
TI Training Material

1

• SPLOOP Buffer

• Compact instructions

• C64x/C64x+ specifics

C64x+ Code savings

TI Training Material

2

SPLOOP - Overview

How It Works:
1) Loop pipeline copied to buffer in CPU core
2) SPLOOP Instruction provided with loop count and variables
3) Loop pipeline is executed out of SPLOOP buffer

Fewer Accesses to Memory
- Saves Power
- Improves Performance

Reduces Code Size
- Up to 30% for loop based kernels
- More memory available for data

SPLOOP is fully Interruptible
- Improves performance
- also valid for multiple-assignment

S
-I

I
S

-I
I

S
- I

I
S

-I
I

S
-I

I
S

-
II

KERNEL

LOOP:

B LOOP

B LOOP

TI Training Material

3

SPLOOP – Terminology

A stage boundary is reached every ii cycles. The following terminology is used
to describe specific stage boundaries.

First loading stage boundary: The first stage boundary after the
SPLOOP(D/W) instruction.

Last loading stage boundary: The first stage boundary that occurs in
parallel with or after the SPKERNEL instruction.

First kernel stage boundary: The same as the last loading stage boundary.

Last kernel stage boundary: The last stage boundary before the loop is
only executing epilog instructions.

TI Training Material

4

SPLOOP – Basic Example
C-Code Copy Loop

SPLOOP implementation of
Copy Loop

SPLOOP instruction flow of example

• Instructions loaded into loop buffer after
SPLOOP command is encountered

• SPKERNEL indicates that the loop is
finished loading

• Loop pipeline is executed out of SPLOOP
buffer

TI Training Material

5

SPLOOP – Example Vector Sum
C64x
_vecsum_c64:

MVKL .S2 cData, B_cData ; output pointer
MVKL .S2 bData, B_bData ;bData pointer
MVKH .S2 cData, B_cData ;

|| MVKL .S1 aData, A_aData ;aData pointer

B .S2 loop_vs ;prolog start
|| MVK .S1 nData, A_count ;LOOP counter

SHRU .S1 A_count, 3, A_count ;set up loop count
|| MVK .L2 1, B_pr ;prolog count enable
|| MVKH .S2 bData, B_bData

ADD .D1X B_cData, 8, A_cData ;create off pointer
|| SUB .L1 A_count, 1, A_count ;initialize loop
count
|| SHL .S2 B_pr, 30, B_pr ;set up prolog
counter
|| MVKH .S1 aData, A_aData
****************************** PIPE LOOP KERNEL

loop_vs:
BDEC .S1 loop_vs, A_count ;branch

|| LDDW .D2T2 *B_bData++, B_d32:B_d10 ;load b i+0-3
|| LDDW .D1T1 *A_aData++, A_d32:A_d10 ;load a i+0-3
|| ADD2 .S2X A_d54, B_d54, B_s54 ;sum i+5, sum i+4
|| ADD2 .L1X A_d10, B_d10, A_s10 ;sum i+1, sum i+0

LDDW .D2T2 *B_bData++, B_d76:B_d54 ;load b i+4-7
|| LDDW .D1T1 *A_aData++, A_d76:A_d54 ;load a i+4-7
|| ADD2 .L2X B_d76, A_d76, B_s76 ;sum i+6, sum i+7

ADD2 .L1X A_d32, B_d32, A_s32 ;sum i+2, sum i+3
|| ADD .S2 B_pr, B_pr, B_pr ;1st stage pro
||[!B_pr]STDW .D1T2 B_s76:B_s54,*A_cData++[2] ;store sums i+4-7
||[!B_pr]STDW .D2T1 A_s32:A_s10,*B_cData++[2] ;store sums i+0-3

• C64x+

MVK .S2 nData/8-2, B_count ;LOOP counter

SPLOOPD 3
|| MVC .S2 B_count, ILC
|| ADDAB .D1 DP, aData, A_aData
|| ADDAB .D2 DP, bData, B_bData

LDDW .D2T2 *B_bData++, B_d32:B_d10 ;load b i+0-3
|| LDDW .D1T1 *A_aData++, A_d32:A_d10 ;load a i+0-3

LDDW .D2T2 *B_bData++, B_d76:B_d54 ;load b i+4-7
|| LDDW .D1T1 *A_aData++, A_d76:A_d54 ;load a i+4-7

SPMASK
||^ ADDAB .D2 DP, cData, B_cData
||^ ADDAB .D1 DP, cData+8, A_cData

NOP 2

ADD2 .L1X A_d32, B_d32, A_s32 ;sum i+2, sum i+3

ADD2 .S2X A_d54, B_d54, B_s54 ;sum i+5, sum i+4
|| ADD2 .L1X A_d10, B_d10, A_s10 ;sum i+1,sum i+0

ADD2 .L2X B_d76, A_d76, B_s76 ;sum i+6, sum i+7

SPKERNEL 2, 0
|| STDW .D1T2 B_s76:B_s54,*A_cData++[2] ;store sums i+4-7
|| STDW .D2T1 A_s32:A_s10, *B_cData++[2] ;store sums i+0-3

• 24% fewer instructions
– Elimination of instructions priming the loop that get re-embedded in kernel

• Code is sequential for one iteration of loop
• The loop kernel is automatically piped up with all instructions

that have been executed since the SPLOOP instruction

Stage boundary

TI Training Material

6

SPLOOP - Architecture
SPLOOP Hardware Support
The basic hardware support for the SPLOOP operation is:
• Loop buffer
• Loop buffer count register (LBC)
• Inner loop count register (ILC)
• Reload inner loop count register (RILC)
• Task state register (TSR)
• Interrupt task state register (ITSR)

TI Training Material

7

Instructions

SPLOOP, SPLOOPD and SPLOOPW – invoke the loop buffer mechanism
• each clear the loop buffer count register (LBC), load the iteration interval (ii)
and start the LBC counting.
• must be the first instruction of the execute packet

SPKERNEL and SPKERNELR – mark the end of the software pipelined loop

SPMASK and SPMASKR – prevent instruction from being loaded into the loop buffer
or block execution of instructions already in the loop buffer

NOTE: SP instructions don’t consume execution units.

TI Training Material

8

SPLOOP – Piping the loop buffer

S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2

3
ex

ec
ut

e
pa

ck
et

s

KERNEL table

SPLOOP 3

instr.D1
|| instr.S1 cycle 1

instr.D1
|| instr.L2
|| instr.M1 cycle 2

instr.S2
|| instr.M2 cycle 3

instr.S2
|| instr.M1
|| instr.M2 cycle 4

instr.S1
|| instr.L1
|| instr.M2
|| instr.D2 cycl e 5

instr.L1
|| instr.M1
|| instr.D1 cycl e 6
|| SPKERNEL

“SPLOOP body length” of 6
“Instructions of each stage populate
KERNEL table with different color”

Execute
Execute
Execute

Pipe up loop buffer (prolog)Execute kernelDrain loop buffer (epilog)Finished!

ILC = LBC = 015 24321 3/00

TI Training Material

9

SPLOOPD – Differences

Differences SPLOOP vs. SPLOOPD:
• Initial termination condition test is always false;
• ILC decrement is disabled for the first 3 cycles
• The loop must execute at least 1 iteration.
• Stage boundary termination condition is forced to false
• Loop cannot be interrupted for the first 3 cycles of the loop.

The unconditional SPLOOPD is used when the loop is known to execute for a minimum number
of loop iterations. The required minimum of number of iterations is a function of the II as shown
below:

Minimum Number
II of L oop Iterations

1 4
2 2
3 2
>=4 1

When using SPLOOPD the ILC register must be loaded with a value that is biased to compensate
for the required minimum number of loop iterations.

TI Training Material

10

SPLOOPD

S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2

3
ex

ec
ut

e
pa

ck
et

s

KERNEL table

SPLOOPD 3

instr.D1
|| instr.S1 cycle 1

instr.D1
|| instr.L2
|| instr.M1 cycle 2

instr.S2
|| instr.M2 cycle 3

instr.S2
|| instr.M1
|| instr.M2 cycle 4

instr.S1
|| instr.L1
|| instr.M2
|| instr.D2 cycl e 5

instr.L1
|| instr.M1
|| instr.D1 cycl e 6
|| SPKERNEL

Execute
Execute
Execute

Pipe up loop buffer (prolog)Execute kernelDrain loop buffer (epilog)Finished!

ILC = LBC = 013 23321 3/00

5 iterations with SPLOOPD needs an adjustment of the ILC
II = 3 means ILC value needs to be 3 (5 minus 2).

The adjustment value is defined in the table shown on the
previous slide.

TI Training Material

11

SPLOOPW – Differences

Differences SPLOOP vs. SPLOOPW:
• This instruction executes unconditionally and cannot be predicated
• The SPLOOPW instruction invokes the loop buffer mechanism. The testing of the termination
•condition is delayed for four cycles.
• The SPLOOPW instruction cannot be used in a nested SPLOOP operation.
• When the SPLOOPW instruction is used to initiate a loop buffer operation, the
epilog is skipped when the loop terminates.

The SPLOOPW instruction is used to initiate a loop buffer operation when the total number of loops required
in not known in advance. E.g. while loops.

TI Training Material

12

SPLOOPW – Piping the loop buffer

S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2
S1 S2 L1 L2 M1 M2 D1 D2

3
ex

ec
ut

e
pa

ck
et

s

KERNEL table

[A1] SPLOOP 3

instr.D1
|| instr.S1 cycle 1

instr.D1
|| instr.L2
|| instr.M1 cycle 2

instr.S2
|| instr.M2 cycle 3

instr.S2
|| instr.M1
|| instr.M2 cycle 4

instr.S1
|| instr.L1
|| instr.M2
|| instr.D2 cycl e 5

instr.L1
|| instr.M1
|| instr.D1 cycl e 6
|| SPKERNEL

Execute
Execute
Execute

Pipe up loop buffer (prolog)Execute kernelFinished!

A1 = LBC = 015 24321 3/00

TI Training Material

13

Nested Loop
When the SPLOOP instruction is predicated, it indicates that the loop is a nested loop using
the SPLOOP reload capability.

The SPMASKR /SPKERNELR instruction controls the reload point for nested loops.

The contents of the reload inner loop count register (RILC) is copied to ILC when either a
SPKERNELR or a SPMASKR instruction is executed with the predication condition true.

The branch is used in a nested loop to place the PC back at the address of the execute packet after the SPKERNEL
instruction.

TI Training Material

14

Nested Loop
[A1] SPLOOP 1

instr.D1
|| instr.S1 cycle 1

instr.D2
|| instr.L2
|| instr.M1 cycle 2

S1 S2 L1 L2 M1 M2 D1 D2
KERNEL table

SPKERNELR

[A1] BNOP.S2 outer_loop, 4

SUB.L1 A1,1A1
|| instr.M2

A1 = ILC = RILC =210

outer_loop:

4321 40

Finished

Execute kernel

Reload kernel
Epilog

TI Training Material

15

SPMASK
SPLOOP 1

instr.D1
|| instr.S1 cycle 1

SPMASK D2
|| instr.D2
|| instr.L2
|| instr.M1 cycle 2

instr.D2
|| instr.L1
|| instr.M2
|| instr.S2 cycle 3

SPKERNEL

S1 S2 L1 L2 M1 M2 D1 D2
KERNEL table

SPMASK
||^ instr.S2
||^ instr.L1

instr.D1
|| instr.L2
|| instr.M1

ILC = 43210

Finished

Execute kernel

Epilog

Instruction not
loaded into buffer

but executed

TI Training Material

16

Interrupts
If an interrupt occurs while a software pipeline is executing out of the loop buffer, the
loop will pipe down by executing an epilog and then service the interrupt. The interrupt
return address stored in the IRP or NRP is the address of the execute packet containing
the SPLOOP instruction.

The TSR (Task State Register) is copied into the ITSR (for interrupts) or NTSR (for
NMI or exeptions) with the SPLX bit set to 1. On return from the interrupt with the
ITSR or NTSR copied back into the TSR with the SPLX bit set to 1, execution is
resumed at the address of the SPLOOP(D) instruction, and the loop is piped back up by
executing a prolog.

ILC and RILC need to be saved/restored by Interrupt Service Routine

TI Training Material

17

Breakpoints

The SPLOOP mechanism supports the placement of breakpoints, either
hardware or software, at any execute packet within the
SPLOOP/SPKERNEL body.

In case a HW Breakpoint with a count value greater than 1 is placed no other
breakpoints may be set in the SPLOOP.

TI Training Material

18

SPLOOP - Architecture
Loop Buffer
The loop buffer is used to store the instructions that comprise the loop and
information describing the sequence that the instructions were added to the
buffer and the state (active or inactive) of each instruction.
The loop buffer has enough storage for up to 14 execute packets.
Maximum loop body is 48 cycles.

Loop Buffer Count Register (LBC)
A loop buffer count register (LBC) is maintained as an index into the loop buffer.
It is cleared to 0 when an SPLOOP, SPLOOPD or SPLOOPW instruction is
encountered and is incremented by 1 at the end of each cycle. When LBC be-
comes equal to the iteration interval (II) specified by the SPLOOP, SPLOOPD
or SPLOOPW instruction, then a stage boundary has been reached and LBC
is reset to 0 and the inner loop count register (ILC) is decremented.
There are two LBCs to support overlapped nested loops. LBC is not a
user-visible register.

TI Training Material

19

SPLOOP - Architecture
Inner Loop Count Register (ILC)
The inner loop count register (ILC) is used as a down counter to determine
when the SPLOOP is complete when the SPLOOP is initiated by either a
SPLOOP or SPLOOPD instruction. When the loop is initiated using a
SPLOOPW instruction, the ILC is not used to determine when the SPLOOP
is complete. It is decremented once each time a stage boundary is encoun-
tered; that is, whenever the loop buffer count register (LBC) becomes equal
to the iteration interval (ii).
There is a 4 cycle latency between when ILC is loaded and when its contents
are available for use. When used with the SPLOOP instruction, it should be
loaded 4 cycles before the SPLOOP instruction is encountered.

NOTE: ILC must be loaded explicitly using the MVC instruction.

TI Training Material

20

SPLOOP - Architecture
Reload Inner Loop Count Register (RILC)
The reload inner loop count register (RILC) is used for resetting the inner loop
count register (ILC) for the next invocation of a nested inner loop. There is a
4 cycle latency between when RILC is loaded with the MVC instructions and
when the value loaded to RILC is available for use. RILC must be loaded
explicitly using the MVC instruction.

Task State Register (TSR) and Interrupt Task State Register (ITSR)
The SPLX bit in the task state register (TSR) indicates whether an SPLOOP
is currently executing or not executing.
When an interrupt occurs, the contents of TSR (including the SPLX bit) is
copied to the interrupt task state register (ITSR).

TI Training Material

21

SPLOOP - Architecture
SPLOOP Reload Inner Loop Count Register (RILC)
Predicated SPLOOP or SPLOOPD instructions used in conjunction with a
SPMASKR or SPKERNELR instruction use the SPLOOP reload inner loop
count register (RILC), as the iteration count value to be written
to the SPLOOP inner loop count register (ILC) in the cycle before the reload
operation begins.

TI Training Material

22

SPLOOP – Lab exercises

1. SPLOOP Debugging exercise: Single Step
2. SPLOOP Building the Piped Loop Kernel from SPLOOP asm code. (Reverse engineering, refresh c64x

instruction pipelining)
3. SPLOOP Code Optimization exercise: How to write SPLOOP optimized code (tbd)

• Analyze compiler feedback
• Too long loops -> break loop apart.
• Too complex -> Simplify loop

TI Training Material

23

SPLOOP – Exercise 1

NOTE:
Single stepping into SPLOOP can only be done in non–real–time interrupt mode. If in
real–time interrupt mode, a single step of the SPLOOP instruction will step over the entire
SPLOOP operation.

TI Training Material

24

SPLOOP – Exercise 2
SPLOOP 2

L2: ; PIPED LOOP KERNEL

ADD .D1 1,A2,A3
|| MPYLI .M2X B2,A6,B5:B4

ADD .L2 2,B2,B2
|| ADD .L1 2,A2,A2
|| MPYLI .M1 A3,A6,A5:A4

NOP 2
ADD .L2 B4,B4,B7
ADD .S1 A4,A4,A3

AND .L1X A6,B7,A0
|| AND .S1 A6,A3,A1

SPKERNEL
|| STDW .D1T1 A1:A0,*A7++

TI Training Material

25

SPLOOP – Exercise 2
0 2

ADD
ADD

MPYLI

4
ADD
ADD

MPYLI

6
ADD
ADD

MPYLI

8
ADD
ADD

ADD ADD

MPYLI

STDW

Unit\cycle
.L1
.L2
.S1
.S2
.M1
.M2
.D1
.D2

1

MPYLI
ADD

3

MPYLI

5

ADD

MPYLI

7
AND
ADD

MPYLI

9
AND
ADD

AND AND

MPYLI
ADD ADD ADD ADD

Unit\cycle
.L1
.L2
.S1
.S2
.M1
.M2
.D1
.D2

Prolog &
 K

ernel (in blue)

TI Training Material

26

SPLOOP – Exercise 2
8

ADD
ADD
ADD

MPYLI

STDW

10
ADD
ADD
ADD

MPYLI

12 14 16

ADD ADD

STDW STDW STDW STDW

Unit\cycle
.L1
.L2
.S1
.S2
.M1
.M2
.D1
.D2

9
AND
ADD
AND

MPYLI
ADD

11
AND
ADD
AND

13
AND
ADD

15
AND

17

AND AND

Unit\cycle
.L1
.L2
.S1
.S2
.M1
.M2
.D1
.D2

Epilog &
 K

ernel (in blue)

	C64x+ Code savings
	SPLOOP - Overview
	SPLOOP – Terminology
	SPLOOP – Basic Example
	SPLOOP – Example Vector Sum
	SPLOOP - Architecture
	Instructions
	SPLOOP – Piping the loop buffer
	SPLOOPD – Differences
	SPLOOPD
	SPLOOPW – Differences
	SPLOOPW – Piping the loop buffer
	Nested Loop
	Nested Loop
	SPMASK
	Interrupts
	Breakpoints
	SPLOOP - Architecture
	SPLOOP - Architecture
	SPLOOP - Architecture
	SPLOOP - Architecture
	SPLOOP – Lab exercises
	SPLOOP – Exercise 1
	SPLOOP – Exercise 2
	SPLOOP – Exercise 2
	SPLOOP – Exercise 2

