TPD1S514













# TPD1S514 USB CHARGER Over Voltage, Surge and ESD Protection FOR V<sub>BUS</sub> PIN

#### **Features**

- Input DC Voltage Protection at VBUS\_CON up to 30V
- Low RON nFET Switch Supports Host and Charging Mode
- Withstands up to 100V Open Circuit Surge Voltage (per IEC61000-4-5)
- Internal 20 ms startup delay
- Internal 3.4 ms soft-start delay
- USB Inrush current compliant
- ESD Performance VBUS CON
  - o ±15 kV Contact Discharge (IEC 61000-4-2)
  - ±15 kV Air Gap Discharge (IEC 61000-4-2)
- Integrated Input Enable
- Precision OVP from 5.9V to 6V
- Thermal shutdown feature
- WCSP Package

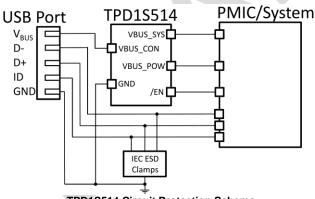
#### 2 **Applications**

- Cell Phones
- **Tablets**
- eBooks
- Portable Media Players
- **5V Power Rails**

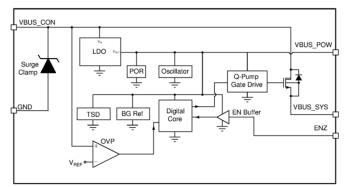
#### 3 **Description**

The TPD1S514 is a single-chip solution for USB connector's VBUS line protection. The bi-directional nFET switch ensures safe current flow in both charging and host mode while protecting the internal system circuits from any over-voltage conditions at the V<sub>BUS CON</sub> pin. On the V<sub>BUS CON</sub> pin, this device can handle over-voltage protection up to 30V. After the /EN pin toggles low, the TPD1S514 waits 20 ms before turning ON the nFET through a soft start

Support &


Community

SLVSCF6 - February 14, 2014


#### **Device Information**

| ORDER NUMBER | PACKAGE (PIN) | BODY SIZE           |  |  |
|--------------|---------------|---------------------|--|--|
| TPD1S514YZ   | WCSP-YZ (12)  | 1.288 mm x 1.988 mm |  |  |

# **Simplified Schematics**



**TPD1S514 Circuit Protection Scheme** 



**TPD1S514 Block Diagram** 











## **Table of Contents**

| 1<br>1<br>1 |   |
|-------------|---|
| 1           |   |
| 1           |   |
|             |   |
|             |   |
| 2           |   |
|             |   |
| 3           |   |
|             |   |
|             |   |
| 2           | 1 |
|             |   |
|             |   |
|             |   |
| <u>∠</u>    |   |
|             |   |

|   | 7.5 | .4 Thermal           | Shutdown Feature               | 5  |
|---|-----|----------------------|--------------------------------|----|
|   | 7.5 | .5 Electrica         | al Characteristics nFET Switch | ı5 |
|   | 7.5 | .6 Electrica         | al Characteristics VBUS_Power  | er |
|   | Cii | cuit                 |                                | 5  |
|   | 7.6 | Timing Charac        | cteristics                     | 5  |
| 8 |     |                      | tion                           |    |
|   | 8.1 | Overview             |                                | 6  |
|   | 8.2 | Functional Blo       | ock Diagram                    | 6  |
|   |     |                      | TION                           |    |
|   |     |                      | RAMS                           |    |
| ç |     |                      | ntation Support                |    |
|   | 9.1 |                      |                                |    |
|   | 9.2 | <b>Export Contro</b> | l Notice                       | 9  |
|   | 9.3 |                      |                                |    |
|   |     |                      |                                |    |

#### 5 **Revision History**

## ORDERING INFORMATION(1)

| T <sub>A</sub> | PACKAGE <sup>(2)</sup>   |               | ORDERABLE PART NUMBER | TOP-SIDE MARKING |  |  |  |  |
|----------------|--------------------------|---------------|-----------------------|------------------|--|--|--|--|
| –40°C to 85°C  | WCSP - YZ (0.4 mm pitch) | Tape and reel | TPD1S514YZR           | TBD              |  |  |  |  |

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- Package drawings, thermal data, and symbolization are available at <a href="www.ti.com/packaging">www.ti.com/packaging</a>. (2)

#### **Terminal Configuration and Functions** 6

# GND /EN GND V<sub>BUS\_SYS</sub> V<sub>BUS\_CON</sub> GND GND

12 Pin YZ Package 1.288 mm x 1.988 mm (Top View)

# **Terminal Functions**

| Terminal               |                   | Typo | Description                                                                                                              |
|------------------------|-------------------|------|--------------------------------------------------------------------------------------------------------------------------|
| Name                   | No.               | Туре | Description                                                                                                              |
| /EN                    | A1                | ı    | Enable Active-Low Input. Drive /EN low to enable the switch. Drive /EN high to disable the switch.                       |
| V <sub>BUS_POWER</sub> | B1                | 0    | 5V Power source controlled by V <sub>BUS_CON</sub>                                                                       |
| $V_{BUS\_SYS}$         | A2, A3, B2        | 0    | Connect to internal V <sub>BUS</sub> plane                                                                               |
| V <sub>BUS_CON</sub>   | B3, C2, C3        | Ю    | Connect to USB<br>connector V <sub>BUS CON</sub> ;<br>IEC61000-4-2 ESD<br>protection<br>IEC61000-4-5 Surge<br>protection |
| GND                    | A4, B4,<br>C1, C4 | G    | Connect to PCB ground plane                                                                                              |



# **Specifications**

#### Absolute Maximum Ratings (1) 7.1

Over operating free-air temperature range (unless otherwise noted)

|                      |                                                                   |                            | MIN  | MAX | UNIT |
|----------------------|-------------------------------------------------------------------|----------------------------|------|-----|------|
| V <sub>BUS_CON</sub> | Supply voltage from USB connector                                 |                            | -0.5 | 30  | V    |
| $V_{BUS\_SYS}$       | Internal Supply DC voltage Rail on the PC                         | CB                         | -0.5 | 20  | V    |
| IBUS                 | Continuous input current on V <sub>BUS_CON</sub> pin <sup>(</sup> | (2)                        |      | 3.5 | Α    |
| IOUT                 | Continuous output current on V <sub>BUS_CON</sub> pin             | n <sup>(2)</sup>           |      | 3.5 | Α    |
| I <sub>PEAK</sub>    | Peak Input and Output Current on V <sub>BUS_C</sub>               |                            |      | 8   | Α    |
| I <sub>DIODE</sub>   | Continuous forward current through the F                          | ET body diode              | 4    | 1   | Α    |
| $V_{POWER}$          | Continuous Voltage at V <sub>BUS_POWER</sub>                      |                            |      | 5.9 | V    |
| V <sub>EN</sub>      | Voltage on Input pin (/EN)                                        |                            |      | 7   | V    |
| T <sub>STG</sub>     | Storage temperature range                                         |                            | -65  | 150 | °C   |
| T <sub>A</sub>       | Operating Free Air Temperature                                    |                            | -40  | 85  | °C   |
| IEC 61000-4          | 1-2 Contact Discharge                                             | V <sub>BUS_CON</sub> pin   |      | ±15 | kV   |
| IEC 61000-4          | 1-2 Air-gap Discharge                                             | V <sub>BUS_CON</sub> pin   |      | ±15 | kV   |
| IEC 61000-4          | 4-5 Peak Pulse Current (t <sub>p</sub> = 8/20µs)                  | V <sub>BUS_CON</sub> pin   |      | TBD | Α    |
| IEC 61000-4          | 4-5 Peak Pulse Power (t <sub>p</sub> = 8/20μs)                    | V <sub>BUS_CON</sub> pin   |      | TBD | W    |
| IEC 61000-4          | 4-5 Open circuit voltage (t <sub>p</sub> = 1.2/50 μs)             | V <sub>BUS_CON</sub> pin   |      | 100 | V    |
| C <sub>LOAD</sub>    | Output load capacitance                                           | V <sub>BUS_SYS</sub> pin   | 0.1  | 100 | μF   |
| C <sub>CON</sub>     | Input capacitance                                                 | V <sub>BUS_CON</sub> pin   | 0.1  | 50  | μF   |
| $C_POW$              | V <sub>BUS_POWER</sub> Capacitance                                | V <sub>BUS_POWER</sub> pin | 0.1  | 4.7 | μF   |

<sup>(1)</sup> Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Thermal limits and power dissipation limits must be observed.

#### **Handling Ratings** 7.2

| PARAMETER           | DEFINITION | MIN | MAX | UNIT |
|---------------------|------------|-----|-----|------|
| Storage temperature |            | -65 | 150 | Cº   |

#### 7.3 **Recommended Operating Conditions**

Over operating free-air temperature range (unless otherwise noted)

|                      |                                       |                            | MIN | TYP | MAX | UNIT |
|----------------------|---------------------------------------|----------------------------|-----|-----|-----|------|
| V <sub>BUS_CON</sub> | Supply voltage from USB connect       | or                         |     |     | 5.9 | V    |
| V <sub>BUS_SYS</sub> | Internal Supply DC voltage Rail or    | n the PCB                  |     |     | 5.9 | V    |
| C <sub>LOAD</sub>    | Output load capacitance               | V <sub>BUS_SYS</sub> pin   |     | 2.2 |     | μF   |
| C <sub>CON</sub>     | Input capacitance                     | V <sub>BUS_CON</sub> pin   |     | 1   |     | μF   |
| C <sub>POWER</sub>   | Capacitance on V <sub>BUS_POWER</sub> | V <sub>BUS_POWER</sub> pin |     | 1   |     | μF   |
| T <sub>A</sub>       | Operating free-air temperature        |                            | -40 |     | 85  | °C   |



## 7.4 Thermal Information

|                         | TUEDUM METDIO(1)                             | YZ      |      |
|-------------------------|----------------------------------------------|---------|------|
|                         | THERMAL METRIC <sup>(1)</sup>                | 12 PINS | UNIT |
| $\theta_{JA}$           | Junction-to-ambient thermal resistance       | 89      |      |
| $\theta_{\text{JCtop}}$ | Junction-to-case (top) thermal resistance    | 0.6     |      |
| $\theta_{JB}$           | Junction-to-board thermal resistance         | 16.3    | °C/W |
| ΨЈТ                     | Junction-to-top characterization parameter   | 2.7     | C/VV |
| ΨЈВ                     | Junction-to-board characterization parameter | 16.2    |      |
| $\theta_{JCbot}$        | Junction-to-case (bottom) thermal resistance | n/A     |      |

#### 7.5 Electrical Characteristics

## 7.5.1 Supply Current Consumption

Over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                          | SYMBOL                 | TEST CONDITIONS                                                                                    | ТҮР | MAX | UNIT |
|----------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|-----|-----|------|
| V <sub>BUS_CON</sub> Operating Current Consumption | IVBUS_SLEEP            | Measured at $V_{BUS\_CON}$ pin, $V_{BUS\_CON} = 5V$ , $/EN = 5V$                                   | 150 | 245 | μA   |
| V <sub>BUS_CON</sub> Operating Current Consumption | Ivbus                  | Measured at V <sub>BUS_CON</sub> pin, V <sub>BUS_CON</sub> = 5V,<br>/EN =0V and no load            | 228 | 354 | μΑ   |
| V <sub>BUS_SYS</sub> Operating Current Consumption | Ivbus_sys              | Measured at $V_{BUS\_SYS}$ pin, $V_{BUS\_SYS} = 5V$ ,<br>/EN =0V and $V_{BUS\_CON}$ =Hi Z          | 210 | 373 | μΑ   |
| Host Mode Leakage current                          | I <sub>HOST_LEAK</sub> | Measured at V <sub>BUS_SYS</sub> . V <sub>BUS_CON</sub> =Hi Z,<br>/EN=5V, V <sub>BUS_SYS</sub> =5V | 90  | 218 | μΑ   |

#### 7.5.2 Electrical Characteristics /EN Pin

T<sub>A</sub> = 25°C (unless otherwise noted)

| PARAMETER                |     | SYMBOL          | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|--------------------------|-----|-----------------|-----------------|-----|-----|-----|------|
| High-level input voltage | /EN | V <sub>IH</sub> |                 | 1.2 |     | 6   | V    |
| Low-level input voltage  | /EN | V <sub>IL</sub> |                 | 0   |     | 8.0 | V    |
| Input Leakage Current    | /EN | l <sub>IL</sub> | $V_1 = 3.3V$    |     |     | 1   | μΑ   |

#### 7.5.3 Electrical Characteristics OVP Circuit

T<sub>A</sub> = 25°C (unless otherwise noted)

| PARAMETER                                  | ?                    | SYMBOL                        | TEST CONDITIONS                                                               | MIN | ТҮР  | МАХ  | UNIT |
|--------------------------------------------|----------------------|-------------------------------|-------------------------------------------------------------------------------|-----|------|------|------|
| Input voltage<br>Protection Threshold      | V <sub>BUS_CON</sub> | V <sub>OVP_RISING</sub>       | T <sub>A</sub> =25C                                                           | 5.9 | 5.95 | 5.99 | V    |
| Hysteresis on OVP                          | V <sub>BUS_CON</sub> | $V_{HYS\_OVP}$                | V <sub>BUS_CON</sub> decreasing from 20V                                      |     | 100  |      | mV   |
| Input under voltage lockout                | V <sub>BUS_CON</sub> | V <sub>UVLO</sub>             | V <sub>BUS_CON</sub> voltage rising from 0V to 5V                             | 2.7 | 3.1  | 3.5  | V    |
| Hysteresis on UVLO                         | V <sub>BUS_CON</sub> | V <sub>HYS_UVLO</sub>         | Difference between rising and falling UVLO thresholds                         |     | 80   |      | mV   |
| Input under voltage lockout                | V <sub>BUS_CON</sub> | V <sub>UVLO_FALLING</sub>     | V <sub>BUS_CON</sub> voltage falling from 5V to 0V                            | 2.6 | 3.0  | 3.4  | V    |
| V <sub>BUS_SYS</sub> under voltage lockout | $V_{BUS\_SYS}$       | $V_{\text{UVLO\_SYS}}$        | V <sub>BUS_SYS</sub> voltage rising from 0V to 5V                             | 2.8 | 3.7  | 4.3  | V    |
| V <sub>BUS_SYS</sub> UVLO<br>Hysteresis    | V <sub>BUS_SYS</sub> | V <sub>HYS_UVLO_SYS</sub>     | Difference between rising and falling UVLO thresholds on V <sub>BUS_SYS</sub> |     | 730  |      | mV   |
| V <sub>BUS_SYS</sub> under voltage lockout | $V_{BUS\_SYS}$       | V <sub>UVLO_SYS_FALLING</sub> | V <sub>BUS_SYS</sub> voltage falling from 7V to 5V                            | 2.6 | 3.0  | 3.4  | V    |



# 7.5.4 Thermal Shutdown Feature

| PARAMETER                   | SYMBOL            | TEST CONDITIONS      | TYP MAX | UNIT |
|-----------------------------|-------------------|----------------------|---------|------|
| Thermal Shutdown            | T <sub>SHDN</sub> | Junction temperature | 145     | Ĵ    |
| Thermal-Shutdown Hysteresis |                   | Junction temperature | 25      | ů    |

#### 7.5.5 Electrical Characteristics nFET Switch

Over operating free-air temperature range (unless otherwise noted)

| PARAMETER            | SYMBOL             | TEST CONDITIONS                                                      | MIN | TYP | MAX | UNIT |
|----------------------|--------------------|----------------------------------------------------------------------|-----|-----|-----|------|
| Switch ON Resistance | R <sub>DS_ON</sub> | $V_{BUS\_CON} = 5 \text{ V}, I_{OUT} = 1A, T_A = 25^{\circ}\text{C}$ |     | 39  | 50  | mΩ   |

#### 7.5.6 Electrical Characteristics VBUS\_Power Circuit

Over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                                        | SYMBOL                     | TEST CONDITIONS                                                                            | MIN | TYP  | MAX | UNIT |
|------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|-----|------|-----|------|
| Output Voltage on V <sub>BUS_POWER</sub> during OVP              | $V_{CLAMP}$                | V <sub>BUS_CON</sub> > OVP                                                                 |     | 5.0  | 5.5 | V    |
| Output Voltage on V <sub>BUS_POWER</sub> during normal operation | $V_{\text{BUS\_POWER}}$    | $V_{BUS\_CON} = 5 - 15 \text{ V}, I_{BUS\_POWER} = 1 \text{ mA}; T_A = 25^{\circ}\text{C}$ | 4.7 | 4.95 |     | V    |
| Output Current on V <sub>BUS_POWER</sub>                         | I <sub>BUS_POWER_MAX</sub> | $V_{BUS\_CON} = 5 - 15 \text{ V}$                                                          |     |      | 3   | mA   |

#### **Timing Characteristics** 7.6

Over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                 | SYMBOL                    | TEST CONDITIONS                                                                                                                    | MIN | TYP | MAX | UNIT |  |
|-------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|--|
| USB Charging Turn-ON Delay                | t <sub>DELAY</sub>        | Measured from /EN asserted LOW to nFET begins to Turn ON, excludes soft-start time                                                 |     | 20  |     | ms   |  |
| USB Charging rise time (Soft Start Delay) | t <sub>SS</sub>           | Measure $V_{BUS\_SYS}$ rise time from 10% - 90% with 1 M $\Omega$ load/ No $C_{LOAD}$                                              |     | 3.4 |     | ms   |  |
| USB Charging Turn-OFF time                | t <sub>OFF_DELAY</sub>    | Measured from /EN asserted High to $V_{BUS\_SYS}$ falling to 10% with $R_{LOAD}$ = 10 $\Omega$ and No $C_{LOAD}$ on $V_{BUS\_SYS}$ |     | 5.5 |     | μs   |  |
| OVER VOLTAGE PROTECTION                   |                           |                                                                                                                                    |     |     |     |      |  |
| OVP Response time                         | t <sub>OVP_response</sub> | Measured from OVP Condition to FET Turn OFF                                                                                        |     |     | 100 | ns   |  |
| Recovery Time                             | t <sub>OVP_Recov</sub>    | Measured from OVP Clear to FET Turn ON (1)(3)                                                                                      |     | 20  |     | ms   |  |

<sup>(1)</sup> Shown in TIMING DIAGRAM Plots

<sup>(2)</sup> Guaranteed by design, not production tested
(3) When measured against 8/20 µs surge per IEC61000-4-5



## 8 Detailed Description

#### 8.1 Overview

The TPD1S514 provides a single-chip ESD protection, surge protection and over voltage protection solution for portable USB charging and Host interfaces. It offers over voltage protection at the  $V_{BUS\_CON}$  pin up to 30V. The TPD1S514 also provides a VBUS\_POWER pin that indicates to the system if a fault condition has occurred. The TPD1S514 offers ESD clamp and a Surge Clamp for  $V_{BUS\_CON}$  pin, thus eliminating the need for external TVS clamp circuits in the application.

The TPD1S514 has an internal oscillator and charge pump that controls the turn-on of the internal nFET switch. The internal oscillator controls the timers that enable the charge pump. If  $V_{BUS\_CON}$  is less than  $V_{OVP}$ , the internal charge pump is enabled. After a 20 ms internal delay, the charge-pump starts-up, turns on the internal nFET switch through a soft start If at any time  $V_{BUS\_CON}$  rises above  $V_{OVP}$ , the nFET switch is turned OFF.

#### 8.2 Functional Block Diagram

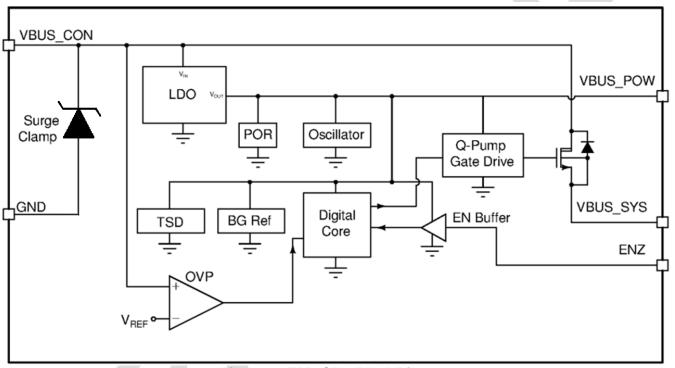
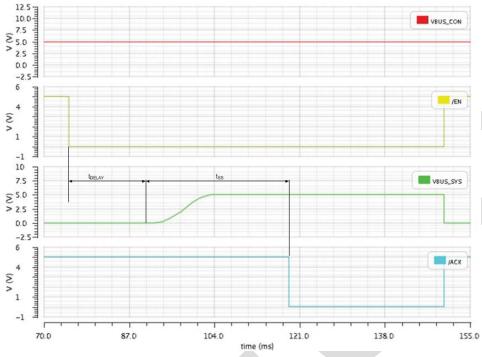
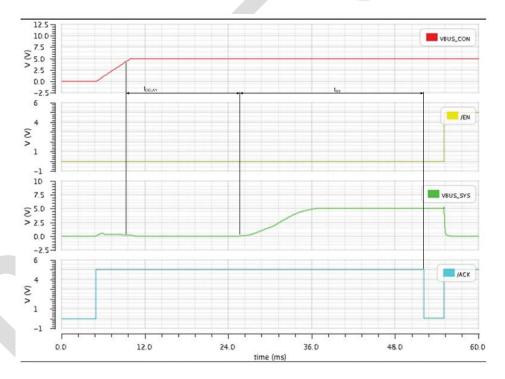



Figure 10. TPD1S514 Block Diagram

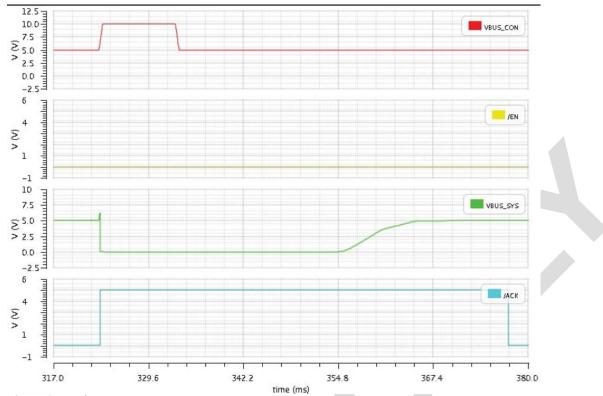

#### 8.3 OVP OPERATION

When the  $V_{BUS\_CON}$  voltage rises above VovP, the internal nFET switch is turned OFF, removing power from the system. The response is very rapid, with the FET switch turning off in less than 100 ns. The nFET is turned OFF. This pin can be pulled up through external resistors to indicate a OVP condition. When the  $V_{BUS\_CON}$  voltage returns below  $VovP - V_{HYS-OVP}$ , the nFET switch is turned on again after the internal delay of  $t_{OVP\_Recov}$ . This delay time ensures that the  $V_{BUS\_CON}$  supply has stabilized before turning the switch back on. After  $t_{OVP\_Recov}$ , the TPD1S514 turns ON the nFET through a soft start to ensure that the USB Inrush current compliance is met. When the OVP condition is cleared and the nFET is completely turned ON.

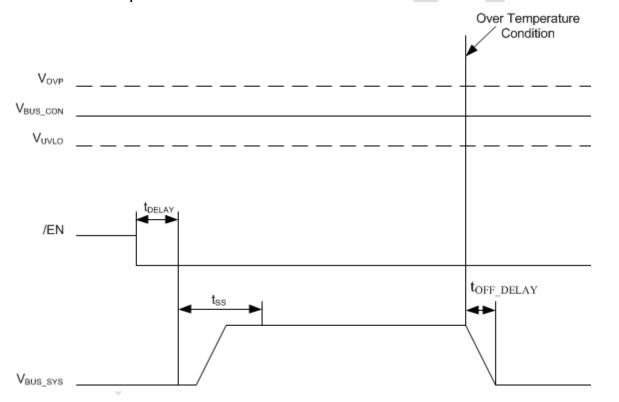



## 8.4 TIMING DIAGRAMS

## **Enabling the Load Switch**




## Connecting $V_{\text{BUS\_CON}}$




**OVP Operation** 





## **Thermal Shutdown Operation**





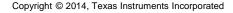
## 9 Device Documentation Support

#### 9.1 ESDS



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


#### 9.2 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

## 9.3 Glossary

SLYZ022 - TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

