I3 TEXAS Application Report
INSTRUMENTS SPRAAUS - March 2008

Copying Compiler Sections From Flash to RAM on the
TMS320F28xxx DSCs

Tim Love

ABSTRACT
This application report and associated code files provide functionality for copying
initialized compiler sections from the internal Flash memory to the internal random
access memory (RAM) of the TMS320F28xxx digital signal controllers (DSCs) at run
time for optimizing execution speed. The solution provided implements this functionality
directly after booting before entering the c_int00 C entry routine.
Project collateral and source code discussed in this application report can be
downloaded from the following URL.: http://www-s.ti.com/sc/techlit/spraau8.zigd.

Contents

1 T)igele [Vl To] o) I il
2 [e]47] o]1[=T @S =T o 1] o I I 4
3 SOz T 3
4 Benchmarks, Limitations, and SUQQeStONS]. ..o oeeeeeeeeeeeeeeeeeeereaaeeeeeeaeeeeeeeseeeess g
5 (ofe] [l [T (o)) 9
6 REfErENCES i eettieeeeeoeereoeeeoeeroseeeoeeieoeeeeseetoneeeoseeeeseeeoeeteseeieseesoseeraseeeneees 9

List of Figures
1 TMS320F2808 Memory Mapfoeeeeeeeeeesssssssseeeeeseeneeeeeeeeeeeessiiiseessssssssnsnnnnnnees S|

List of Tables
1 [aNE1r4Te BST=Ten (o1 S N 2
2 Uninitialized SeCtiONS e eeieoozeeereeeceeeeeesreeeeesreeeeeeseeeeeeeseeeeeeeeseeeeeesseeeeeeeseees 2
3 EXECULtION TiME it eeeeeeereoeeeeneeraneeroeeeeoeeeeoeereneeeoseeroseeeoseeeneeieseesoneeraseeeeees g

1 Introduction

In many applications, code execution speed is critical to the end application. A few examples of time
critical end equipment would be medical, motion control, motor control, etc. Many of these applications
use the TMS320F28xxx DSCs due to its internal Flash memory. The internal Flash memory is a great
benefit of the TMS320F28xxx family because it is non volatile memory that allows designers to store
application code internal to the chip as opposed to interfacing external memory to store this code. The
downside of using the internal Flash is that wait states are required to access the flash, which leads to
slower code execution time. In most applications this is not an issue. Other applications may require zero
wait-states for maximum speed. The internal RAM memory has zero wait-states but is a volatile memory.
As a result, initialized sections cannot be stored on this memory for boot up.

C2000, C28x, DSP/BIOS, Code Composer Studio, TMS320C2000 are trademarks of Texas Instruments.
eZdsp is a trademark of Spectrum Dlgital, Inc.
All other trademarks are the property of their respective owners.

SPRAAU8-March 2008 Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs 1
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/spraau8.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

Compiler Sections www.ti.com

The solution presented allows designers to copy initialized compiler sections (.text, .cinit, .econst, .switch,
etc.) from the Flash to RAM at runtime to allow maximum execution speed. This gives code execution a
boost from up to 15 wait-states to 0 wait-states. For another solution on copying just certain functions from
Flash to RAM, see Running an Application from Internal Flash Memory on the TMS320F28xx DSP
(EPRAJ5Y). This implementation should be used in most C2000™ DSC applications. Other applications
requiring tight timing with continuous zero wait-states should implement this presented solution.

An assembly routine was written to perform the copy from Flash to RAM. This assembly code is executed
after the reset vector before the call to c¢_int00. This ensures that the sections are copied before ¢_int00
calls main().

Some projects are small enough that all of the initialized sections can be copied to RAM. Other projects,
however, have initialized sections that are larger than the max 18K of internal RAM for
TMS320F281x/TMS320F280xx DSCs and 34K for TMS320F2833x DSCs. These projects may not be able
to copy all initialized sections to RAM but could use this solution to copy some of the sections.

It is assumed that Running an Application from Internal Flash Memory on the TMS320F28xx DSP
(EPRAY59) has been viewed and its methodologies are followed for Flash implementation.

Compiler Sections

The compiler creates multiple portions of code and data called sections. These sections are categorized
into two different groups: initialized and uninitialized. The initialized group of sections is composed of all
code, constants, and initialization tables. shows the initialized sections produced by the compiler.

Table 1. Initialized Sections

Name Contents Restrictions
.cinit Tables for explicitly initialized global and static variables Program
.const Global and static const variables that are explicitly initialized and Low 64K data
string literals
.econst Far constant variables Anywhere in data
.pinit Tables for global object constructors Program
.switch Tables for implementing switch statements Program (with -mt option)

Data (without -mt option)
text Executable code and constants Program

The uninitialized group of sections is composed of variables, the stack, and malloc memory.
shows the uninitialized sections produced by the compiler.

Table 2. Uninitialized Sections

Name Contents Restrictions
.bss Global and static variables Low 64K data
.ebss Far global/static variables Anywhere in data
.stack Stack space Low 64K data
.sysmem Memory for malloc functions Low 64K data
.esysmem Memory for far_malloc functions Anywhere in data

Once the compiler has generated these sections the linker takes the individual sections from each source
file and combines them to create an output section. The linker command file (.cmd) is used to tell the
linker where to allocate these sections. Initialized sections must be assigned to a non volatile memory like
Flash/ROM so the application is not erased when power is removed from the target. Uninitialized sections
can be allocated to RAM as they are initialized during code execution.

For more information regarding compiler sections and linking, see the TMS320C28x Assembly Language
Tools User's Guide (EPRU51J) and the TMS320C28x Optimizing C/C++ Compiler User’s Guide

(EPRUS14).

Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs SPRAAU8-March 2008
ubmit Documentation Feedbac

http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRU513
http://www-s.ti.com/sc/techlit/SPRU514
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

I,

TEXAS
INSTRUMENTS

www.ti.com Software

Texas Instruments has multiple examples available that show the use of the linker command file to
allocate compiler sections. One such example is the Running an Application from Internal Flash Memory
on the TMS320F28xx DSP (EPRA958). This application report provides examples that demonstrate the
use of the linker command file for both RAM based and Flash based projects.

The C/C++ Header Files and Peripheral Examples for each C28x™ DSP generation also provides
examples for RAM and Flash based examples. For more information, see C281x C/C++ Header Files and
Peripheral Examples (EPRC037), C280x, C2801x C/C++ Header Files and Peripheral Examples Software
Tools (EPRCI9])), and C2833x/C2823x C/C++ Header Files and Peripheral Examples Application

Software (SPRC530).

3 Software
The associated code files for this application report includes a modified version of the
CodeStartBranch.asm file provided with the C/C++ Header Files and Peripheral Examples, as well as the
DSP28xxx_SectionCopy_nonBIOS.asm file used for copying sections in a non DSP/BIOS™ based
project. The ready made linker command files for each TMS320F28xxx DSC generation are also provided.
Example projects are supplied as well to demonstrate the use of these files. The TMS320F2808 is
referenced for the software portion of this application report.
The software is self contained and will extract with the F28xxx_Flash_to_Ram folder as the base directory.
This code uses several files from the C/C++ Header Files and Peripheral Examples and was tested with
Code Composer Studio™ software version 3.3 using F28xxx Code Generation Tools version 5.0.0B3.
3.1 Description
The general software flow for this functionality is: code_start -~ wd_disable - copy_sections - c¢_int00 -
main(). This software flow only differs from a standard application software flow by calling the
copy_sections routine. The standard flow is code_start -~ wd_disable - c_int00 - main().
3.1.1 Code_start and wd_disable
The code_start and wd_disable routines are provided in the DSP28xxx_CodeStartBranch.asm file. After
power up, the code_start routine executes since it is allocated to the Flash boot address of Ox3F7FF6. For
more information, see Running an Application from Internal Flash Memory on the TMS320F28xx DSP
(EPRAY5§). This routine is shown below:
WD DI SABLE .set 1 ;set to 1 to disable WD, else set to O
.ref copy_sections
. gl obal code_start
* Function: codestart section
* Description: Branch to code starting point
.sect "codestart"
code_start:
.if WD _DISABLE == 1
LB wd_di sabl e ; Branch to wat chdog di sabl e code
.el se
LB copy_sections ; Branch to copy_sections
.endif
SPRAAU8-March 2008 Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs 3

Bubmit Documentafion FeedbacK

http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRC097
http://www-s.ti.com/sc/techlit/SPRC191
http://www-s.ti.com/sc/techlit/SPRC530
http://www-s.ti.com/sc/techlit/SPRA958
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

Software www.ti.com

3.1.2

This function was modified from the original CodeStartBranch.asm file provided with the C/C++ Header
Files and Peripheral Examples by only changing the second call to copy_sections instead of _c_int00.
This call will only be made if the WD_DISABLE is 0. As shown above, the code sets WD_DISABLE to 1.
This causes a branch to the wd_disable routine. This routine is shown below:

L R R

* Function: wd_disable

*

* Description: Disables the watchdog tiner

L R R R R

.if WD_DI SABLE ==

.sect "wddi sabl e"

wd_di sabl e:
SETC OBJMODE ; Set OBJMODE for 28x object code
EALLOW ; Enabl e EALLOW protected regi ster access

MOVZ DP, #7029h>>6 ; Set data page for WDCR register
MOV @029h, #0068h ;Set WDDIS bit in WDCR to disable WD

ED S ; Di sabl e EALLOW protected regi ster access
LB copy_sections ; Branch to copy_sections
.endif

This is required as the watchdog should be disabled during the copy_sections and c_int00 function
execution, otherwise the watchdog could timeout before main() is entered. This function was also
modified from the original CodeStartBranch.asm file provided with the C/C++ Header Files and Peripheral
Examples. The only modification is a branch to copy_sections instead of the c_int00 routine.

Copy_sections

The copy_sections routine is provided in the DSP28xxx_SectionCopy_nonBIOS.asm file. Once execution
is to this phase, the watchdog has been disabled and the sections are ready to be copied. The copy for
each section is prepared by storing the size of the section into the accumulator followed by storing the
load address and run address into the XAR6 and XARY7 registers, respectively. An example of this
functionality is as follows:

MOVL XAR5, #_t ext_si ze ; Store Section Size in XAR5

MOVL ACC, @XAR5 ; Move Section Size to ACC

MOVL XARG6, #_text | oadstart ; Store Load Starting Address in XAR6
MOVL XAR7, #_text_runstart ; Store Run Address in XAR7

LCR copy ; Branch to Copy

Note: The size, loadstart, and runstart symbols are all generated by the linker. This is discussed in
the Memory Allocation — Linker Command Files section.

After the addresses and size has been stored, the copy subroutine is called to determine if the section
was created by the compiler. This is tested by determining if the accumulator is O:

copy:
B return, EQ ; Return if ACCis Zero (No section to copy)
RPT AL ; Copy Section From Load Address to
|| PWRITE *XAR7, *XAR6++ ; Run Address
return:
LRETR ; Return

If the accumulator is 0, execution is returned to the calling address. If the accumulator is not zero, the
section needs to be copied. This is performed by the PWRITE instruction as shown above. The PWRITE
copies the memory pointed to by XAR6 to XARY7. In this case, from the load address to the run address.
This continues until the accumulator is zero indicating the end of the section. Once all sections have been
copied, a branch to the c_int00 routine is performed as shown.

LB _c_int00 ; Branch to start of boot.asmin RTS library

At this point, the C environment is setup and main() is entered. For complete copy_sections routine listing,
see the DSP28xxx_SectionCopy_nonBIOS.asm file in the associated code files.

Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs SPRAAU8-March 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

I,

TEXAS

INSTRUMENTS

www.ti.com Software

3.1.3

Memory Allocation — Linker Command Files

As discussed in Bection 7, the linker command file tells the linker where to allocate the compiler generated
sections. The C/C++ Header Files and Peripheral Examples provide standard linker command files for use
in applications.

Three linker command files are supplied in the associated code files to configure the memory allocation:
» F280xx_nonBIOS flash.cmd

e F281x_nonBIOS_flash.cmd

e F2833x_nonBIOS_flash.cmd

Each file is generally written in the same manner with small differences in the memory layout (device
specific). The MEMORY portion of the linker command file defines the memory available on the device to
linked sections. The memory map of the device is used for this process. The memory map is found in the
device-specific datasheet. For more information, see TMS320F2810, TMS320F2811, TMS320F2812,
TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors Data Manual (EPRSI740),
TMS320F2809, F2808, F2806, F2802, F2801, C2802, C2801, and F2801x DSPs Data Manual

(, and TMS320F28335, TMS320F28334, TMS320F28332 TMS320F28235, TMS320F28234,
TMS320F28232 Digital Signal Controllers (DSCs) Data Manual (S8PRS439).

shows the memory map of the TMS320F2808.

Block Start
Address Data Space ‘

0x00 0000

Prog Space

MO SARAM (1 K x 16)

0x00 0400
11 SARAM (1 K x 16)

0x00 0800
Peripheral Frame 0

—_ PIE Vector - RAM

x
(Enabled if ENPIE = 1)

0x00 0E00

b icaadeoos Peripheral Frame 1
(protected)

0x00 7000 | p.ripheral Frame 2

{protected)

Low 64K [0000 - FFFF]
(24x/240x equivalent data space)

0x00 8000
L0 SARAM (0-wait)
(4 k x 16, Secure Zone, Dual Mapped)

0x00 9000
= L1 SARAM (0-wait)
(4 kx 16, Securs Zone, Dual Mapped)

R A 0 SARAM (D-wait)

H
{8k x 16, Dual Mapped)

0x00 C000

0x30 7800 are
{1k x 16, Secure Zone)

0x3D 7C00

0x3D 8000
FLASH
{128 k x 16, Secure Zone)

0x3F 7FF8 128-bit Password

0x3F 8000

L0 SARAM (0-wait)
{4k x 16, Secure Zone, Dual Mapped)

0x3F 9000
- L1 SARAM (0-wait)
(4 kx 16, Secure Zone, Dual Mapped)

0x3F AD0O
ke HO SARAM (0-wait)
(8 kx 16, Dual Mapped)

0x3F C000

0x3F FO0O

High 64K [3F0000 - 3FFFFF]
(24x240x equivalent program space)

Boot ROM (4 kx 16)

Vectors (32 x 32

oxaFFFco |)
(enabled if VMAP = 1, ENPIE = 0)

Figure 1. TMS320F2808 Memory Map

The TMS320F28xxx DSCs contain RAM internally to the device that can be allocated in single sections or
in larger expanded sections, since it is predominately contiguous within the memory map. As shown in the
memory map, the F2808 contains LO, L1, and HO SARAMs mapped in contiguous memory spaces
allowing the creation of one large block of memory. This RAM block can be defined within the MEMORY
portion of the .cmd file as follows:

RAM HOLOL1 : origin = 0x008000, |ength = 0x004000 /* on-chip RAM */

SPRAAU8-March 2008 Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs 5
Eubmit Documentation Feedbacl

http://www-s.ti.com/sc/techlit/SPRS174O
http://www-s.ti.com/sc/techlit/SPRS230
http://www-s.ti.com/sc/techlit/SPRS439
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

Software www.ti.com

3.2

3.21

The rest of the memory would also be defined in the MEMORY section. For an example of complete
memory allocation, see the linker command files included in the associated code files.

The second portion of the linker command file is the SECTIONS specification. This is where the actual
compiler sections are linked to the memory areas. All of the sections from the
DSP28xxx_CodeStartBranch.asm and DSP28xxx_SectionCopy_nonBIOS.asm are loaded and ran from
the Flash memory. This allocation is shown below.

codestart : > BEA N _FLASH, PAGE = 0 /* Used by file CodeStartBranch.asm */

wddi sabl e : > FLASH AB, PAGE =0 /* Used by file CodeStartBranch.asm */
copysections : > FLASH AB, PAGE = 0 /* Used by file SectionCopy.asm */

The other initialized compiler sections are allocated to load to the Flash but run from the internal RAM.
This is achieved by specifying the LOAD and RUN directives. An example of this allocation is shown
below.

.text : LOAD = FLASH AB, PAGE = 0 /* Load section to Flash */
RUN = RAM HOLOL1, PAGE = 0 /* Run section from RAM */
LOAD_START(_text_l oadstart),

RUN_START(_text_runstart),
S| ZE(_t ext _si ze)

To gain access to the specific addresses associated with a section, the LOAD_START, RUN_START, and
SIZE address and dimension directives are used as shown above. The addresses and size produced by
these directives are used by the DSP28xxx_SectionCopy_nonBIOS.asm file to point to the correct
addresses during the copy. DSP28xxx_SectionCopy_nonBIOS.asm references these values by creating
global variables as shown below.

.global _cinit_loadstart, _cinit_runstart, _cinit_size

.global _const_loadstart, _const_runstart, _const_size

.global _econst_l|oadstart, _econst_runstart, _econst_size

.global _pinit_loadstart, _pinit_runstart, _pinit_size

.global _switch_loadstart, _switch_runstart, _switch_size

.global _text_loadstart, _text_runstart, _text_size

For more information regarding linker command files and the address and dimension operators, see the
TMS320C28x Assembly Language Tools User's Guide (GPRU5S1J).

Testing Example

The examples provided were tested with the TMS320F2812, TMS320F2808, and TMS320F28335 eZdsp
development boards. The led will blink on the example project boards for visual confirmation that the code
is working appropriately. The following procedures were used to program and test the project with the
F2808 eZdsp. The same procedure can be used for the other eZdsp development boards as well.

Code Composer Studio Environment

1. Connect the F2808 eZdsp to the PC using the on board USB connection and power the board with the
supplied power connector.

2. Start Code Composer Studio with the F2808 eZdsp emulation driver selected in the CCS setup utility.

3. Open and Build the Example_280xx_Flash_to RAM_nonBIOS.pjt by selecting Project — Open
followed by Project — Rebuild All.

4. Program the resulting .out file to the Flash by using the CCS On Chip Flash Programmer from the
Tools menu. If this is currently not installed, it can be downloaded from the Update Advisor.

5. Load Symbols to debug the program by selecting File - Load Symbols - Load Symbols Only.
6. Run Program by selecting Debug - Run.

The LED on the eZdsp should be flashing to indicate that the program is running.

Note: If breakpoints are required to halt the operation during code execution, they should not be
set until the copy_section routine has executed. If the breakpoints are set before, the
copy_section routine will copy code over the set breakpoint and execution will not halt.

6

Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs SPRAAU8-March 2008
ubmit Documentation Feedbac

http://www-s.ti.com/sc/techlit/SPRU513
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

www.ti.com Software

3.2.2

3.3

331

Standalone Operation
1. Follow the procedures given in to program the example to the eZdsp development board.
2. Close Code Composer Studio and disconnect the USB cable.

3. Configure SW1 for Boot to Flash mode. For more information, see the eZdsp™ F2808 USB Technical
Reference (fvww.spectrumdigital.con).

4. Remove power and reapply power to the eZdsp.

The LED on the eZdsp should be flashing to indicate that the program is running.

Application Integration

An existing Flash application can easily be migrated for this functionality with the associated code files.
The basic migration procedure is as follows:

1. Replace the existing CodeStartBranch.asm source file with the supplied
DSP28xxx_CodeStartBranch.asm.

2. Add the DSP28xxx_SectionCopy_nonBIOS.asm to the project.

3. Replace the current linker command file with the generation-specific supplied linker command file.

This basic migration procedure does not take into account application-specific situations such as
user-defined sections, other section allocations, etc.

Example Integration

To demonstrate the application integration process, the Example_2808_Flash.pjt from the C280x, C2801x
C/C++ Header Files and Peripheral Examples can be migrated using the following procedure.

1. Download and install the C280x, C2801x C/C++ Header Files and Peripheral Examples. For more
information, see C280x, C2801x C/C++ Header Files and Peripheral Examples Software Tools
(EPRCIO).

2. Connect the board and open the project as described in Steps 1-3 of Bection 3.2.1.

3. Remove the DSP280x_CodeStartBranch.asm file by right clicking on the file and selecting Remove
from Project. Replace it with the DSP28xxx_CodeStartBranch.asm by selecting Project — Add Files to
Project.

4. Add the DSP28xxx_SectionCopy_nonBIOS.asm to the project by selecting Project — Add Files to
Project.

5. Remove the F2808.cmd file by right clicking on the file and select Remove from Project. Replace it with
the F280xx_nonBIOS_flash.cmd by selecting Project - Add Files to Project.

6. Change .sect “ramfuncs” located in the DSP280x_usDelay.asm to .text to allocate the
DSP28x_usDelay routine to the .text section.

7. Remove the #pragma CODE_SECTION(InitFlash, “ramfuncs”); code from the DSP280x_SysCtrl.c file.
This will allocate the InitFlash(') function to the .text section instead of ramfuncs.

8. Remove the #pragma CODE_SECTION(epwm1_timer_isr, “ramfuncs”); and #pragma
CODE_SECTION(epwm2_timer_isr, “ramfuncs”); source lines from the Example_280xFlash.c. This will
allocate the two ISRs to the .text section instead of ramfuncs.

9. Remove the MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);, and
InitFlash(); source lines from the Example_280xFlash.c file. These are not required as the code will
already be copied to RAM.

10. Program and run the project as described in steps 4-6 of BSecfion 3.2.1].

The LED on the eZdsp should be flashing to indicate that the program is running. The standalone
operation can also be tested following the steps in Bection 3.2.2.

Note: This project contains a user-defined section named ramfuncs. This is not needed since it is
only used to copy code sections once in the main() function. The ramfuncs allocations are
located in the DSP280x_usDelay.asm, DSP280x_SysCitrl.c, and Example_280xFlash.c files.

SPRAAU8-March 2008 Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs 7
Eubmit Documentafion FeedbacH

www.spectrumdigital.com
http://www-s.ti.com/sc/techlit/SPRC191
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

Benchmarks, Limitations, and Suggestions www.ti.com

4

4.1

4.2

4.3

4.4

Benchmarks, Limitations, and Suggestions

Different applications have different requirements whether it be execution time, memory capacity, ease of
use, etc. The solution presented adds to some requirements but may not be able to meet other
requirements; therefore, memory usage, execution time, integration, etc., should all be considered when
implementing this functionality.

Memory Usage

The only section that adds to the memory usage is the copy_sections routine from the
DSP28xxx_SectionCopy_nonBIOS.asm file. As supplied, this file only adds 0x3C of allocated memory
within the internal Flash. The code_start and wd_disable functions will not add extra memory allocation as
these sections are used with all C2000 projects as shown in the C/C++ Header Files and Peripheral
Examples.

Benchmarks

Since this functionality is implemented directly after boot, the Flash wait states and phase-locked loop
(PLL) are not configured and, therefore, run at their default values. The Flash wait states are configured
for 15 cycles and SYSCLKOUT of OSCCLK/2 for the F280xx/F281x devices and OSCCLK/4 for F2833x
devices. Using the profiling feature of Code Composer Studio, the execution time can be measured.
shows the timing information for each F28xxx DSC by measuring the time elapsed from boot to
the first instruction within the main() function for the examples provided in the associated code files. As
shown, the execution time for each platform increases; this is due to an increase in code size and
decreasing SYSCLKOUT.

Table 3. Execution Time

OSCCLK (MHz) SYSCLKOUT (MHz) Cycles Execution Time (ms)
TMS320F2812 30 15 18,576 1.238
TMS320F2808 20 10 20,560 2.056
TMS320F28335 30 7.5 29,681 3.957

Limitations

The limiting factor for this implementation is the amount of internal RAM available on the TMS320F28xxx
DSCs. This limits what projects can implement this functionality. If the project is too large to fit in the RAM,
this functionality cannot be implemented.

Since the C2000 platform is geared towards motor control and digital power applications, Texas
Instruments provides numerous software packages for these types of applications (References 11,12,13).
For more information, see F280x Motor-Specific Software Solutions - APSF280x
(hitp:/ffocus.ti.com/docs/ioolsw/folders/print/apst2Z80x.himl), TMS320F281x Motor-Specific Software
Solutions (http://focus.ti.com/dsp/docs/dspplatformscontento.tsp?sectionld=2&familyld=1406&tabld=2027),
and the TMS320C2000™ Controller Digital Power Software Library
(http://focus.ti.com/dsp/docs/dspcontent.tsp?contentld=25264).

As supplied, these software packages run from the internal RAM. This demonstrates that these control
systems can be run from the internal RAM as the base project is small enough to be allocated to this
memory.

Suggestions

* In applications requiring this functionality, not all initialized compiler sections may need to be copied to
RAM or have enough RAM to copy all the sections. The application code itself may only need to be
copied. In this case, only the .text section would be copied to the RAM. For this, all of the copy
routines for the other sections can be removed from the DSP28xxx_SectionCopy_nonBIOS.asm file
and the linker command file can be changed to load and run the other sections from Flash. This will
save Flash space and cut down on the execution time required before main() is entered.

Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs SPRAAU8-March 2008
ubmit Documentation Feedbac

http://focus.ti.com/docs/toolsw/folders/print/apsf280x.html
http://focus.ti.com/dsp/docs/dspplatformscontento.tsp?sectionId=2&familyId=1406&tabId=2027
http://focus.ti.com/dsp/docs/dspcontent.tsp?contentId=25262
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

13 TEXAS
INSTRUMENTS

www.ti.com

Conclusion

5 Co

Determine that the application can handle the small lag in execution time to copy the sections. If the
application cannot handle this time, the procedure shown in Running an Application from Internal Flash
Memory on the TMS320F28xx DSP (GPRA959) should be used to copy just certain portions of the
code to RAM.

If using DSP/BIOS, the methodologies from Running an Application from Internal Flash Memory on the
TMS320F28xx DSP (EPRAJ59) for copying certain portions of code to RAM is suggested. A project
that uses DSP/BIOS is generally a larger application and this solution is not recommended.

nclusion

This application report has proven that the TMS320F28xxx DSCs can achieve zero wait state execution
by copying compiler sections from internal Flash memory to internal RAM at runtime before C entry. This
solution also shows that this is directly limited by code size and memory size. The associated code files
provide designers with a ready-made solution to implement this functionality within their design.

6 References

No ok~owNPRE

9.

10.
11.

12.

13.

Running an Application from Internal Flash Memory on the TMS320F28xx DSP (GPRA959)
TMS320C28x Assembly Language Tools User's Guide (EPRU513)

TMS320C28x Optimizing C/C++ Compiler User’s Guide (EPRU514)

C281x C/C++ Header Files and Peripheral Examples (EPRC097)

C280x, C2801x C/C++ Header Files and Peripheral Examples Software Tools (EPRCI97)
C2833x/C2823x C/C++ Header Files and Peripheral Examples Application Software (SPRC530)
TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812
Digital Signal Processors Data Manual (EPRSI740)

TMS320F2809, F2808, F2806, F2802, F2801, C2802, C2801, and F2801x DSPs Data Manual
(EPRSZ30)

TMS320F28335, TMS320F28334, TMS320F28332 TMS320F28235, TMS320F28234, TMS320F28232
Digital Signal Controllers (DSCs) Data Manual (EPRS439)

eZdsp™ F2808 USB Technical Reference (www.spectrumdigital.com)

F280x Motor-Specific Software Solutions - APSF280X
(http://Tocus.ti.com/docs/toolsw/tolders/print/apsr280x.html)

TMS320F281x Motor-Specific Software Solutions
(nttp://ifocus.ti.com/dsp/docs/dspplatiormscontento.tsp?sectionld=2&tamilyld=1406&tabld=202 /)

TMS320C2000™ Controller Digital Power Software Library
(http://tocus.ti.com/dsp/docs/dspcontent.tsp?contentld=25262)

SPRAAU8-March 2008 Copying Compiler Sections From Flash to RAM on the TMS320F28xxx DSCs 9
Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRA958
http://www-s.ti.com/sc/techlit/SPRU513
http://www-s.ti.com/sc/techlit/SPRU514
http://www-s.ti.com/sc/techlit/SPRC097
http://www-s.ti.com/sc/techlit/SPRC191
http://www-s.ti.com/sc/techlit/SPRC530
http://www-s.ti.com/sc/techlit/SPRS174O
http://www-s.ti.com/sc/techlit/SPRS230
http://www-s.ti.com/sc/techlit/SPRS439
www.spectrumdigital.com
http://focus.ti.com/docs/toolsw/folders/print/apsf280x.html
http://focus.ti.com/dsp/docs/dspplatformscontento.tsp?sectionId=2&familyId=1406&tabId=2027
http://focus.ti.com/dsp/docs/dspcontent.tsp?contentId=25262
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU8

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers Emplifier-i.com Audio [pww Ti.com/audid

Data Converters Fataconverterir.com Automotive [vww Tr.com/automofiv

DSP Esp-ii.con Broadband [pww i.com/broadband

Clocks and Timers [www i-com/clocky Digital Control [pww ir-com/digitalcontrol

Interface [nierface-fi.com Medical [pww Ti.com/medical

Logic [ogicircon Military [vww i-com/militany

Power Mgmt power-i.com Optical Networking [xww Ti.com/opficalnetwor

Microcontrollers [nicrocontroller-t.com Security [nww r-com/secur

RFID ‘ i .CO Telephony lvww.tr.com/telephony

RF/IF and ZigBee® Solutions [WWw.ir.com/Ipr Video & Imaging vww Tr.com/vided
Wireless [vww T.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Compiler Sections
	3 Software
	3.1 Description
	3.1.1 Code_start and wd_disable
	3.1.2 Copy_sections
	3.1.3 Memory Allocation – Linker Command Files

	3.2 Testing Example
	3.2.1 Code Composer Studio Environment
	3.2.2 Standalone Operation

	3.3 Application Integration
	3.3.1 Example Integration

	4 Benchmarks, Limitations, and Suggestions
	4.1 Memory Usage
	4.2 Benchmarks
	4.3 Limitations
	4.4 Suggestions

	5 Conclusion
	6 References

