
fminsearch  

Minimize a function of several variables  

 

Syntax 

x = fminsearch(fun,x0) 

x = fminsearch(fun,x0,options) 

[x,fval] = fminsearch(...) 

[x,fval,exitflag] = fminsearch(...) 

[x,fval,exitflag,output] = fminsearch(...) 

Description  

fminsearch finds the minimum of a scalar function of several variables, starting at an initial 
estimate. This is generally referred to as unconstrained nonlinear optimization.  

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of the function 
described in fun. x0 can be a scalar, vector, or matrix. fun is a function handle. See Function 
Handles in the MATLAB Programming documentation for more information. 

Parameterizing Functions Called by Function Functions, in the MATLAB mathematics 
documentation, explains how to provide additional parameters to the function fun, if necessary.  

 

x = fminsearch(fun,x0,options) minimizes with the optimization parameters specified in the 
structure options. You can define these parameters using the optimset function. fminsearch 
uses these options structure fields:  

DisplayLevel of display. 'off' displays no output; 'iter' displays output at each iteration; 'final' 
displays just the final output; 'notify' (default) displays output only if the function does not 
converge.FunValCheckCheck whether objective function values are valid. 'on' displays a 
warning when the objective function returns a value that is complex, Inf or NaN. 'off' (the default) 
displays no warning.MaxFunEvalsMaximum number of function evaluations 
allowedMaxIterMaximum number of iterations allowedOutputFcnSpecify a user-defined function 
that the optimization function calls at each iteration.TolFunTermination tolerance on the function 
valueTolXTermination tolerance on x 

 

[x,fval] = fminsearch(...) returns in fval the value of the objective function fun at the solution x.  

 



[x,fval,exitflag] = fminsearch(...) returns a value exitflag that describes the exit condition of 
fminsearch:  

1fminsearch converged to a solution x.0Maximum number of function evaluations or iterations 
was reached.-1Algorithm was terminated by the output function. 

[x,fval,exitflag,output] = fminsearch(...) returns a structure output that contains information about 
the optimization:  

output.algorithmAlgorithm usedoutput.funcCountNumber of function 
evaluationsoutput.iterationsNumber of iterationsoutput.messageExit message 

Arguments 

fun is the function to be minimized. It accepts an input x and returns a scalar f, the objective 
function evaluated at x. The function fun can be specified as a function handle for an M-file 
function  

x = fminsearch(@myfun, x0) 

where myfun is an M-file function such as  

function f = myfun(x) 

f = ...            % Compute function value at x 

or as a function handle for an anonymous function, such as  

x = fminsearch(@(x)sin(x^2), x0); 

Other arguments are described in the syntax descriptions above. 

Examples 

Example 1. A classic test example for multidimensional minimization is the Rosenbrock banana 
function   

The minimum is at (1,1) and has the value 0. The traditional starting point is (-1.2,1). The 
anonymous function shown here defines the function and returns a function handle called 
banana:  

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2; 

Pass the function handle to fminsearch:  

[x,fval] = fminsearch(banana,[-1.2, 1]) 

This produces  

x = 



    1.0000    1.0000 

fval = 

    8.1777e-010 

This indicates that the minimizer was found to at least four decimal places with a value near 
zero.  

Example 2. If fun is parameterized, you can use anonymous functions to capture the problem-
dependent parameters. For example, suppose you want to minimize the objective function 
myfun defined by the following M-file function.  

function f = myfun(x,a) 

f = x(1)^2 + a*x(2)^2; 

Note that myfun has an extra parameter a, so you cannot pass it directly to fminsearch. To 
optimize for a specific value of a, such as a = 1.5. Assign the value to a.  

a = 1.5; % define parameter first 

Call fminsearch with a one-argument anonymous function that captures that value of a and calls 
myfun with two arguments:  

x = fminsearch(@(x) myfun(x,a),0,1) 

Example 3. You can modify the first example by adding a parameter a to the second term of the 
banana function:   

This changes the location of the minimum to the point [a,a^2]. To minimize this function for a 
specific value of a, for example a = sqrt(2), create a one-argument anonymous function that 
captures the value of a.  

a = sqrt(2); 

banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2; 

 

 

 

Then the statement  

[x,fval] = fminsearch(banana, [-1.2, 1], ... 

   optimset('TolX',1e-8)); 

seeks the minimum [sqrt(2), 2] to an accuracy higher than the default on x. 



Algorithm 

fminsearch uses the simplex search method of [1]. This is a direct search method that does not 
use numerical or analytic gradients.  

If n is the length of x, a simplex in n-dimensional space is characterized by the n+1 distinct 
vectors that are its vertices. In two-space, a simplex is a triangle; in three-space, it is a pyramid. 
At each step of the search, a new point in or near the current simplex is generated. The function 
value at the new point is compared with the function's values at the vertices of the simplex and, 
usually, one of the vertices is replaced by the new point, giving a new simplex. This step is 
repeated until the diameter of the simplex is less than the specified tolerance. 

Limitations 

fminsearch can often handle discontinuity, particularly if it does not occur near the solution. 
fminsearch may only give local solutions.  

 

fminsearch only minimizes over the real numbers, that is,  must only consist of real numbers 
and  must only return real numbers. When  has complex variables, they must be split into real 
and imaginary parts.  

 

See Also 

fminbnd, optimset, function_handle (@), anonymous functions  

References 

[1]  Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of the 
Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal of Optimization, Vol. 9 
Number 1, pp. 112-147, 1998. 


