_structs.c inthe usb_dev_serial
example application.

const tUSBDCDCDevice g_sCDCDevice =
{
//
// The Vendor ID you have been assigned by USB-IF.
//
USB_VID_YOUR_VENDOR_ID,

//
// The product ID you have assigned for this device.

/7
USB_PID_YOUR_PRODUCT_ID,

April 8, 2013

85

Device Functions

//

// The power consumption of your device in milliamps.
//

POWER_CONSUMPTION_mA,

//

// The value to be passed to the host in the USB configuration descriptor’s
// bmAttributes field.

//

USB_CONF_ATTR_SELF_PWR,

//

// A pointer to your control callback event handler.
//

YourUSBControlEventCallback,

//

// A value that you want passed to the control callback alongside every
// event.

//

(void %) &g_sYourInstanceData,

//
// A pointer to your receive callback event handler.

//
YourUSBReceiveEventCallback,

//

// A value that you want passed to the receive callback alongside every
// event.

//

(void %) &g_sYourInstanceData,

//
// A pointer to your transmit callback event handler.

//
YourUSBTransmitEventCallback,

//

// A value that you want passed to the transmit callback alongside every
// event.

//

(void x)&g_sYourInstanceData,

//

// A pointer to your string table.
//

g_pStringDescriptors,

//
// The number of entries in your string table.

//

86

April 8, 2013

Device Functions

}i

NUM_STRING_DESCRIPTORS,

//
// A pointer to the private structure allocated for the class driver
//

&g_sSeriallnstance

Add a receive event handler function, YourUSBReceiveEventCallback in the previous example,
to your application taking care to handle all messages which require a particular response. For
the CDC device class, USB_EVENT_RX_AVAILABLE and USB_EVENT_DATA_REMAINING
MUST be handled by the receive event handler.

In response to USB_EVENT_RX_AVAILABLE, your handler should check the amount of data
received by calling USBDCDCRxPacketAvailable() then read it using a call to USBDCDCPack-
etRead(). This causes the newly received data to be acknowledged to the host and instructs
the host that it may now transmit another packet. If you are unable to read the data im-
mediately, return 0 from the callback handler and you will be called back once again a few
milliseconds later.

On USB_EVENT_DATA_REMAINING the application should return the number of bytes of data
it currently has buffered. This event controls timing of some incoming requests to, for example,
send break conditions or change line transmission parameters. These requests are held off
until all previously received data has been processed so it is important to ensure that this event
returns 0 only once any application buffers are empty.

Although no other events must be handled, USB_EVENT_CONNECTED and
USB_EVENT_DISCONNECTED will typically be required since these indicate when a host
connects or disconnects and allow the application to flush any buffers or reset state as
required. Attempts to send data when the host is disconnected will fail.

Add a transmit event handler function, YourUSBTransmitEventCallback in the previous exam-
ple, to your application taking care to handle all messages which require a particular response.
For the CDC device class, there are no events sent to the transmit callback which MUST be
handled but applications will usually want to note USB_EVENT_TX_COMPLETE since this is an
interlock message indicating that the previous packet sent has been acknowledged by the host
and a new packet can now be sent.

Add a control event handler function, YourUSBControlEventCallback in the previous exam-
ple, to your application and ensure that you handle USBD_CDC_EVENT_GET_LINE_CODING,
returning a valid line coding configuration even if your device is not actually driving a UART.
Handle the other control events as required for your application.

From your main initialization function call the CDC device class driver initialization function to
configure the USB controller and place the device on the bus.

pDevice = USBDCDCInit (0, &g_sCDCDevice);

Assuming pDevice returned is not NULL, your device is how ready to communicate with a
USB host.

Once the host connects, your control event handler will be sent USB_EVENT_CONNECTED and
the first packet of data may be sent to the host using USBDCDCPacketWrite() with following
packets transmitted as soon as USB_EVENT_TX_COMPLETE is received via the transmit event
handler.

April 8, 2013

87

to use.

Device Functions

3.5.3 Using the Composite CDC Serial Device Class

When using the CDC serial device class in a composite, the configuration of the device is very
similar to how it is configured as a non-composite device. Follow all of the configuration steps in the
previous section with the exception of calling USBDCDCCompositelnit() instead of USBDCDCInit().
This will prepare an instance of the CDC serial device class to be enumerated as part of a composite
device. The return value from the USBDCDCCompositelnit() function should be placed in the
pvinstance member of the tCompositeEntry structure for the CDC serial device. The code example
below provides an example of how to initialize the tCompositeEntry structure.

//
// These should be initialized with wvalid values for each class.
//

extern tUSBDCompositeDevice g_sCompDevice;
extern tUSBDCDCDevice g_sCDCDevice;

//
// The OTHER_SIZES here are the sizes of the descriptor data for other classes
// that are part of the composite device.

//
#define DESCRIPTOR_DATA_SIZE (COMPOSITE_DCDC_SIZE + OTHER_SIZES)
unsigned char g_pucDescriptorData[DESCRIPTOR_DATA_SIZE];

tCompositeEntry psCompEntries[2];

//

// Set the CDC serial device information.
//

psCompEntries[0] .psDevice = g_sCDCSerDevicelInfo;

//

// Save the instance data for this CDC serial device.

//

psCompEntries[0] .pvInstance = USBDCDCCompositeInit (0, &g_sCDCDevice);

//
// Initialize other devices to add to the composite device.

//

//

// Save the device entries in the composite device.
//

g_sCompDevice.psDevices = psCompEntries;

USBDCompositeInit (0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
g_pucDescriptorData) ;

88 April 8, 2013

Device Functions

All other API calls to the USB CDC serial device class should use the value returned by USBD-
CDCCompositelnit() when the API calls for a pvinstance pointer. Also when using the CDC serial
device in a composite device the COMPOSITE_DCDC_SIZE value should be added to the size of
the g_pucDescriptorData array as shown in the example above.

3.5.4 Windows Drivers for CDC Serial Devices

Making your CDC serial) device visible as a virtual COM port on a Windows system is very straight-
forward since Windows already includes a device driver supporting USB CDC devices. The device
developer must merely provide a single INF file to associate the VID and PID of the new device with
the Windows USB CDC driver, usbser . sys. When using the serial device in a composite device
it is important to remember to append &MI_xx value to the VID/PID entry as shown in the example
below. The actual number used with the MI_x value is the interface number assigned to the serial
device. An example INF file is provided below. Unlike the case for the generic bulk device class, no
additional installation files are necessary since the CDC serial driver is already installed by default
and does not, therefore, have to be redistributed by the device developer.

14

; Texas Instruments USB CDC (serial) driver installation file.
’

[Version]

Signature="S$Windows NTS$"

Class=Ports

ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%$MFGNAMES%

LayoutFile=layout.inf

DriverVer=08/17/2001,5.1.2600.0

[Manufacturer]
$SMFGNAME%=DevicelList

[DestinationDirs]
DefaultDestDir=12

[SourceDisksFiles]

[SourceDisksNames]

; NOTE: Change the VID and PID in the following section to match your device.
; The values with the &MI_xx values are for the composite serial devices
; examples.

4

[Devicelist]

7

; This entry is for the single serial port example usb_dev_serial.
7

$DESCRIPTION_O%=DriverInstall, USB\VID_1CBE&PID_0002

April 8, 2013 89

Device Functions

; These entries are for the dual serial port composite example usb_dev_cserial.
;

$DESCRIPTION_O0%=DriverInstall,USB\VID_1CBE&PID_0007&MI_00
$DESCRIPTION_1%=DriverInstall,USB\VID_1CBE&PID_0007&MI_01

7

; This entry is for the composite hid/serial device usb_dev_chidcdc. Notice
; that the value is MI_01 because the serial device is on interface 1.

7

$DESCRIPTION_1%=DriverInstall,USB\VID_1CBE&PID_0009&MI_01

[DriverInstall.nt]
CopyFiles=DriverCopyFiles
AddReg=DriverInstall.nt.AddReg

[DriverCopyFiles]
usbser.sys,,, 0x20

[DriverInstall.nt.AddReqg]

HKR, ,DevLoader, , xntkern

HKR, ,NTMPDriver, ,usbser.sys

HKR, , EnumPropPages32,, "MsPorts.dll, SerialPortPropPageProvider"

[DriverInstall.nt.Services]
AddService=usbser, 0x00000002, DriverService

[DriverService]
DisplayName=%SERVICES%
ServiceType=1
StartType=3
ErrorControl=1l
ServiceBinary=%12%\usbser.sys

; String Definitions (change for your device)

[Strings]

MFEF'GNAME = "Texas Instruments"
DESCRIPTION_O = "TI USB Serial Port"
DESCRIPTION_1 = "TI USB Serial Command Port"
SERVICE = "TI USB CDC serial port"

90 April 8, 2013

Device Functions

3.6

3.6.1

CDC Device Class Driver Definitions

Data Structures

m tLineCoding
m tUSBDCDCDevice

Defines

COMPOSITE_DCDC_SIZE
USBD_CDC_EVENT_CLEAR_BREAK
USBD_CDC_EVENT_GET_LINE_CODING
USBD_CDC_EVENT_SEND_BREAK
USBD_CDC_EVENT_SET_CONTROL_LINE_STATE
USBD_CDC_EVENT_SET_LINE_CODING

Functions

m void x USBDCDCCompositelnit (unsigned long ullndex, const tUSBDCDCDevice
xpsCDCDevice)

m void « USBDCDCInit (unsigned long ullndex, const tUSBDCDCDevice «psCDCDevice)

m unsigned long USBDCDCPacketRead (void *pvinstance, unsigned char s«pcData, unsigned
long ulLength, tBoolean bLast)

m unsigned long USBDCDCPacketWrite (void spvinstance, unsigned char xpcData, unsigned
long ulLength, tBoolean bLast)

void USBDCDCPowerStatusSet (void xpvinstance, unsigned char ucPower)
tBoolean USBDCDCRemoteWakeupRequest (void xpvinstance)

unsigned long USBDCDCRxPacketAvailable (void xpvinstance)

void USBDCDCSerialStateChange (void *pvInstance, unsigned short usState)
void * USBDCDCSetControlCBData (void xpvinstance, void xpvCBData)

void * USBDCDCSetRxCBData (void xpvinstance, void xpvCBData)

void * USBDCDCSetTxCBData (void «pvinstance, void xpvCBData)

void USBDCDCTerm (void xpvinstance)

unsigned long USBDCDCTxPacketAvailable (void *pvinstance)

Detailed Description

The macros and functions defined in this section can be found in header file device/usbdcdc.h.
Users of the CDC device class driver will also need to include usbcdc.h which contains general
CDC definitions required by both host and device implementations.

April 8, 2013

91

Device Functions

3.6.2 Data Structure Documentation

3.6.2.1 tLineCoding

Definition:

typedef struct

{
tLong ulRate;
unsigned char ucStop;
unsigned char ucParity;
unsigned char ucDatabits;

}

tLineCoding

Members:
ulRate The data terminal rate in bits per second.

ucStop The number of stop bits. Valid values are USB CDC STOP BITS 1,
USB_CDC_STOP_BITS_1_5or USB_CDC_STOP_BITS_2

ucParity The parity setting. Valid values are USB_CDC_PARITY_NONE,
USB_CDC _PARITY _ODD, USB CDC PARITY EVEN, USB CDC_PARITY_MARK
and USB_CDC_PARITY_SPACE.

ucDatabits The number of data bits per character. Valid values are 5, 6, 7 and 8 in this
implementation.

Description:
USB_CDC_GET/SET_LINE_CODING request-specific data.

3.6.2.2 tUSBDCDCDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
tUSBCallback pfnControlCallback;
void xpvControlCBData;
tUSBCallback pfnRxCallback;
void xpvRxCBData;
tUSBCallback pfnTxCallback;
void xpvIxCBData;
const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
tCDCSerInstance xpsPrivateCDCSerData;

}

tUSBDCDCDevice

Members:
usVID The vendor ID that this device is to present in the device descriptor.
usPID The product ID that this device is to present in the device descriptor.

92 April 8, 2013

Device Functions

3.6.3

3.6.3.1

3.6.3.2

usMaxPowermA The maximum power consumption of the device, expressed in milliamps.

ucPwrAttributes Indicates whether the device is self- or bus-powered and whether or
not it supports remote wakeup. Valid values are USB_CONF_ATTR_SELF_PWR or
USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

pfnControlCallback A pointer to the callback function which will be called to notify the appli-
cation of all asynchronous control events related to the operation of the device.

pvControlCBData A client-supplied pointer which will be sent as the first parameter in all calls
made to the control channel callback, pfnControlCallback.

pfnRxCallback A pointer to the callback function which will be called to notify the application
of events related to the device’s data receive channel.

pvRxCBData A client-supplied pointer which will be sent as the first parameter in all calls
made to the receive channel callback, pfnRxCallback.

pfnTxCallback A pointer to the callback function which will be called to notify the application
of events related to the device’s data transmit channel.

pvTxCBData A client-supplied pointer which will be sent as the first parameter in all calls
made to the transmit channel callback, pfnTxCallback.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain the following string descriptor pointers in this order. Language descriptor, Manu-
facturer name string (language 1), Product name string (language 1), Serial number string
(language 1), Control interface description string (language 1), Configuration description
string (language 1).
If supporting more than 1 language, the strings for indices 1 through 5 must be repeated
for each of the other languages defined in the language descriptor.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-
ray. This must be 1 + (5 * number of supported languages).

psPrivateCDCSerData A pointer to the private instance data for this device. This memory
must remain accessible for as long as the CDC device is in use and must not be modified
by any code outside the CDC class driver.

Description:

The structure used by the application to define operating parameters for the CDC device.

Define Documentation

COMPOSITE_DCDC_SIZE

Definition:

#define COMPOSITE_DCDC_SIZE

Description:

The size of the memory that should be allocated to create a configuration descriptor for a single
instance of the USB Serial CDC Device. This does not include the configuration descriptor
which is automatically ignored by the composite device class.

USBD_CDC_EVENT_CLEAR_BREAK

Definition:

#define USBD_CDC_EVENT_CLEAR_BREAK

April 8, 2013

93

Device Functions

3.6.3.3

3.6.3.4

3.6.3.5

3.6.3.6

Description:
The host requests that the device stop sending a BREAK condition on its serial communication
channel.

USBD_CDC_EVENT_GET_LINE_CODING

Definition:
#define USBD_CDC_EVENT_ GET_ LINE_CODING

Description:
The host is querying the current RS232 communication parameters. The pvMsgData parame-
ter points to a tLineCoding structure that the application must fill with the current settings prior
to returning from the callback.

USBD_CDC_EVENT_SEND_BREAK

Definition:
#define USBD_CDC_EVENT_SEND_BREAK

Description:
The host requests that the device send a BREAK condition on its serial communication chan-
nel. The BREAK should remain active until a USBD CDC_EVENT CLEAR BREAK event is
received.

USBD_CDC_EVENT_SET_CONTROL_LINE_STATE

Definition:
#define USBD_CDC_EVENT_SET CONTROL_LINE_STATE

Description:
The host requests that the device set the RS232 signaling lines to a particular state. The
ulMsgValue parameter contains the RTS and DTR control line states as defined in table 51 of
the USB CDC class definition and is a combination of the following values:

(RTS) USB_CDC_DEACTIVATE_CARRIER or USB_CDC_ACTIVATE_CARRIER (DTR)
USB_CDC_DTE_NOT_PRESENT or USB_CDC_DTE_PRESENT

USBD_CDC_EVENT SET_LINE_CODING

Definition:
#define USBD_CDC_EVENT_SET_ LINE_CODING

Description:
The host requests that the device set the RS232 communication parameters. The pvMsgData
parameter points to a tLineCoding structure defining the required number of bits per character,
parity mode, number of stop bits and the baud rate.

94

April 8, 2013

Device Functions

3.6.4

3.6.4.1

3.6.4.2

Function Documentation

USBDCDCCompositelnit

Initializes CDC device operation when used with a composite device.

Prototype:
void =*
USBDCDCCompositelInit (unsigned long ullIndex,
const tUSBDCDCDevice xpsCDCDevice)

Parameters:
ulindex is the index of the USB controller in use.
psCDCDevice points to a structure containing parameters customizing the operation of the
CDC device.

Description:
This call is very similar to USBDCDCInit() except that it is used for initializing an instance of the
serial device for use in a composite device.

Returns:
Returns NULL on failure or the psCDCDevice pointer on success.

USBDCDClInit

Initializes CDC device operation for a given USB controller.

Prototype:
void =*
USBDCDCInit (unsigned long ullIndex,
const tUSBDCDCDevice xpsCDCDevice)

Parameters:
ullndex is the index of the USB controller which is to be initialized for CDC device operation.

psCDCDevice points to a structure containing parameters customizing the operation of the
CDC device.

Description:
An application wishing to make use of a USB CDC communication channel and appear as a
virtual serial port on the host system must call this function to initialize the USB controller and
attach the device to the USB bus. This function performs all required USB initialization.

The value returned by this function is the psCDCDevice pointer passed to it if successful. This
pointer must be passed to all later calls to the CDC class driver to identify the device instance.

The USB CDC device class driver offers packet-based transmit and receive operation. If the
application would rather use block based communication with transmit and receive buffers,
USB buffers on the transmit and receive channels may be used to offer this functionality.

Transmit Operation:

Calls to USBDCDCPacketWrite() must send no more than 64 bytes of data at a time and may
only be made when no other transmission is currently outstanding.

April 8, 2013

95

Device Functions

3.6.4.3

Once a packet of data has been acknowledged by the USB host, a
USB_EVENT_TX_COMPLETE event is sent to the application callback to inform it that
another packet may be transmitted.

Receive Operation:

An incoming USB data packet will result in a call to the application callback with event
USB_EVENT_RX_AVAILABLE. The application must then call USBDCDCPacketRead(),
passing a buffer capable of holding the received packet to retrieve the data and acknowl-
edge reception to the USB host. The size of the received packet may be queried by calling
USBDCDCRxPacketAvailable().

Note:
The application must not make any calls to the low level USB Device API if interacting with
USB via the CDC device class API. Doing so will cause unpredictable (though almost certainly
unpleasant) behavior.

Returns:
Returns NULL on failure or the psCDCDevice pointer on success.

USBDCDCPacketRead

Reads a packet of data received from the USB host via the CDC data interface.

Prototype:
unsigned long
USBDCDCPacketRead (void xpvInstance,
unsigned char xpcData,
unsigned long ulLength,
tBoolean blast)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().
pcData points to a buffer into which the received data will be written.
ulLength is the size of the buffer pointed to by pcData.

bLast indicates whether the client will make a further call to read additional data from the
packet.

Description:
This function reads up to ulLength bytes of data received from the USB host into the supplied
application buffer.

Note:
The bLast parameter is ignored in this implementation since the end of a packet can be deter-
mined without relying upon the client to provide this information.

Returns:
Returns the number of bytes of data read.

96

April 8, 2013

Device Functions

3.6.4.4 USBDCDCPacketWrite

Transmits a packet of data to the USB host via the CDC data interface.

Prototype:
unsigned long
USBDCDCPacketWrite (void xpvInstance,
unsigned char =*pcData,
unsigned long ulLength,
tBoolean blast)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().
pcData points to the first byte of data which is to be transmitted.
ulLength is the number of bytes of data to transmit.
bLast indicates whether more data is to be written before a packet should be scheduled for
transmission. If true, the client will make a further call to this function. If false, no further
call will be made and the driver should schedule transmission of a short packet.

Description:
This function schedules the supplied data for transmission to the USB host in a single
USB packet. If no transmission is currently ongoing the data is immediately copied to the
relevant USB endpoint FIFO. If the bLast parameter is true, the newly written packet is
then scheduled for transmission. Whenever a USB packet is acknowledged by the host, a
USB_EVENT_TX_COMPLETE event will be sent to the application transmit callback indicat-
ing that more data can now be transmitted.

The maximum value for ulLength is 64 bytes (the maximum USB packet size for the bulk end-
points in use by CDC). Attempts to send more data than this will result in a return code of 0
indicating that the data cannot be sent.

Returns:
Returns the number of bytes actually sent. At this level, this will either be the number of bytes
passed (if less than or equal to the maximum packet size for the USB endpoint in use and no
outstanding transmission ongoing) or 0 to indicate a failure.

3.6.4.5 USBDCDCPowerStatusSet

Reports the device power status (bus- or self-powered) to the USB library.

Prototype:
void
USBDCDCPowerStatusSet (void *pvInstance,
unsigned char ucPower)

Parameters:
pvinstance is the pointer to the CDC device instance structure.
ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus- or self-powered operation should call this
function whenever the power source changes to indicate the current power status to the USB

April 8, 2013 97

Device Functions

library. This information is required by the USB library to allow correct responses to be provided
when the host requests status from the device.

Returns:
None.

3.6.4.6 USBDCDCRemoteWakeupRequest
Requests a remote wakeup to resume communication when in suspended state.
Prototype:
tBoolean
USBDCDCRemoteWakeupRequest (void xpvInstance)
Parameters:
pvinstance is the pointer to the CDC device instance structure.
Description:
When the bus is suspended, an application which supports remote wakeup (advertised to the
host via the config descriptor) may call this function to initiate remote wakeup signaling to the
host. If the remote wakeup feature has not been disabled by the host, this will cause the bus to
resume operation within 20mS. If the host has disabled remote wakeup, false will be returned
to indicate that the wakeup request was not successful.
Returns:
Returns true if the remote wakeup is not disabled and the signaling was started or false if
remote wakeup is disabled or if signaling is currently ongoing following a previous call to this
function.
3.6.4.7 USBDCDCRXxPacketAvailable
Determines whether a packet is available and, if so, the size of the buffer required to read it.
Prototype:
unsigned long
USBDCDCRxPacketAvailable (void *pvInstance)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().
Description:
This function may be used to determine if a received packet remains to be read and allows the
application to determine the buffer size needed to read the data.
Returns:
Returns 0 if no received packet remains unprocessed or the size of the packet if a packet is
waiting to be read.
98 April 8, 2013

Device Functions

3.6.4.8

3.6.4.9

USBDCDCSerialStateChange

Informs the CDC module of changes in the serial control line states or receive error conditions.

Prototype:
void
USBDCDCSerialStateChange (void *pvInstance,
unsigned short usState)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().

usState indicates the states of the various control lines and any receive errors detected. Bit
definitions are as for the USB CDC SerialState asynchronous notification and are defined
in header file usbcdc.h.

Description:
The application should call this function whenever the state of any of the incoming RS232
handshake signals changes or in response to a receive error or break condition. The usState
parameter is the ORed combination of the following flags with each flag indicating the presence
of that condition.

USB_CDC_SERIAL_STATE_OVERRUN
USB_CDC_SERIAL_STATE_PARITY
USB_CDC_SERIAL_STATE_FRAMING
USB_CDC_SERIAL_STATE_RING_SIGNAL
USB_CDC_SERIAL_STATE_BREAK
USB_CDC_SERIAL_STATE_TXCARRIER
USB_CDC_SERIAL_STATE_RXCARRIER

This function should be called only when the state of any flag changes.

Returns:
None.

USBDCDCSetControlCBData

Sets the client-specific pointer for the control callback.

Prototype:
void =*
USBDCDCSetControlCBData (void *pvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().

pvCBData is the pointer that client wishes to be provided on each event sent to the control
channel callback function.

Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnControlCallback function passed on USBDCDCInit().

April 8, 2013

99

Device Functions

If a client wants to make runtime changes in the callback pointer, it must ensure that the psCD-
CDevice structure passed to USBDCDCInit() resides in RAM. If this structure is in flash, call-
back pointer changes will not be possible.

Returns:
Returns the previous callback pointer that was being used for this instance’s control callback.

3.6.4.10 USBDCDCSetRxCBData
Sets the client-specific data parameter for the receive channel callback.
Prototype:
void =
USBDCDCSetRxCBData (void xpvInstance,
void xpvCBData)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().
pvCBData is the pointer that client wishes to be provided on each event sent to the receive
channel callback function.
Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnRxCallback function passed on USBDCDCInit().
If a client wants to make runtime changes in the callback pointer, it must ensure that the psCD-
CDevice structure passed to USBDCDCInit() resides in RAM. If this structure is in flash, call-
back data changes will not be possible.
Returns:
Returns the previous callback pointer that was being used for this instance’s receive callback.
3.6.4.11 USBDCDCSetTxCBData
Sets the client-specific data parameter for the transmit callback.
Prototype:
void =
USBDCDCSetTxCBData (void xpvInstance,
void xpvCBData)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().
pvCBData is the pointer that client wishes to be provided on each event sent to the transmit
channel callback function.
Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnTxCallback function passed on USBDCDCInit().
If a client wants to make runtime changes in the callback pointer, it must ensure that the psCD-
CDevice structure passed to USBDCDCInit() resides in RAM. If this structure is in flash, call-
back data changes will not be possible.
100 April 8, 2013

Device Functions

Returns:
Returns the previous callback pointer that was being used for this instance’s transmit callback.

3.6.4.12 USBDCDCTerm

Shuts down the CDC device instance.

Prototype:
void
USBDCDCTerm (void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().

Description:
This function terminates CDC operation for the instance supplied and removes the device from
the USB bus. This function should not be called if the CDC device is part of a composite device
and instead the USBDCompositeTerm() function should be called for the full composite device.

Following this call, the pvinstance instance should not me used in any other calls.

Returns:
None.

3.6.4.13 USBDCDCTxPacketAvailable

Returns the number of free bytes in the transmit buffer.

Prototype:
unsigned long
USBDCDCTxPacketAvailable (void *pvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCDCInit().

Description:
This function returns the maximum number of bytes that can be passed on a call to USBDCD-
CPacketWrite and accepted for transmission. The value returned will be the maximum USB
packet size (64) if no transmission is currently outstanding or 0 if a transmission is in progress.

Returns:
Returns the number of bytes available in the transmit buffer.

3.7 Composite Device Class Driver

The USB composite device class allows classes that are already defined in the USB library to be
combined into a single composite device. The device configuration descriptors for the included
device classes are merged at run time and returned to the USB host controller during device
enumeration as a single composite USB device. Since each device class requires some unique

April 8, 2013 101

Device Functions

initialization, the device classes provide a separate initialization API that does not touch the USB
controller but does perform all other initialization. The initialization of the USB controller is deferred
until the USB composite device is initialized and has merged the multiple device configuration de-
scriptors into a single configuration descriptor so that it can properly initialize the USB controller.
The endpoint numbers, interface numbers, and string indexes that are included in the device con-
figuration descriptors are modified by the USB composite device class so that the values are valid
in the composite device configuration descriptor.

3.7.1 Defining a Composite Device

The USB composite device class is defined at the top level in the tUSBDCompositeDevice structure
which is used to describe the class to the USB library. In order for the USB composite device to
enumerate and function properly, all members of this structure must be filled with valid information.
The usVID and usPID values should have valid Vendor ID and Product ID values for the composite
device. The power requirements for the device as specified in the usMaxPowermA and ucPwrAt-
tributes and should take into account the power requirements and settings for all devices classes
that the composite device is using. The only truly optional member of the tUSBDCompositeDe-
vice structure is the pfnCallback function which provides notifications to the application that are
not handled by the individual device classes. The device specific strings should be included in the
ppStringDescriptors and ulNumStringDescriptors members. This list of strings should include the
following three strings in the following order: Manufacturer, Product, and Product serial number. All
other strings used by the classes are specified and are sourced from the included device classes.
The psPrivateData should be set to point to a tCompositelnstance structure which provides the
composite class with memory for its instance data.
Note: It is important to insure that your microcontroller has enough endpoints to satisfy the number
of devices included in the composite class.
Example:
tCompositeInstance g_CompInstance;
unsigned long g_pulCompWorkspace [NUM_DEVICES];
tUSBDCompositeDevice g_sCompDevice =
{

//

// Vendor 1ID.

//

VENDOR_ID,

//

// Product ID.

//

VENDOR_PRODUCT_ID,

//

// This is in 2mA increments or 500mA.

//

250,

//

// Bus powered device.

102 April 8, 2013

Device Functions

3.7.2

!/
USB_CONF_ATTR_BUS_PWR,

//
// Generic USB handler for the composite device.
//

CompositeHandler,

//
// The string table.
//
g_pStringDescriptors,

NUM_STRING_DESCRIPTORS,

//
// The number of device classes in the composite entry array.

//
NUM_DEVICES,
g_psCompDevices,

//
// The instance data for the composite class. The first value provided
// here must point to a buffer containing NUM_DEVICES unsigned longs.

// 1s used by the composite device class to hold a lookup table allowing it
// to correctly steering callbacks to the relevant interface or endpoint.

// The second value is a pointer to the class instance structure which
// provides storage for state information required for operation of the
// class.

//

//

g_pulCompWorkspace,

&g_CompInstance

}i

Allocating Memory

The USB composite device class requires three different types of memory allocated to properly
enumerate and function with the included device classes. The first is the simple instance data that
is provided in the tCompositelnstance structure and is shown in the previous section. This is a
static allocation for the composite device instance and is used internally by the composite device
class. The second allocation is a block of memory that is used to build up the combined device
configuration descriptor for the combination of the desired device classes. The individual device
classes will provide a size in a COMPOSITE_x_SIZE macro that indicates the size in bytes required
to hold the configuration descriptor for the device class. This allows the application to provide a
large enough buffer to the USBDCompositelnit() function for merging the device descriptors. The
last type of allocation is any data that is needed by the individual device classes. Each instance of
each class will likely need some memory allocated separately to each instance of a device.

April 8, 2013

103

Device Functions

3.7.2.1

3.7.2.2

3.7.2.3

Defining Device Class Instances

When defining a composite device the application must determine the size of the buffer that is
passed into the USBDCompositelnit() function. For example, if a composite device is made up of
two serial devices then a buffer of size (COMPOSITE_DCDC_SIZE x 2) should be passed into the
initialization routine and an array of that size should be declared in the application.

unsigned char pucDesciptorData[COMPOSITE_DCDC_SIZEx2];

The application must also provide separate instance data for each instance of the devices that it is
including in the composite device. This is true even when including two devices classes of the same
type so that the instances can be differentiated by the USB library. The USB composite device class
can determine which instance to use based on the interface number that is accessed by the host
controller. The application provides the instance data in the array of tCompositeEntry structures
passed into the composite class in the psDevices member of the tUSBDCompositeDevice structure.
Notice in the example below that the device information is common (g_sCDCSerDevicelnfo) but that
each has its own instance data (sCDCDeviceA and sCDCDeviceB).

Example: Two serial instances

extern tUSBDCDCDevice g_sCDCDeviceA;
extern tUSBDCDCDevice g_sCDCDeviceB;

tCompositeEntry g_psDevices[2]=
{
{
&g_sCDCSerDevicelInfo,
(void *) &g_sCDCDeviceA
}l
{
&g_sCDCSerDevicelnfo,
(void *)&g_sCDCDeviceB

}i

Interface Handling

The device class interfaces will be merged into the composite device descriptor and the composite
class modifies the default interface assignments to insure monotonically increasing indexes for all
of the included interfaces. In the example above for the two serial ports, the first serial device would
be interface 0 and the second would enumerate as interface 1.

String Handling

The device class strings will be merged into the composite device descriptor which will require that
the composite class modify the default string indexes. In doing this it will always ignore the three
default string indexes in the device descriptor. The remaining string indexes will be modified to
match in the configuration descriptor.

104

April 8, 2013

Device Functions

3.7.3

3.7.3.1

Example Composite Device

This section will continue with the example above that used two USB device serial classes in a
single device. This will include more detailed examples and code that demonstrate the configuration
and setup needed for a composite serial device.

Composite Device Instance

The application must first allocate two serial device structures and pass them into the composite
initialization function for the USB serial CDC device. The allocation and initialization are shown
below:

//

// Instance and buffers for Serial Device A.
//

tCDCSerInstance g_sCDCInstanceA;

const tUSBBuffer g_sTxBufferA;

const tUSBBuffer g_sRxBufferA;

//

// Instance and buffers for Serial Device B.
//

tCDCSerInstance g_sCDCInstanceB;

const tUSBBuffer g_sTxBufferB;

const tUSBBuffer g_sRxBufferB;

//
// Device description for Serial Device A.
//
const tUSBDCDCDevice g_sCDCDeviceA =
{
USB_VID_TI,
USB_PID_SERIAL,
Or
USB_CONF_ATTR_SELF_PWR,
ControlHandler,
(void *) &g_sCDCDeviceA,
USBBufferEventCallback,
(void *) &g_sRxBuffera,
USBBufferEventCallback,
(void x)&g_sTxBuffera,
OI
Ol
&g_sCDCInstanceA
}i

//
// Device description for Serial Device B.

//
const tUSBDCDCDevice g_sCDCDeviceB =

{

April 8, 2013

105

Device Functions

USB_VID_TI,
USB_PID_SERIAL,
OI
USB_CONF_ATTR_SELF_PWR,
ControlHandler,
(void x)&g_sCDCDeviceB,
USBBufferEventCallback,
(void x)&g_sRxBufferB,
USBBufferkEventCallback,
(void *) &g_sTxBufferB,
Or
OI
&g_sCDCInstanceB

bi

Now the application must allocate the device array so that it can be provided to the USB composite
device class. The following code shows the two serial devices included above into the array of
tCompositeEntry values.

tCompositeEntry g_psDevices([2]=
{

&g_sCDCSerDevicelInfo,
(void *)&g_sCDCDeviceA
}I
{

&g_sCDCSerDevicelInfo,
(void *)&g_sCDCDeviceB

}i

Once the array of devices has been allocated, this array is included in the USB composite de-
vice structure when the device structure is allocated and initialized. The code below shows this
allocation:

//

// Allocate the composite instance data and workspace storage.
//

tCompositeInstance g_CompInstance;

unsigned long g_pulCompWorkspace [NUM_DEVICES];

//
// Initialize the USB composite device structure.
//
tUSBDCompositeDevice g_sCompDevice =
{
//
// TI VID.
//

USB_VID_TI,

//

// PID for the composite serial device.

106

April 8, 2013

Device Functions

!/
USB_PID_COMP_SERIAL,

//

// This is in 2mA increments so 500mA.
//

250,

//
// Bus powered device.

!/
USB_CONF_ATTR_BUS_PWR,

//
// Generic USB handler for the composite device.
//

CompositeHandler,

//
// The string table.
//

g_pStringDescriptors,
NUM_STRING_DESCRIPTORS,

NUM_DEVICES,
g_psCompDevices,

g_pulCompWorkspace,
&g_CompInstance
}i

The last bit of memory that needs to be allocated is the USB composite device descriptor workspace
which is provided at Initialization time. The allocation for two serial devices is shown below:

unsigned char pucDesciptorData[COMPOSITE_DCDC_SIZEx*2];

Once all of the memory has been initialized and the appropriate memory allocated, the application
must call the initialization functions for each device instance. In the case of the serial ports, the
USB buffers used must also first be initialized before completing initialization.

//

// Initialize the transmit and receive buffers.
//

USBBufferInit ((tUSBBuffer x)&g_sTxBufferAh);

(())
USBBufferInit ((tUSBBuffer «)&g_sRxBufferAh);
(())
(())

USBBufferInit ((tUSBBuffer) &g_sTxBufferB);
USBBufferInit ((tUSBBuffer =) &g_sRxBufferB);
//

// Initialize the two serial port instances that are part of this composite
// device.

//

April 8, 2013 107

Device Functions

3.8

g_sCompDevice.psCompInfo

[0] .pvInstance =
USBDCDCCompositeInit (

[

(

, (tUSBDCDCDevice x)&g_sCDCDeviceA);
] .pvInstance =
, (tUSBDCDCDevice =x)&g_sCDCDeviceB) ;

g_sCompDevice.psCompInfo
USBDCDCCompositelInit

o P O O

//

// Pass the device information to the USB library and place the device

// on the bus.

//

USBDCompositeInit (0, &g_sCompDevice, COMPOSITE_DCDC_SIZEx2,
pucDesciptorData) ;

When calling the USB device classes that were included with the composite device, the instance
data for that class should be passed into the API. In the composite serial example that is being
described in this section, the USB serial device classes provide the same callback function, Con-
trolHandler(). The callback information for this was the device class structure which was specified
as g_sCDCDeviceA or g_sCDCDeviceB for the serial devices. Since the device instance is different
for each serial device, the application can simply cast the pointer to a pointer of type tUSBDCD-
CDevice and use the data directly as shown below and only access the requested device:

unsigned long
ControlHandler (void xpvCBData, unsigned long ulEvent,
unsigned long ulMsgValue, void xpvMsgData)
{
tUSBDCDCDevice pCDCDevice;

pPCDCDevice = (tUSBDCDCDevice =*)pvCBData;

//

// Which event are we being asked to process?
//

switch (ulEvent)

{

}

Composite Device Class Driver Definitions

Data Structures

m tCompositeEntry
m tUSBDCompositeDevice

Functions

m void * USBDCompositelnit (unsigned long ulindex, tUSBDCompositeDevice xpsDevice, un-
signed long ulSize, unsigned char xpucData)
m void USBDCompositeTerm (void spvinstance)

108

April 8, 2013

Device Functions

3.8.1

3.8.2

3.8.2.1

3.8.2.2

Detailed Description

Definitions The macros and functions defined in this section can be found in header file

device/usbdcomp.h.

Data Structure Documentation

tCompositeEntry

Definition:
typedef struct
{
const tDevicelInfo xpsDevice;
void xpvInstance;
}
tCompositeEntry

Members:
psDevice This is the top level device information structure.

pvinstance This is the instance data for the device structure.

Description:

This type is used by an application to describe and instance of a device and an instance data
pointer for that class. The psDevice pointer should be a pointer to a valid device class to include
in the composite device. The pvinstance pointer should be a pointer to an instance pointer for

the device in the psDevice pointer.

tUSBDCompositeDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
tUSBCallback pfnCallback;

const unsigned char xconst xppStringDescriptors;

unsigned long ulNumStringDescriptors;
unsigned long ulNumDevices;
tCompositeEntry xpsDevices;

unsigned long xpulDeviceWorkspace;
tCompositeInstance *psPrivateData;

}
tUSBDCompositeDevice

Members:

usVID The vendor ID that this device is to present in the device descriptor.
usPID The product ID that this device is to present in the device descriptor.

usMaxPowermA The maximum power consumption of the device, expressed in mA.

April 8, 2013

109

Device Functions

ucPwrAttributes Indicates whether the device is self or bus-powered and whether or
not it supports remote wake up. Valid values are USB_CONF_ATTR_SELF_PWR or
USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

pfnCallback A pointer to the callback function which will be called to notify the application of
events relating to the operation of the composite device.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain the following string descriptor pointers in this order. Language descriptor, Manu-
facturer name string (language 1), Product name string (language 1), Serial number string
(language 1), Composite device interface description string (language 1), Configuration
description string (language 1).
If supporting more than 1 language, the descriptor block (except for string descriptor 0)
must be repeated for each language defined in the language descriptor.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-
ray. This must be 1 + ((5 + (number of strings)) * (number of languages)).

ulNumDevices The number of devices in the psDevices array.

psDevices This application supplied array holds the the top level device class information as
well as the Instance data for that class.

pulDeviceWorkspace A pointer to per-device workspace used by the composite device. This
buffer must be sized to contain at least ulNumDevices long integers (or 4 * ulNumDevices
bytes). It must remain accessible for as long as the composite device is in use and must
not be modified by any code outside the composite class driver.

psPrivateData A pointer to RAM work space for this device instance. The client must fill in
this field with a pointer to at least sizeof(tCompositelnstance) bytes of read/write storage
that the library can use for driver work space. This memory must remain accessible for as
long as the composite device is in use and must not be modified by any code outside the
composite class driver.

Description:

The structure used by the application to define operating parameters for the composite device
class.

3.8.3 Function Documentation

3.8.3.1 USBDCompositelnit

This function should be called once for the composite class device to initialize basic operation and
prepare for enumeration.

Prototype:

void =

USBDCompositeInit (unsigned long ulIndex,
tUSBDCompositeDevice xpsDevice,
unsigned long ulSize,
unsigned char *pucData)

Parameters:

ulindex is the index of the USB controller to initialize for composite device operation.

psDevice points to a structure containing parameters customizing the operation of the com-
posite device.
ulSize is the size in bytes of the data pointed to by the pucData parameter.

110

April 8, 2013

Device Functions

pucData is the data area that the composite class can use to build up descriptors.

Description:
In order for an application to initialize the USB composite device class, it must first call this
function with the a valid composite device class structure in the psDevice parameter. This
allows this function to initialize the USB controller and device code to be prepared to enumerate
and function as a USB composite device. The ulSize and pucData parameters should be large
enough to hold all of the class instances passed in via the psDevice structure. This is typically
the full size of the configuration descriptor for a device minus its configuration header(9 bytes).

This function returns a void pointer that must be passed in to all other APls used by the com-
posite class.

See the documentation on the tUSBDCompositeDevice structure for more information on how
to properly fill the structure members.

Returns:
This function returns 0 on failure or a non-zero void pointer on success.

3.8.3.2 USBDCompositeTerm

Shuts down the composite device.

Prototype:
void
USBDCompositeTerm(void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDCompos-
itelnit().

Description:
This function terminates composite device interface for the instance supplied. Following this
call, the pvinstance instance should not me used in any other calls.

Returns:
None.

3.9 HID Device Class Driver

The USB Human Interface Class device class is an enormously versatile architecture for supporting
a wide variety of input/output devices regardless of whether or not they actually deal with "Human
Interfaces”. Although typically thought of in the context of keyboards, mice and joysticks, the speci-
fication can cover practically any device offering user controls or data gathering capabilities.

Communication between the HID device and host is via a collection of "report" structures which are
defined by the device in HID report descriptors which the host can query. Reports are defined both
for communication of device input to the host and for output and feature selection from the host.

In addition to the flexibility offered by the basic architecture, HID devices also benefit from excellent
operating system support for the class, meaning that no driver writing is necessary and, in the case
of standard devices such as keyboards and joysticks, the device can connect to and operate with

April 8, 2013 111

Device Functions

3.9.1

3.9.1.1

the host system without any new host software having to be written. Even in the case of a non-
standard or vendor-specific HID device, the operating system support makes writing the host-side
software very much more straightforward than developing the device using a vendor-specific class.

Despite these advantages, there is one downside to using HID. The interface is limited in the amount
of data that can be transferred so is not suitable for use by devices which expect to use a high per-
centage of the USB bus bandwidth. Devices are limited to a maximum of 64KB of data per second
for each report they support. Multiple reports can be used if necessary but high bandwidth devices
may be better implemented using a class which supports bulk rather than interrupt endpoints (such
as CDC or the generic bulk device class).

USB HID Device Model

Optional
Interrupt OUT Receive Channel

—_ . [}
- 5| < | 2 3
7 o = (&)

o 2 @ (=)
o = 2 c
a S @ .0
@ InterruptIN | @ | 2 | & Transmit Channel ®
=] o >
(2] =] o
=] T <

Endpoint 0
-

This device class uses one or, optionally, two endpoints in addition to endpoint zero. One interrupt
IN endpoint carries HID input reports from the device to the host. Output and Feature reports
from the host to the device are typically carried via endpoint zero but devices which expect high
host-to-device data rates can select to offer an independent interrupt OUT endpoint to carry these.
Endpoint zero carries standard USB requests and also HID-specific descriptor requests.

The HID mouse and keyboard device APIs described later in this document are both implemented
above the HID Device Class Driver API.

HID Device Class Events

The HID device class driver sends the following events to the application callback functions:

Receive Channel Events

USB_EVENT_CONNECTED
USB_EVENT_DISCONNECTED
USB_EVENT_RX_AVAILABLE
USB_EVENT_ERROR

USB_EVENT_SUSPEND

112

April 8, 2013

Device Functions

B USB_EVENT_RESUME

B USBD_HID_EVENT_IDLE_TIMEOUT

B USBD_HID_EVENT_GET_REPORT_BUFFER
B USBD_HID_EVENT_GET_REPORT

B USBD_HID_EVENT_SET_PROTOCOL

B USBD_HID_EVENT_GET_PROTOCOL

B USBD_HID_EVENT_SET_REPORT

B USBD_HID_EVENT_REPORT_SENT

3.9.1.2 Transmit Channel Events

B USB_EVENT_TX_COMPLETE

3.9.2 Using the HID Device Class Driver

To add a USB HID interface to your application using the HID Device Class Driver, take the following
steps.

m Add the following header files to the source file(s) which are to support USB:

#include "src/usb.h"

#include "usblib/usblib.h"

#include "usblib/usbhid.h"

#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdhid.h"

m Define the string table which is used to describe various features of your new device to the host
system. The following is the string table taken from the usb_dev_mouse example application.
Edit the actual strings to suit your application and take care to ensure that you also update the
length field (the first byte) of each descriptor to correctly reflect the length of the string and
descriptor header. The number of strings included will vary depending upon the device but
must be at least 5. HID report descriptors may refer to string IDs and, if the descriptor for
your device includes these, additional strings will be required. Also, if multiple languages
are reported in string descriptor 0, you must ensure that you have strings available for each
language with all language 1 strings occurring in order in a block before all language 2 strings
and so on.

//****k***********k‘k********************k***********k‘k*****************************
//
// The languages supported by this device.
//
//‘k‘k‘k**‘k****‘k*‘k*k**‘k****‘k‘k‘k**‘k‘k***‘k***************************‘k*****‘k‘k**‘k******‘k
const unsigned char g_pLangDescriptor[] =
{

47

USB_DTYPE_STRING,

USBShort (USB_LANG_EN_US)
}i

April 8, 2013 113

Device Functions

//*‘k‘k*********‘k********************‘k‘k**
// The manufacturer string.

//

//***
const unsigned char g_pManufacturerString[] =

{

2 + (22 % 2),
USB_DTYPE_STRING,

ITII O, rer, O/ IXI, O, ’a
'S', O, 't', O, IrI, O, IuI’ O, rmr, O, rer, O, InI, O, Itl, O,
'S', O, ’ r, O, ’I', O, 'n

//***
// The product string.

//***k*k‘k********k*k*‘k‘k******************k*k‘k*********k*'k*****************************
const unsigned char g_pProductString[] =
{
(13 + 1) » 2,
USB_DTYPE_STRING,
‘M, 0, o', 0, 'u’, 0, 's’, 0, 'e", O, " ', O, 'E", O, 'X", O, "a&’, O,
'm’, 0, 'p’, O, 1", 0, 'e', O

//**************~k********************~k***

//
// The serial number string.
//
//*‘k‘k******************************‘k‘k**
const unsigned char g_pSerialNumberString[] =
{

(8 + 1) = 2,

USB_DTYPE_STRING,

ri, o0, 2, 0, 3", 0, "4, 0, '5", 0, '6", O, 7", 0, '8, O

//***k*~k*k~k*******k‘k*k*k*******k*k*k*k~k*******k**k*k~k******k*k‘k*k~k**************‘k‘k****‘k*****‘k*

//
// The interface description string.
//
//*************************k***********k***********k******************************
const unsigned char g_pHIDInterfaceStringl[] =
{

(19 + 1) ~ 2,

USB_DTYPE_STRING,

rw’, 0, "1, 0, 'D’, O, " ', 0O, 'M'", O, 'O', O, 'u’, 0, 's', O,

‘e, 0, ©*, 0, 'z*, 0, 'n*, 0, 't’, 0, ’'e", O, 'x', O, £, O,

114

April 8, 2013

Device Functions

}i

//**‘k‘k*‘k*k‘k*k*k***‘k‘k‘k‘k‘k******‘k‘k**k‘k*k*k***‘k‘k‘k‘k‘k******k‘k‘k**k*******‘k*‘k*‘k******‘k‘k‘k*******
// The configuration description string.

//

//***
const unsigned char g_pConfigStringl[] =
{
(23 + 1) ~ 2,
USB_DTYPE_STRING,
rg’, 0, "1, 0, 'D", O, " 7", 0, 'M', O, 'O', O, 'u
‘e, 0, © 7, 0, 'c, 0, '0o’, 0, 'n’, 0, £, 0, 'i’, 0, 'g’, O,
'w', 0, "', 0, "a’, 0, "t’, 0, "i’, 0, '0', O, ’'n

}i

//*‘k‘k**‘k******‘k‘k*‘k‘k****‘k‘k‘k*********‘k‘k**‘k******‘k***‘k****‘k***********************
//
// The descriptor string table.

//***
const unsigned char x const g_pStringDescriptors|[] =
{
g_pLangDescriptor,
g_pManufacturerString,
g_pProductString,
g_pSerialNumberString,
g_pHIDInterfaceString,
g_pConfigString
}i

#define NUM_STRING_DESCRIPTORS (sizeof (g_pStringDescriptors) / \
sizeof (unsigned char x))

m Define a tHIDInstance structure which the USB HID device class driver uses to store its internal
state information. This should never be accessed by the application.

//***
// The HID device private data.

//***

tHIDInstance g_sHIDInstance;

m Develop the HID report descriptors and, if required, physical descriptors for your device and,
from these, the HID descriptor itself. Details of how to do this are beyond the scope of this doc-
ument other than to say that macros in header file usbdhid. h are included to help add the var-
ious tags required in the descriptor. For information on how these descriptors are constructed,
please see the "USB Device Class Definition for Human Interface Devices, version 1.11" which
can be downloaded from http://www.usb.org/developers/devclass_docs/HID1_11.pdf. The re-
quired structures for a BIOS-compatible HID mouse are:

April 8, 2013

115

http://www.usb.org/developers/devclass_docs/HID1_11.pdf.

Device Functions

//***
//
// The report descriptor for the BIOS mouse class device.

//

//**k*k***********k*k‘k*********‘k*********k************‘k*****************************
static const unsigned char g_pucMouseReportDescriptor[]=
{
UsagePage (USB_HID_GENERIC_DESKTOP),
Usage (USB_HID_MOUSE),
Collection (USB_HID_APPLICATION),
Usage (USB_HID_POINTER),
Collection (USB_HID_PHYSICAL),

//

// The buttons.

//

UsagePage (USB_HID_BUTTONS),

UsageMinimum (1),

UsageMaximum (3),

LogicalMinimum(0)
1

)y

LogicalMaximum (

//

// 3 — 1 bit values for the buttons.
//

ReportSize (1),

ReportCount (3),

Input (USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE |
USB_HID_INPUT_ABS),

//

// 1 — 5 bit unused constant value to fill the 8 bits.

//

ReportSize (5),

ReportCount (1),

Input (USB_HID_INPUT_CONSTANT | USB_HID_INPUT_ARRAY |
USB_HID_INPUT_ABS),

//

// The X and Y axis.

//

UsagePage (USB_HID_GENERIC_DESKTOP),
Usage (USB_HID_X),

Usage (USB_HID_Y),
LogicalMinimum(-127),
LogicalMaximum(127),

//

// 2 — 8 bit Values for x and y.
//

ReportSize (8),

ReportCount (2),

116 April 8, 2013

Device Functions

Input (USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE |
USB_HID_INPUT_RELATIVE),
EndCollection,
EndCollection,
}i

//***
//

// The HID class descriptor table. For the mouse class, we have only a single
// report descriptor.

//

//***
static const unsigned char * const g_pMouseClassDescriptors|[] =

{

g_pucMouseReportDescriptor
}i

//***

//
// The HID descriptor for the mouse device.

//

//***
static const tHIDDescriptor g_sMouseHIDDescriptor =

{

9, // bLength

USB_HID_DTYPE_HID, // bDescriptorType

0x111, // bcdHID (version 1.11 compliant)
0, // bCountryCode (not localized)

1, // bNumDescriptors
USB_HID_DTYPE_REPORT, // Report descriptor

sizeof (g_pucMouseReportDescriptor) // Size of report descriptor
bi

m Define an array of tHIDReportIdle structures in RAM with one entry for each input report
your device supports. Initialize the ucburation4ms and ucReportID fields in each of the
entries to set the default idle report time for each input report. Note that ucDuration4ms
defines the idle time in 4mS increments as used in the USB HID Set_Idle and Get_|Idle re-
quests. The times defined in these structures are used to determine how often a given input
report is resent to the host in the absence of any device state change. For example, a device
supporting two input reports with IDs 1 and 2 may initialize the array as follows:

tHIDReportIdle g_psReportIdle[2] =
{
{ 125, 1, 0, 0 }, // Report 1 polled every 500mS (4 * 125).
{ 0, 2, 0, 0} // Report 2 is not polled (OmS timeout)
bi

m Define a tUSBDHIDDevice structure and initialize all fields as required for your application.

The following example shows a structure suitable for a BIOS-compatible mouse device which
publishes a single input report.

const tUSBDHIDDevice g_sHIDMouseDevice =

April 8, 2013 117

Device Functions

//

// The Vendor ID you have been assigned by USB-IF.
//

USB_VID_YOUR_VENDOR_ID,

//

// The product ID you have assigned for this device.
//

USB_PID_YOUR_PRODUCT_ID,

//

// The power consumption of your device in milliamps.
//

POWER_CONSUMPTION_mA,

//

// The value to be passed to the host in the USB configuration descriptor’s
// bmAttributes field.

//

USB_CONF_ATTR_BUS_PWR,

//
// This mouse supports the boot subclass.

//
USB_HID_SCLASS_BOOT,

//
// This device supports the BIOS mouse report protocol.

//
USB_HID_PROTOCOL_MOUSE,

//
// The device has a single input report.
//
1,

//

// A pointer to our array of tHIDReportIdle structures. For this device,

// the array must have 1 element (matching the value of the previous field).
//

g_psMouseReportIdle,

//

// A pointer to your receive callback event handler.
//

YourUSBReceiveEventCallback,

//
// A value that you want passed to the receive callback alongside every
// event.

//

118

April 8, 2013

Device Functions

(void =) &g_sYourInstanceData,

//

// A pointer to your transmit callback event handler.
//

YourUSBTransmitEventCallback,

//

// A value that you want passed to the transmit callback alongside every
// event.

//

(void *)&g_sYourInstanceData,

//

// This device does not want to use a dedicated interrupt OUT endpoint
// since there are no output or feature reports required.

//

false,

//
// A pointer to the HID descriptor for the device.
//

&g_sMouseHIDDescriptor,

//

// A pointer to the array of HID class descriptor pointers for this device.
// The number of elements in this array and their order must match the

// information in the HID descriptor provided above.

//

g_pMouseClassDescriptors,

//

// A pointer to your string table.

//

g_pStringDescriptors,

//

// The number of entries in your string table. This must equal
// (1 + (5 4+ (num HID strings)) =* (num languages)).

//

NUM_STRING_DESCRIPTORS,

//

// A pointer to the private instance data allocated for the class driver to
// use.

//

&g_sHIDInstance
}i

m Add a receive event handler function, YourUSBReceiveEventCallback in the previous example,
to your application taking care to handle all messages which require a particular response. For
the HID device class the following receive callback events MUST be handled by the application:

April 8, 2013 119

Device Functions

* USB_EVENT_RX_AVAILABLE

e USBD_HID_EVENT_IDLE_TIMEOUT

e USBD_HID_EVENT_GET_REPORT_BUFFER

e USBD_HID_EVENT_GET_REPORT

e USBD_HID_EVENT_SET_PROTOCOL (for BIOS protocol devices)

e USBD_HID_EVENT_GET_PROTOCOL (for BIOS protocol devices)

e USBD_HID_EVENT_SET_REPORT
Although no other events must be handled, USB_EVENT_CONNECTED and
USB_EVENT_DISCONNECTED will typically be required since these indicate when a host

connects or disconnects and allow the application to flush any buffers or reset state as
required. Attempts to send data when the host is disconnected will fail.

m Add a transmit event handler function, YourUSBTransmitEventCallback in the previous exam-
ple, to your application and use USB_EVENT_TX_COMPLETE to indicate when a new report
may be scheduled for transmission. While a report is being transmitted, attempts to send
another report via USBDHIDReportWrite() will fail.

m From your main initialization function call the HID device class driver initialization function to
configure the USB controller and place the device on the bus.

pDevice = USBDHIDMouselInit (0, &g_sHIDMouseDevice);

m Assuming pDevice returned is not NULL, your device is now ready to communicate with a
USB host.

m Once the host connects, your control event handler will be sent USB_EVENT_CONNECTED
and the first input report may be sent to the host using USBDHIDReportWrite() with following
packets transmitted as soon as USB_EVENT_TX_COMPLETE is received via the transmit event
handler.

3.9.3 Using the Composite HID Mouse Device Class
When using the HID mouse device class in a composite device, the configuration of the device is
very similar to how it is configured as a non-composite device. Follow all of the configuration steps
in the previous section with the exception of calling USBDHIDMouseCompositelnit() instead of US-
BDHIDMouselnit(). This will prepare an instance of the HID mouse device class to be enumerated
as part of a composite device. The return value from the USBDHIDMouseCompositelnit() function
should be placed in the pvinstance member of the tCompositeEntry structure for the HID mouse
device. The code example below provides an example of how to initialize the tCompositeEntry
structure.
//
// These should be initialized with valid values for each class.
//
extern tUSBDCompositeDevice g_sCompDevice;
extern tUSBDHIDMouseDevice g_sHIDMouseDevice;
//
// The OTHER_SIZES here are the sizes of the descriptor data for other classes
// that are part of the composite device.
//
#define DESCRIPTOR_DATA_SIZE (COMPOSITE_DHID_SIZE + OTHER_SIZES)

120 April 8, 2013

Device Functions

unsigned char g_pucDescriptorData[DESCRIPTOR_DATA_SIZE];
tCompositeEntry psCompEntries[2];

//
// Set the generic HID device information.
//

psCompEntries[0] .psDevice = g_sHIDDeviceInfo;

//

// Save the instance data for this HID mouse device.

//

psCompEntries[0] .pvInstance = USBDHIDMouseCompositeInit (0, &g_sHIDMouseDevice);

//
// Initialize other devices to add to the composite device.

//

//
// Save the device entries in the composite device.
//

g_sCompDevice.psDevices = psCompEntries;

USBDCompositeInit (0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
g_pucDescriptorData) ;

All other API calls to the USB HID mose device class should use the value returned by USBD-
HIDMouseCompositelnit() when the API calls for a pvinstance pointer. Also when using the audio
device in a composite device the COMPOSITE_DHID_SIZE value should be added to the size of
the g_pucDescriptorData array as shown in the example above.

3.9.4 Handling HID Reports

Communication between a HID device and host takes place using data structures known as "re-
ports".

Input reports are sent from the device to the host in response to device state changes, queries from
the host or a configurable timeout. In the case of a state change, the device sends a new copy of
the relevant input report to the host via the interrupt IN endpoint. This is accomplished by calling
USBDHIDReportWrite(). Whereas other USB device class drivers require that the application send
no more than 1 packet of data in each call to the driver's "PacketWrite" function, the HID device
class driver allows a complete report to be sent. If the report passed is longer than the maximum
packet size for the endpoint (64 bytes), the class driver handles the process of breaking it up into
multiple USB packets. Once a full report has been transmitted to the host and acknowledged,
the application’s transmit event handler receives USB_EVENT_TX_COMPLETE indicating that the
application is free to send another report.

The host may also poll for the latest version of an input report. This procedure involves a request on

April 8, 2013 121

Device Functions

endpoint zero and results in a sequence of events that the application must respond to. On receipt
of the Get_Report request, the HID device class driver sends USBD_HID_EVENT_GET_REPORT
to the application receive callback. The application must respond to this by returning a pointer to
the latest version of the requested report and the size of the report in bytes. This data is then
returned to the host via endpoint zero and successful completion of the transmission is notified to
the application using USBD_HID_EVENT_REPORT_SENT passed to the receive callback.

One other condition may cause an input report to be sent. Each input report has a timeout associ-
ated with it and, when this time interval expires, the report must be returned to the host regardless
of whether or not the device state has changed. The timeout is set using a Set_Idle request from
the host and may be completely disabled (as is typically done for mice and keyboards when com-
municating with a Windows PC, for example) by setting the timeout to 0.

The HID device class driver internally tracks the required timeouts for each input report. When
a timer expires, indicating that the report must be resent, USBD_HID_EVENT_IDLE_TIMEOUT is
sent to the application receive callback. As in the previous case, the application must respond
with a pointer to the appropriate report and its length in bytes. In this case, the returned report
is transmitted to the host using the interrupt IN endpoint and the successful completion of the
transmission is notified to the application using USB_EVENT_TX_COMPLETE sent to the transmit
callback. Note that the application returns information on the location and size of the report and
MUST NOT call USBDHIDReportWrite() in response to this event.

Output and Feature reports are sent from the host to the device to instruct it to set various parame-
ters and options. A device can chose whether all host-to-device report communication takes place
via endpoint zero or whether a dedicated interrupt OUT endpoint is used. Typically host-to-device
traffic is low bandwidth and endpoint zero communication can be used but, if a dedicated endpoint
is required, the field bUuseOutEndpoint in the tUSBDHIDDevice structure for the device should
be set to true.

If using a dedicated endpoint for output and feature reports, the application receive callback will
be called with USB_EVENT_RX_AVAILABLE whenever a report packet is available. During this
callback, the application can call USBDHIDPacketRead() to retrieve the packet. If it is not possible
to read the packet immediately, the HID device class driver will call the application back later to give
it another opportunity. Until the packet is read, NAK will be sent to the host preventing more data
from being sent.

In the more typical case where endpoint zero is used to transfer output and feature reports, the
application can expect the following sequence of events on the receive callback.

®m USBD_HID_EVENT_GET_REPORT_BUFFER indicates that a Set_Report request has been re-
ceived from the host and the device class driver is requesting a buffer into which the received
report can be written. The application must return a pointer to a buffer which is at least as
large as required to store the report.

®m USBD_HID_EVENT_SET_REPORT follows next once the report data has been read from end-
point zero into the buffer supplied on the earlier USBD_HID_EVENT_GET_REPORT_BUFFER
callback. The device class driver will not access the report buffer after this event is sent and
the application may handle the memory as it wishes following this point.

122

April 8, 2013

Device Functions

3.10

HID Device Class Driver Definitions

Data Structures

m tHIDClassDescriptorinfo
m tHIDDescriptor

m tHIDKeyboardUsageTable
m tHIDReportldle

m tUSBDHIDDevice

Defines

m Collection(ucValue)
COMPOSITE_DHID_SIZE
EndCollection
Feature(ucValue)
Feature2(usValue)
Input(ucValue)
Input2(usValue)
LogicalMaximum(cValue)
LogicalMinimum(cValue)
Output(ucValue)
Output2(usValue)
PhysicalMaximum(sValue)
PhysicalMinimum(sValue)
ReportCount(ucValue)
ReportID(ucValue)
ReportSize(ucValue)
Unit(ulValue)
UnitAccelerationSlI
UnitAngAccelerationSI
UnitCurrent_A
UnitDistance_cm
UnitDistance i
UnitEnergySI
UnitExponent(cValue)
UnitForceSI

UnitMass_g
UnitMomentumSI
UnitRotation_deg
UnitRotation_rad
UnitTemp_F

UnitTemp_K

UnitTime_s
UnitVelocitySI

April 8, 2013

123

Device Functions

3.10.1

3.10.2

3.10.2.1

UnitVoltage

Usage(ucValue)
UsageMaximum(ucValue)
UsageMinimum(ucValue)
UsagePage(ucValue)
USBD_HID_EVENT_GET_PROTOCOL
USBD_HID EVENT _GET_REPORT
USBD_HID_EVENT_GET_REPORT_BUFFER
USBD_HID_EVENT_IDLE_TIMEOUT
USBD_HID EVENT_REPORT_SENT
USBD_HID_EVENT_SET_PROTOCOL
USBD_HID_EVENT_SET_REPORT

Functions

m void « USBDHIDCompositelnit (unsigned long ulindex, const tUSBDHIDDevice xpsDevice)

m void * USBDHIDInit (unsigned long ullndex, const tUSBDHIDDevice xpsDevice)

m unsigned long USBDHIDPacketRead (void xpvinstance, unsigned char xpcData, unsigned
long ulLength, tBoolean bLast)

m void USBDHIDPowerStatusSet (void xpvinstance, unsigned char ucPower)

tBoolean USBDHIDRemoteWakeupRequest (void *pvinstance)

unsigned long USBDHIDReportWrite (void spvinstance, unsigned char xpcData, unsigned

long ulLength, tBoolean bLast)

unsigned long USBDHIDRxPacketAvailable (void xpvinstance)

void * USBDHIDSetRxCBData (void *pvinstance, void xpvCBData)

void * USBDHIDSetTxCBData (void spvinstance, void xpvCBData)

void USBDHIDTerm (void «pvinstance)

unsigned long USBDHIDTxPacketAvailable (void xpvinstance)

Detailed Description

The macros and functions defined in this section can be found in header file device/usbdhid.h.
Users of the HID device class driver will also need to include usbhid.h which includes HID-related
definitions required by both host and device implementations.

Data Structure Documentation

tHIDClassDescriptorinfo

Definition:
typedef struct
{
unsigned char bDescriptorType;
tShort wDescriptorLength;
}
tHIDClassDescriptorInfo

124

April 8, 2013

Device Functions

Members:
bDescriptorType The type of HID class descriptor. This will be USB_HID_DTYPE_REPORT
or USB_HID_DTYPE_PHYSICAL.

wDescriptorLength The total length of the HID class descriptor.

Description:
The class descriptor information structure is used to announce the presence of HID-specific
class descriptors within the HID descriptor.

3.10.2.2 tHIDDescriptor

Definition:

typedef struct

{
unsigned char bLength;
unsigned char bDescriptorType;
tShort bcdHID;
unsigned char bCountryCode;
unsigned char bNumDescriptors;
tHIDClassDescriptorInfo sClassDescriptor[l];

}

tHIDDescriptor

Members:
bLength The length of this descriptor in bytes.
bDescriptorType The type of the descriptor. For a HID descriptor, this will be
USB_HID_DTYPE_HID (0x21).
bedHID A BCD value identifying the HID Class specification release supported by the device.
For version 1.11, for example, this value would be 0x0111.

bCountryCode The country code for which this hardware is localized or 0 if no localiza-
tion has been performed. Valid country (or language) codes are in labels of the form
USB_HID_COUNTRY_xxx.

bNumbDescriptors The number of class-specific descriptors that exist for this device. This
indicates the number of class descriptor information structures that are appended to this
structure and must be at least 1 (since all HID devices must publish at least 1 report
descriptor).

sClassDescriptor A table announcing each of the class-specific descriptors that this device
publishes. The actual number of entries in the array is given by the bNumDescriptors field.

Description:
The HID descriptor is inserted following the interface descriptor and before the endpoint de-
scriptors for a HID class device.

3.10.2.3 tHIDKeyboardUsageTable

Definition:
typedef struct
{
unsigned char ucBytesPerChar;
unsigned long pulCapsLock [USBH_HID_CAPS_ARRAY_S7Z7];

April 8, 2013 125

Device Functions

void xpCharMapping;
}
tHIDKeyboardUsageTable

Members:
ucBytesPerChar Number of bytes per character in the pCharMapping table of this structure.
pulCapsLock This is a packed bitmasked structure with a one bit flags that indicates if the
corresponding Usage ID is affected by the Caps Lock key.
pCharMapping This is the indexed table of Usage ID to character value. It must be at least
ucBytesPerChar * 2 * USBH_HID_MAX_USAGE bytes in size as it is treated as a double
indexed array.

Description:

This structure defines the mapping of USB usage identifiers to printable characters. The struc-
ture has three members that hold this information. The ucBytesPerChar, indicates the number
of bytes per character in the table. The pulCapsLock array holds a packed bit array of usage
identifiers that can be modified by the Caps Lock key. The pCharMapping array is treated as a
double indexed array with two "columns". In the case of a single byte character it is treated as
pairs of 8 bit values for unshifted and shifted values. In the case of a double byte characters it
is treated as pairs of 16 bit values.

3.10.2.4 tHIDReportldle

Definition:

typedef struct

{
unsigned char ucDuration4mS;
unsigned char ucReportID;
unsigned short usTimeTillNextmS;
unsigned long ulTimeSinceReportmS;

}

tHIDReportIdle

Members:

ucDuration4mS The idle duration for the report expressed in units of 4mS. 0 indicates infinite
and informs the class driver not to send the report unless a state change occurs.

ucReportlD The ID of the report which this structure applies to. This is the report ID as
specified using a ReportID tag in the report descriptor rather than the index of the report
in the HID class descriptor array. If only a single Input report is supported and, thus, no
ReportID tag is present, this field should be set to 0.

usTimeTillNextmS The number of milliseconds before we need to send a copy of a given
report back to the host. This field is updated by the HID driver and used to time sending of
USBD_HID_EVENT_IDLE_TIMEOUT.

ulTimeSinceReportmS The number of milliseconds that have passed since the last time this
report was sent. The HID class driver needs to track this since Set_ldle requests are
required to take effect as if issued immediately after the last transmission of the report to
which they refer.

Description:
The structure used to track idle time for reports. An array of these structures is passed to the
HID device class driver during USBDHIDInit and is used to track automatic resending of each
report (if not disabled by the host).

126 April 8, 2013

Device Functions

3.10.2.5 tUSBDHIDDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
unsigned char ucSubclass;
unsigned char ucProtocol;
unsigned char ucNumInputReports;
tHIDReportIdle *psReportIdle;
tUSBCallback pfnRxCallback;
void xpvRxCBData;
tUSBCallback pfnTxCallback;
void xpvIxCBData;
tBoolean bUseOutEndpoint;
const tHIDDescriptor *psHIDDescriptor;
const unsigned char xconst xppClassDescriptors;
const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
tHIDInstance xpsPrivateHIDData;

}

tUSBDHIDDevice

Members:

usVID The vendor ID that this device is to present in the device descriptor.

usPID The product ID that this device is to present in the device descriptor.

usMaxPowermA The maximum power consumption of the device, expressed in milliamps.
ucPwrAttributes Indicates whether the device is self- or bus-powered and whether or

not it supports remote wakeup. Valid values are USB_CONF_ATTR_SELF_PWR or
USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

ucSubclass The interface subclass to publish to the server for this HID device.

ucProtocol The interface protocol to publish to the server for this HID device.

ucNuminputReports The number of Input reports that this device supports. This field must
equal the number of reports published in the HID class descriptors for the device and also
the number of entries in the array whose first element is pointed to by field psReportldie
below.

psReportldle A pointer to the first element in an array of structures used to track idle time for
each Input report. When USBDHIDInit is called, the ucDuration4mS and ucReportID fields
of each of these array members should be initialized to indicate the default idle timeout for
each input report. This array must be in RAM since the HID device class driver will update
values in it in response to requests from the host and to track elapsed time. The number
of elements in the array must match the number supplied in the ucNumlInputReports field
above.

pfnRxCallback A pointer to the callback function which will be called to notify the application
of general events, events related to report transfers on endpoint zero and events related to
reception of Output and Feature reports via the (optional) interrupt OUT endpoint.

pVvRxCBData A client-supplied pointer which will be sent as the first parameter in all calls
made to the receive channel callback, pfnRxCallback.

April 8, 2013

127

Device Functions

pfnTxCallback A pointer to the callback function which will be called to notify the application
of events related to transmission of Input reports via the interrupt IN endpoint.

pvTxCBData A client-supplied pointer which will be sent as the first parameter in all calls
made to the transmit channel callback, pfnTxCallback.

bUseOutEndpoint If set to true, this field indicates that the device should use a dedicated
interrupt OUT endpoint to receive reports from the host. In this case, reports from the host
are passed to the application via the receive callback using USB_EVENT_RX_AVAILABLE
events. If false, reports from the host are received via endpoint zero and passed to the
application via USBD_HID_EVENT_REPORT_SENT events.

psHIDDescriptor The HID descriptor that the device is to publish (following the standard in-
terface descriptor and prior to the endpoint descriptors for the interface).

ppClassDescriptors The HID class descriptors offered by the device are defined in an array
of byte pointers and this field points to that array. The order and number of elements in
the array must match the associated information provided in the HID descriptor in field by
psHIDDescriptor.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain the following string descriptor pointers in this order. Language descriptor, Manu-
facturer name string (language 1), Product name string (language 1), Serial number string
(language 1), HID Interface description string (language 1), Configuration description string
(language 1), (optionally) First HID device-specific string (language 1), (optionally) Second
HID device-specific string (language 1), etc.
If supporting more than 1 language, the descriptor block (except for string descriptor 0)
must be repeated for each language defined in the language descriptor.
The number of HID device-specific strings is dependent upon the content of the report
descriptor passed to the interface and is, thus, application controlled.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-
ray. This must be 1 + ((5 + (num HID strings)) * (num languages)).

psPrivateHIDData A pointer to private instance data for this device instance. This memory
must remain accessible for as long as the HID device is in use and must not be modified
by any code outside the HID class driver.

Description:

The structure used by the application to define operating parameters for the HID device.

3.10.3 Define Documentation

3.10.3.1 Collection

This is a macro to assist adding Collection entries in HID report descriptors.

Definition:

#define Collection (ucValue)

Parameters:

ucValue is the type of Collection.

Description:

This macro takes a value and prepares it to be placed as a Collection entry into a HID report
structure. This is the type of values that are being grouped together, for instance input, output
or features can be grouped together as a collection.

128

April 8, 2013

Device Functions

Returns:
Not a function.

3.10.3.2 COMPOSITE_DHID_SIZE

Definition:
#define COMPOSITE_DHID_SIZE

Description:
The size of the memory that should be allocated to create a configuration descriptor for a single
instance of the USB HID Device. This does not include the configuration descriptor which is
automatically ignored by the composite device class.

3.10.3.3 EndCollection

Definition:
#define EndCollection

Description:
This is a macro to assist adding End Collection entries in HID report descriptors.

This macro can be used to place an End Collection entry into a HID report structure. This is a
tag to indicate that a collection of entries has ended in the HID report structure. This terminates
a previous Collection() entry.

Returns:
Not a function.

3.10.3.4 Feature

This is a macro to assist adding Feature entries in HID report descriptors.

Definition:
#define Feature (ucValue)

Parameters:
ucValue is bit mask to specify the type of a set of feature report items. Note that if the
USB_HID_FEATURE_BITF flag is required, the Feature2 macro (which uses a 2 byte ver-
sion of the Feature item tag) must be used instead of this macro.

Description:
This macro takes a value and prepares it to be placed as a Feature entry into a HID report
structure. This specifies the type of a feature item in a report structure. These refer to a bit
mask of flags that indicate the type of feature for a set of items.

Returns:
Not a function.

April 8, 2013 129

Device Functions

3.10.3.5 Feature2
This is a macro to assist adding Feature entries in HID report descriptors.
Definition:
#define Feature?2 (usValue)
Parameters:
usValue is bit mask to specify the type of a set of feature report items. Note that this macro
uses a version of the Feature item tag with a two byte payload and allows any of the
8 possible data bits for the tag to be used. If USB_HID_FEATURE_BITF (bit 8) is not
required, the Feature macro may be used instead.
Description:
This macro takes a value and prepares it to be placed as a Feature entry into a HID report
structure. This specifies the type of a feature item in a report structure. These refer to a bit
mask of flags that indicate the type of feature for a set of items.
Returns:
Not a function.
3.10.3.6 Input
This is a macro to assist adding Input entries in HID report descriptors.
Definition:
#define Input (ucValue)
Parameters:
ucValue is bit mask to specify the type of a set of input report items. Note that if the
USB_HID_INPUT_BITF flag is required, the Input2 macro (which uses a 2 byte version
of the Input item tag) must be used instead of this macro.
Description:
This macro takes a value and prepares it to be placed as an Input entry into a HID report
structure. This specifies the type of an input item in a report structure. These refer to a bit
mask of flags that indicate the type of input for a set of items.
Returns:
Not a function.
3.10.3.7 Input2
This is a macro to assist adding Input entries in HID report descriptors.
Definition:
#define Input2 (usValue)
Parameters:
usValue is bit mask to specify the type of a set of input report items. Note that this macro uses
a version of the Input item tag with a two byte payload and allows any of the 8 possible
130 April 8, 2013

Device Functions

data bits for the tag to be used. If USB_HID_INPUT_BITF (bit 8) is not required, the Input
macro may be used instead.

Description:
This macro takes a value and prepares it to be placed as an Input entry into a HID report
structure. This specifies the type of an input item in a report structure. These refer to a bit
mask of flags that indicate the type of input for a set of items.

Returns:
Not a function.

3.10.3.8 LogicalMaximum

This is a macro to assist adding Logical Maximum entries in HID report descriptors.

Definition:
fdefine LogicalMaximum(cValue)

Parameters:
cValue is the Logical Maximum value.

Description:
This macro takes a value and prepares it to be placed as a Logical Maximum entry into a HID
report structure. This is the actual maximum value for a range of values associated with a field.

Returns:
Not a function.

3.10.3.9 LogicalMinimum

This is a macro to assist adding Logical Minimum entries in HID report descriptors.

Definition:
#define LogicalMinimum (cValue)

Parameters:
cValue is the Logical Minimum value.

Description:
This macro takes a value and prepares it to be placed as a Logical Minimum entry into a HID
report structure. This is the actual minimum value for a range of values associated with a field.

Returns:
Not a function.

3.10.3.10 Output

This is a macro to assist adding Output entries in HID report descriptors.

April 8, 2013 131

Device Functions

3.10.3.11

Definition:
#define Output (ucvValue)

Parameters:
ucValue is bit mask to specify the type of a set of output report items. Note that if the
USB_HID_OUTPUT_BITF flag is required, the Output2 macro (which uses a 2 byte version
of the Output item tag) must be used instead of this macro.

Description:
This macro takes a value and prepares it to be placed as an Output entry into a HID report
structure. This specifies the type of an output item in a report structure. These refer to a bit
mask of flags that indicate the type of output for a set of items.

Returns:
Not a function.

Output2

This is a macro to assist adding Output entries in HID report descriptors.

Definition:
#define Output2 (usValue)

Parameters:
usValue is bit mask to specify the type of a set of output report items. Note that this macro
uses a version of the Output item tag with a two byte payload and allows any of the 8
possible data bits for the tag to be used. If USB_HID_OUTPUT_BITF (bit 8) is not required,
the Output macro may be used instead.

Description:
This macro takes a value and prepares it to be placed as an Output entry into a HID report
structure. This specifies the type of an output item in a report structure. These refer to a bit
mask of flags that indicate the type of output for a set of items.

Returns:
Not a function.

3.10.3.12 PhysicalMaximum

This is a macro to assist adding Physical Maximum entries in HID report descriptors.

Definition:
fdefine PhysicalMaximum (sValue)

Parameters:
sValue is the Physical Maximum value. It is a signed, 16 bit number.

Description:
This macro takes a value and prepares it to be placed as a Physical Maximum entry into a HID
report structure. This is value is used in conversion of the control logical value, as returned to
the host in the relevant report, to a physical measurement in the appropriate units.

132

April 8, 2013

Device Functions

Returns:
Not a function.

3.10.3.13 PhysicalMinimum

This is a macro to assist adding Physical Minimum entries in HID report descriptors.

Definition:
#define PhysicalMinimum(sValue)

Parameters:
sValue is the Physical Minimum value. It is a signed, 16 bit number.

Description:
This macro takes a value and prepares it to be placed as a Physical Minimum entry into a HID
report structure. This is value is used in conversion of the control logical value, as returned to
the host in the relevant report, to a physical measurement in the appropriate units.

Returns:
Not a function.

3.10.3.14 ReportCount

This is a macro to assist adding Report Count entries in HID report descriptors.

Definition:
#define ReportCount (ucValue)

Parameters:
ucValue is the number of items in a report item.

Description:
This macro takes a value and prepares it to be placed as a Report Count entry into a HID
report structure. This is number of entries of Report Size for a given item.

Returns:
Not a function.

3.10.3.15 ReportID

This is a macro to assist adding Report ID entries in HID report descriptors.

Definition:
#define ReportID (ucValue)

Parameters:
ucValue is the identifier prefix for the current report.

April 8, 2013 133

Device Functions

Description:
This macro takes a value and prepares it to be placed as a Report ID entry into a HID report
structure. This value is used as a 1 byte prefix for the report it is contained within.

Returns:
Not a function.

3.10.3.16 ReportSize

This is a macro to assist adding Report Size entries in HID report descriptors.

Definition:
#define ReportSize (ucValue)

Parameters:
ucValue is the size, in bits, of items in a report item.

Description:
This macro takes a value and prepares it to be placed as a Report Size entry into a HID report
structure. This is size in bits of the entries of of a report entry. The Report Count specifies how
many entries of Report Size are in a given item. These can be individual bits or bit fields.

Returns:
Not a function.

3.10.3.17 Unit

This is a macro to assist adding Unit entries for uncommon units in HID report descriptors.

Definition:
#define Unit (ulValue)

Parameters:
ulValue is the definition of the unit required as defined in section 6.2.2.7 of the USB HID device
class definition document.

Description:
This macro takes a value and prepares it to be placed as a Unit entry into a HID report structure.
Note that individual macros are defined for common units and this macro is intended for use
when a complex or uncommon unit is needed. It allows entry of a 5 nibble unit definition into
the report descriptor.

Returns:
Not a function.

3.10.3.18 UnitAccelerationSl

Definition:
#define UnitAccelerationSI

134 April 8, 2013

Device Functions

Description:
This macro inserts a Unit entry for acceleration in cm/sx*x2 into a report descriptor.

3.10.3.19 UnitAngAccelerationSl

Definition:
#define UnitAngAccelerationSI

Description:
This macro inserts a Unit entry for angular acceleration in degrees/sx**2 into a report descriptor.

3.10.3.20 UnitCurrent_A

Definition:
#define UnitCurrent_A

Description:
This macro inserts a Unit entry for voltage into a a report descriptor.

3.10.3.21 UnitDistance_cm

Definition:
#define UnitDistance_cm

Description:
This macro inserts a Unit entry for centimeters into a report descriptor.

3.10.3.22 UnitDistance i

Definition:
#define UnitDistance_1i

Description:
This macro inserts a Unit entry for inches into a report descriptor.

3.10.3.23 UnitEnergySl

Definition:
#define UnitEnergySI

Description:
This macro inserts a Unit entry for energy in (grams x cmxx2)/s*x2 into a report descriptor.

April 8, 2013 135

Device Functions

3.10.3.24 UnitExponent

This is a macro to assist adding Unit Exponent entries in HID report descriptors.

Definition:
#define UnitExponent (cValue)

Parameters:
cValue is the required exponent in the range [-8, 7].

Description:
This macro takes a value and prepares it to be placed as a Unit Exponent entry into a HID
report structure. This is the exponent applied to PhysicalMinimum and PhysicalMaximum when
scaling and converting control values to "real" units.

Returns:
Not a function.

3.10.3.25 UnitForceSI

Definition:
#define UnitForceSI

Description:
This macro inserts a Unit entry for force in (cm * grams)/s*x2 into a report descriptor.

3.10.3.26 UnitMass_g
Definition:
#define UnitMass_g

Description:
This macro inserts a Unit entry for grams into a report descriptor.

3.10.3.27 UnitMomentumSI

Definition:
#define UnitMomentumSI

Description:
This macro inserts a Unit entry for momentum in (grams « cm)/s into a report descriptor.

3.10.3.28 UnitRotation_deg

Definition:
#define UnitRotation_deg

Description:
This macro inserts a Unit entry for degrees into a report descriptor.

136 April 8, 2013

Device Functions

3.10.3.29 UnitRotation_rad

Definition:
#define UnitRotation_rad

Description:
This macro inserts a Unit entry for radians into a report descriptor.

3.10.3.30 UnitTemp_F

Definition:
#define UnitTemp_F

Description:
This macro inserts a Unit entry for temperature in Fahrenheit into a report descriptor.

3.10.3.31 UnitTemp_K

Definition:
#define UnitTemp_K

Description:
This macro inserts a Unit entry for temperature in Kelvin into a report descriptor.

3.10.3.32 UnitTime_s

Definition:
#define UnitTime_s

Description:
This macro inserts a Unit entry for seconds into a report descriptor.

3.10.3.33 UnitVelocitySl

Definition:
#define UnitVelocitySI

Description:
This macro inserts a Unit entry for velocity in cm/s into a report descriptor.

3.10.3.34 UnitVoltage

Definition:
#define UnitVoltage

Description:
This macro inserts a Unit entry for voltage into a a report descriptor.

April 8, 2013 137

Device Functions

3.10.3.35 Usage

This is a macro to assist adding Usage entries in HID report descriptors.

Definition:
#define Usage (ucValue)

Parameters:
ucValue is the Usage value.

Description:
This macro takes a value and prepares it to be placed as a Usage entry into a HID report
structure. These are defined by the USB HID specification.

Returns:
Not a function.

3.10.3.36 UsageMaximum

This is a macro to assist adding Usage Maximum entries in HID report descriptors.

Definition:
#define UsageMaximum (ucValue)

Parameters:
ucValue is the Usage Maximum value.

Description:
This macro takes a value and prepares it to be placed as a Usage Maximum entry into a HID
report structure. This is the last or maximum value associated with a usage value.

Returns:
Not a function.

3.10.3.37 UsageMinimum

This is a macro to assist adding Usage Minimum entries in HID report descriptors.

Definition:
#define UsageMinimum (ucValue)

Parameters:
ucValue is the Usage Minimum value.

Description:
This macro takes a value and prepares it to be placed as a Usage Minimum entry into a HID
report structure. This is the first or minimum value associated with a usage value.

Returns:
Not a function.

138

April 8, 2013

Device Functions

3.10.3.38 UsagePage

This is a macro to assist adding Usage Page entries in HID report descriptors.

Definition:
#define UsagePage (ucValue)

Parameters:
ucValue is the Usage Page value.

Description:
This macro takes a value and prepares it to be placed as a Usage Page entry into a HID report
structure. These are defined by the USB HID specification.

Returns:
Not a function.

3.10.3.39 USBD_HID_EVENT_GET_PROTOCOL

Definition:
#define USBD_HID EVENT_GET PROTOCOL

Description:
This event is sent in response to a Get_Protocol request from the host. The callback
should provide the current protocol via the return code, USB_HID PROTOCOL_BOOT or
USB_HID_PROTOCOL_REPORT.

3.10.3.40 USBD_HID_EVENT_GET_REPORT

Definition:
#define USBD_HID_ EVENT_GET_ REPORT

Description:

This event indicates that the host is requesting a particular report be returned via endpoint 0,
the control endpoint. The ulMsgValue parameter contains the requested report type in the high
byte and report ID in the low byte (as passed in the wValue field of the USB request structure).
The pvMsgData parameter contains a pointer which must be written with the address of the first
byte of the requested report. The callback must return the size in bytes of the report pointed
to by xpvMsgData. The memory returned in response to this event must remain unaltered until
USBD_HID_EVENT_REPORT_SENT is sent.

3.10.3.41 USBD_HID_EVENT_GET_REPORT_BUFFER

Definition:
#define USBD_HID_ EVENT_GET_ REPORT_BUFFER

Description:
This event indicates that the host has sent a Set_Report request to the device and requests
that the device provide a buffer into which the report can be written. The ulMsgValue parameter

April 8, 2013 139

Device Functions

contains the received report type in the high byte and report ID in the low byte (as passed in
the wValue field of the USB request structure). The pvMsgData parameter contains the length
of buffer requested. Note that this is the actual length value cast to a "void " type and not a
pointer in this case. The callback must return a pointer to a suitable buffer (cast to the standard
"unsigned long" return type for the callback).

3.10.3.42 USBD_HID EVENT _IDLE_TIMEOUT

Definition:

#define USBD_HID_EVENT_IDLE_TIMEOUT

Description:

This event indicates to an application that a report idle timeout has occurred and requests a
pointer to the report that must be sent back to the host. The ulMsgData value will contain the
requested report ID and pvMsgData contains a pointer that must be written with a pointer to
the report data that is to be sent. The callback must return the number of bytes in the report
pointed to by xpvMsgData.

3.10.3.43 USBD_HID_EVENT_REPORT_SENT

Definition:

#define USBD_HID_EVENT_REPORT_SENT

Description:

This event indicates that a report previously requested via a
USBD_HID_EVENT_GET_REPORT has been successfully transmitted to the host. The
application may now free or reuse the report memory passed on the previous event. Although
this would seem to be an event that would be passed to the transmit channel callback, it is
actually passed to the receive channel callback. This ensures that all events related to the
request and transmission of reports via endpoint zero can be handled in a single function.

3.10.3.44 USBD_HID_EVENT_SET_PROTOCOL

Definition:

#define USBD_HID_EVENT_SET_PROTOCOL

Description:

This event is sent in response to a Set Protocol request from the host. The
ulMsgData value will contain the requested protocol, USB_HID_PROTOCOL_BOOT or
USB_HID_PROTOCOL_REPORT.

3.10.3.45 USBD_HID EVENT SET REPORT

Definition:

#define USBD_HID_EVENT_SET_REPORT

140

April 8, 2013

Device Functions

3.10.4

3.10.4.1

3.10.4.2

Description:
This event indicates that the host has sent the device a report via endpoint 0, the control
endpoint. The ulMsgValue field indicates the size of the report and pvMsgData points to the first
byte of the report. The report buffer will previously have been returned in response to an earlier
USBD_HID_EVENT_GET_REPORT_BUFFER callback. The HID device class driver will not
access the memory pointed to by pvMsgData after this callback is made so the application is
free to reuse or free it at this point.

Function Documentation

USBDHIDCompositelnit

Initializes HID device operation for a given USB controller.

Prototype:
void =
USBDHIDCompositeInit (unsigned long ullIndex,
const tUSBDHIDDevice *psDevice)

Parameters:
ullndex is the index of the USB controller which is to be initialized for HID device operation.

psDevice points to a structure containing parameters customizing the operation of the HID
device.

Returns:
Returns NULL on failure or the psDevice pointer on success.

void * USBDHIDInit (unsigned long ulindex, const tUSBDHIDDevice x psDevice)

Initializes HID device operation for a given USB controller.

Parameters:
ullndex is the index of the USB controller which is to be initialized for HID device operation.

psDevice points to a structure containing parameters customizing the operation of the HID
device.

Description:
An application wishing to offer a USB HID interface to a host system must call this function to
initialize the USB controller and attach the device to the USB bus. This function performs all
required USB initialization.

On successful completion, this function will return the psDevice pointer passed to it. This must
be passed on all future calls from the application to the HID device class driver.

The USB HID device class API offers the application a report-based transmit interface for Input
reports. Output reports may be received via the control endpoint or via a dedicated Interrupt
OUT endpoint. If using the dedicated endpoint, report data is delivered to the application
packet-by- packet. If the application uses reports longer than 64 bytes and would rather receive
full reports, it may use a USB buffer above the receive channel to allow full reports to be read.

Transmit Operation:

April 8, 2013

141

Device Functions

Calls to USBDHIDReportWrite() pass complete reports to the driver for transmission. These
will be transmitted to the host using as many USB packets as are necessary to complete the
transmission.

Once a full Input report has been acknowledged by the USB host, a
USB_EVENT_TX_COMPLETE event is sent to the application transmit callback to inform it
that another report may be transmitted.

Receive Operation (when using a dedicated interrupt OUT endpoint):

An incoming USB data packet will result in a call to the application callback with event
USB_EVENT_RX_AVAILABLE. The application must then call USBDHIDPacketRead(), pass-
ing a buffer capable of holding the received packet. The size of the packet may be determined
by calling function USBDHIDRxPacketAvailable() prior to reading the packet.

Receive Operation (when not using a dedicated OUT endpoint):

If no dedicated OUT endpoint is used, Output and Feature reports are sent from the
host using the control endpoint, endpoint zero. = When such a report is received,
USBD_HID_EVENT_GET_REPORT_BUFFER is sent to the application which must respond
with a buffer large enough to hold the report. The device class driver will then copy the received
report into the supplied buffer before sending USBD_HID_EVENT_SET_REPORT to indicate
that the report is now available.

Note:

The application must not make any calls to the low level USB device interface if interacting
with USB via the USB HID device class API. Doing so will cause unpredictable (though almost
certainly unpleasant) behavior.

Returns:

Returns NULL on failure or the psDevice pointer on success.

3.10.4.3 USBDHIDPacketRead

Reads a packet of data received from the USB host via the interrupt OUT endpoint (if in use).

Prototype:

unsigned long

USBDHIDPacketRead (void *pvInstance,
unsigned char =xpcData,
unsigned long ulLength,
tBoolean bLast)

Parameters:

pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().
pcData points to a buffer into which the received data will be written.
ulLength is the size of the buffer pointed to by pcData.

bLast indicates whether the client will make a further call to read additional data from the
packet.

Description:

This function reads up to ulLength bytes of data received from the USB host into the supplied
application buffer. If the driver detects that the entire packet has been read, it is acknowledged
to the host.

142

April 8, 2013

Device Functions

The bLast parameter is ignored in this implementation since the end of a packet can be deter-
mined without relying upon the client to provide this information.

Returns:
Returns the number of bytes of data read.

3.10.4.4 USBDHIDPowerStatusSet

Reports the device power status (bus- or self-powered) to the USB library.

Prototype:
void
USBDHIDPowerStatusSet (void xpvInstance,
unsigned char ucPower)

Parameters:
pvinstance is the pointer to the HID device instance structure.
ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus- or self-powered operation should call this
function whenever the power source changes to indicate the current power status to the USB
library. This information is required by the USB library to allow correct responses to be provided
when the host requests status from the device.

Returns:
None.

3.10.4.5 USBDHIDRemoteWakeupRequest

Requests a remote wake up to resume communication when in suspended state.

Prototype:
tBoolean
USBDHIDRemoteWakeupRequest (void xpvInstance)

Parameters:
pvinstance is the pointer to the HID device instance structure.

Description:
When the bus is suspended, an application which supports remote wake up (advertised to the
host via the configuration descriptor) may call this function to initiate remote wake up signaling
to the host. If the remote wake up feature has not been disabled by the host, this will cause
the bus to resume operation within 20mS. If the host has disabled remote wake up, false will
be returned to indicate that the wake up request was not successful.

Returns:
Returns true if the remote wake up is not disabled and the signaling was started or false if
remote wake up is disabled or if signaling is currently ongoing following a previous call to this
function.

April 8, 2013 143

Device Functions

3.10.4.6 USBDHIDReportWrite

Transmits a HID device report to the USB host via the HID interrupt IN endpoint.

Prototype:
unsigned long
USBDHIDReportWrite (void xpvInstance,
unsigned char =*pcData,
unsigned long ulLength,
tBoolean blLast)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().
pcData points to the first byte of data which is to be transmitted.
ulLength is the number of bytes of data to transmit.

bLast is ignored in this implementation. This parameter is required to ensure compatibility
with other device class drivers and USB buffers.

Description:
This function schedules the supplied data for transmission to the USB host in a single USB
transaction using as many packets as it takes to send all the data in the report. If no trans-
mission is currently ongoing, the first packet of data is immediately copied to the relevant USB
endpoint FIFO for transmission. Whenever all the report data has been acknowledged by the
host, a USB_EVENT_TX_COMPLETE event will be sent to the application transmit callback
indicating that another report can now be transmitted.

The caller must ensure that the data pointed to by pucData remains accessible and unaltered
until the USB_EVENT_TX_COMPLETE is received.

Returns:
Returns the number of bytes actually scheduled for transmission. At this level, this will either
be the number of bytes passed or 0 to indicate a failure.

3.10.4.7 USBDHIDRxPacketAvailable
Determines whether a packet is available and, if so, the size of the buffer required to read it.
Prototype:
unsigned long
USBDHIDRxPacketAvailable (void *pvInstance)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().
Description:
This function may be used to determine if a received packet remains to be read and allows the
application to determine the buffer size needed to read the data.
Returns:
Returns 0 if no received packet remains unprocessed or the size of the packet if a packet is
waiting to be read.
144 April 8, 2013

Device Functions

3.10.4.8 USBDHIDSetRxCBData

Sets the client-specific pointer parameter for the receive channel callback.

Prototype:
void =
USBDHIDSetRxCBData (void xpvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().

pvCBData is the pointer that client wishes to be provided on each event sent to the receive
channel callback function.

Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnRxCallback function passed on USBDHIDInit().

If a client wants to make runtime changes in the callback pointer, it must ensure that the pvin-
stance structure passed to USBDHIDInit() resides in RAM. If this structure is in flash, callback
data changes will not be possible.

Returns:
Returns the previous callback pointer that was being used for this instance’s receive callback.

3.10.4.9 USBDHIDSetTxCBData

Sets the client-specific data pointer for the transmit callback.

Prototype:
void =
USBDHIDSetTxCBData (void xpvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().

pvCBData is the pointer that client wishes to be provided on each event sent to the transmit
channel callback function.

Description:
The client uses this function to change the callback data pointer passed in the first parameter
on all callbacks to the pfnTxCallback function passed on USBDHIDInit().

If a client wants to make runtime changes in the callback data, it must ensure that the pvin-
stance structure passed to USBDHIDInit() resides in RAM. If this structure is in flash, callback
data changes will not be possible.

Returns:
Returns the previous callback data pointer that was being used for this instance’s transmit
callback.

April 8, 2013 145

Device Functions

3.10.4.10 USBDHIDTerm

Shuts down the HID device.

Prototype:
void
USBDHIDTerm (void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().

Description:
This function terminates HID operation for the instance supplied and removes the device from
the USB bus. This function should not be called if the HID device is part of a composite device
and instead the USBDCompositeTerm() function should be called for the full composite device.

Following this call, the pvinstance instance should not me used in any other calls.

Returns:
None.

3.10.4.11 USBDHIDTxPacketAvailable

Returns the number of free bytes in the transmit buffer.

Prototype:
unsigned long
USBDHIDTxPacketAvailable (void *pvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDInit().

Description:

This function indicates to the caller whether or not it is safe to send a new report using a call to
USBDHIDReportWrite(). The value returned will be the maximum USB packet size (64) if no
transmission is currently outstanding or 0 if a transmission is in progress. Since the function
USBDHIDReportWrite() can accept full reports longer than a single USB packet, the caller
should be aware that the returned value from this class driver, unlike others, does not indicate
the maximum size of report that can be written but is merely an indication that another report
can be written.

Returns:
Returns 0 if an outgoing report is still being transmitted or 64 if no transmission is currently in
progress.

3.11 HID Mouse Device Class API

The USB HID device class is extremely versatile but somewhat daunting. For applications which
want to offer a mouse-like appearance to a USB host, however, the HID Mouse Device Class
API may be used without the need to develop any HID-specific software. This high-level interface
completely encapsulates the USB stack and USB HID device class driver and allows an application

146 April 8, 2013

Device Functions

3.11.1

3.11.2

to simply instantiate a USB mouse device and call a single function to notify the USB host of mouse
movement and button presses.

The USB mouse device uses the BIOS mouse subclass and protocol so is recognized by the vast
majority of host operating systems and BIOSs without the need for additional host-side software.
The mouse provides two axis movement (reported to the host in terms of relative position changes)
and up to three buttons which may be either pressed or released.

USB HID Mouse Device Model

Event Callback

Mouse position &
button information

USB Host

Interrupt IN
N

USB Driver
USB Device API
HID Class Driver

Application Code

Endpoint 0

HID Mouse Class Device API

The usb_dev_mouse example application makes use of this device class API.

HID Mouse Device API Events

The HID mouse device API sends the following events to the application callback function:

USB_EVENT_CONNECTED
USB_EVENT_DISCONNECTED
USB_EVENT_TX_ COMPLETE
USB_EVENT_ERROR
USB_EVENT_SUSPEND
USB_EVENT_RESUME

Using the HID Mouse Device Class API

To add a USB HID mouse interface to your application using the HID Mouse Device Class API, take
the following steps.

m Add the following header files to the source file(s) which are to support USB:

#include "src/usb.h"
#include "usblib/usblib.h"
finclude "usblib/device/usbdhidmouse.h"

April 8, 2013

147

Device Functions

m Define the string table which is used to describe various features of your new device to the
host system. An example of a suitable string table for a mouse device can be found in Using
the HID Device Class Driver. This table must include a minimum of 6 entries - string descriptor
0 defining the language(s) available and 5 strings for each supported language.

m Define an area of RAM of for the private data for the HID mouse class driver. This structure
should never be accessed by the application.

//***

//
// The HID mouse device private instance data.

//

//***

static tHIDMouselInstance g_sMouselnstance;

m Define a tUSBDHIDMouseDevice structure and initialize all fields as required for your appli-
cation.

const tUSBDHIDMouseDevice g_sMouseDevice =

{

//

// The Vendor ID you have been assigned by USB-IF.
//

USB_VID_YOUR_VENDOR_ID,

//

// The product ID you have assigned for this device.
//

USB_PID_YOUR_PRODUCT_ID,

//

// The power consumption of your device in milliamps.
//

POWER_CONSUMPTION_mA,

//

// The value to be passed to the host in the USB configuration descriptor’s
// bmAttributes field.

//

USB_CONF_ATTR_SELF_PWR,

//
// A pointer to your mouse callback event handler.
//

YourMouseHandler,

//
// A value that you want passed to the callback alongside every event.
//

(void x)&g_sYourInstanceData,

//

148 April 8, 2013

Device Functions

// A pointer to your string table.

//
g_pStringDescriptors,

//

// The number of entries in your string table. This must equal
// (1 + (5 % (num languages))).

//
NUM_STRING_DESCRIPTORS,

//
// A pointer to the private instance data allocated for the API to use.

//

&g_sMouselInstance
}i

m Add a mouse event handler function, YourMouseHandler in the previous example, to your ap-
plication. A minimal implementation can ignore all events though USB_EVENT_TX_COMPLETE
can be used to ensure that mouse messages are not sent when a previous report is still in
transit to the host. Attempts to send a new mouse report when the previous report has not yet
been acknowledged will result in return code MOUSE_ERR_TX_ERROR from USBDHIDMous-
eStateChange().

m From your main initialization function call the HID mouse device API initialization function to
configure the USB controller and place the device on the bus.
pDevice = USBDHIDMouseInit (0, &g_sMouseDevice);

m Assuming pDevice returned is not NULL, your mouse device is now ready to communicate
with a USB host.

m Once the host connects, your mouse event handler will be sent USB_EVENT_CONNECTED
after which calls can be made to USBDHIDMouseStateChange()to inform the host of mouse
position and button state changes.

3.12 HID Mouse Device Class API Definitions

Data Structures
m tUSBDHIDMouseDevice

Defines

MOUSE_ERR_NOT_CONFIGURED
MOUSE_ERR_TX_ERROR
MOUSE_REPORT_BUTTON_1
MOUSE_REPORT_BUTTON_2
MOUSE_REPORT_BUTTON_3
MOUSE_SUCCESS

April 8, 2013 149

Device Functions

3.12.1

3.12.2

3.12.2.1

Functions

void * USBDHIDMouseCompositelnit (unsigned long ullndex, const tUSBDHIDMouseDevice
xpsDevice)

void x« USBDHIDMouselnit (unsigned long ullndex, const tUSBDHIDMouseDevice «psDevice)
void USBDHIDMousePowerStatusSet (void xpvinstance, unsigned char ucPower)

tBoolean USBDHIDMouseRemoteWakeupRequest (void xpvinstance)

void « USBDHIDMouseSetCBData (void xpvinstance, void xpvCBData)

unsigned long USBDHIDMouseStateChange (void xpvinstance, char cDeltaX, char cDelta,
unsigned char ucButtons)

void USBDHIDMouseTerm (void xpvinstance)

Detailed Description

The

macros and functions defined in this section can be found in header file

device/usbdhidmouse.h.

Data Structure Documentation

tUSBDHIDMouseDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
tUSBCallback pfnCallback;
void xpvCBData;
const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
tHIDMouseInstance *psPrivateHIDMouseData;
}
tUSBDHIDMouseDevice

Members:

usVID The vendor ID that this device is to present in the device descriptor.

usPID The product ID that this device is to present in the device descriptor.

usMaxPowermA The maximum power consumption of the device, expressed in milliamps.

ucPwrAttributes Indicates whether the device is self- or bus-powered and whether or
not it supports remote wakeup. Valid values are USB_CONF_ATTR_SELF_PWR or
USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

pfnCallback A pointer to the callback function which will be called to notify the application of
events relating to the operation of the mouse.

pvCBData A client-supplied pointer which will be sent as the first parameter in all calls made
to the mouse callback, pfnCallback.

150

April 8, 2013

Device Functions

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain the following string descriptor pointers in this order. Language descriptor, Manu-
facturer name string (language 1), Product name string (language 1), Serial number string
(language 1), HID Interface description string (language 1), Configuration description string
(language 1).
If supporting more than 1 language, the descriptor block (except for string descriptor 0)
must be repeated for each language defined in the language descriptor.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-
ray. This must be (1 + (5 * (num languages))).

psPrivateHIDMouseData A pointer to private instance data for this device. This memory must
remain accessible for as long as the mouse device is in use and must not be modified by
any code outside the HID mouse driver.

Description:
This structure is used by the application to define operating parameters for the HID mouse
device.

3.12.3 Define Documentation

3.12.3.1 MOUSE_ERR_NOT_CONFIGURED

Definition:
#define MOUSE_ERR_NOT_CONFIGURED

Description:
USBDHIDMouseStateChange returns this value if it is called before the USB host has con-
nected and configured the device. All mouse state information passed on the call will have
been ignored.

3.12.3.2 MOUSE_ERR_TX_ERROR

Definition:
#define MOUSE_ERR_TX_ERROR

Description:
This return code from USBDHIDMouseStateChange indicates that an error was reported while
attempting to send a report to the host. A client should assume that the host has disconnected
if this return code is seen.

3.12.3.3 MOUSE_REPORT_BUTTON_1

Definition:
#define MOUSE_REPORT_BUTTON_1

Description:
Setting this bit in the ucButtons parameter to USBDHIDMouseStateChange indicates to the
USB host that button 1 on the mouse is pressed.

April 8, 2013 151

Device Functions

3.12.3.4 MOUSE_REPORT_BUTTON_2
Definition:
#define MOUSE_REPORT_BUTTON_2
Description:
Setting this bit in the ucButtons parameter to USBDHIDMouseStateChange indicates to the
USB host that button 2 on the mouse is pressed.
3.12.3.5 MOUSE_REPORT_BUTTON_3
Definition:
#define MOUSE_REPORT_BUTTON_3
Description:
Setting this bit in the ucButtons parameter to USBDHIDMouseStateChange indicates to the
USB host that button 3 on the mouse is pressed.
3.12.3.6 MOUSE_SUCCESS
Definition:
#define MOUSE_SUCCESS
Description:
This return code from USBDHIDMouseStateChange indicates success.
3.12.4 Function Documentation
3.12.4.1 USBDHIDMouseCompositelnit
Initializes HID mouse device operation for a given USB controller.
Prototype:
void =
USBDHIDMouseCompositeInit (unsigned long ullIndex,
const tUSBDHIDMouseDevice xpsDevice)
Parameters:
ullndex is the index of the USB controller which is to be initialized for HID mouse device
operation.
psDevice points to a structure containing parameters customizing the operation of the HID
mouse device.
Description:
This call is very similar to USBDHIDMouselnit() except that it is used for initializing an instance
of the HID mouse device for use in a composite device.
Returns:
Returns zero on failure or a non-zero instance value that should be used with the remaining
USB HID Mouse APIs.
152 April 8, 2013

Device Functions

3.12.4.2

3.12.4.3

USBDHIDMouselnit

Initializes HID mouse device operation for a given USB controller.

Prototype:
void =*
USBDHIDMouseInit (unsigned long ulIndex,
const tUSBDHIDMouseDevice =*psDevice)

Parameters:
ulindex is the index of the USB controller which is to be initialized for HID mouse device
operation.
psDevice points to a structure containing parameters customizing the operation of the HID
mouse device.

Description:
An application wishing to offer a USB HID mouse interface to a USB host must call this function
to initialize the USB controller and attach the mouse device to the USB bus. This function
performs all required USB initialization.

On successful completion, this function will return the psDevice pointer passed to it. This must
be passed on all future calls to the HID mouse device driver.

When a host connects and configures the device, the application callback will receive
USB_EVENT_CONNECTED after which calls can be made to USBDHIDMouseStateChange()
to report pointer movement and button presses to the host.

Note:
The application must not make any calls to the lower level USB device interfaces if interacting
with USB via the USB HID mouse device API. Doing so will cause unpredictable (though almost
certainly unpleasant) behavior.

Returns:
Returns NULL on failure or the psDevice pointer on success.

USBDHIDMousePowerStatusSet

Reports the device power status (bus- or self-powered) to the USB library.

Prototype:
void
USBDHIDMousePowerStatusSet (void xpvInstance,
unsigned char ucPower)

Parameters:
pvinstance is the pointer to the mouse device instance structure.
ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus- or self-powered operation should call this
function whenever the power source changes to indicate the current power status to the USB
library. This information is required by the USB library to allow correct responses to be provided
when the host requests status from the device.

April 8, 2013

153

Device Functions

3.12.4.4

3.12.4.5

Returns:
None.

USBDHIDMouseRemoteWakeupRequest

Requests a remote wake up to resume communication when in suspended state.

Prototype:
tBoolean
USBDHIDMouseRemoteWakeupRequest (void xpvInstance)

Parameters:
pvinstance is the pointer to the mouse device instance structure.

Description:
When the bus is suspended, an application which supports remote wake up (advertised to the
host via the configuration descriptor) may call this function to initiate remote wake up signaling
to the host. If the remote wake up feature has not been disabled by the host, this will cause
the bus to resume operation within 20mS. If the host has disabled remote wake up, false will
be returned to indicate that the wake up request was not successful.

Returns:
Returns true if the remote wake up is not disabled and the signaling was started or false if
remote wake up is disabled or if signaling is currently ongoing following a previous call to this
function.

USBDHIDMouseSetCBData

Sets the client-specific pointer parameter for the mouse callback.

Prototype:
void =
USBDHIDMouseSetCBData (void *pvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the mouse device instance structure.
pvCBData is the pointer that client wishes to be provided on each event sent to the mouse
callback function.

Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnCallback function passed on USBDHIDMouselnit().

If a client wants to make runtime changes in the callback pointer, it must ensure that the pvin-
stance structure passed to USBDHIDMouselnit() resides in RAM. If this structure is in flash,
callback data changes will not be possible.

Returns:
Returns the previous callback pointer that was set for this instance.

154

April 8, 2013

Device Functions

3.12.4.6

3.12.4.7

USBDHIDMouseStateChange

Reports a mouse state change, pointer movement or button press, to the USB host.

Prototype:
unsigned long
USBDHIDMouseStateChange (void *pvInstance,
char cbheltaX,
char cDheltay,
unsigned char ucButtons)

Parameters:

pvinstance is the pointer to the mouse device instance structure.

cDeltaX is the relative horizontal pointer movement that the application wishes to report. Valid
values are in the range [-127, 127] with positive values indicating movement to the right.

cDeltaY is the relative vertical pointer movement that the application wishes to report. Valid
values are in the range [-127, 127] with positive values indicating downward movement.

ucButtons is a bit mask indicating which (if any) of the three mouse buttons is
pressed. Valid values are logical OR combinations of MOUSE _REPORT_BUTTON_1,
MOUSE_REPORT_BUTTON_2 and MOUSE_REPORT_BUTTON_3.

Description:
This function is called to report changes in the mouse state to the USB host. These changes
can be movement of the pointer, reported relative to its previous position, or changes in the
states of up to 3 buttons that the mouse may support. The return code indicates whether or
not the mouse report could be sent to the host. In cases where a previous report is still being
transmitted, MOUSE_ERR_TX_ERROR will be returned and the state change will be ignored.

Returns:
Returns MOUSE_SUCCESS on success, MOUSE_ERR_TX ERROR if an error occurred
while attempting to schedule transmission of the mouse report to the host (typically due to a
previous report which has not yet completed transmission or due to disconnection of the host)
or MOUSE_ERR_NOT_CONFIGURED if called before a host has connected to and configured
the device.

USBDHIDMouseTerm

Shuts down the HID mouse device.

Prototype:
void
USBDHIDMouseTerm (void xpvInstance)

Parameters:
pvinstance is the pointer to the device instance structure.

Description:
This function terminates HID mouse operation for the instance supplied and removes the device
from the USB bus. Following this call, the pvinstance instance may not me used in any other
call to the HID mouse device other than USBDHIDMouselnit().

Returns:
None.

April 8, 2013

155

Device Functions

3.13

3.13.1

HID Keyboard Device Class API

As with the HID Mouse Device Class API described above, the HID Keyboard Device Class API
provides an easy-to-use high-level interface for applications wishing to appear to the USB host as a
BIOS-compatible keyboard. The keyboard supports up to 6 simultaneously pressed, non-modifier
keys and up to 5 state indication LEDs.

Key press and release notifications along with the state of the modifier keys (Shift, Ctrl, Alt, etc.)
are passed to the APl in a single API call and a callback informs the application whenever the host
requests that the LED states be changed.

Keys are identified to the API by means of USB HID key usage codes. A subset of
these are defined in the header file usbhid.h and the full set can be found in the doc-
ument "Universal Serial Bus (USB) HID Usage Tables" which can be downloaded from
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf.

USB HID Keyboard Device Model

Event Callback

Key make/break

Interrupt IN information
.

-t

USB Host
USB Driver
USB Device API
HID Class Driver
Application Code

Endpoint 0

HID Keyboard Class Device API

The usb_dev_keyboard example application makes use of this device class API.

HID Keyboard Device API Events

The HID keyboard device API sends the following events to the application callback function:

B USB_EVENT_CONNECTED

B USB_EVENT_DISCONNECTED

B USB_EVENT_TX_COMPLETE

B USB_EVENT_ERROR

B USB_EVENT_SUSPEND

B USB_EVENT_RESUME

B USBD_HID_KEYB_EVENT_SET_LEDS

156

April 8, 2013

http://www.usb.org/developers/devclass_docs/Hut1_12.pdf.

Device Functions

3.13.2 Using the HID Keyboard Device Class API

To add a USB HID keyboard interface to your application using the HID Keyboard Device Class
API, take the following steps.

m Add the following header files to the source file(s) which are to support USB:

finclude "src/usb.h"
#include "usblib/usblib.h"
#include "usblib/device/usbdhidkeyb.h"

m Define the string table which is used to describe various features of your new device to the
host system. The string table found in Using the HID Device Class Driver illustrates the format
required. This table must include a minimum of 6 entries - string descriptor 0 defining the
language(s) available and 5 strings for each supported language.

m Define an area of RAM of for the private data for the HID keyboard class driver. This structure
should never be accessed by the application.

//***k*k~k*k~k*******k***k*k*******k**k*********k**k*k******k*k~k~k**k*k**************************

//
// The HID keyboard device private instance data.

//

//**************************‘k**

static tHIDKeyboardInstance g_sKeyboardInstance;

m Define a tUSBDHIDKeyboardDevice structure and initialize all fields as required for your
application.

const tUSBDHIDKeyboardDevice g_sKeyboardDevice =
{

//

// The Vendor ID you have been assigned by USB-IF.
//

USB_VID_YOUR_VENDOR_ID,

//

// The product ID you have assigned for this device.
//

USB_PID_YOUR_PRODUCT_ID,

//

// The power consumption of your device in milliamps.
//

POWER_CONSUMPTION_mA,

//

// The value to be passed to the host in the USB configuration descriptor’s
// bmAttributes field.

!/
USB_CONF_ATTR_SELF_PWR,

//

April 8, 2013 157

Device Functions

}i

// A pointer to your keyboard callback event handler.

//
YourKeyboardHandler,

//

// A value that you want passed to the callback alongside every event.

//

(void *) &g_sYourInstanceData,

//
// A pointer to your string table.

//
g_pStringDescriptors,

//

// The number of entries in your string table. This must equal
// (1 + (5 % (num languages))).

//

NUM_STRING_DESCRIPTORS,

//
// A pointer to the private instance data allocated for the API to use.

//

&g_sKeyboardInstance

Add a keyboard event handler function, YourKeyboardHandler in the previous example, to your
application. A minimal implementation can ignore all events since key information is buffered
in the APl and sent later if USBDHIDKeyboardKeyStateChange() is called while a previous
report transmission remains unacknowledged.

From your main initialization function call the HID keyboard device APl initialization function to
configure the USB controller and place the device on the bus.

pDevice = USBDHIDKeyboardInit (0, &g_sKeyboardDevice);
Assuming pDevice returned is not NULL, your keyboard device is now ready to communicate

with a USB host.

Once the host connects, your keyboard event handler will be sent USB_EVENT_CONNECTED
after which calls can be made to USBDHIDKeyboardKeyStateChange()to inform the host of
key press and release events.

3.14 HID Keyboard Device Class API Definitions

Data Structures
m tUSBDHIDKeyboardDevice

Defines
m KEYB_ERR_NOT_CONFIGURED

158

April 8, 2013

Device Functions

3.14.1

3.14.2

3.14.21

KEYB_ERR_NOT_FOUND
KEYB_ERR_TOO_MANY KEYS
KEYB_ERR_TX_ERROR
KEYB_MAX_CHARS_PER_REPORT
KEYB_SUCCESS
USBD_HID_KEYB_EVENT SET LEDS

Functions

m void *+ USBDHIDKeyboardCompositelnit (unsigned long ullndex, const tUSBDHIDKeyboard-
Device xpsDevice)

m void * USBDHIDKeyboardlnit (unsigned long ullndex, const tUSBDHIDKeyboardDevice
xpsDevice)

m unsigned long USBDHIDKeyboardKeyStateChange (void xpvinstance, unsigned char ucMod-

ifiers, unsigned char ucUsageCode, tBoolean bPress)

void USBDHIDKeyboardPowerStatusSet (void «pvinstance, unsigned char ucPower)

tBoolean USBDHIDKeyboardRemoteWakeupRequest (void xpvinstance)

void * USBDHIDKeyboardSetCBData (void xpvinstance, void xpvCBData)

void USBDHIDKeyboardTerm (void xpvinstance)

Detailed Description

The macros and functions defined in this section can be found in header file
device/usbdhidkeyb.h.

Data Structure Documentation

tUSBDHIDKeyboardDevice

Definition:

typedef struct

{
unsigned short usVID;
unsigned short usPID;
unsigned short usMaxPowermA;
unsigned char ucPwrAttributes;
tUSBCallback pfnCallback;
void xpvCBData;
const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
tHIDKeyboardInstance xpsPrivateHIDKbdData;

}

tUSBDHIDKeyboardDevice

Members:
usVID The vendor ID that this device is to present in the device descriptor.

April 8, 2013

159

Device Functions

usPID The product ID that this device is to present in the device descriptor.

usMaxPowermA The maximum power consumption of the device, expressed in milliamps.

ucPwrAttributes Indicates whether the device is self- or bus-powered and whether or
not it supports remote wakeup. Valid values are USB_CONF_ATTR_SELF_PWR or
USB_CONF_ATTR_BUS_PWR, optionally ORed with USB_CONF_ATTR_RWAKE.

pfnCallback A pointer to the callback function which will be called to notify the application
of general events and those related to reception of Output and Feature reports via the
(optional) interrupt OUT endpoint.

pvCBData A client-supplied pointer which will be sent as the first parameter in all calls made
to the keyboard callback, pfnCallback.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
contain the following string descriptor pointers in this order. Language descriptor, Manu-
facturer name string (language 1), Product name string (language 1), Serial number string
(language 1), HID Interface description string (language 1), Configuration description string
(language 1).
If supporting more than 1 language, the descriptor block (except for string descriptor 0)
must be repeated for each language defined in the language descriptor.

ulNumStringDescriptors The number of descriptors provided in the ppStringDescriptors ar-
ray. This must be (1 + (5 * (num languages))).

psPrivateHIDKbdData A pointer to private instance data for this device. This memory must
remain accessible for as long as the keyboard device is in use and must not be modified
by any code outside the HID keyboard driver.

Description:

This structure is used by the application to define operating parameters for the HID keyboard
device.

3.14.3 Define Documentation

3.14.3.1 KEYB_ERR_NOT_CONFIGURED

Definition:

#define KEYB_ERR_NOT_CONFIGURED

Description:

USBDHIDKeyboardKeyStateChange returns this value if it is called before the USB host has
connected and configured the device. Any key usage code passed will be stored and passed
to the host once configuration completes.

3.14.3.2 KEYB_ERR_NOT_FOUND

Definition:

#define KEYB_ERR_NOT_FOUND

Description:

USBDHIDKeyboardKeyStateChange returns this value if it is called with the bPress parameter
set to false but with a ucUsageCode parameter which does does not indicate a key that is
currently recorded as being pressed. This may occur if an attempt was previously made to
report more than 6 pressed keys and the earlier pressed keys are released before the later

160

April 8, 2013

Device Functions

3.14.3.3

3.14.3.4

3.14.3.5

3.14.3.6

ones. This condition is benign and should not be used to indicate a host disconnection or
serious error.

KEYB_ERR_TOO_MANY_KEYS

Definition:
#define KEYB_ERR_TOO_MANY_KEYS

Description:
This return code from USBDHIDKeyboardKeyStateChange indicates that an attempt has been
made to record more than 6 simultaneously pressed, non-modifier keys. The USB HID BIOS
keyboard protocol allows no more than 6 pressed keys to be reported at one time. Until at least
one key is released, the device will report a roll over error to the host each time it is asked for
the keyboard input report.

KEYB_ERR_TX_ERROR

Definition:
#define KEYB_ERR_TX_ERROR

Description:
This return code from USBDHIDKeyboardKeyStateChange indicates that an error was reported
while attempting to send a report to the host. A client should assume that the host has discon-
nected if this return code is seen.

KEYB_MAX_CHARS_PER_REPORT

Definition:
#define KEYB_MAX CHARS_PER_REPORT

Description:
The maximum number of simultaneously-pressed, non-modifier keys that the HID BIOS key-
board protocol can send at once. Attempts to send more pressed keys than this will result in a
rollover error being reported to the host and KEYB_ERR_TOO_MANY_KEYS being returned
from USBDHIDKeyboardKeyStateChange.

KEYB_SUCCESS

Definition:
#define KEYB_SUCCESS

Description:
This return code from USBDHIDKeyboardKeyStateChange indicates success.

April 8, 2013

161

Device Functions

3.14.3.7 USBD_HID_KEYB_EVENT_SET_LEDS
Definition:
#define USBD_HID_KEYB_EVENT_SET_LEDS
Description:
This event indicates that the keyboard LED states are to be set. The ulMsgValue parameter
contains the requested state for each of the LEDs defined as a collection of ORed bits where a 1
indicates that the LED is to be turned on and a 0 indicates that it should be turned off. The indi-
vidual LED bits are defined using labels HID_KEYB_NUM_LOCK, HID_KEYB_CAPS_LOCK,
HID_KEYB_SCROLL_LOCK, HID_KEYB_COMPOSE and HID_KEYB_KANA.
3.14.4 Function Documentation
3.14.4.1 USBDHIDKeyboardCompositelnit
Initializes HID keyboard device operation for a given USB controller.
Prototype:
void =
USBDHIDKeyboardCompositeInit (unsigned long ulIndex,
const tUSBDHIDKeyboardDevice xpsDevice)
Parameters:
ullndex is the index of the USB controller which is to be initialized for HID keyboard device
operation.
psDevice points to a structure containing parameters customizing the operation of the HID
keyboard device.
Description:
This call is very similar to USBDKeyboardlInit() except that it is used for initializing an instance
of the HID keyboard device for use in a composite device.
Returns:
Returns zero on failure or a non-zero instance value that should be used with the remaining
USB HID Keyboard APIs.
3.14.4.2 USBDHIDKeyboardInit
Initializes HID keyboard device operation for a given USB controller.
Prototype:
void =
USBDHIDKeyboardInit (unsigned long ullndex,
const tUSBDHIDKeyboardDevice xpsDevice)
Parameters:
ulindex is the index of the USB controller which is to be initialized for HID keyboard device
operation.
162 April 8, 2013

Device Functions

3.14.4.3

psDevice points to a structure containing parameters customizing the operation of the HID
keyboard device.

Description:
An application wishing to offer a USB HID keyboard interface to a USB host must call this
function to initialize the USB controller and attach the keyboard device to the USB bus. This
function performs all required USB initialization.

On successful completion, this function will return the psDevice pointer passed to it. This must
be passed on all future calls to the HID keyboard device driver.

When a host connects and configures the device, the application callback will receive
USB_EVENT_CONNECTED after which calls can be made to USBDHIDKeyboardKeyStat-
eChange() to report key presses and releases to the USB host.

Note:
The application must not make any calls to the lower level USB device interfaces if interact-
ing with USB via the USB HID keyboard device class API. Doing so will cause unpredictable
(though almost certainly unpleasant) behavior.

Returns:
Returns NULL on failure or the psDevice pointer on success.

USBDHIDKeyboardKeyStateChange
Reports a key state change to the USB host.
Prototype:
unsigned long
USBDHIDKeyboardKeyStateChange (void xpvInstance,
unsigned char ucModifiers,
unsigned char ucUsageCode,
tBoolean bPress)
Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDKeyboard-
Init().
ucModifiers contains the states of each of the keyboard modifiers (left/right shift,
ctrl, alt or GUI keys). Valid values are logical OR combinations of the la-
bels HID_KEYB_LEFT _CTRL, HID_KEYB_LEFT_SHIFT, HID_KEYB_LEFT_ALT,
HID_KEYB_LEFT_GUI, HID_KEYB_RIGHT_CTRL, HID_KEYB_RIGHT_SHIFT,
HID_KEYB_RIGHT_ALT and HID_KEYB_RIGHT _GUI. Presence of one of these
bit flags indicates that the relevant modifier key is pressed and absence indicates that it is
released.
ucUsageCode is the usage code of the key whose state has changed. If only modifier keys
have changed, HID_KEYB_USAGE_RESERVED should be passed in this parameter.
bPress is true if the key has been pressed or false if it has been released. If only modifier
keys have changed state, this parameter is ignored.
Description:

This function adds or removes a key usage code from the list of keys currently pressed and
schedules a report transmission to the host to inform it of the new keyboard state. If the

April 8, 2013

163

Device Functions

3.14.4.4

3.14.4.5

maximum number of simultaneous key presses are already recorded, the report to the host will
contain the rollover error code, HID_KEYB_USAGE_ROLLOVER instead of key usage codes
and the caller will receive return code KEYB_ERR_TOO_MANY_KEYS.

Returns:

Returns KEYB_SUCCESS if the key usage code was added to or removed from the
current list successfully. KEYB_ERR_TOO_MANY_KEYS is returned if an attempt is
made to press a 7th key (the BIOS keyboard protocol can report no more than 6 si-
multaneously pressed keys). If called before the USB host has configured the device,
KEYB_ERR_NOT_CONFIGURED is returned and, if an error is reported while attempting to
transmit the report, KEYB_ERR_TX_ERROR is returned. If an attempt is made to remove a
key from the pressed list (by setting parameter bPressed to false) but the key usage code is
not found, KEYB_ERR_NOT_FOUND is returned.

USBDHIDKeyboardPowerStatusSet

Reports the device power status (bus or self powered) to the USB library.

Prototype:
void
USBDHIDKeyboardPowerStatusSet (void xpvInstance,
unsigned char ucPower)

Parameters:
pvinstance is the pointer to the keyboard device instance structure.
ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus or self powered operation should call this
function whenever the power source changes to indicate the current power status to the USB
library. This information is required by the USB library to allow correct responses to be provided
when the host requests status from the device.

Returns:
None.

USBDHIDKeyboardRemoteWakeupRequest

Requests a remote wake up to resume communication when in suspended state.

Prototype:
tBoolean
USBDHIDKeyboardRemoteWakeupRequest (void xpvInstance)

Parameters:
pvinstance is the pointer to the keyboard device instance structure.

Description:
When the bus is suspended, an application which supports remote wake up (advertised to the
host via the configuration descriptor) may call this function to initiate remote wake up signaling

164

April 8, 2013

Device Functions

to the host. If the remote wake up feature has not been disabled by the host, this will cause
the bus to resume operation within 20mS. If the host has disabled remote wake up, false will
be returned to indicate that the wake up request was not successful.

Returns:
Returns true if the remote wake up is not disabled and the signaling was started or false if
remote wake up is disabled or if signaling is currently ongoing following a previous call to this
function.

3.14.4.6 USBDHIDKeyboardSetCBData

Sets the client-specific pointer parameter for the keyboard callback.

Prototype:
void x
USBDHIDKeyboardSetCBData (void *pvInstance,
void xpvCBData)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDKeyboard-
Init().
pvCBData is the pointer that client wishes to be provided on each event sent to the keyboard
callback function.

Description:
The client uses this function to change the callback pointer passed in the first parameter on all
callbacks to the pfnCallback function passed on USBDHIDKeyboardInit().

If a client wants to make runtime changes in the callback pointer, it must ensure that the pvin-
stance structure passed to USBDHIDKeyboardInit() resides in RAM. If this structure is in flash,
callback data changes will not be possible.

Returns:
Returns the previous callback pointer that was set for this instance.

3.14.4.7 USBDHIDKeyboardTerm

Shuts down the HID keyboard device.

Prototype:
void
USBDHIDKeyboardTerm(void *pvInstance)

Parameters:
pvinstance is the pointer to the device instance structure as returned by USBDHIDKeyboard-
Init().

Description:
This function terminates HID keyboard operation for the instance supplied and removes the
device from the USB bus. Following this call, the pvinstance instance may not me used in any
other call to the HID keyboard device other than USBDHIDKeyboardinit().

April 8, 2013 165

Device Functions

3.15

Returns:
None.

Using the USB Device API

If an existing USB Device Class Driver is not suitable for your application, you may choose to
develop your device using the lower-level USB Device APl instead. This offers greater flexibility but
involves somewhat more work. Creating a device application using the USB Device API involves
several steps:

m Build device, configuration, interface and endpoint descriptor structures to describe your de-
vice.

m Write handlers for each of the USB events your device is interested in receiving from the USB
library.

m Call the USB Device API to connect the device to the bus and manage standard host interac-
tion on your behalf.

The following sections walk through each of these steps offering code examples to illustrate the
process. Working examples illustrating use of the library can also be found in the ControlSUITE
release for your USB-capable evaluation kit.

The term “device code” used in the following sections describes all class specific code written
above the USB Device API to implement a particular USB device application. This may be either
application code or a USB device class driver.

3.15.1 Building Descriptors
The USB Device APl manages all standard USB descriptors on behalf of the device. These de-
scriptors are provided to the library via four fields in the tDeviceInfo structure which is passed
on a call to USBDCDInit(). The relevant fields are:
B pDeviceDescriptor
B ppConfigDescriptors
B ppStringDescriptors
B ulNumStringDescriptors
All descriptors are provided as pointers to arrays of unsigned characters where the contents of
the individual descriptor arrays are USB 2.0-compliant descriptors of the appropriate type. For
examples of particular descriptors, see the main source files for each of the USB device class
drivers (for example device/usbdbulk. c for the generic bulk device class driver).
3.15.1.1 tDevicelnfo.pDeviceDescriptor
This array must hold the device descriptor that the USB Device API will return to the host in re-
sponse to a GET_DESCRIPTOR(DEVICE) request. The following example contains the device
descriptor provided by a USB HID keyboard device.
166 April 8, 2013

Device Functions

3.156.1.2

const unsigned char g_pDeviceDescriptor[] =

{

18, // Size of this structure.
USB_DTYPE_DEVICE, // Type of this structure.

USBShort (0x200), // USB version 2.0.

USB_CLASS_DEVICE, // USB Device Class.

0, // USB Device Sub-class.
USB_HID_PROTOCOL_NONE, // USB Device protocol.

64, // Maximum packet size for default pipe.

USBShort (USB_VID_TI), // Vendor ID (VID).
USBShort (USB_PID_KEYBOARD), // Product ID (PID).

USBShort (0x100), // Device Version BCD.

1, // Manufacturer string identifier.
2, // Product string identifier.

3, // Product serial number.

1 // Number of configurations.

}i

Header file usblib.h contains macros and labels to help in the construction of descriptors and
individual device class header files, such as usbhid.h and device/usbdhid.h for the Human
Interface Device class, provide class specific values and labels.

tDevicelnfo.ppConfigDescriptors

While only a single device descriptor is required, multiple configuration descriptors may be offered
so the ppConfigDescriptors field is an array of pointers to tConfigHeader structures, each
defining the descriptor for a single configuration. The number of entries in this array must agree
with the number of configurations specified in the final byte of the device descriptor provided in the
pDeviceDescriptor field.

To allow flexibility when defining composite devices, individual configuration descriptors are also
defined in terms of an array of structures. In this case, the tConfigHeader structure contains a
count and a pointer to an array of tConfigSection structures each of which contains a pointer
to a block of bytes and a size indicating the number of bytes in the section. The sections described
in this array are concatenated to generate the full config descriptor published to the host.

Config descriptors are somewhat more complex than device descriptors due to the amount of ad-
ditional information passed alongside the basic configuration descriptor. In addition to USB 2.0
standard descriptors for the configuration, interfaces and endpoints in use, additional, class spe-
cific, descriptors may also be included.

The USB Device API imposes one restriction on configuration descriptors that devices must be
aware of. While the USB 2.0 specification does not restrict the values that can be specified in the
bConfigurationValue field (byte 6) of the configuration descriptor, the USB Device API requires
that individual configurations are numbered consecutively starting at 1 for the first configuration.

The following example contains the configuration descriptor structures provided for a USB HID
keyboard. This example offers a single configuration containing one interface and using a single
interrupt endpoint. In this case, in addition to the standard portions of the descriptor, a Human
Interface Device (HID) class descriptor is also included. Due to the use of a standard format for
descriptor headers, the USB Device API is capable of safely skipping device specific descriptors
when parsing these structures.

In this example, we illustrate the use of multiple sections to build the configuration descriptor. The

April 8, 2013

167

Device Functions

content of the config descriptor given here is, however, static so it could easily have been defined
in terms of a single tConfigSection entry instead. The label g_pucReportDescriptor is
assumed to be a pointer to a HID-specific report descriptor for the keyboard.

Note that the value used to initialize the wTotalLength field of the configuration descriptor is
irrelevant since the USB library will calculate this based on the content of the sections that are
concatenated to build the final descriptor.

//***k*k*******************************k**
//

// HID keyboard device configuration descriptor.

//

// It is wvital that the configuration descriptor bConfigurationValue field

// (byte 6) is 1 for the first configuration and increments by 1 for each

// additional configuration defined here. This relationship is assumed in the
// device stack for simplicity even though the USB 2.0 specification imposes

// no such restriction on the bConfigurationValue values.

//
//***k*~k~k~k*******k‘k‘k*******k*k‘k‘k‘k~k*******k*‘k~k~k*****k*k*k‘k‘k********‘k***‘k********‘k‘k‘k*****
const unsigned char g_pKeyboardDescriptor[] =

{

//
// Configuration descriptor header.
//
9, // Size of the configuration descriptor.
USB_DTYPE_CONFIGURATION, // Type of this descriptor.
USBShort (34), // The total size of this full structure
// (Value is patched by the USB library so is
// not important here)
1, // The number of interfaces in this
// configuration.

1, // The unique value for this configuration.
5, // The string identifier that describes this
// configuration.

USB_CONF_ATTR_SELF_PWR, // Bus Powered, Self Powered, remote wakeup.

125, // The maximum power in 2mA increments.

}i

//***

//
// The interface and HID descriptors for the keyboard device.

//

//‘k‘k‘k******************************‘k‘k**‘k*****‘k‘k*********************‘k**********
unsigned char g_pHIDInterfacel[] =
{

//

// HID Device Class Interface Descriptor.

//

9, // Size of the interface descriptor.
USB_DTYPE_INTERFACE, // Type of this descriptor.

0, // The index for this interface.

0, // The alternate setting for this interface.
1, // The number of endpoints used by this

168

April 8, 2013

Device Functions

// interface.

USB_CLASS_HID, // The interface class

USB_HID_SCLASS_BOOT, // The interface sub-class.

USB_HID_PROTOCOL_KEYB, // The interface protocol for the sub-class
// specified above.

4, // The string index for this interface.

//

// HID Descriptor.

//

9, // Size of this HID descriptor.

USB_HID_DTYPE_HID, // HID descriptor type.

USBShort (0x101), // Version is 1.1.

0, // Country code is not specified.

1, // Number of descriptors.

USB_HID_ DTYPE_REPORT, // Type of this descriptor.

USBShort (sizeof (g_pucReportDescriptor)),
// Length of the Descriptor.
bi

//***

//

// The interrupt IN endpoint descriptor for the HID keyboard.

//
//***
const unsigned char g_pHIDInEndpoint[] =

{

//

// Interrupt IN endpoint descriptor

//

7, // The size of the endpoint descriptor.
USB_DTYPE_ENDPOINT, // Descriptor type is an endpoint.
USB_EP_DESC_IN | USB_EP_TO_INDEX (INT_IN_ENDPOINT),

USB_EP_ATTR_INT, // Endpoint is an interrupt endpoint.
USBShort (INT_IN_EP_MAX_SIZE), // The maximum packet size.

le, // The polling interval for this endpoint.

}i

//***
//
// The HID keyboard config descriptor is defined using three sections:
//
// 1. The 9 byte configuration descriptor.
// 2. The interface and HID report descriptors.
// 4. The mandatory interrupt IN endpoint descriptor (FLASH).
//
//***
const tConfigSection g_sKeyboardConfigSection =
{
sizeof (g_pKeyboardDescriptor),
g_pKeyboardDescriptor
i

April 8, 2013

169

Device Functions

3.15.1.3

const tConfigSection g_sHIDInterfaceSection =
{

sizeof (g_pHIDInterface),

g_pHIDInterface
i

const tConfigSection g_sHIDInEndpointSection =
{

sizeof (g_pHIDInEndpoint),

g_pHIDInEndpoint
}i

//***~k**********~k********************~k**********~k******************************
//
// This array lists all the sections that must be concatenated to make a
// single, complete HID keyboard configuration descriptor.
//
//***
const tConfigSection xg_psKeyboardSections[] =
{

&g_sKeyboardConfigSection,

&g_sHIDInterfaceSection,

&g_sHIDInEndpointSection
}i

#define NUM_KEYBOARD_SECTIONS (sizeof (g_psKeyboardSections) / \
sizeof (tConfigSection x))

//**************~k**********k*********************~k******************************
//
// The header for the single configuration we support. This is the root of
// the data structure that defines all the bits and pieces that are pulled
// together to generate the HID keyboard’s config descriptor. A pointer to
// this structure is used to initialize the ppConfigDescriptors field of
// the tDevicelInfo structure passed to USBDCDInit ().
//
//***
const tConfigHeader g_sKeyboardConfigHeader =
{
NUM_KEYBOARD_SECTIONS,
g_psKeyboardSections
bi

tDevicelnfo.ppStringDescriptors and tDevicelnfo.ulNumStringDescriptors

Descriptive strings referenced by device and configuration descriptors are provided to the USB
Device API as an array of string descriptors containing the basic descriptor length and type header
followed by a Unicode string. The various string identifiers passed in other descriptors are indexes
into the pStringDescriptor array. The first entry of the string descriptor array has a special
format and indicates the languages supported by the device.

170

April 8, 2013

Device Functions

The field ulNumStringDescriptors indicates the number of individual string descriptors in the
ppStringDescriptors array.

The string descriptor array provided to the USB Device API for a USB HID keyboard follows.

//**
//
// The languages supported by this device.
//
//**
const unsigned char g_pLangDescriptor[] =
{

4!

USB_DTYPE_STRING,

USBShort (USB_LANG_EN_US)
}i

//***

//
// The manufacturer string.

//***
const unsigned char g_pManufacturerString[] =

{

2 + (22 *2)/
USB_DTYPE_STRING,
rt*, 0, ’e’, 0, 'x'", 0, '&’, O, ’s’, O, * ", O, 717, 0, 'n’, O,
's’, 0, 't*, 0, ', 0, 'v’, 0, 'm, 0, 'e", 0, 'n’, O, "t’, O,
's’, 0, * ', 0, "I’, 0, 'n

}i

//**
//
// The product string.
//
//**
const unsigned char g_pProductStringl[] =
{
(16 + 1) = 2,
USB_DTYPE_STRING,
'k’, 0, 'e’, 0, 'y’", 0, "b’, 0, '0’", O, 'a&’', O, 'x’, O, 'd", O, * 7, O,
'g’, 0, 'x", 0, 'a’, 0, 'm’, 0, "p’, 0, 17, 0, 'e’, O
}i

//**
//
// The serial number string.
//
//**
const unsigned char g_pSerialNumberStringl[] =
{

(8 + 1) * 2,

April 8, 2013 171

Device Functions

USB_DTYPE_STRING,
Ill, O’ 121, O, I3I, O, I4I’ O, 151, O’ 161, O, I7I, O, I8I’ O
}i

//**

//

// The array of string descriptors needed by the enumeration code.

//

//**
const unsigned char * const g_ppStringDescriptors|[] =
{

g_pLangDescriptor,

g_pManufacturerString,

g_pProductString,

g_pSerialNumberString

}i

In this example, the ppStringbescriptors member of the tDeviceInfo structure would be ini-
tialized with the value g_ppStringDescriptors and the ulNumStringDescriptors member
would be set to the number of elements in the g_ppStringDescriptors array.

3.15.2 USB Event Handlers

The majority of the work in a USB device application will be carried out either in the context of, or
in response to callbacks from the USB Device API. These callback functions are made available to
the USB Device API in the sCallbacks field of the tDeviceInfo structure passed in a call to
USBDCDInit().

Field scallbacks is a structure of type tCustomHandlers which contains a function pointer for
each USB event. The application must populate the table with valid function pointers for each event
that it wishes to be informed of. Setting any function pointer to NULL disables notification for that
event.

The tCustomHandlers structure contains the following fields:

m pfnGetDescriptor

m pfnRequestHandler
m pfninterfaceChange
m pfnConfigChange

m pfnDataReceived

m pfnDataSent

m pfnResetHandler

m pfnSuspendHandler
m pfnResumeHandler
m pfnDisconnectHandler
m pfnEndpointHandler
m pfnDeviceHandler

Note that all callbacks except the pfnDeviceHandler entry are made in interrupt context. It is,
therefore, vital that handlers do not block or make calls to functions which cannot safely be made
in an interrupt handler.

172 April 8, 2013

Device Functions

3.15.2.1

3.156.2.2

pfnGetDescriptor

Standard USB device, configuration and string descriptors are handled by the USB Device API
internally but some device classes also define additional, class specific descriptors. In cases where
the host requests one of these non-standard descriptors, this callback is made to give the device
code an opportunity to provide its own descriptor to satisfy the request.

If the device can satisfy the request, it must call USBDCDSendDataEPO() to provide the requested
descriptor data to the host. If the request cannot be satisfied, the device should call USBDCD-
StallEPOQ() to indicate that the descriptor request is not supported.

If this member of sCallbacks is setto NULL, the USB Device API will stall endpoint zero whenever
it receives a request for a non-standard descriptor.

pfnRequestHandler

The USB Device API contains handlers for all standard USB requests (as defined in Table 9-3 of
the USB 2.0 specification) where a standard request is indicated by bits 5 and 6 of the request
structure bmRequest Type field being clear. If a request is received with a non-standard request
type, this callback is made to give the device code an opportunity to satisfy the request.

The callback function receives a pointer to a standard, 8 byte request structure of type
tUSBRequest containing information on the request type, the request identifier and various
request-specific parameters. The structure also contains a length field, wLength, which indicates
how much (if any) data will follow in the data stage of the USB transaction. Note that this data is
not available at the time the callback is made and the device code is responsible for requesting it
using a call to USBDCDRequestDataEPO() if required.

The sequence required when additional data is attached to the request is as follows:

m Parse the request to determine the request type and verify that it is handled by the device. If
not, call USBDCDStallEPQ() to indicate the problem.

m |f the request is to be handled and wLength is non-zero, indicating that additional data is
required, call USBDCDRequestDataEPO() passing a pointer to the buffer into which the data
is to be written and the number of bytes of data to receive.

m Call USBDevEndpointDataAck() to acknowledge reception of the initial request transmission.
This function is found in the f2806x Peripheral Driver Library USB driver API.

Note that it is important to call USBDCDRequestDataEPOQ() prior to acknowledging the initial request
since the acknowledgment frees the host to send the additional data. By making the calls in this
order, the USB Device API is guaranteed to be in the correct state to receive the data when it
arrives. Making the calls in the opposite order, creates a race condition which could result in loss
of data.

Data received as a result of a call to USBDCDRequestDataEPO() will be delivered asynchronously
via the pfnDataReceived callback described below.

If this member of sCallbacks is setto NULL, the USB Device API will stall endpoint zero whenever
it receives a non-standard request.

April 8, 2013

173

Device Functions

3.15.2.3

3.15.2.4

3.15.2.5

3.15.2.6

pfninterfaceChange

Based on the configuration descriptor published by the device code, several different alternate inter-
face settings may be supported. In cases where the host wishes to change from the default interface
configuration and the USB library determines that the requested alternate setting is supported, this
callback is made to inform the device code of the change. The parameters passed provide the new
alternate interface (ucAlternateSetting and the interface number (ucInterfaceNum).

This callback is only made once the USB Device API has validated the requested alternate setting.
If the requested setting is not available in the published configuration descriptor, the USB Device
API will stall endpoint zero to indicate the error to the host and make no callback to the device code.

If this member of sCallbacks is set to NULL, the USB Device API will note the interface change
internally but not report it to the device code.

pfnConfigChange

When the host enumerates a device, it will ultimately select the configuration that is to be used
and send a SET_CONFIGURATION request to the device. When this occurs, the USB Device API
validates the configuration number passed against the device code’s published configuration de-
scriptors then calls the pfnConfigChange callback to inform the device code of the configuration
that is to be used.

If this member of sCallbacks is set to NULL, the USB Device API will note the configuration
change internally but not report it to the device code.

pfnDataReceived

This callback informs the device code of the arrival of data following an earlier call to USBDC-
DRequestDataEPOQ(). On this callback, the received data will have been written into the buffer
provided to the USB Device API in the pucData parameter to USBDCDRequestDataEPO().

The callback handler does not need to acknowledge the data using a call to USBDevEndpoint-
DataAck() in this case since this acknowledgment is performed within the USB Device API itself.

If this member of sCallbacks is set to NULL, the USB Device API will read endpoint zero data
requested via USBDCDRequestDataEPO() but not report its availability to the device code. De-
vices making use of the USBDCDRequestDataEPO() call must, therefore, ensure that they supply
apfnDataReceived handler.

pfnDataSent

The USBDCDSendDataEPOQ() function allows device code to send an arbitrarily-sized block of data
to the host via endpoint zero. The maximum packet size that can be sent via endpoint zero is,
however, 64 bytes so larger blocks of data are sent in multiple packets. This callback function is
used by the USB Device API to inform the device code when all data provided in the buffer passed
to USBDCDSendDataEPO() has been consumed and scheduled for transmission to the host. On
reception of this callback, the device code is free to reuse the outgoing data buffer if required.

If this member of sCallbacks is set to NULL, the USB Device API will not inform the device code
when a block of EPO data is sent.

174

April 8, 2013

Device Functions

3.156.2.7

3.15.2.8

3.156.2.9

pfnResetHandler

The pfnResetHandler callback is made by the USB Device APl whenever a bus reset is detected.
This will typically occur during enumeration. The device code may use this notification to perform
any housekeeping required in preparation for a new configuration being set.

If this member of sCallbacks is set to NULL, the USB Device API will not inform the device code
when a bus reset occurs.

pfnSuspendHandler

The pfnSuspendHandler callback is made whenever the USB Device API detects that suspend
has been signaled on the bus. Device code may make use of this notification to, for example, set
appropriate power saving modes.

If this member of sCallbacks is set to NULL, the USB Device API will not inform the device code
when a bus suspend occurs.

pfnResumeHandler

The pfnResumeHandler callback is made whenever the USB Device API detects that resume
has been signaled on the bus. Device code may make use of this notification to undo any changes
made in response to an earlier call to the pfnSuspendHandler callback.

If this member of sCcallbacks is set to NULL, the USB Device API will not inform the device code
when a bus resume occurs.

3.15.2.10 pfnDisconnectHandler

3.15.2.11

The pfnDisconnectHandler callback is made whenever the USB Device API detects that the
device has been disconnected from the bus.

If this member of scallbacks is set to NULL, the USB Device API will not inform the device code
when a disconnection event occurs.

pfnEndpointHandler

While the use of endpoint zero is standardized and supported via several of the other callbacks al-
ready listed (pfnDataSent, pfnDataReceived, pfnGetDescriptor, pfnRequestHandler,
pfnInterfaceChange and pfnConfigChange), the use of other endpoints is entirely depen-
dent upon the device class being implemented. The pfnEndpointHandler callback is, therefore,
made to notify the device code of all activity on any endpoint other than endpoint zero and it is the
device code’s responsibility to determine the correct action to take in response to each callback.

The ulstatus parameter passed to the handler provides information on the actual endpoint for
which the callback is being made and allows the handler to determine if the event is due to trans-
mission (if an IN endpoint event occurs) or reception (if an OUT endpoint event occurs) of data.

Having determined the endpoint sourcing the event, the device code can determine the actual
event by calling USBEndpointStatus() for the appropriate endpoint then clear the status by calling
USBDevEndpointStatusCleary().

April 8, 2013

175

Device Functions

When incoming data is indicated by the flag USB_DEV_RX_PKT_RDY being set in the endpoint
status, data can be received using a call to USBEndpointDataGet() followed by a call to USBDe-
vEndpointDataAck() to acknowledge the reception to the host.

When an event relating to an IN endpoint (data transmitted from the device to the host) is received,
the status read from USBEndpointStatus() indicates any errors in transmission. If the value read is
0, this implies that the data was successfully transmitted and acknowledged by the host.

Any device whose configuration descriptor indicates that it uses any endpoint (endpoint zero use is
assumed) must populate the pfnEndpointHandler member of tCustomHandlers.

3.15.2.12 pfnDeviceHandler

3.15.3

Unlike the other calling functions pfnDeviceHandler specifies a generic input handler to the device
class. Callers of this function should check to insure that the class supports this entry by seeing if
the pfnDeviceHandler is non-zero This call is provided to allow requests based on a given instance
to be passed into a device. This is commonly used by a top level composite device that is using
multiple instances of the same class.

USB device classes that need to support being part of a composite device must imple-
ment this function as the composite device class will need to call this function to in-
form the class of interface, endpoint, and string index changes. See the documenta-
tion on the USB_EVENT_COMP_IFACE_CHANGE, USB_EVENT_COMP_EP_CHANGE, and
USB_EVENT_COMP_STR_CHANGE.

USB FIFO Configuration

The USB controller FIFO must be partitioned appropriately between the various endpoints that
an application is using. Although the actual configuration is performed within the USB library, the
application must pass a structure to indicate any special sizing or FIFO configuration considerations
that need to be taken into account. The tFIFOConfig structure contains two arrays, the first
defining FIFO configuration parameters for each of the 3 IN endpoints and the second containing
the same information for the 3 OUT endpoints. Endpoint zero is handled independently and uses a
fixed FIFO configuration.

A pointer to this structure is passed to USBCDCInit() in the psFIFOConfig field of the
tDeviceInfo structure. If the application does not wish to use any special features such as DMA
or double buffering, the field can be initialized using global pointer g_sUSBDefaultFIFOConfig
which configures the FIFO to buffer one full packet for each endpoint in use.

If the default FIFO configuration is not suitable, declare a new tFIFOConfig structure and com-
plete all fields before setting psFIF0OConfig to point to it. For each endpoint, the relevant structure
entry allows:

m the FIFO size to be defined in terms of a maximum packet size multiplier,
m the FIFO buffering mode to be set to either single- or double-buffered, and
m and special configuration flags such as DMA mode to be specified.

176

April 8, 2013

Device Functions

3.15.4 Interrupt Vector Selection

An application using the USB Device API should normally ensure that the interrupt vector for the
hardware USB controller is set to call function USBODeviceIntHandler.

If the target application is intended to allow switching between USB device and USB host mode,
however, this handler should be replaced with USBODualModeIntHandler to allow the USB li-
brary to perform appropriate interrupt steering depending upon the current mode of operation.
Hybrid applications must also call USBStackModeSet() to indicate the mode they wish to operate
in. Note that this should not be done for a device-only application since making use of either of
these APIs will cause the host-side USB library code to be included in the final application binary.

3.15.5 Passing Control to the USB Device API

When all previous setup steps have been completed, control can be passed to the USB Device API.
The library will enable the appropriate interrupts and connect the device to the bus in preparation
for enumeration by the USB host. This operation is initiated using a call to USBDCDInit() passing
the completed tDeviceInfo structure which describes the device.

Following this call, your device code callback functions will be called when USB events specific to
your device are detected by the library.

//

// Pass the USB Device API our device information and connect the device to
// the bus.

//

USBDCDInit (0, &g_sMouseDevicelInfo);

3.16 USB Device API Definitions

Data Structures

m tConfigHeader

m tConfigSection

m tCustomHandlers
m tDevicelnfo

m tFIFOConfig

m tFIFOEntry

Defines
m USB_MAX_INTERFACES PER_DEVICE

Functions

m void USBODevicelntHandler (void)

April 8, 2013 177

Device Functions

void USBDCDInit (unsigned long ullndex, tDevicelnfo xpsDevice)
void USBDCDPowerStatusSet (unsigned long ullndex, unsigned char ucPower)
tBoolean USBDCDRemoteWakeupRequest (unsigned long ullndex)

void USBDCDRequestDataEPO (unsigned long ullndex, unsigned char xpucData, unsigned
long ulSize)

void USBDCDSendDataEPO (unsigned long ulindex, unsigned char «pucData, unsigned long
ulSize)

void USBDCDSetDefaultConfiguration (unsigned long ullndex, unsigned long ulDefaultConfig)
void USBDCDStallEPO (unsigned long ullndex)

void USBDCDTerm (unsigned long ulindex)

tBoolean USBDeviceConfig (unsigned long ullndex, const tConfigHeader xpsConfig, const
tFIFOConfig xpsFIFOConfig)

tBoolean USBDeviceConfigAlternate (unsigned long ullndex, const tConfigHeader xpsConfig,
unsigned char uclnterfaceNum, unsigned char ucAlternateSetting)

Variables

const tFIFOConfig g_sUSBDefaultFIFOConfig

3.16.1 Data Structure Documentation
3.16.1.1 tConfigHeader
Definition:
typedef struct
{
unsigned char ucNumSections;
const tConfigSection xconst xpsSections;
}
tConfigHeader
Members:
ucNumSections The number of sections comprising the full descriptor for this configuration.
psSections A pointer to an array of uctNumSections section pointers which must be concate-
nated to form the configuration descriptor.
Description:
This is the top level structure defining a USB device configuration descriptor. A configuration
descriptor contains a collection of device- specific descriptors in addition to the basic config,
interface and endpoint descriptors. To allow flexibility in constructing the configuration, the
descriptor is described in terms of a list of data blocks. The first block must contain the con-
figuration descriptor itself and the following blocks are appended to this in order to produce
the full descriptor sent to the host in response to a GetDescriptor request for the configuration
descriptor.
178 April 8, 2013

Device Functions

3.16.1.2 tConfigSection

Definition:
typedef struct
{
unsigned char ucSize;
const unsigned char xpucData;

}
tConfigSection

Members:
ucSize The number of bytes of descriptor data pointed to by pucData.

pucData A pointer to a block of data containing an integral number of USB descriptors which
form part of a larger configuration descriptor.

Description:
This structure defines a contiguous block of data which contains a group of descriptors that
form part of a configuration descriptor for a device. It is assumed that a config section contains
only whole descriptors. It is not valid to split a single descriptor across multiple sections.

3.16.1.3 tCustomHandlers

Definition:

typedef struct

{
tStdRequest pfnGetDescriptor;
tStdRequest pfnRequestHandler;
tInterfaceCallback pfnInterfaceChange;
tInfoCallback pfnConfigChange;
tInfoCallback pfnDataReceived;
tInfoCallback pfnDataSent;
tUSBIntHandler pfnResetHandler;
tUSBIntHandler pfnSuspendHandler;
tUSBIntHandler pfnResumeHandler;
tUSBIntHandler pfnDisconnectHandler;
tUSBEPIntHandler pfnEndpointHandler;
tUSBDeviceHandler pfnDeviceHandler;

}

tCustomHandlers

Members:

pfnGetDescriptor This callback is made whenever the USB host requests a non-standard
descriptor from the device.

pfnRequestHandler This callback is made whenever the USB host makes a non-standard
request.

pfninterfaceChange This callback is made in response to a SetInterface request from the
host.

pfnConfigChange This callback is made in response to a SetConfiguration request from the
host.

pfnDataReceived This callback is made when data has been received following to a call to
USBDCDRequestDataEPO.

April 8, 2013 179

Device Functions

pfnDataSent This callback is made when data has been transmitted following a call to USB-
DCDSendDataEPO.

pfnResetHandler This callback is made when a USB reset is detected.

pfnSuspendHandler This callback is made when the bus has been inactive long enough to
trigger a suspend condition.

pfnResumeHandler This is called when resume signaling is detected.

pfnDisconnectHandler This callback is made when the device is disconnected from the USB
bus.

pfnEndpointHandler This callback is made to inform the device of activity on all endpoints
other than endpoint zero.

pfnDeviceHandler This generic handler is provided to allow requests based on a given in-
stance to be passed into a device. This is commonly used by a top level composite device
that is using multiple instances of a class.

Description:

USB event handler functions used during enumeration and operation of the device stack.

3.16.1.4 tDevicelnfo

Definition:

typedef struct
{
tCustomHandlers sCallbacks;
const unsigned char *pDeviceDescriptor;
const tConfigHeader xconst xppConfigDescriptors;
const unsigned char xconst xppStringDescriptors;
unsigned long ulNumStringDescriptors;
const tFIFOConfig *xpsFIFOConfig;
void xpvInstance;
}

tDevicelInfo

Members:

sCallbacks A pointer to a structure containing pointers to event handler functions provided by
the client to support the operation of this device.

pDeviceDescriptor A pointer to the device descriptor for this device.

ppConfigDescriptors A pointer to an array of configuration descriptor pointers. Each entry in
the array corresponds to one configuration that the device may be set to use by the USB
host. The number of entries in the array must match the bNumConfigurations value in the
device descriptor array, pDeviceDescriptor.

ppStringDescriptors A pointer to the string descriptor array for this device. This array must
be arranged as follows:
HASH(0x20679ef8)
and so on.

ulNumStringDescriptors The total number of descriptors provided in the ppStringDescriptors
array.

PSFIFOConfig A structure defining how the USB controller FIFO is to be partitioned between
the various endpoints. This member can be set to point to g_sUSBDefaultFIFOConfig if
the default FIFO configuration is acceptable This configuration sets each endpoint FIFO to
be single buffered and sized to hold the maximum packet size for the endpoint.

180

April 8, 2013

Device Functions

pvinstance This value will be passed back to all call back functions so that they have access
to individual instance data based on the this pointer.

Description:
This structure is passed to the USB library on a call to USBDCDInit and provides the library with
information about the device that the application is implementing. It contains functions pointers
for the various USB event handlers and pointers to each of the standard device descriptors.

3.16.1.5 tFIFOConfig

Definition:
typedef struct
{
tFIFOEntry sIn[USBLIB_NUM_EP-1];
tFIFOEntry sOut [USBLIB_NUM_EP-1];
}
tFIFOConfig

Members:
sin An array containing one FIFO entry for each of the IN endpoints. Note that endpoint 0
is configured and managed by the USB device stack so is excluded from this array. The
index 0 entry of the array corresponds to endpoint 1, index 1 to endpoint 2, etc.
sOut An array containing one FIFO entry for each of the OUT endpoints. Note that endpoint
0 is configured and managed by the USB device stack so is excluded from this array. The
index 0 entry of the array corresponds to endpoint 1, index 1 to endpoint 2, etc.

Description:
This structure defines endpoint and FIFO configuration information for all endpoints that the
device wishes to use. This information cannot be determined by examining the USB configura-
tion descriptor and is provided to USBDCDConfig by the application to allow the USB controller
endpoints to be correctly configured.

3.16.1.6 tFIFOEntry

Definition:

typedef struct

{
unsigned char cMultiplier;
tBoolean bDoubleBuffer;
unsigned short usEPFlags;

}

tFIFOEntry

Members:

cMultiplier The multiplier to apply to an endpoint’s maximum packet size when configuring the
FIFO for that endpoint. For example, setting this value to 2 will result in a 128 byte FIFO
being configured if bDoubleBuffer is false and the associated endpoint is set to use a 64
byte maximum packet size.

bDoubleBuffer This field indicates whether to configure an endpoint’s FIFO to be double- or
single-buffered. If true, a double-buffered FIFO is created and the amount of required FIFO
storage is multiplied by two.

April 8, 2013 181

Device Functions

3.16.2

3.16.2.1

3.16.3

3.16.3.1

usEPFlags This field defines endpoint mode flags which cannot be deduced from the configu-
ration descriptor, namely any in the set USB_EP_AUTO_xxx or USB_EP_DMA_MODE_x.
USBDCDConfig adds these flags to the endpoint mode and direction determined from the
config descriptor before it configures the endpoint using a call to USBDevEndpointCon-
figSet().

Description:
This structure defines how a given endpoint’s FIFO is configured in relation to the maximum
packet size for the endpoint as specified in the endpoint descriptor.

Define Documentation

USB_MAX INTERFACES PER_DEVICE

Definition:
#define USB_MAX_INTERFACES_PER_DEVICE

Description:
The maximum number of independent interfaces that any single device implementation can
support. Independent interfaces means interface descriptors with different binterfaceNumber
values - several interface descriptors offering different alternative settings but the same inter-
face number count as a single interface.

Function Documentation

USBODevicelntHandler

The USB device interrupt handler.

Prototype:
void
USBODeviceIntHandler (void)

Description:
This the main USB interrupt handler entry point for use in USB device applications. This
top-level handler will branch the interrupt off to the appropriate application or stack handlers
depending on the current status of the USB controller.

Applications which operate purely as USB devices (rather than dual mode applications which
can operate in either device or host mode at different times) must ensure that a pointer to this
function is installed in the interrupt vector table entry for the USBO interrupt. For dual mode
operation, the vector should be set to point to USB0ODualModelntHandler() instead.

Returns:
None.
3.16.3.2 USBDCDInit
Initialize the USB library device control driver for a given hardware controller.
182 April 8, 2013

Device Functions

Prototype:

void
USBDCDInit (unsigned long ullIndex,
tDeviceInfo *psDevice)

Parameters:
ulindex is the index of the USB controller which is to be initialized.
psDevice is a pointer to a structure containing information that the USB library requires to
support operation of this application’s device. The structure contains event handler call-
backs and pointers to the various standard descriptors that the device wishes to publish to
the host.

Description:
This function must be called by any application which wishes to operate as a USB device. It
initializes the USB device control driver for the given controller and saves the device information
for future use. Prior to returning from this function, the device is connected to the USB bus.
Following return, the caller can expect to receive a callback to the supplied pfnResetHandler
function when a host connects to the device.

The device information structure passed in psDevice must remain unchanged between this call
and any matching call to USBDCDTerm() since it is not copied by the USB library.

Returns:
None.

3.16.3.3 USBDCDPowerStatusSet

Reports the device power status (bus- or self-powered) to the library.

Prototype:

void
USBDCDPowerStatusSet (unsigned long ullIndex,
unsigned char ucPower)

Parameters:
ulindex is the index of the USB controller whose device power status is being reported.

ucPower indicates the current power status, either USB_STATUS_SELF_PWR or
USB_STATUS_BUS_PWR.

Description:
Applications which support switching between bus- or self-powered operation should call this
function whenever the power source changes to indicate the current power status to the USB
library. This information is required by the library to allow correct responses to be provided
when the host requests status from the device.

Returns:
None.

3.16.3.4 USBDCDRemoteWakeupRequest

Requests a remote wake up to resume communication when in suspended state.

April 8, 2013 183

Device Functions

3.16.3.5

3.16.3.6

Prototype:
tBoolean
USBDCDRemoteWakeupRequest (unsigned long ulIndex)

Parameters:
ullndex is the index of the USB controller that will request a bus wake up.

Description:
When the bus is suspended, an application which supports remote wake up (advertised to the
host via the configuration descriptor) may call this function to initiate remote wake up signaling
to the host. If the remote wake up feature has not been disabled by the host, this will cause
the bus to resume operation within 20mS. If the host has disabled remote wake up, false will
be returned to indicate that the wake up request was not successful.

Returns:
Returns true if the remote wake up is not disabled and the signaling was started or false if
remote wake up is disabled or if signaling is currently ongoing following a previous call to this
function.

USBDCDRequestDataEPO

This function starts the request for data from the host on endpoint zero.

Prototype:
void
USBDCDRequestDataEPO (unsigned long ullIndex,
unsigned char *pucData,
unsigned long ulSize)

Parameters:
ullndex is the index of the USB controller from which the data is being requested.
pucData is a pointer to the buffer to fill with data from the USB host.
ulSize is the size of the buffer or data to return from the USB host.

Description:
This function handles retrieving data from the host when a custom command has been is-
sued on endpoint zero. If the application needs notification when the data has been received,
tDeviceInfo.sCallbacks.pfnDataReceived should contain valid function pointer. In
nearly all cases this is necessary because the caller of this function would likely need to know
that the data requested was received.

Returns:
None.

USBDCDSendDataEPO

This function requests transfer of data to the host on endpoint zero.

Prototype:
void
USBDCDSendDataEPO (unsigned long ulIndex,

184

April 8, 2013

Device Functions

unsigned char =xpucData,
unsigned long ulSize)

Parameters:
ulindex is the index of the USB controller which is to be used to send the data.

pucData is a pointer to the buffer to send via endpoint zero.
ulSize is the amount of data to send in bytes.

Description:
This function handles sending data to the host when a custom command is issued or non-
standard descriptor has been requested on endpoint zero. If the application needs notification
when this is complete, tDeviceInfo.sCallbacks.pfnDataSent should contain a valid
function pointer. This callback could be used to free up the buffer passed into this function in
the pucData parameter. The contents of the pucData buffer must remain unchanged until the
pfnDataSent callback is received.

Returns:
None.

3.16.3.7 USBDCDSetDefaultConfiguration

This function sets the default configuration for the device.

Prototype:
void
USBDCDSetDefaultConfiguration (unsigned long ulIndex,
unsigned long ulDefaultConfig)

Parameters:
ulindex is the index of the USB controller whose default configuration is to be set.

ulDefaultConfig is the configuration identifier (byte 6 of the standard configuration descrip-
tor) which is to be presented to the host as the default configuration in cases where the
configuration descriptor is queried prior to any specific configuration being set.

Description:
This function allows a device to override the default configuration descriptor that will be returned
to a host whenever it is queried prior to a specific configuration having been set. The parameter
passed must equal one of the configuration identifiers found in the ppConfigbescriptors
array for the device.

If this function is not called, the USB library will return the first configuration in the
ppConfigDescriptors array as the default configuration.

Note:
The USB device stack assumes that the configuration IDs (byte 6 of the configura-
tion descriptor, bConfigurationvalue) stored within the configuration descriptor array,
ppConfigDescriptors, are equal to the array index + 1. In other words, the first entry
in the array must contain a descriptor with bConfigurationvalue 1, the second must have
bConfigurationValue 2 and so on.

Returns:
None.

April 8, 2013 185

Device Functions

3.16.3.8

3.16.3.9

USBDCDStallEPO

This function generates a stall condition on endpoint zero.

Prototype:
void
USBDCDStallEPO (unsigned long ulIndex)

Parameters:
ullndex is the index of the USB controller whose endpoint zero is to be stalled.

Description:
This function is typically called to signal an error condition to the host when an unsupported
request is received by the device. It should be called from within the callback itself (in interrupt
context) and not deferred until later since it affects the operation of the endpoint zero state
machine in the USB library.

Returns:
None.

USBDCDTerm

Free the USB library device control driver for a given hardware controller.

Prototype:
void
USBDCDTerm (unsigned long ulIndex)

Parameters:
ulindex is the index of the USB controller which is to be freed.

Description:
This function should be called by an application if it no longer requires the use of a given USB
controller to support its operation as a USB device. It frees the controller for use by another
client.

Itis the caller’s responsibility to remove its device from the USB bus prior to calling this function.

Returns:
None.

3.16.3.10 USBDeviceConfig

Configure the USB controller appropriately for the device whose config descriptor is passed.

Prototype:
tBoolean
USBDeviceConfig (unsigned long ullIndex,
const tConfigHeader xpsConfig,
const tFIFOConfig xpsFIFOConfig)

186

April 8, 2013

Device Functions

Parameters:

ulindex is the zero-based index of the USB controller which is to be configured.

psConfig is a pointer to the configuration descriptor that the USB controller is to be set up to
support.

PsFIFOConfig is a pointer to an array of NUM_USB_EP tFIFOConfig structures detailing how
the FIFOs are to be set up for each endpoint used by the configuration.

Description:

This function may be used to initialize a USB controller to operate as the device whose con-
figuration descriptor is passed. The function enables the USB controller, partitions the FIFO
appropriately and configures each endpoint required by the configuration. If the supplied con-
figuration supports multiple alternate settings for any interface, the USB FIFO is set up as-
suming the worst case use (largest packet size for a given endpoint in any alternate setting
using that endpoint) to allow for on-the-fly alternate setting changes later. On return from this
function, the USB controller is configured for correct operation of the default configuration of
the device described by the descriptor passed.

The psFIFOConfig parameter allows the caller to provide additional information on USB FIFO
configuration that cannot be determined merely by parsing the configuration descriptor. The
descriptor provides information on the endpoints that are to be used and the maximum packet
size for each but cannot determine whether, for example, double buffering is to be used or how
many packets the application wants to be able to store in a given endpoint’s FIFO.

USBDCDConfig() is an optional call and applications may chose to make direct calls to
SysCtlPeripheralEnable(), SysCtIUSBPLLEnable(), USBDevEndpointConfigSet() and USBFI-
FOConfigSet() instead of using this function. If this function is used, it must be called prior
to USBDCDInit() since this call assumes that the low level hardware configuration has been
completed before it is made.

Returns:

Returns true on success or false on failure.

3.16.3.11 USBDeviceConfigAlternate

Configure the affected USB endpoints appropriately for one alternate interface setting.

Prototype:

tBoolean

USBDeviceConfigAlternate (unsigned long ulIndex,
const tConfigHeader *psConfig,
unsigned char ucInterfaceNum,
unsigned char ucAlternateSetting)

Parameters:

ulindex is the zero-based index of the USB controller which is to be configured.

psConfig is a pointer to the configuration descriptor that contains the interface whose alter-
nate settings is to be configured.

ucinterfaceNum is the number of the interface whose alternate setting is to be configured.
This number corresponds to the binterfaceNumber field in the desired interface descriptor.

ucAlternateSetting is the alternate setting number for the desired interface. This number
corresponds to the bAlternateSetting field in the desired interface descriptor.

April 8, 2013

187

Device Functions

Description:

This function may be used to reconfigure the endpoints of an interface for operation in one
of the interface’s alternate settings. Note that this function assumes that the endpoint FIFO
settings will not need to change and only the endpoint mode is changed. This assumption is
valid if the USB controller was initialized using a previous call to USBDCDConfig().

In reconfiguring the interface endpoints, any additional configuration bits set in the endpoint
configuration other than the direction (USB_EP_DEV_IN or USB_EP_DEV_OUT) and mode
(USB_EP_MODE_MASK) are preserved.

Returns:

Returns true on success or false on failure.

3.16.4 Variable Documentation

3.16.4.1 g_sUSBDefaultFIFOConfig

Definition:

const tFIFOConfig g_sUSBDefaultFIFOConfig

Description:

The default USB endpoint FIFO configuration structure. This structure contains definitions
to set all USB FIFOs into single buffered mode with no DMA use. Each endpoint’s FIFO is
sized to hold the largest maximum packet size for any interface alternate setting in the current
configuration descriptor. A pointer to this structure may be passed in the psFIFOConfig field of
the tDevicelnfo structure passed to USBCDCInit if the application does not require any special
handling of the USB controller FIFO.

188

April 8, 2013

Host Functions

4

4.1

Host Functions

INEOAUCH ON .. e e e 189
HOSt CONtroller DIiVEr ... e e e e e e e e e 191
Host Controller Driver Definitions i e e e e 193
HOSE Class DIiVOI .ttt e e e e e e e et e e e e 207
Host Class Driver Definitions e e e e e e 211
HOSE DeViCe INterface ... e e e e e s 225
Host Device Interface Definitions oo e e e e e e 227
Host Programming EXamples e 232
Introduction

This chapter covers the support provided by the USB library for the USB controller in host mode.
In order to simplify the application and the addition of new devices and device classes, the USB
library provides a layered interface to the USB host controller. At the top layer of the USB library
there are application interfaces that provide easy access to the various types of peripherals that are
supported by the USB library. Below this layer are the USB host controller's device interfaces that
handle the specifics of each type of device and how to communicate with the USB host class driver.
The USB host class drivers handle the basics of dealing with whole classes of devices like HID and
Mass Storage Class devices. The USB host class driver layer communicates with the lowest level of
the USB library which is the USB host controller driver. This lowest level directly accesses DriverLib
functions to provide communications with the USB device that is connected. This communication
is provided by callbacks or direct APIs that will be discussed in the rest of this chapter. Much like
the USB library’s device programming interface, the host interface has the following layers:

Device APls (Mouse, Keyboard, Filesystem)
USB Class Driver APls (HID, Mass Storage)
USB Host Controller APls
DriverLib USB Driver APIs

April 8, 2013

189

Host Functions

Application 3 Application 4

Application 1
Application 2

Host Class
API

USB Host Class Driver

USB Host Controller Driver

USB DriverLib API

Source Code Overview

Source code and headers for the host specific USB functions can be found in the host directory of
the USB library tree, typically DriverLib/usblib/device.

usbhost.h The header file containing host mode function prototypes and data types
offered by the USB library.

usbhostenum.c The source code for the USB host enumeration functions offered by the li-
brary.

usbhscsi.c The source code for a high level SCSI interface which calls the host Mass
Storage Class driver.

usbhhid.c The source code for the USB host HID class driver.

usbhhid.h The header file containing the definitions needed to interact with the USB
host HID class driver.

usbhhidkeyboard.c
The source code for the USB host HID keyboard device.

usbhhidkeyboard.h
The header file containing the definitions needed to interact with the USB
host HID keyboard device.

190 April 8, 2013

Host Functions

usbhhidmouse.c
The source code for the USB host HID mouse device.

usbhhidmouse.h
The header file containing the definitions needed to interact with the USB
host HID mouse device.

usbhmsc.c The source code for the USB host Mass Storage Class driver.

usbhmsc.h The header file containing Mass Storage Class definitions specific to hosts
supporting this class of device.

4.2 Host Controller Driver

The USB library host controller driver provides an interface to the host controller’s hardware register
interface. This is the lowest level of the driver interface and it interacts directly with the DriverLib
USB APIs. The host controller driver provides all of the functionality necessary to provide enumer-
ation of devices regardless of the type of device that is connected. This portion of the enumeration
code only enumerates the device and allows the higher level drivers to actually handle normal de-
vice operations. To allow the application to conserve code and data memory, the host controller
driver provides a method to allow applications to only include the host class drivers that are needed
for each type of USB device. This allows an application to handle multiple classes of devices but
only include the USB library code that the application needs to communicate with the devices that
the application will support. While the host controller driver handles the enumeration of devices it
relies on USB pipes, that are allocated by the higher level class drivers, as the direct communica-
tions method with a devices end points.

421 Enumeration

The USB host controller driver handles all of the details necessary to discover and enumerate any
USB device. The USB host controller driver only performs enumeration and relies on the host
class drivers to perform any other communications with USB devices including the allocation of the
endpoints for the device. Most of the code used to enumerate devices is run in interrupt context
and is contained in the enumeration handler. In order to complete the enumeration process, the
host controller driver also requires that the application periodically call the USBHCDMain() function.
When a host class driver or an application needs access to endpoint 0 of a device, it uses the US-
BHCDControlTransfer() interface to send data to the device or receive data from the device. During
the enumeration process the host controller driver searches a list of host class drivers provided
by the application in the USBHCDRegisterDrivers() call. The details of this structure are covered
in the host class drivers section of this document. If the host controller driver finds a host class
driver that matches the class of the enumerated device, it will call the open function for that host
class driver. If no host class driver is found the host controller driver will ignore the device and
there will be no notification to the application. The host controller driver or the host class driver can
provide callbacks up through the USB library to inform the application of enumeration events. The
host class drivers are responsible for configuring the USB pipes based on the type of device that
is discovered. The application will be notified that a new device has been discovered by a callback
from the device interface that a device of that given type has been enumerated. When the device

April 8, 2013 191

Host Functions

422

423

424

is removed the application will also get a callback that the device is no longer present. The events
USB_EVENT_CONNECTED and USB_EVENT_DISCONNECTED are the only event notifications
that will make it up to the application as a result of enumeration.

USB Pipes

The host controller driver layer uses interfaces called USB pipes as the primary method of commu-
nications with USB devices. These USB pipes can be dynamically allocated or statically allocated
by the USB class drivers during enumeration. The USB pipes are usually only used within the
USB library or by host class drivers and are not usually directly accessed by applications. The USB
pipes are allocated and freed by calling the USBHCDPipeAlloc() and USBHCDPipeFree() functions
and are initially configured by calling the USBHCDPipeConfig(). The USBHCDPipeAlloc() and US-
BHCDPipeConfig() functions are used during USB device enumeration to allocate USB pipes to
specific endpoints of the USB device. On disconnect, the USBHCDPipeFree() function is called
to free up the USB pipe for use by a new USB device. While in use, the USB pipes can provide
status and perform read and write operations. Calling USBHCDPipeStatus() allows a host class
driver to check the status of a pipe. However most access to the USB pipes occurs through USB-
HCDPipeWrite() and USBHCDPipeRead() and the callback function provided when the USB pipe
was allocated. These are used to read or write to endpoints on USB devices on endpoints other
than the control endpoint on endpoint 0. Since endpoint 0 is shared with all devices, the host con-
troller interface does not use USB pipes for communications over endpoint 0 and instead uses the
USBHCDControlTransfer() function.

Control Transactions

All USB control transactions are handled through the USBHCDControlTransfer() function. This
function is primarily used inside the host controller driver itself during enumeration, however some
devices may require using control transactions through endpoint 0. The HID class drivers are a
good example of a USB class driver that uses control transactions to send data to a USB device.
The USBHCDControlTransfer() function should not be called from within interrupt context as control
transfers are a blocking operation that relies on interrupts to proceed. Since most callbacks occur
in interrupt context, any calls to USBHCDControlTransfer() should be deferred until running outside
the callback event. The USB host HID keyboard example is a good example of performing a control
transaction outside of a callback function.

Interrupt Handling

All interrupt handling is done by the USB library host controller driver and most callbacks are done
in interrupt context and like interrupt handlers should defer any real processing of events to occur
outside the interrupt context. The callbacks are used to notify the upper layers of events that occur
during enumeration or during normal operation. Because most of enumeration code is handled by
interrupt handlers the enumeration code does require that the application call the USBHCDMain()
function in order to progress through the enumeration states without running all code in interrupt
context.

192

April 8, 2013

Host Functions

4.3

Host Controller Driver Definitions

Data Structures

tEventinfo
tUSBHostClassDriver
tUSBHostDevice

Defines

DECLARE_EVENT_DRIVER(VarName, pfnOpen, pfnClose, pfnEvent)

Functions

m void USBOHostIntHandler (void)
m unsigned long USBHCDControlTransfer (unsigned long ullndex, tUSBRequest

xpSetupPacket, unsigned long ulDevAddress, unsigned char spData, unsigned long ul-
Size, unsigned long ulMaxPacketSize)

m void USBHCDInit (unsigned long ullndex, void xpvPool, unsigned long ulPoolSize)
m void USBHCDMain (void)
m unsigned long USBHCDPipeAlloc (unsigned long ullndex, unsigned long ulEndpointType, un-

signed long ulDevAddr, tHCDPipeCallback pfnCallback)

unsigned long USBHCDPipeAllocSize (unsigned long ullndex, unsigned long ulEndpointType,
unsigned long ulDevAddr, unsigned long ulSize, tHCDPipeCallback pfnCallback)

unsigned long USBHCDPipeConfig (unsigned long ulPipe, unsigned long ulMaxPayload, un-
signed long ullnterval, unsigned long ulTargetEndpoint)

m void USBHCDPIipeFree (unsigned long ulPipe)
m unsigned long USBHCDPipeRead (unsigned long ulPipe, unsigned char xpucData, unsigned

long ulSize)

unsigned long USBHCDPipeReadNonBlocking (unsigned long ulPipe, unsigned char
xpucData, unsigned long ulSize)

unsigned long USBHCDPipeSchedule (unsigned long ulPipe, unsigned char xpucData, un-
signed long ulSize)

m unsigned long USBHCDPipeStatus (unsigned long ulPipe)
m unsigned long USBHCDPipeWrite (unsigned long ulPipe, unsigned char xpucData, unsigned

long ulSize)

unsigned long USBHCDPowerAutomatic (unsigned long ullndex)

unsigned long USBHCDPowerConfigGet (unsigned long ulindex)

void USBHCDPowerConfiglnit (unsigned long ullndex, unsigned long ulPwrConfig)
unsigned long USBHCDPowerConfigSet (unsigned long ullndex, unsigned long ulConfig)

void USBHCDRegisterDrivers (unsigned long ullndex, const tUSBHostClassDriver xconst
«xppHClassDrvs, unsigned long ulNumDrivers)

m void USBHCDReset (unsigned long ullndex)
m void USBHCDResume (unsigned long ulindex)
m void USBHCDSetAddress (unsigned long ulDevAddress)

April 8, 2013

193

Host Functions

m void USBHCDSetConfig (unsigned long ullndex, unsigned long ulDevice, unsigned long ul-
Configuration)

m void USBHCDSetInterface (unsigned long ullndex, unsigned long ulDevice, unsigned long
ullnterface, unsigned ulAltSetting)

m void USBHCDSuspend (unsigned long ullndex)

m void USBHCDTerm (unsigned long ullndex)

4.3.1 Detailed Description

The macros and functions defined in this section can be found in header file host /usbhost .h.

4.3.2 Data Structure Documentation

4321 tEventinfo

Definition:
typedef struct
{
unsigned long ulEvent;
unsigned long ullnstance;
}
tEventInfo

Members:
ulEvent

ullnstance

Description:
This structure is used to return generic event based information to an applica-
tion. The following events are currently supported: USB_EVENT_CONNECTED,
USB_EVENT_DISCONNECTED, and USB_EVENT_POWER_FAULT.

4322 tUSBHostClassDriver

Definition:
typedef struct
{

unsigned long ulInterfaceClass;
void x (*pfnOpen) (tUSBHostDevice xpDevice);
void (xpfnClose) (void xpvInstance);
void (xpfnIntHandler) (void *pvInstance);
}
tUSBHostClassDriver

Members:
ulinterfaceClass The interface class that this device class driver supports.

pfnOpen The function is called when this class of device has been detected.
pfnClose The function is called when the device, originally opened with a call to the pfnOpen
function, is disconnected.

194 April 8, 2013

Host Functions

pfnintHandler This is the optional interrupt handler that will be called when an endpoint asso-
ciated with this device instance generates an interrupt.

Description:
This structure defines a USB host class driver interface, it is parsed to find a USB class driver
once a USB device is enumerated.

4323 tUSBHostDevice

Definition:

typedef struct

{
unsigned long ulAddress;
unsigned long ullnterface;
tDeviceDescriptor DeviceDescriptor;
tConfigDescriptor xpConfigDescriptor;
unsigned long ulConfigDescriptorSize;

}
tUSBHostDevice

Members:
ulAddress The current device address for this device.

ulinterface The current interface for this device.
DeviceDescriptor A pointer to the device descriptor for this device.
pConfigDescriptor A pointer to the configuration descriptor for this device.
ulConfigDescriptorSize The size of the buffer allocated to pConfigDescriptor.

Description:
This is the structure that holds all of the information for devices that are enumerated in the
system. It is passed in to Open function of USB host class drivers so that they can allocate any

endpoints and parse out other information that the device class needs to complete enumera-
tion.

4.3.3 Define Documentation

4.3.3.1 DECLARE_EVENT_DRIVER

This macro is used to declare an instance of an Event driver for the USB library.

Definition:

#define DECLARE_EVENT_DRIVER (VarName,
pfnOpen,
pfnClose,
pfnEvent)

Parameters:

VarName is the name of the variable.

pfnOpen is the callback for the Open call to this driver. This value is currently reserved and
should be set to 0.

April 8, 2013 195

Host Functions

pfnClose is the callback for the Close call to this driver. This value is currently reserved and
should be set to 0.

pfnEvent is the callback that will be called for various USB events.

Description:
The first parameter is the actual name of the variable that will be declared by this macro. The
second and third parameter are reserved for future functionality and are unused and should be
set to zero. The last parameter is the actual callback function and is specified as a function
pointer of the type:

void (xpfnEvent)(void xpvData);

When the pfnEvent function is called the void pointer that is passed in as a parameter should
be cast to a pointer to a structure of type tEventinfo. This will contain the event that caused the
pfnEvent function to be called.

4.3.4 Function Documentation

4.3.41 void USBOHostIntHandler (void)

The USB host mode interrupt handler for controller index 0.

This the main USB interrupt handler entry point. This handler will branch the interrupt off to the
appropriate handlers depending on the current status of the USB controller. This function must
be placed in the interrupt table in order for the USB Library host stack to function.

Returns:
None.

4.3.4.2 USBHCDControlTransfer

Definition:
unsigned long USBHCDControlTransfer (unsigned long ullIndex ,
tUSBRequest *pSetupPacket , unsigned long ulDevAddress , unsigned
char xpData , unsigned long ulSize , unsigned long ulMaxPacketSize)

Description:
This function completes a control transaction to a device.

Parameters:
ulindex is the controller index to use for this transfer.

pSetupPacket is the setup request to be sent.

ulDevAddress is the address of the device for this request.

pData is the data to send for OUT requests or the receive buffer for IN requests.
ulSize is the size of the buffer in pData.

ulMaxPacketSize is the maximum packet size for the device for this request.

This function handles the state changes necessary to send a control transaction to a device.
This function should not be called from within an interrupt callback as it is a blocking function.

Returns:
The number of bytes of data that were sent or received as a result of this request.

196 April 8, 2013

Host Functions

4.3.4.3 USBHCDInit

Definition:
void USBHCDInit (unsigned long ullIndex , void *pvPool , unsigned
long ulPoolSize)

Description:
This function is used to initialize the HCD code.

Parameters:
ulindex specifies which USB controller to use.

pVvPool is a pointer to the data to use as a memory pool for this controller.
ulPoolSize is the size in bytes of the buffer passed in as pvPool.

This function will perform all the necessary operations to allow the USB host controller to begin
enumeration and communication with devices. This function should typically be called once at
the start of an application once all of the device and class drivers are ready for normal opera-
tion. This call will start up the USB host controller and any connected device will immediately
start the enumeration sequence.

Returns:
None.

4.3.4.4 USBHCDMain

Definition:
voilid USBHCDMain (void)

Description:
This function is the main routine for the Host Controller Driver.

This function is the main routine for the host controller driver, and must be called periodically
by the main application outside of a callback context. This allows for a simple cooperative
system to access the the host controller driver interface without the need for an RTOS. All time
critical operations are handled in interrupt context but all blocking operations are run from the
this function to allow them to block and wait for completion without holding off other interrupts.

Returns:
None.

4.3.4.5 USBHCDPipeAlloc

Definition:
unsigned long USBHCDPipeAlloc (unsigned long ulIndex , unsigned
long ulEndpointType , unsigned long ulDevAddr , tHCDPipeCallback
pfnCallback)

Description:
This function is used to allocate a USB HCD pipe.

Parameters:
ulindex specifies which USB controller to use.

April 8, 2013 197

Host Functions

ulEndpointType is the type of endpoint that this pipe will be communicating with.
ulDevAddr is the device address to use for this endpoint.
pfnCallback is the function that will be called when events occur on this USB Pipe.

Since there are a limited number of USB HCD pipes that can be used in the host controller, this
function is used to temporarily or permanently acquire one of the endpoints. It also provides a
method to register a callback for status changes on this endpoint. If no callbacks are desired
then the pfnCallback function should be set to 0. The callback should be used when using the
USBHCDPipeSchedule() function so that the caller is notified when the action is complete.

Returns:
This function returns a value indicating which pipe was reserved. If the value is 0 then
there were no pipes currently available. This value should be passed to any USBHCDPipe
APIs to indicate which pipe is being accessed.

4.3.4.6 USBHCDPipeAllocSize

Definition:

unsigned long USBHCDPipeAllocSize (unsigned long ulIndex , unsigned
long ulEndpointType , unsigned long ulDevAddr , unsigned long ulSize
, tHCDPipeCallback pfnCallback)

Description:

This function is used to allocate a USB HCD pipe.

Parameters:
ulindex specifies which USB controller to use.

ulEndpointType is the type of endpoint that this pipe will be communicating with.
ulDevAddr is the device address to use for this endpoint.

ulSize is the size of the FIFO in bytes.

pfnCallback is the function that will be called when events occur on this USB Pipe.

Since there are a limited number of USB HCD pipes that can be used in the host controller,
this function is used to temporarily or permanently acquire one of the endpoints. Unlike the
USBHCDPipeAlloc() function this function allows the caller to specify the size of the FIFO allo-
cated to this endpoint in the ulSize parameter. This function also provides a method to register
a callback for status changes on this endpoint. If no callbacks are desired then the pfnCallback
function should be set to 0. The callback should be used when using the USBHCDPipeSched-
ule() function so that the caller is notified when the action is complete.

Returns:
This function returns a value indicating which pipe was reserved. If the value is 0 then
there were no pipes currently available. This value should be passed to any USBHCDPipe
APlIs to indicate which pipe is being accessed.

4.3.4.7 USBHCDPipeConfig

Definition:

unsigned long USBHCDPipeConfig (unsigned long ulPipe , unsigned
long ulMaxPayload , unsigned long ulInterval , unsigned long
ulTargetEndpoint)

198

April 8, 2013

Host Functions

Description:
This function is used to configure a USB HCD pipe.

This should be called after allocating a USB pipe with a call to USBHCDPipeAlloc(). It is used
to set the configuration associated with an endpoint like the max payload and target endpoint.
The ulMaxPayload parameter is typically read directly from the devices endpoint descriptor
and is expressed in bytes.

Setting the ulinterval parameter depends on the type of endpoint being configured. For end-
points that do not need to use the ullnterval parameter ulinterval should be set to 0. For Bulk
ulinterval is a value from 2-16 and will set the NAK timeout value as 2" (ullnterval-1) frames.
For interrupt endpoints ulinterval is a value from 1-255 and is the count in frames between
polling the endpoint. For isochronous endpoints ulinterval ranges from 1-16 and is the polling
interval in frames represented as 2" (ulInterval-1) frames.

Parameters:
ulPipe is the allocated endpoint to modify.

ulMaxPayload is maximum data that can be handled per transaction.
ulinterval is the polling interval for data transfers expressed in frames.
ulTargetEndpoint is the target endpoint on the device to communicate with.

Returns:
If the call was successful, this function returns zero any other value indicates an error.

4.3.4.8 USBHCDPipeFree

Definition:
void USBHCDPipeFree (unsigned long ulPipe)

Description:
This function is used to release a USB pipe.

Parameters:
ulPipe is the allocated USB pipe to release.

This function is used to release a USB pipe that was allocated by a call to USBHCDPipeAlloc()
for use by some other device endpoint in the system. Freeing an unallocated or invalid pipe will
not generate an error and will instead simply return.

Returns:
None.

4.3.49 USBHCDPipeRead

Definition:
unsigned long USBHCDPipeRead (unsigned long ulPipe , unsigned char
spucData , unsigned long ulSize)

Description:
This function is used to read data from a USB HCD pipe.

Parameters:
ulPipe is the USB pipe to read data from.

April 8, 2013 199

Host Functions

pucData is a pointer to store the data that is received.
ulSize is the size in bytes of the buffer pointed to by pucData.

This function will block and will only return when it has read as much data as requested from
the USB pipe. The caller should have registered a callback with the USBHCDPipeAlloc() call in
order to be informed when the data has been received. The value returned by this function can
be less than the ulSize requested if the USB pipe has less data available than was requested.

Returns:
This function returns the number of bytes that were returned in the pucData buffer.

4.3.4.10 USBHCDPipeReadNonBlocking

Definition:
unsigned long USBHCDPipeReadNonBlocking (unsigned long ulPipe ,
unsigned char xpucData , unsigned long ulSize)

Description:
This function is used to read data from a USB HCD pipe.

Parameters:
ulPipe is the USB pipe to read data from.
pucData is a pointer to store the data that is received.
ulSize is the size in bytes of the buffer pointed to by pucData.

This function will not block and will only read as much data as requested or as much data is
currently available from the USB pipe. The caller should have registered a callback with the
USBHCDPipeAlloc() call in order to be informed when the data has been received. The value
returned by this function can be less than the ulSize requested if the USB pipe has less data

available than was requested.
Returns:
This function returns the number of bytes that were returned in the pucData buffer.

4.3.4.11 USBHCDPipeSchedule

Definition:
unsigned long USBHCDPipeSchedule (unsigned long ulPipe , unsigned
char xpucData , unsigned long ulSize)

Description:
This function is used to schedule and IN transaction on a USB HCD pipe.

Parameters:
ulPipe is the USB pipe to read data from.
pucData is a pointer to store the data that is received.
ulSize is the size in bytes of the buffer pointed to by pucData.

This function will not block depending on the type of pipe passed in will schedule either a send
of data to the device or a read of data from the device. In either case the amount of data will
be limited to what will fit in the FIFO for a given endpoint.

200 April 8, 2013

Host Functions

Returns:
This function returns the number of bytes that sent in the case of a transfer of data or it will
return 0 for a request on a USB IN pipe.

4.3.4.12 USBHCDPipeStatus

Definition:
unsigned long USBHCDPipeStatus (unsigned long ulPipe)

Description:
This function is used to return the current status of a USB HCD pipe.

This function will return the current status for a given USB pipe. If there is no status to report
this call will simply return USBHCD_PIPE_NO_CHANGE.

Parameters:
ulPipe is the USB pipe for this status request.

Returns:
This function returns the current status for the given endpoint. This will be one of the
USBHCD_PIPE_x values.

4.3.4.13 USBHCDPipeWrite

Definition:
unsigned long USBHCDPipeWrite (unsigned long ulPipe , unsigned char
spucData , unsigned long ulSize)

Description:
This function is used to write data to a USB HCD pipe.

Parameters:
ulPipe is the USB pipe to put data into.
pucData is a pointer to the data to send.
ulSize is the amount of data to send.

This function will block until it has sent as much data as was requested using the USB pipe’s
FIFO. The caller should have registered a callback with the USBHCDPipeAlloc() call in order
to be informed when the data has been transmitted. The value returned by this function can
be less than the ulSize requested if the USB pipe has less space available than this request is
making.

Returns:
This function returns the number of bytes that were scheduled to be sent on the given USB
pipe.

4.3.4.14 USBHCDPowerAutomatic

Definition:
unsigned long USBHCDPowerAutomatic (unsigned long ullIndex)

April 8, 2013 201

Host Functions

Description:
This function returns if the current power settings will automatically handle enabling and dis-
abling VBUS power.

Parameters:
ulindex specifies which USB controller to query.

This function returns if the current power control pin configuration will automatically apply power
or whether it will be left to the application to turn on power when it is notified.

Returns:
A non-zero value indicates that power is automatically applied and a value of zero indicates
that the application must manually apply power.

4.3.4.15 USBHCDPowerConfigGet

Definition:
unsigned long USBHCDPowerConfigGet (unsigned long ulIndex)

Description:
This function is used to get the power pin and power fault configuration.

Parameters:
ulindex specifies which USB controller to use.

This function will return the current power control pin configuration as set by the USBHCD-
PowerConfiglnit() function or the defaults if not yet set. See the USBHCDPowerConfiglnit()
documentation for the meaning of the bits that are returned by this function.

Returns:
The configuration of the power control pins.

4.3.4.16 USBHCDPowerConfiglnit

Definition:
void USBHCDPowerConfigInit (unsigned long ullIndex , unsigned long
ulPwrConfig)

Description:
This function is used to set the power pin and power fault configuration.

Parameters:
ulindex specifies which USB controller to use.

ulPwrConfig is the power configuration to use for the application.

This function must be called before HCDInit() is called so that the power pin configuration can
be set before power is enabled. The ulPwrConfig flags specify the power fault level sensitivity,
the power fault action, and the power enable pin level and source.

One of the following can be selected as the power fault level sensitivity:

= USBHCD_FAULT_LOW - An external power fault is indicated by the pin being driven low.
m USBHCD_FAULT_HIGH - An external power fault is indicated by the pin being driven high.

202 April 8, 2013

Host Functions

One of the following can be selected as the power fault action:

m USBHCD_FAULT_VBUS_NONE - No automatic action when power fault detected.

m USBHCD_FAULT_VBUS_TRI - Automatically Tri-state the USBnEPEN pin on a power
fault.

m USBHCD_FAULT_VBUS_DIS - Automatically drive the USBnEPEN pin to it's inactive
state on a power fault.

One of the following can be selected as the power enable level and source:

m USBHCD_VBUS_MANUAL - Power control is completely managed by the application, the
USB library will provide a power callback to request power state changes.

m USBHCD VBUS_AUTO_LOW - USBEPEN is driven low by the USB controller automati-
cally if USBOTGSessionRequest() has enabled a session.

m USBHCD_VBUS_AUTO_HIGH - USBEPEN is driven high by the USB controller automat-
ically if USBOTGSessionRequest() has enabled a session.

If USBHCD_VBUS_MANUAL is used then the application must provide an event driver to re-
ceive the USB_EVENT_POWER_ENABLE and USB_EVENT_POWER_DISABLE events and
enable and disable power to VBUS when requested by the USB library. The application should
respond to a power control callback by enabling or disabling VBUS as soon as possible and
before returning from the callback function.

Note:
The following values should no longer be wused with the USB Ii-
brary: USB_HOST_PWRFLT_LOW, USB_HOST_PWRFLT_HIGH,

USB_HOST_PWRFLT_EP_NONE,
USB_HOST_PWRFLT_EP_LOW,
USB_HOST_PWREN_LOW,

USB_HOST_PWRFLT_EP_TRI,
USB_HOST_PWRFLT_EP_HIGH,
USB_HOST_PWREN_HIGH,

USB_HOST_PWREN_VBLOW, and USB_HOST_PWREN_VBHIGH.

Returns:
None.

4.3.4.17 USBHCDPowerConfigSet

Definition:
unsigned long USBHCDPowerConfigSet
long ulConfig)

(unsigned long ullIndex , unsigned

Description:
This function is used to set the power pin and power fault configuration.

Parameters:
ulindex specifies which USB controller to use.

ulConfig specifies which USB power configuration to use.

This function will set the current power control pin configuration as set by the USBHCDPow-
erConfiglnit() function or the defaults if not yet set. See the USBHCDPowerConfiglnit() docu-
mentation for the meaning of the bits that are set by this function.

Returns:
Returns zero to indicate the power setting is now active.

April 8, 2013 203

Host Functions

4.3.4.18 USBHCDRegisterDrivers

Definition:

const
unsigned long ulNumDrivers

void USBHCDRegisterDrivers (unsigned long ulIndex ,
tUSBHostClassDriver xconst xppHClassDrvs ,

)
Description:
This function is used to initialize the HCD class driver list.
Parameters:
ulindex specifies which USB controller to use.

ppHClassDrvs is an array of host class drivers that are supported on this controller.
ulNumbDrivers is the number of entries in the pHostClassDrivers array.

This function will set the host classes supported by the host controller specified by the ulindex

parameter. This function should be called before enabling the host controller driver with the
USBHCDInit() function.

Returns:
None.

4.3.4.19 USBHCDReset

Definition:
void USBHCDReset (unsigned long ulIndex)
Description:
This function generates reset signaling on the USB bus.

Parameters:
ulindex specifies which USB controller to use.

This function handles sending out reset signaling on the USB bus. After returning from this
function, any attached device on the USB bus should have returned to it’s reset state.

Returns:
None.

4.3.4.20 USBHCDResume

Definition:
void USBHCDResume (unsigned long ulIndex)

Description:
This function will generate resume signaling on the USB bus.

Parameters:
ulindex specifies which USB controller to use.

This function is used to generate resume signaling on the USB bus in order to cause USB

devices to leave their suspended state. This call should not be made unless a preceding call
to USBHCDSuspend() has been made.

204 April 8, 2013

Host Functions

Returns:
None.

4.3.4.21 USBHCDSetAddress

Definition:
void USBHCDSetAddress (unsigned long ulDevAddress)

Description:
This function is used to send the set address command to a device.

Parameters:
ulDevAddress is the new device address to use for a device.

The USBHCDSetAddress() function is used to set the USB device address, once a device has
been discovered on the bus. This is typically issued following a USB reset which is triggered
by a call the USBHCDReset(). The address passed into this function via the u/DevAddress
parameter should be used for all further communications with the device once this function
returns.

Returns:
None.

4.3.4.22 USBHCDSetConfig

Definition:
void USBHCDSetConfig (unsigned long ullIndex , unsigned long ulDevice
, unsigned long ulConfiguration)

Description:
This function is used to set the current configuration for a device.

Parameters:
ulindex specifies which USB controller to use.
ulDevice is the USB device for this function.
ulConfiguration is one of the devices valid configurations.

This function is used to set the current device configuration for a USB device. The ulConfig-
uration value must be one of the configuration indexes that was returned in the configuration
descriptor from the device, or a value of 0. If 0 is passed in, the device will return to it's ad-
dressed state and no longer be in a configured state. If the value is non-zero then the device
will change to the requested configuration.

Returns:
None.

4.3.4.23 USBHCDSetlInterface

Definition:
vold USBHCDSetInterface (unsigned long ullIndex , unsigned long
ulDevice , unsigned long ullInterface , unsigned ulAltSetting)

April 8, 2013 205

Host Functions

Description:

This function is used to set the current interface and alternate setting for an interface on a
device.

Parameters:
ulindex specifies which USB controller to use.
ulDevice is the USB device for this function.
ulinterface is one of the valid interface numbers for a device.
ulAltSetting is one of the valid alternate interfaces for the ullnterface number.

This function is used to change the alternate setting for one of the valid interfaces on a USB
device. The ulDevice specifies the device instance that was returned when the device was
connected. This call will set the USB device’s interface based on the ulinterface and ulAltSet-
ting.

Example: Set the USB device interface 2 to alternate setting 1.

USBHCDSetInterface (0, wulDevice, 2, 1);

Returns:
None.

4.3.4.24 USBHCDSuspend

Definition:
void USBHCDSuspend (unsigned long ulIndex)

Description:
This function will generate suspend signaling on the USB bus.

Parameters:
ulindex specifies which USB controller to use.

This function is used to generate suspend signaling on the USB bus. In order to leave the
suspended state, the application should call USBHCDResume().

Returns:
None.

4.3.4.25 USBHCDTerm

Definition:
void USBHCDTerm (unsigned long ulIndex)

Description:
This function is used to terminate the HCD code.

Parameters:
ulindex specifies which USB controller to release.

This function will clean up the USB host controller and disable it in preparation for shutdown
or a switch to USB device mode. Once this call is made, USBHCDInit() may be called to
reinitialize the controller and prepare for host mode operation.

Returns:
None.

206 April 8, 2013

Host Functions

4.4 Host Class Driver

The host class drivers provide access to devices that use a common USB class interface. The
USB library currently supports the following two USB class drivers: Mass Storage Class(MSC) and
Human Interface Device(HID). In order to use these class drivers, the application must provide
a list of the host class drivers that it will use by calling the USBHCDRegisterDrivers() function.
The g_USBHIDClassDriver structure defines the interface for the Host HID class driver and the
g_USBHostMSCClassDriver structure defines the interface for the Host MSC class driver.

The host class driver provides interfaces at its bottom layer to the USB host controller driver and
device specific interfaces at it's top layer. The lower layer interface to the USB host controller
interface is the same for all USB host class drivers while the device interface layer on top is common
to all USB host device interface of a given class. Thus the top layer of the of the MSC class driver
does not need to match the top layer of the HID class driver, however the lower layer must be the
same for both. Aside from enumeration, all communication with the host class driver will be through
it's endpoint pipes. The host class driver will parse and allocate any endpoints that it needs by
calling the USBHCDPipeAlloc() and USBHCDPipeConfig() functions. These USB pipes will provide
the methods to read/write and get callback notification from the USB host controller driver layer.

4.4 1 HID Class Driver

The HID class driver provides access to any type of HID class by leaving the details of the HID
device to the layer above the HID class driver. The top layer of the HID class driver provides
common functions to open or close an instance of a HID device, read a device’s report descrip-
tor so that it can be parsed by the HID device code, and get and set reports on a HID de-
vice. The lower level interface that is connected to the host controller driver is specified in the
g_USBHIDClassDriver structure. This structure is used to register the HID class driver with the
host class driver so that it is called when a HID device is connected and enumerated. The functions
in the g_USBHIDClassDriver structure should never be called directly by and application or a host
class driver as they are reserved for access by the host controller driver.

In the following example the generic HID class driver is registered with the USB host controller
driver and then a call is made to open an instance of a mouse class device. Typically the call to
USBHHIDOpen() is made from within a device class interface while the USBHCDRegisterDrivers()
call is made from the main application. For instance the USBHHIDOpen() for the mouse device
provided with the USB library is made in the USBHMouseOpen() function which is part of the USB
mouse interface.

Device Interface

At the top layer of the HID class driver, the driver has a device class interface for used by various
HID devices. In order for the HID class driver to recognize a device, the device class is respon-
sible for calling the USBHHIDOpen(). This call specifies the type of device and a callback for this
device type so that any events related to this device type can be passed back to the device class
driver. The defined classes are in the type defined values in the tHIDSubClassProtocol type and
are passed into the USBHHIDOpen() call via the eDeviceType parameter. In order to release an
instance of a HID class driver, the HID device class or application must call the USBHHIDClose() to
allow a new or different type of device to be connected. In the examples provided in the USB library
the report descriptors are retrieved but are not used as the examples rely on the "boot" mode of the
USB keyboard and mouse to fix the format of the report descriptors. This is accomplished by using

April 8, 2013 207

Host Functions

4.4.2

the USBHHIDSetReport() interface to force the device into its boot protocol mode. As this could
be limiting or not available in other types of applications or devices, the USBHHIDGetReportDe-
scriptor() provides the ability of a generic HID device to query the device for its report descriptor(s).
The last two remaining HID interfaces, USBHHIDSetReport() and USBHHIDGetReport(), provide
access to the HID reports.

Example: Adding HID Class Driver

const tUSBHostClassDriver x const g_ppUSBHostClassDrivers[] =
{

&g_USBHIDClassDriver
i

//

// Register the host class drivers.

//

USBHCDRegisterDrivers (0, g_ppUSBHostClassDrivers, 1);

//
// Open an instance of a HID mouse class driver.
//
ulMouseInstance = USBHHIDOpen (USBH_HID_DEV_MOUSE,

USBHMouseCallback,
(unsigned long) &g_sUSBHMouse) ;

Once a HID device has been opened the first callback it will received will be a
USB_EVENT_CONNECTED event, indicating that a HID device of the type passed into the USBH-
HIDOpen() has been connected and the USB library host controller driver has completed enumera-
tion of the device. When the HID device has been removed a USB_EVENT_DISCONNECTED
event will occur. When shutting down or to release a device, the application should call
USBHHIDClose() to disable callbacks. This will not actually power down the device but it
will stop the driver from calling the application. During normal operation the host class
driver will receive USB_EVENT_SCHEDULER and USB_EVENT_RX_AVAILABLE events. The
USB_EVENT_SCHEDULER indicates that the HID class driver should schedule a new request if it
is ready to do so. This done by calling USBJHCDPipeSchedule() to request that a new IN request
is made on the given Interrupt IN pipe. When the USB_EVENT_RX_AVAILABLE occurs this indi-
cates that new data is available due to completion of the previous request for data on the Interrupt
IN pipe. The USB_EVENT_RX_AVAILABLE is passed on the device class interface to allow it to
request the data via a call to USBHHIDGetReport(). It is up to the device class driver to interpret
the data in the report structure that is returned. In some cases, like the keyboard example, the
device class may also need to call the host class driver to issue a set report to send data to the
device. This is done by calling the USBHHIDSetReport() interface of the host class driver. This will
send data to the device by using the correct USB OUT pipe.

Mass Storage Class Driver

The mass storage host class driver provides access to devices that support the mass storage class
protocol. The most common of these devices are USB flash drives. This host class driver provides a
simple block based interface to the devices that can be matched up with an application’s file system.
A USB host class driver for mass storage devices is included with the USB library. It provides a
simple block based interface that can be used with an application’s file system as it provides direct
block interface to mass storage devices based on logical block address.

208

April 8, 2013

Host Functions

The mass storage host class driver provides an application API for access to USB flash drives. The
API provided is meant to match with file systems that need block based read/write access to flash
drives. The USBHMSCBIlockRead() and USBHMSCBIlockWrite() functions provide the block read
and block write device access. These function will perform block operations at the size specified by
the flash drive. Since some flash drives require some setup time after enumeration before they are
ready for drive access, the mass storage class driver provides the USBHMSCDriveReady() function
to check if the drive is ready for normal operation.

The mass storage host class driver also provides an interface to the USB library host controller
driver to complete enumeration of mass storage class devices. The mass storage class driver
information is held in the global structure g_ USBMSCClassDriver. This structure should only be
referenced by the application and the function pointers in this structure should never called directly
by anything other than the host controller driver. The USBHMSCOpen() and USBHMSCClose()
provide the interface for the host controller's enumeration code to call when a mass storage class
device is detected or removed. It is up to the mass storage host class driver to provide a callback to
the file system or application for notification of the drive being removed or added. To make the the
mass storage class driver visible to the host controller driver it must be added in the list of drivers
provided in the USBHCDRegisterDrivers() function call. The class enumeration constant is set to
USB_CLASS_MASS_STORAGE so any devices enumerating with value will load this class driver.

Device Interface

This next section covers how an application or file system interacts with the host mass storage
class driver provided with the USB library. The application or file system must register the mass
storage class driver with a call to USBHCDRegisterDrivers() with the g_ USBHostMSCClassDriver
as a member of the array passed in to the call. Once the host mass storage class driver has been
registered, the application must call USBHMSCDriveOpen() to allow the application or file system
to be called when a new mass storage device is connected or disconnected or any other mass
storage class event occurs.

Example: Adding Mass Storage Class Driver

const tUSBHostClassDriver % const g_ppUSBHostClassDrivers[] =

{
&g_USBHostMSCClassDriver

bi

//

// Register the host class drivers.

//

USBHCDRegisterDrivers (0, g_ppUSBHostClassDrivers, 1);

//

// Initialize the mass storage class driver on controller 0 with the
// MSCCallback () function as the callback for events.

//

USBHMSCDriveOpen (0, MSCCallback) ;

The first callback will be a USB_EVENT_CONNECTED event, indicating that a mass storage
class flash drive was inserted and the USB library host stack has completed enumeration of
the device. This does not indicate that the flash drive is ready for read/write operations but
that is has been detected. The USBHMSCDriveReady() function should be called to determine
when the flash drive is ready for read/write operations. When the device has been removed an
USB_EVENT_DISCONNECTED event will occur. When shutting down, the application should call

April 8, 2013 209

Host Functions

443

USBHMSCDriveClose() to disable callbacks. This will not actually power down the mass storage
device but it will stop the driver from calling the application.

Once the USBHMSCDriveReady() call indicates that the flash drive is ready, the application can use
the USBHMSCBIlockRead() and USBHMSCBIockWrite() functions to access the device. These are
block based functions that use the logical block address to indicate which block to access. It is
important to note that the size passed in to these functions is in blocks and not bytes and that the
most common block size is 512 bytes. These calls will always read or write a full block so space
must be allocated appropriately. The following example shows calls for both reading and writing
blocks from the mass storage class device.

Example: Block Read/Write Calls

//

// Read 1 block starting at logical block 0.

//

USBHMSCBlockRead (ulMSCDevice, 0, pucBuffer, 1);

//

// Write 2 blocks starting at logical block 500.
//

USBHMSCBlockWrite (ulMSCDevice, 500, pucBuffer, 2);

SCSI Functions

Since most mass storage class device adhere to the SCSI protocol for block based calls, the USB
library provides SCSI functions for the mass storage class driver to communicate with flash drives.
The commands and data pass over the USB pipes provided by the host controller driver. The
only types of mass storage class devices that are supported are devices that use the SCSI pro-
tocol. Since flash drives only support a limited subset of the SCSI protocol, only the SCSI func-
tions needed by mass storage class to mount and access flash drives are implemented. The
SCSIRead10() and SCSIWrite10() functions are the two functions used for reading and writing to
the mass storage class devices. The remaining SCSI functions are used to get information about
the mass storage devices like the size of the blocks on the device and the number of blocks present.
Others are used for error handling or testing if the device is ready for a new command.

Implementing Custom Host Class Drivers

This next section will cover how to implement a custom host class driver and how the host controller
driver finds the driver. All host class drivers must provide their own driver interface that is visible
to the host controller driver. As with the host class drivers that are included with the USB library,
this means exposing a driver interface of the type tUSBClassDriver. In the example below the
USBGenericOpen() function will be called when the host controller driver enumerates a device that
matches the “USB_CLASS_SOMECLASS?” interface class. The USBGenericClose() function will
be called when the device of this class is removed. The following example shows a definition of a
custom host class driver.

Example: Custom Host Class Driver Interface

tUSBClassDriver USBGenericClassDriver =
{
USB_CLASS_SOMECLASS,
USBGenericOpen,

210

April 8, 2013

Host Functions

4.5

USBGenericClose,
USBGenericIntHandler

The ulinterfaceClass member of the tUSBClassDriver structure is the class read from the device’s
interface descriptor during enumeration. This number will be used to as the primary search value
for a host class driver. If a device is connected that matches this structure member then that host
class driver will be loaded. The pfnOpen member of the tUSBClassDriver structure will be called
when a device with a matching interface class is detected. This function should do whatever is
necessary to handle device detection and initial configuration of the device, this includes allocating
any USB pipes that the device may need for communications. This will require parsing the endpoint
descriptors for a device’s endpoints and then allocating the USB pipes based on the types and
number of endpoints discover. The host class drivers provided with the USB library demonstrate
how to parse and allocate USB pipes. This call is not at made interrupt level so it can be interrupted
by other USB events. Anything that must be done immediately before any other communications
with the device should be done in the pfnOpen function. The pfnOpen member should should return
a handle that will be passed to the remaining functions pfnClose and pfnintHandler. This handle
should enable the host class driver to differentiate between different instances of the same type of
device. The value returned can be any value as the USB library will simply return it unmodified
to the other host class driver functions. The pfnClose structure member is called when the device
that was created with pfnOpen call is removed from the system. All driver clean up should be done
in the pfnClose call as no more calls will be made to the host class driver. If the host class driver
needs to respond to USB interrupts, an optional pfnintHandler function pointer is provided. This
function will run at interrupt time and called for any interrupt that occurs due to this device or for
generic USB events. This function is not required and should only be implemented if it is necessary.
It is completely up to the custom USB host class driver to determine it's own upper layer interface
to applications or to other device interface layers.

Host Class Driver Definitions

Defines

USBH_EVENT_HID_KB_MOD
USBH_EVENT_HID_KB_PRESS
USBH_EVENT_HID_KB_REL
USBH_EVENT_HID_MS_PRESS
USBH_EVENT_HID_MS_REL
USBH_EVENT_HID_MS_X
USBH_EVENT_HID_MS_Y

Enumerations

m tHIDSubClassProtocol

Functions

m void USBHHIDClose (unsigned long ulHIDInstance)

April 8, 2013

211

Host Functions

unsigned long USBHHIDGetReport (unsigned long ullnstance, unsigned long ullnterface, un-
signed char xpucData, unsigned long ulSize)

unsigned long USBHHIDGetReportDescriptor (unsigned long ullnstance, unsigned char
xpucBuffer, unsigned long ulSize)

unsigned long USBHHIDOpen (tHIDSubClassProtocol eDeviceType, tUSBCallback pfnCall-
back, unsigned long ulCBData)

unsigned long USBHHIDSetldle (unsigned long ullnstance, unsigned char ucDuration, un-
signed char ucReportID)

unsigned long USBHHIDSetProtocol (unsigned long ullnstance, unsigned long ulBootProto-
col)

unsigned long USBHHIDSetReport (unsigned long ullnstance, unsigned long ulinterface, un-
signed char xpucData, unsigned long ulSize)

long USBHMSCBIockRead (unsigned long ullnstance, unsigned long ulLBA, unsigned char
xpucData, unsigned long ulNumBIlocks)

long USBHMSCBIlockWrite (unsigned long ullnstance, unsigned long ulLBA, unsigned char
xpucData, unsigned long ulNumBIlocks)

m void USBHMSCDriveClose (unsigned long ullnstance)
m unsigned long USBHMSCDriveOpen (unsigned long ulDrive, tUSBHMSCCallback pfnCall-

back)

m long USBHMSCDriveReady (unsigned long ullnstance)
m unsigned long USBHSCSIInquiry (unsigned long ullnPipe, unsigned long ulOutPipe, unsigned

char xpucData, unsigned long *pulSize)

unsigned long USBHSCSIModeSense6 (unsigned long ullnPipe, unsigned long ulOutPipe,
unsigned long ulFlags, unsigned char xpucData, unsigned long xpulSize)

unsigned long USBHSCSIRead10 (unsigned long ullnPipe, unsigned long ulOutPipe, un-
signed long ulLBA, unsigned char «pucData, unsigned long xpulSize, unsigned long ulNum-
Blocks)

unsigned long USBHSCSIReadCapacities (unsigned long ullnPipe, unsigned long ulOutPipe,
unsigned char xpucData, unsigned long «pulSize)

unsigned long USBHSCSIReadCapacity (unsigned long ullnPipe, unsigned long ulOutPipe,
unsigned char xpucData, unsigned long «pulSize)

unsigned long USBHSCSIRequestSense (unsigned long ullnPipe, unsigned long ulOutPipe,
unsigned char xpucData, unsigned long xpulSize)

m unsigned long USBHSCSITestUnitReady (unsigned long ullnPipe, unsigned long ulOutPipe)
m unsigned long USBHSCSIWrite10 (unsigned long ullnPipe, unsigned long ulOutPipe, un-

signed long ulLBA, unsigned char xpucData, unsigned long xpulSize, unsigned long ulNum-
Blocks)

Variables

m const tUSBHostClassDriver g USBHIDClassDriver
m const tUSBHostClassDriver g_ USBHostMSCClassDriver

4.5.1 Detailed Description

The macros and functions defined in this section can be found in header files host /usbhhid.h,
host/usbhmsc.h and host /usbhscsi.h

212

April 8, 2013

Host Functions

452 Define Documentation

4521 USBH_EVENT_HID_KB_MOD

Definition:
#define USBH_EVENT_HID_ KB_MOD

Description:
The HID keyboard detected one of the keyboard modifiers being pressed.

4522 USBH_EVENT_HID_KB_PRESS

Definition:
#define USBH_EVENT_HID_KB_PRESS

Description:
The HID keyboard detected a key being pressed.

4523 USBH_EVENT HID KB REL

Definition:
#define USBH_EVENT_HID_KB_REL

Description:
The HID keyboard detected a key being released.

4524 USBH_EVENT_HID_MS_PRESS

Definition:
#define USBH_EVENT_ HID_MS_PRESS

Description:
A button was pressed on a HID mouse.

4525 USBH EVENT HID MS_REL

Definition:
#define USBH_EVENT_HID_ MS_REL

Description:
A button was released on a HID mouse.

April 8, 2013 213

Host Functions

4526 USBH_EVENT HID MS X
Definition:
#define USBH_EVENT_HID_MS_X
Description:
The HID mouse detected movement in the X direction.
4527 USBH_EVENT HID MS_Y
Definition:
#define USBH_EVENT_HID_MS_Y
Description:
The HID mouse detected movement in the Y direction.
4.5.3 Enumeration Documentation
4.5.3.1 tHIDSubClassProtocol
Description:
The following values are used to register callbacks to the USB HOST HID device class layer.
Enumerators:
USBH_HID_DEV_NONE No device should be used. This value should not be used by appli-
cations.
USBH_HID _DEV_KEYBOARD This is a keyboard device.
USBH_HID_DEV_MOUSE This is a mouse device.
USBH_HID DEV_VENDOR This is a vendor specific device.
4.5.4 Function Documentation
4541 USBHHIDClose
This function is used to release an instance of a HID device.
Prototype:
void
USBHHIDClose (unsigned long ulHIDInstance)
Parameters:
ulHIDInstance is the instance value for a HID device to release.
Description:
This function releases an instance of a HID device that was created by a call to USBHHI-
DOpen(). This call is required to allow other HID devices to be enumerated after another HID
device has been disconnected. The ulHIDInstance parameter should hold the value that was
returned from the previous call to USBHHIDOpen().
214 April 8, 2013

Host Functions

Returns:
None.

4542 USBHHIDGetReport

This function is used to retrieve a report from a HID device.

Prototype:
unsigned long
USBHHIDGetReport (unsigned long ulInstance,
unsigned long ullInterface,
unsigned char xpucData,
unsigned long ulSize)

Parameters:
ulinstance is the value that was returned from the call to USBHHIDOpen().
ulinterface is the interface to retrieve the report from.
pucData is the memory buffer to use to store the report.
ulSize is the size in bytes of the buffer pointed to by pucBuffer.

Description:
This function is used to retrieve a report from a USB pipe. It is usually called when the USB
HID layer has detected a new data available in a USB pipe. The USB HID host device code will
receive a USB_EVENT_RX_AVAILABLE event when data is available, allowing the callback
function to retrieve the data.

Returns:
Returns the number of bytes read from report.

4543 USBHHIDGetReportDescriptor

This function can be used to retrieve the report descriptor for a given device instance.

Prototype:
unsigned long
USBHHIDGetReportDescriptor (unsigned long ullInstance,
unsigned char xpucBuffer,
unsigned long ulSize)

Parameters:
ulinstance is the value that was returned from the call to USBHHIDOpen().
pucBuffer is the memory buffer to use to store the report descriptor.
ulSize is the size in bytes of the buffer pointed to by pucBuffer.

Description:
This function is used to return a report descriptor from a HID device instance so that it can
determine how to interpret reports that are returned from the device indicated by the ullnstance
parameter. This call is blocking and will return the number of bytes read into the pucBuffer.

Returns:
Returns the number of bytes read into the pucBuffer.

April 8, 2013 215

Host Functions

4544 USBHHIDOpen
This function is used to open an instance of a HID device.
Prototype:
unsigned long
USBHHIDOpen (tHIDSubClassProtocol eDeviceType,
tUSBCallback pfnCallback,
unsigned long ulCBData)
Parameters:
eDeviceType is the type of device that should be loaded for this instance of the HID device.
pfnCallback is the function that will be called whenever changes are detected for this device.
ulCBData is the data that will be returned in when the pfnCallback function is called.
Description:
This function creates an instance of an specific type of HID device. The eDevice Type parameter
is one subclass/protocol values of the types specified in enumerated types tHIDSubClassProto-
col. Only devices that enumerate with this type will be called back via the pfnCallback function.
The pfnCallback parameter is the callback function for any events that occur for this device
type. The pfnCallback function must point to a valid function of type tUSBCallback for this call
to complete successfully. To release this device instance the caller of USBHHIDOpen() should
call USBHHIDClose() and pass in the value returned from the USBHHIDOpen() call.
Returns:
This function returns and instance value that should be used with any other APIs that require
an instance value. If a value of 0 is returned then the device instance could not be created.
4545 USBHHIDSetldle
This function is used to set the idle timeout for a HID device.
Prototype:
unsigned long
USBHHIDSetIdle (unsigned long ullInstance,
unsigned char ucDuration,
unsigned char ucReportID)
Parameters:
ulinstance is the value that was returned from the call to USBHHIDOpen().
ucDuration is the duration of the timeout in milliseconds.
ucReportlD is the report identifier to set the timeout on.
Description:
This function will send the Set Idle command to a HID device to set the idle timeout for a given
report. The length of the timeout is specified by the ucDuration parameter and the report the
timeout for is in the ucReportID value.
Returns:
Always returns 0.
216 April 8, 2013

Host Functions

4546 USBHHIDSetProtocol

This function is used to set or clear the boot protocol state of a device.

Prototype:
unsigned long
USBHHIDSetProtocol (unsigned long ullInstance,
unsigned long ulBootProtocol)

Parameters:
ulinstance is the value that was returned from the call to USBHHIDOpen().

ulBootProtocol is either zero or non-zero to indicate which protocol to use for the device.

Description:
A USB host device can use this function to set the protocol for a connected HID device. This is
commonly used to set keyboards and mice into their simplified boot protocol modes to fix the
report structure to a know state.

Returns:
This function returns 0.

4547 USBHHIDSetReport

This function is used to send a report to a HID device.

Prototype:
unsigned long
USBHHIDSetReport (unsigned long ullInstance,
unsigned long ulInterface,
unsigned char *pucData,
unsigned long ulSize)

Parameters:
ulinstance is the value that was returned from the call to USBHHIDOpen().

ulinterface is the interface to send the report to.
pucData is the memory buffer to use to store the report.
ulSize is the size in bytes of the buffer pointed to by pucBuffer.

Description:
This function is used to send a report to a USB HID device. It can be only be called from

outside the callback context as this function will not return from the call until the data has been
sent successfully.

Returns:
Returns the number of bytes sent to the device.

4548 USBHMSCBIlockRead

This function performs a block read to an MSC device.

April 8, 2013 217

Host Functions

4.5.4.9

Prototype:
long
USBHMSCBlockRead (unsigned long ullInstance,
unsigned long ulLBA,
unsigned char xpucData,
unsigned long ulNumBlocks)

Parameters:
ulinstance is the device instance to use for this read.

UILBA is the logical block address to read on the device.
pucData is a pointer to the returned data buffer.
ulNumBIlocks is the number of blocks to read from the device.

Description:
This function will perform a block sized read from the device associated with the ullnstance
parameter. The ulLBA parameter specifies the logical block address to read on the device.
This function will only perform u/NumBlocks block sized reads. In most cases this is a read of
512 bytes of data. The xpucData buffer should be at least uINumBlocks x 512 bytes in size.

Returns:
The function returns zero for success and any negative value indicates a failure.

USBHMSCBIlockWrite

This function performs a block write to an MSC device.

Prototype:
long
USBHMSCBlockWrite (unsigned long ullInstance,
unsigned long ulLBA,
unsigned char xpucData,
unsigned long ulNumBlocks)

Parameters:
ulinstance is the device instance to use for this write.

UILBA is the logical block address to write on the device.
pucData is a pointer to the data to write out.
ulNumBlocks is the number of blocks to write to the device.

Description:
This function will perform a block sized write to the device associated with the ullnstance pa-
rameter. The ulLBA parameter specifies the logical block address to write on the device. This
function will only perform u/NumBlocks block sized writes. In most cases this is a write of 512
bytes of data. The xpucData buffer should contain at least u/INumBlocks « 512 bytes in size to
prevent unwanted data being written to the device.

Returns:
The function returns zero for success and any negative value indicates a failure.

218

April 8, 2013

Host Functions

45410 USBHMSCDriveClose

This function should be called to release a drive instance.

Prototype:
void
USBHMSCDriveClose (unsigned long ullInstance)

Parameters:
ulinstance is the device instance that is to be released.

Description:
This function is called when an MSC drive is to be released in preparation for shutdown or a
switch to USB device mode, for example. Following this call, the drive is available for other
clients who may open it again using a call to USBHMSCDriveOpen().

Returns:
None.

4.5.4.11 USBHMSCDriveOpen

This function should be called before any devices are present to enable the mass storage device
class driver.

Prototype:
unsigned long
USBHMSCDriveOpen (unsigned long ulDrive,
tUSBHMSCCallback pfnCallback)

Parameters:
ulDrive is the drive number to open.

pfnCallback is the driver callback for any mass storage events.

Description:
This function is called to open an instance of a mass storage device. It should be called before
any devices are connected to allow for proper notification of drive connection and disconnec-
tion. The ulDrive parameter is a zero based index of the drives present in the system. There
are a constant number of drives, and this number should only be greater than 0 if there is a
USB hub present in the system. The application should also provide the pfnCallback to be
notified of mass storage related events like device enumeration and device removal.

Returns:
This function will return the driver instance to use for the other mass storage functions. If there
is no driver available at the time of this call, this function will return zero.

4.5.4.12 USBHMSCDriveReady

This function checks if a drive is ready to be accessed.

Prototype:
long
USBHMSCDriveReady (unsigned long ullnstance)

April 8, 2013 219

Host Functions

4.5.413

45414

Parameters:
ulinstance is the device instance to use for this read.

Description:
This function checks if the current device is ready to be accessed. It uses the ullnstance
parameter to determine which device to check and will return zero when the device is ready.
Any non-zero return code indicates that the device was not ready.

Returns:
This function will return zero if the device is ready and it will return a other value if the device is
not ready or if an error occurred.

USBHSCSIInquiry

This will issue the SCSI inquiry command to a device.

Prototype:
unsigned long
USBHSCSIInquiry (unsigned long ulInPipe,
unsigned long ulOutPipe,
unsigned char xpucData,
unsigned long xpulSize)

Parameters:
ullinPipe is the USB IN pipe to use for this command.
ulOutPipe is the USB OUT pipe to use for this command.
pucData is the data buffer to return the results into.
pulSize is the size of buffer that was passed in on entry and the number of bytes returned.

Description:
This function should be used to issue a SCSI Inquiry command to a mass storage device. To
allow for multiple devices, the ulinPipe and ulOutPipe parameters indicate which USB pipes to
use for this call.

Note:
The pucData buffer pointer should have at least SCSI_INQUIRY_DATA_SZ bytes of data or
this function will overflow the buffer.

Returns:
This function returns the SCSI status from the command. The value will be either
SCSI_CMD_STATUS PASS or SCSI_ CMD_STATUS_ FAIL.

USBHSCSIModeSense6

This will issue the SCSI Mode Sense(6) command to a device.

Prototype:
unsigned long
USBHSCSIModeSense6 (unsigned long ullInPipe,
unsigned long ulOutPipe,
unsigned long ulFlags,

220

April 8, 2013

Host Functions

unsigned char =*pucData,
unsigned long *pulSize)

Parameters:
ullnPipe is the USB IN pipe to use for this command.

ulOutPipe is the USB OUT pipe to use for this command.

ulFlags is a combination of flags defining the exact query that is to be made.
pucData is the data buffer to return the results into.

pulSize is the size of the buffer on entry and number of bytes read on exit.

Description:
This function should be used to issue a SCSI Mode Sense(6) command to a mass storage
device. To allow for multiple devices, the ullnPipe and ulOutPipe parameters indicate which
USB pipes to use for this call. The call will return at most the number of bytes in the pulSize
parameter, however it can return less and change the pulSize parameter to the number of valid
bytes in the xpulSize buffer.

The ulFlags parameter is a combination of the following three sets of definitions:

One of the following values must be specified:

m SCSI_MS_PC_CURRENT request for current settings.

m SCSI_MS_PC_CHANGEABLE request for changeable settings.
m SCSI_MS_PC_DEFAULT request for default settings.

m SCSI_MS_PC_SAVED request for the saved values.

One of these following values must also be specified to determine the page code for the re-
quest:

m SCSI_MS_PC_VENDOR is the vendor specific page code.

m SCSI_MS_PC_DISCO is the disconnect/reconnect page code.

m SCSI_MS_PC_CONTROL is the control page code.

m SCSI_MS_PC_LUN is the protocol specific LUN page code.

m SCSI_MS_PC_PORT is the protocol specific port page code.

m SCSI_MS_PC_POWER is the power condition page code.

m SCSI_MS_PC_INFORM is the informational exceptions page code.

m SCSI_MS_PC_ALL will request all pages codes supported by the device.

The last value is optional and supports the following global flag:
m SCSI_MS_DBD disables returning block descriptors.

Example: Request for all current settings.

SCSIModeSense6b (ulInPipe, ulOutPipe,
SCSI_MS_PC_CURRENT | SCSI_MS_PC_ALL,
pucData, pulSize);

Returns:
This function returns the SCSI status from the command. The value will be either
SCSI_CMD_STATUS_PASS or SCSI_ CMD_STATUS_FAIL.

April 8, 2013 221

Host Functions

4.5.4.15

4.5.4.16

USBHSCSIRead10

This function issues a SCSI Read(10) command to a device.

Prototype:

unsigned long

USBHSCSIReadlO (unsigned long ulInPipe,
unsigned long ulOutPipe,
unsigned long ulLBA,
unsigned char xpucData,
unsigned long *pulSize,
unsigned long ulNumBlocks)

Parameters:
ullnPipe is the USB IN pipe to use for this command.
ulOutPipe is the USB OUT pipe to use for this command.
UILBA is the logical block address to read.
pucData is the data buffer to return the data.
pulSize is the size of the buffer on entry and number of bytes read on exit.
ulNumBIlocks is the number of contiguous blocks to read from the device.

Description:
This function is used to issue a SCSI Read(10) command to a device. The ulLBA parameter
specifies the logical block address to read from the device. The data from this block will be
returned in the buffer pointed to by pucData. The parameter pulSize should indicate enough
space to hold a full block size, or only the first pulSize bytes of the LBA will be returned.

Returns:
This function returns the results of the SCSI Read(10) command. The value will be either
SCSI_CMD_STATUS_PASS or SCSI_CMD_STATUS_FAIL.

USBHSCSIReadCapacities

This will issue the SCSI read capacities command to a device.

Prototype:
unsigned long
USBHSCSIReadCapacities (unsigned long ulInPipe,
unsigned long ulOutPipe,
unsigned char =*pucData,
unsigned long *pulSize)

Parameters:
ullnPipe is the USB IN pipe to use for this command.
ulOutPipe is the USB OUT pipe to use for this command.
pucData is the data buffer to return the results into.
pulSize is the size of buffer that was passed in on entry and the number of bytes returned.

Description:
This function should be used to issue a SCSI Read Capacities command to a mass storage
device that is connected. To allow for multiple devices, the ullnPipe and ulOutPipe parameters
indicate which USB pipes to use for this call.

222

April 8, 2013

Host Functions

45417

4.54.18

Returns:
This function returns the SCSI status from the command. The value will be either
SCSI_CMD_STATUS_ PASS or SCSI CMD_STATUS FAIL.

USBHSCSIReadCapacity

This will issue the SCSI read capacity command to a device.

Prototype:
unsigned long
USBHSCSIReadCapacity (unsigned long ullInPipe,
unsigned long ulOutPipe,
unsigned char =*pucData,
unsigned long *pulSize)

Parameters:
ullnPipe is the USB IN pipe to use for this command.
ulOutPipe is the USB OUT pipe to use for this command.
pucData is the data buffer to return the results into.
pulSize is the size of buffer that was passed in on entry and the number of bytes returned.

Description:
This function should be used to issue a SCSI Read Capacity command to a mass storage
device that is connected. To allow for multiple devices, the ullnPipe and ulOutPipe parameters
indicate which USB pipes to use for this call.

Note:
The pucData buffer pointer should have at least SCSI_READ_CAPACITY_SZ bytes of data or
this function will overflow the buffer.

Returns:
This function returns the SCSI status from the command. The value will be either
SCSI_CMD_STATUS_ PASS or SCSI CMD_STATUS FAIL.

USBHSCSIRequestSense

This function issues a SCSI Request Sense command to a device.

Prototype:
unsigned long
USBHSCSIRequestSense (unsigned long ullInPipe,
unsigned long ulOutPipe,
unsigned char xpucData,
unsigned long *pulSize)

Parameters:
ullinPipe is the USB IN pipe to use for this command.

ulOutPipe is the USB OUT pipe to use for this command.
pucData is the data buffer to return the results into.
pulSize is the size of the buffer on entry and number of bytes read on exit.

April 8, 2013

223

Host Functions

4.5.419

4.5.4.20

Description:
This function is used to issue a SCSI Request Sense command to a device. It will return the
data in the buffer pointed to by pucData. The parameter pulSize should have the allocation
size in bytes of the buffer pointed to by pucData.

Returns:
This function returns the results of the SCSI Request Sense command. The value will be either
SCSI_CMD_STATUS_PASS or SCSI_CMD_STATUS_FAIL.

USBHSCSITestUnitReady

This function issues a SCSI Test Unit Ready command to a device.

Prototype:
unsigned long
USBHSCSITestUnitReady (unsigned long ulInPipe,
unsigned long ulOutPipe)

Parameters:
ullnPipe is the USB IN pipe to use for this command.

ulOutPipe is the USB OUT pipe to use for this command.

Description:
This function is used to issue a SCSI Test Unit Ready command to a device. This call will
simply return the results of issuing this command.

Returns:
This function returns the results of the SCSI Test Unit Ready command. The value will be
either SCSI_CMD_STATUS_PASS or SCSI_CMD_STATUS_FAIL.

USBHSCSIWrite10

This function issues a SCSI Write(10) command to a device.

Prototype:

unsigned long

USBHSCSIWritelO (unsigned long ulInPipe,
unsigned long ulOutPipe,
unsigned long ulLBA,
unsigned char xpucData,
unsigned long xpulSize,
unsigned long ulNumBlocks)

Description:
This function is used to issue a SCSI Write(10) command to a device. The ulLBA parameter
specifies the logical block address on the device. The data to write to this block should be in
the buffer pointed to by pucData parameter. The parameter pulSize should indicate the amount
of data to write to the specified LBA.

Parameters:
ullnPipe is the USB IN pipe to use for this command.

224

April 8, 2013

Host Functions

4.5.5

4.5.5.1

4552

4.6

4.6.1

ulOutPipe is the USB OUT pipe to use for this command.

UILBA is the logical block address to read.

pucData is the data buffer to write out.

pulSize is the size of the buffer.

ulNumBlocks is the number of contiguous blocks to write to the device.

Returns:
This function returns the results of the SCSI Write(10) command. The value will be either
SCSI_CMD_STATUS_PASS or SCSI_CMD_STATUS_FAIL.

Variable Documentation

g_USBHIDClassDriver

Definition:
const tUSBHostClassDriver g_USBHIDClassDriver

Description:
This constant global structure defines the HID Class Driver that is provided with the USB library.

g_USBHostMSCClassDriver

Definition:
const tUSBHostClassDriver g_USBHostMSCClassDriver

Description:
This constant global structure defines the Mass Storage Class Driver that is provided with the
USB library.

Host Device Interface

The USB library provides a set of example host device interfaces for a HID mouse, a HID keyboard
and a mass storage device. The next few sections will discuss each briefly and explain how their
interfaces can be used by an application.

Mouse Device

The HID mouse device interface is controlled mainly through a callback function that is provided
as part of the call to open the mouse device interface. In order to open an instance of the mouse
device the application calls USBHMouseOpen() and passes in a callback function as well as some
buffer data for use by the mouse device. The buffer provided is used internally by the mouse device
and should not be used by the application. Once the device has been opened, the application
should wait fora USB_EVENT_CONNECTED event to indicate that a mouse has been successfully
detected and enumerated. At this point the application should call the USBHMouselnit() function to
initialize the actual device that is connected. After this, the application can expect to start receiving
the following events via the callback that was provided in the USBHMouseOpen() call:

April 8, 2013

225

Host Functions

4.6.2

USBH_EVENT_HID_MS_PRESS
USBH_EVENT_HID_MS_REL
USBH_EVENT_HID_MS_X
USBH_EVENT_HID_MS_Y

USBH_EVENT_HID_MS_PRESS

The ulMsgParam parameter will have one of the following values HID_MOUSE_BUTTON_1,
HID_MOUSE_BUTTON_2, HID MOUSE_BUTTON_3 indicating which buttons have changed to
the pressed state.

USBH_EVENT_HID_MS_REL

The ulMsgParam parameter will have one of the following values HID_MOUSE_BUTTON_1,
HID_MOUSE_BUTTON_2, HID_MOUSE_BUTTON_3 indicating which buttons have changed to
the released state.

USBH_EVENT_HID_MS_X

The ulMsgParam parameter will have an 8 bit signed value indicating the delta in the X direction
since the last update.

USBH_EVENT_HID_MS_Y

The ulMsgParam parameter will have an 8 bit signed value indicating the delta in the Y direction
since the last update.

When the application is done using the mouse device it can call USBHMouseClose() to release the
instance of the mouse device and free up the buffer that it passed to the mouse device.

Keyboard Device

Like the mouse, the HID keyboard device interface is controlled mainly through a callback function
that is provided as part of the call to open the keyboard device interface. In order to open an in-
stance of the keyboard device the application calls USBHKeyboardOpen() and passes in a callback
function as well as some buffer data for use by the keyboard device. The buffer provided is used
internally by the keyboard device and should not be used by the application. Once the device has
been opened, the application should wait for a USB_EVENT_CONNECTED event to indicate that
a keyboard has been successfully detected and enumerated. At this point the application should
call the USBHKeyboardInit() function to initialize the actual keyboard device that is connected. After
this, the application can expect to receive the following events via the callback that was provided in
the USBHKeyboardOpen() call:

m USBH_EVENT_HID_KB_PRESS
m USBH_EVENT_HID_KB_REL
m USBH_EVENT_HID_KB_MOD

USBH_EVENT_HID_KB_PRESS

The ulMsgParam parameter will have the USB usage identifier for the key that has been pressed.
It is up to the application to map this usage identifier to an actual printable character using the
USBHKeyboardUsageToChar() function, or it can simple respond to the key press without echoing
the key to any output device. It should be noted that "special” keys like the Caps Lock key require
notifying the actual keyboard device that the host application has detected that the key has been
pressed.

226

April 8, 2013

Host Functions

USBH_EVENT_HID_KB_REL
The ulMsgParam parameter will have the USB usage identifier for the key that has been released.
USBH_EVENT_HID_KB_MOD

The ulMsgParam parameter will have the current state of all of the modifier keys on the connected
keyboard. This value is a bit mapped representation of the modifier keys that can have any of the
following bits set:

HID_KEYB_LEFT CTRL
HID_KEYB_LEFT_SHIFT
HID_KEYB_LEFT ALT
HID_KEYB_LEFT_GUI
HID_KEYB_RIGHT_CTRL
HID_KEYB_RIGHT SHIFT
HID_KEYB_RIGHT ALT
HID_KEYB_RIGHT GUI

4.7 Host Device Interface Definitions

Functions

m unsigned long USBHKeyboardClose (unsigned long ullnstance)
m unsigned long USBHKeyboardInit (unsigned long ullnstance)
m unsigned long USBHKeyboardModifierSet (unsigned long ullnstance, unsigned long ulModi-

fiers)

unsigned long USBHKeyboardOpen (tUSBCallback pfnCallback, unsigned char spucBuffer,
unsigned long ulSize)

unsigned long USBHKeyboardPollRateSet (unsigned long ullnstance, unsigned long ulPoll-
Rate)

unsigned long USBHKeyboardUsageToChar (unsigned long ullnstance, const tHIDKeyboard-
UsageTable «pTable, unsigned char ucUsagelD)

m unsigned long USBHMouseClose (unsigned long ullnstance)
m unsigned long USBHMouselnit (unsigned long ullnstance)
m unsigned long USBHMouseOpen (tUSBCallback pfnCallback, unsigned char xpucBuffer, un-

signed long ulSize)

4.7.1 Detailed Description

The

macros and functions defined in this section can be found in header files

host/usbhhidkeyboard.h and host /usbhhidmouse.h.

April 8, 2013

227

Host Functions

4.7.2 Function Documentation
4.7.2.1 USBHKeyboardClose
This function is used close an instance of a keyboard.
Prototype:
unsigned long
USBHKeyboardClose (unsigned long ulInstance)
Parameters:
ulinstance is the instance value for this keyboard.
Description:
This function is used to close an instance of the keyboard that was opened with a call to US-
BHKeyboardOpen(). The ullnstance value is the value that was returned when the application
called USBHKeyboardOpen().
Returns:
This function returns 0 to indicate success any non-zero value indicates an error condition.
4.7.2.2 USBHKeyboardinit
This function is used to initialize a keyboard interface after a keyboard has been detected.
Prototype:
unsigned long
USBHKeyboardInit (unsigned long ulInstance)
Parameters:
ulinstance is the instance value for this keyboard.
Description:
This function should be called after receiving a USB_EVENT_CONNECTED event in the call-
back function provided by USBHKeyboardOpen(), however this function should only be called
outside the callback function. This will initialize the keyboard interface and determine the key-
board’s layout and how it reports keys to the USB host controller. The ullnstance value is
the value that was returned when the application called USBHKeyboardOpen(). This func-
tion only needs to be called once per connection event but it should be called every time a
USB_EVENT_CONNECTED event occurs.
Returns:
This function returns 0 to indicate success any non-zero value indicates an error condition.
4.7.2.3 USBHKeyboardModifierSet
This function is used to set one of the fixed modifier keys on a keyboard.
Prototype:
unsigned long
USBHKeyboardModifierSet (unsigned long ulInstance,
unsigned long ulModifiers)
228 April 8, 2013

Host Functions

4.7.2.4

Parameters:
ulinstance is the instance value for this keyboard.

ulModifiers is a bit mask of the modifiers to set on the keyboard.

Description:
This function is used to set the modifier key states on a keyboard. The u/Modifiers value is a
bitmask of the following set of values:

= HID_KEYB_NUM_LOCK
HID_KEYB_CAPS_LOCK
HID_KEYB_SCROLL_LOCK
HID_KEYB_COMPOSE
HID_KEYB_KANA

Not all of these will be supported on all keyboards however setting values on a keyboard that
does not have them should have no effect. The ullnstance value is the value that was returned
when the application called USBHKeyboardOpen(). If the value HID_KEYB_CAPS_LOCK is
used it will modify the values returned from the USBHKeyboardUsageToChar() function.

Returns:
This function returns 0 to indicate success any non-zero value indicates an error condition.

USBHKeyboardOpen

This function is used open an instance of a keyboard.

Prototype:
unsigned long
USBHKeyboardOpen (tUSBCallback pfnCallback,
unsigned char xpucBuffer,
unsigned long ulSize)

Parameters:
pfnCallback is the callback function to call when new events occur with the keyboard returned.

pucBuffer is the memory used by the keyboard to interact with the USB keyboard.
ulSize is the size of the buffer provided by pucBuffer.

Description:
This function is used to open an instance of the keyboard. The value returned from this function
should be used as the instance identifier for all other USBHKeyboard calls. The pucBuffer
memory buffer is used to access the keyboard. The buffer size required is at least enough to
hold a normal report descriptor for the device. If there is not enough space only a partial report
descriptor will be read out.

Returns:
Returns the instance identifier for the keyboard that is attached. If there is no keyboard present
this will return 0.

April 8, 2013

229

Host Functions

4.7.25 USBHKeyboardPollIRateSet

This function is used to set the automatic poll rate of the keyboard.

Prototype:

unsigned long
USBHKeyboardPollRateSet (unsigned long ulInstance,
unsigned long ulPollRate)

Parameters:

ulinstance is the instance value for this keyboard.

ulPollRate is the rate in ms to cause the keyboard to update the host regardless of no change
in key state.

Description:

This function will allow an application to tell the keyboard how often it should send updates to
the USB host controller regardless of any changes in keyboard state. The ullnstance value is
the value that was returned when the application called USBHKeyboardOpen(). The ulPollRate
is the new value in ms for the update rate on the keyboard. This value is initially set to 0 which
indicates that the keyboard should only to update when the keyboard state changes. Any value
other than 0 can be used to force the keyboard to generate auto-repeat sequences for the
application.

Returns:

This function returns 0 to indicate success any non-zero value indicates an error condition.

4.7.2.6 USBHKeyboardUsageToChar

This function is used to map a USB usage ID to a printable character.

Prototype:

unsigned long

USBHKeyboardUsageToChar (unsigned long ullnstance,
const tHIDKeyboardUsageTable xpTable,
unsigned char ucUsagelD)

Parameters:

ulinstance is the instance value for this keyboard.
pTable is the table to use to map the usage ID to characters.
ucUsagelD is the USB usage ID to map to a character.

Description:

This function is used to map a USB usage ID to a character. The provided pTable is used to
perform the mapping and is described by the tHIDKeyboardUsageTable type defined structure.
See the documentation on the tHIDKeyboardUsageTable structure for more details on the in-
ternals of this structure. This function uses the current state of the shift keys and the Caps
Lock key to modify the data returned by this function. The pTable structure has values indicat-
ing which keys are modified by Caps Lock and alternate values for shifted cases. The number
of bytes returned from this function depends on the pTable structure passed in as it holds the
number of bytes per character in the table.

Returns:

Returns the character value for the given usage id.

230

April 8, 2013

Host Functions

4727 USBHMouseClose

This function is used close an instance of a mouse.

Prototype:
unsigned long
USBHMouseClose (unsigned long ulInstance)

Parameters:
ullnstance is the instance value for this mouse.

Description:
This function is used to close an instance of the mouse that was opened with a call to USBH-
MouseOpen(). The ullnstance value is the value that was returned when the application called
USBHMouseOpen().

Returns:
Returns 0.

4.7.2.8 USBHMouselnit

This function is used to initialize a mouse interface after a mouse has been detected.

Prototype:
unsigned long
USBHMouseInit (unsigned long ulInstance)

Parameters:
ulinstance is the instance value for this mouse.

Description:
This function should be called after receiving a USB_EVENT_CONNECTED event in the call-
back function provided by USBHMouseOpen(), however it should only be called outside of the
callback function. This will initialize the mouse interface and determine how it reports events
to the USB host controller. The ullnstance value is the value that was returned when the appli-
cation called USBHMouseOpen(). This function only needs to be called once per connection
event but it should be called every time a USB_EVENT_CONNECTED event occurs.

Returns:
Non-zero values should be assumed to indicate an error condition.

4.7.29 USBHMouseOpen

This function is used open an instance of a mouse.

Prototype:
unsigned long
USBHMouseOpen (tUSBCallback pfnCallback,
unsigned char xpucBuffer,
unsigned long ulSize)

April 8, 2013 231

Host Functions

4.8

4.8.1

Parameters:
pfnCallback is the callback function to call when new events occur with the mouse returned.

pucBuffer is the memory used by the driver to interact with the USB mouse.
ulSize is the size of the buffer provided by pucBuffer.

Description:
This function is used to open an instance of the mouse. The value returned from this function
should be used as the instance identifier for all other USBHMouse calls. The pucBuffer mem-
ory buffer is used to access the mouse. The buffer size required is at least enough to hold a
normal report descriptor for the device.

Returns:
Returns the instance identifier for the mouse that is attached. If there is no mouse present this
will return 0.

Host Programming Examples

The USB library provides examples for three host applications that can access mass storage de-
vices and HID keyboard and mouse devices. These next sections will cover the basics of each of
these three applications and how they interact with the USB library.

Application Initialization

The USB library host stack initialization is handled in the USBHCDInit() function. This function
should be called after registering class drivers using USBHCDRegisterDrivers() and, optionally,
configuring power pins using USBHCDPowerConfiglnit(). Both of these functions are described
later.

The USBHCDInit() function takes three parameters, the first of which specifies which USB controller
to initialize. This value is a zero based index of the host controller to initialize. The next two
parameters specify a memory pool for use by the host controller driver. The size of this buffer
should be at least large enough to hold a typical configuration descriptor for devices that are going
to be supported. This value is system dependent so it is left to the application to set the size,
however it should never be less than 32 bytes and in most cases should be at least 64 bytes. If
there is not enough memory to load a configuration descriptor from a device, the device will not
be recognized by USB library’s host controller driver. The USB library also provides a method to
shut down an instance of the host controller driver by calling the USBHCDTerm() function. The
USBHCDTerm() function should be called any time the application wants to shut down the USB
host controller in order to disable it, or possibly switch modes in the case of a dual role controller.

The USB library assumes that the power pin configuration has an active high signal for controlling
the external power. If this is not the case or if the application wants control over the power fault
logic provided by the library, then the application should call the USBHCDPowerConfiglnit() function
before calling USBHCDInit() in order to properly configure the power control pins. The polarity of
the power pin, the polarity of the the power fault pin and any actions taken in response to a power
fault are all controlled by passing a combination of sets of values in the ulPwrConfig parameter.
See the documentation for the USBHCDPowerConfiglnit() function for more details on this function.

232

April 8, 2013

Host Functions

4.8.2

4.8.3

48.4

Application Interface

The USB library host stack requires some portion of the code to not run in the interrupt handler
so it provides the USBHCDMain() function that must be called periodically in the main application.
This can be as a result of a timer tick or just once per main loop in a simple application. It should
not be called in an interrupt handler. Calling the function too often is harmless as it will simply
return if the USB host stack has nothing to do. Calling USBHCDMain() too infrequently can cause
enumeration to take longer than normal. It is up to the application to prioritize the importance of
USB communications by calling USBHCDMain() at a rate that is reasonable to the application.

All support devices will have a host class driver loaded in order to communicate with each type of
device that is supported. The details of interacting with these host class drivers is explained in the
host class driver sections that follow in this document.

Application Termination

When the application needs to shut down the host controller it will need to shutdown all host class
drivers and then shut down the host controller itself. This gives the host class drivers a chance to
close cleanly by calling each host class driver’s close function. Then the USBHCDTerm() function
should be called to shut down the host controller. This sequence will leave the USB controller and
the USB library stack in a state so that it is ready to be re-initialized or in order to switch USB mode
from host to device.

Example Application Setup

The following example shows the basic setup code needed for any application that is using the USB
library in host mode. The g_pHCDPool array which is passed in to the USBHCDInit() is used as
heap memory for by the USB library and thus the memory should not be used by the application.
In this example, the g_ppHostClassDrivers array holds both HID and MSC class drivers making it
possible for both types of devices to be supported. However if the application only needs to include
the classes that it needs to support in order to save code and memory space. The pin and peripheral
configuration is left to the application as the USB pins may not always be on the same physical pins
for every part supported by the USB library. The macros provided in the pin_map.h file included with
DriverLib can be used to indicate which pin and peripheral to use for a given part. See the DriverLib
documentation on pin mapping for more details on how it provides mapping of peripherals to pins
on devices. The USBHCDRegisterDrivers() call passes in the static array of supported USB host
class drivers that will be supported by the application. As shown in the example, the application
should always call the USB device interfaces open routines before calling USBHCDInit() since this
call will enable the USB host controller and start enumerating any connected device. If the device
interface has not been called it may miss the connection notification and could miss some state
information that occurred before the device interface was ready.

Example: Basic Configuration as Host

[/ K kK kK ok Kk Kk ko ko ko kK kK kK ok ok Kk Rk kK ko ko ko ok ok ko ok ok ok Kk ok ok ko ok ok ok ok ok ok ok K ok Kk ok ok ok ok ok ok ok ok kK kK kK K

//

// The size of the host controller’s memory pool in bytes.

//
//‘k*‘k‘k‘k*‘k‘k~k~k~k***‘k‘k‘k‘k‘k*‘k‘k*****‘k‘k‘k‘k‘k‘k*‘k‘k*k**‘k*‘k‘k‘k‘k‘k*‘k‘k****‘k‘k‘k‘k‘k‘k‘k**‘k***‘k*‘k‘k‘k‘k‘k‘k‘k‘k
#define HCD_MEMORY_SIZE 128

[/ K kK kK kK ok Kk ko ko ko kK kK kK ok Kk Kk Kk Kk ko ko ok ok ok ko ok ok Kk ok ok ok ok ok ok ko ok ok ok ok kK ok Kk Kk ok ok ko ko kK kK kK

April 8, 2013

233

Host Functions

//
// The memory pool to provide to the Host controller driver.

//

[/ H %k kK k Kk Kk ko ok ok ok ok ko ko kK ok kK ok Kk ko ko ok kK kK

unsigned char g_pHCDPool [HCD_MEMORY_SIZE];

//***
//
// The global that holds all of the host drivers in use in the application.
// In this case, only the Keyboard class is loaded.
//
//***
static tUSBHostClassDriver const x const g_ppHostClassDrivers[] =
{

&g_USBHIDClassDriver,

&g_USBHostMSCClassDriver
bi

//***
//

// This global holds the number of class drivers in the g_ppHostClassDrivers

// list.

//

//***
static const unsigned long g_ulNumHostClassDrivers =
sizeof (g_ppHostClassDrivers) / sizeof (tUSBHostClassDriver x);

//

// Enable Clocking to the USB controller.
//

SysCtlPeripheralEnable (SYSCTL_PERIPH_USBO) ;

//

// Enable the peripherals used by this example.
//

SysCtlPeripheralEnable (SYSCTL_PERIPH_UARTO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOH) ;

!/

// Set the USBOEPEN and USBOPFLT pins to be controlled by the USB
// controller.

//

GPIOPinTypeUSBDigital (GPIO_PORTH_BASE, GPIO_PIN_3 | GPIO_PIN_4);

//

// Register the host class drivers.

//

USBHCDRegisterDrivers (0, g_ppUSBHostClassDrivers, g_ulNumHostClassDrivers);

// Call any open routines on the device class interfaces here so that they
// are ready to receive callbacks if the device is already inserted on
// power on.

// Eg: USBHMSCDriveOpen (0, MSCCallback);

// Initialize the host controller.

234

April 8, 2013

Host Functions

USBHCDInit (0, g_pHCDPool, HCD_MEMORY_SIZE) ;

4.8.5 Host HID Mouse Programming Example

The USB library HID mouse example provides support for HID mouse devices that support the USB
HID mouse BIOS protocol. Since most mice support the BIOS protocol nearly any mouse should be
able to be connected and be supported. The initial call to USBHMouseOpen() prepares the mouse
device application interface to receive notifications from any USB mouse device that is connected.
Since the mouse interface needs some basic configuration after being connected the application
needs to wait for the mouse to be connected and then call the USBHMouselnit() function to finish
off the mouse configuration.

Example: Mouse Configuration

//
// Open an instance of the mouse driver. The mouse does not need
// to be present at this time, this just saves a place for it and allows
// the applications to be notified when a mouse is present.
//
g_ulMouseInstance = USBHMouseOpen (MouseCallback,
g_pucBuffer,

128);
//
// Main loop of application.
//
while (1)
{
switch (eMouseState)
{
//
// This state is entered when they mouse is first detected.
//
case MOUSE_INIT:
{
//
// Initialized the newly connected mouse.
//
USBHMouseInit (g_ulMouselInstance) ;
//
// Proceed to the mouse connected state.
//

eMouseState = MOUSE_CONNECTED;

break;
}
case MOUSE_CONNECTED:
{
break;
}
case MOUSE_NOT_CONNECTED:
default:
{
break;

}

April 8, 2013 235

Host Functions

//
// Periodic call the main loop for the Host controller driver.

//
USBHCDMain () ;

Once the mouse has been configured the application’s mouse callback routine will be notified any
time there is a state change with the mouse. This includes the switching to the MOUSE_INIT state
when a USB_EVENT_CONNECTED event occurs in order to trigger initialization of the mouse
device. The USB_EVENT_DISCONNECTED simply switches the state of the application to let it
know that the mouse is no longer present. The remaining events are mouse state changes that can
be used by the application to move a cursor or make a selection based on a mouse click.

Example: Mouse Callback Routine

unsigned long
MouseCallback (void *pvCBData, unsigned long ulEvent, unsigned long ulMsgParam,
void xpvMsgData)
{
switch (ulEvent)
{
//
// New mouse detected.
//
case USB_EVENT_CONNECTED:
{
eMouseState = MOUSE_INIT;

break;
}
//
// Mouse has been unplugged.
//

case USB_EVENT_DISCONNECTED:

{
eMouseState = MOUSE_NOT_CONNECTED;

break;
}
//
// New Mouse events detected.
//

case USBH_EVENT_HID_MS_PRESS:
{
break;
}
case USBH_EVENT_HID_MS_REL:
{
break;
}
case USBH_EVENT_HID_MS_X:
{
break;
}
case USBH_EVENT_HID_MS_Y:
{
break;
}
}

return (0) ;

236 April 8, 2013

Host Functions

4.8.6

Host HID Keyboard Programming Example

Example: Keyboard Configuration

//
// Open an instance of the keyboard driver. The keyboard does not need
// to be present at this time, this just save a place for it and allows
// the applications to be notified when a keyboard is present.
//
g_ulKeyboardInstance = USBHKeyboardOpen (KeyboardCallback,

g_pucBuffer,

128);
//
// The main loop for the application.
//
while (1)
{
switch (eKeyboardState)
{
//
// This state is entered when they keyboard is first detected.
//
case KEYBOARD_INIT:
{
//
// Initialized the newly connected keyboard.
//
USBHKeyboardInit (g_ulKeyboardInstance) ;
//
// Proceed to the keyboard connected state.
//

eKeyboardState = KEYBOARD_CONNECTED;

break;
}
case KEYBOARD_UPDATE:
{
//
// If the application detected a change that required an
// update to be sent to the keyboard to change the modifier
// state then call it and return to the connected state.
//
eKeyboardState = KEYBOARD_CONNECTED;

USBHKeyboardModifierSet (g_ulKeyboardInstance,
g_ulModifiers);
}
case KEYBOARD_CONNECTED:
{
break;

}
case KEYBOARD_NOT_CONNECTED:

The USB library HID keyboard example provides support for HID keyboard devices that support
the USB HID keyboard BIOS protocol. Since most keyboards support the BIOS protocol most key-
boards should be able to be connected and be supported. The initial call to USBHKeyboardOpen()
prepares the keyboard device application interface to receive notifications from any USB keyboard
device that is connected. The keyboard interface needs some basic configuration and needs to
set the current state of LEDs on the keyboard, the application must wait for the keyboard to be
connected and then call the USBHKeyboardInit() function.

April 8, 2013

237

Host Functions

default:
{

break;
}
}

/7

// Periodic call the main loop for the Host controller driver.

//
USBHCDMain () ;

Much like the mouse, the keyboard handles the reception of events entirely in the callback han-
dler. This function should receive and store the keyboard events and handle them in the main
program loop when the device is in the connected state. The USB_EVENT_CONNECTED
will let the main loop know that it is time to call the USBHKeyboardlnit() routine to config-
ure the keyboard. The USB_EVENT_DISCONNECTED event simply informs the application
that the keyboard is not longer present and not to expect any more callbacks until another
USB_EVENT_CONNECTED occurs. The remaining events all indicate that a key has been
pressed or released. Normal key presses/releases generate USBH_EVENT_HID_KB_PRESS or
USBH_EVENT_HID_KB_REL events while hitting keys like the shift, ctrl, alt and gui keys generate
USBH_EVENT_HID_KB_MOD events.

Example: Keyboard Callback

unsigned long

KeyboardCallback (void xpvCBData, unsigned long ulEvent,
unsigned long ulMsgParam, void xpvMsgData)

{

unsigned char ucChar;

switch (ulEvent)
{
//
// New keyboard detected.
//
case USB_EVENT_CONNECTED:
{
eKeyboardState = KEYBOARD_INIT;
break;

}

!/
// Keyboard has been unplugged.
//
case USB_EVENT_DISCONNECTED:
{
eKeyboardState = KEYBOARD_NOT_CONNECTED;

break;
}
//
// New Key press detected.
//
case USBH_EVENT_HID_KB_PRESS:
{
//
// ulMsgParam holds the USB Usage ID.
//
break;

}
case USBH_EVENT_HID_KB_MOD:

{

238

April 8, 2013

Host Functions

//

// ulMsgParam holds the USB Modifier bit mask.
//

break;

}

case USBH_EVENT_HID_KB_REL:

{
//
// ulMsgParam holds the USB Usage ID.
//
break;

}

}

return (0) ;

4.8.7 Host Mass Storage Programming Example

The following programming example demonstrates some of the basic interfaces that are available
from the USB mass storage class application interface. See the "Basic Configuration as Host"
example above for the initial configuration. The application should call USBHMSCDriveOpen() in
order for the application to be ready for a new mass storage device. The application should also wait
for the mass storage device to be ready to receive commands by calling USBHMSCDriveReady()
and waiting for the value returned to go to 0 before attempting to read or write the device. Typically
the reading and writing of the device is left to a file system layer as is the case in the example
application, however the calls to directly read or write a block are shown in the example below.

Example: Mass Storage Coding Example

//

// Open an instance of the mass storage class driver.
//

g_ulMSCInstance = USBHMSCDriveOpen (0, MSCCallback) ;

//
// Wait for the drive to become ready.
//
while (USBHMSCDriveReady (g_ulMSCInstance))
{
//
// System level delay call should be here to give the device time to
// become ready.
//
SysCtlDelay (SysCt1ClockGet () / 100);

//

// Block Read example.

//

USBHMSCBlockRead (g_ulMSCInstance, ullLBA, pucDbhata, 1);

//
// Block Write example.

//
USBHMSCBlockWrite (g_ulMSCInstance, ulLBA, pucData, 1);

April 8, 2013 239

Host Functions

240 April 8, 2013

April 8, 2013 241

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications N ’
Amplifiers amplifier.ti.com Audio Wmotive
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁ(tj)_ro_?dlban? |
DSP dsp.ficom Digital Control Www.1.com/digrarcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

242 April 8, 2013

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 General Purpose Functions
	2.1 Introduction
	2.2 Porting Summary
	2.3 C2000 Specific Software
	2.4 Function Definitions
	2.5 USB Chapter 9 Definitions
	2.6 USB Buffer and Ring Buffer APIs

	3 Device Functions
	3.1 Introduction
	3.2 API choices for USB devices
	3.3 Bulk Device Class Driver
	3.4 Bulk Device Class Driver Definitions
	3.5 CDC Device Class Driver
	3.6 CDC Device Class Driver Definitions
	3.7 Composite Device Class Driver
	3.8 Composite Device Class Driver Definitions
	3.9 HID Device Class Driver
	3.10 HID Device Class Driver Definitions
	3.11 HID Mouse Device Class API
	3.12 HID Mouse Device Class API Definitions
	3.13 HID Keyboard Device Class API
	3.14 HID Keyboard Device Class API Definitions
	3.15 Using the USB Device API
	3.16 USB Device API Definitions

	4 Host Functions
	4.1 Introduction
	4.2 Host Controller Driver
	4.3 Host Controller Driver Definitions
	4.4 Host Class Driver
	4.5 Host Class Driver Definitions
	4.6 Host Device Interface
	4.7 Host Device Interface Definitions
	4.8 Host Programming Examples

	IMPORTANT NOTICE

