MSP430 Optimizing C/C++ Compiler
v 4.2

User's Guide

I3 TExXAs

INSTRUMENTS

Literature Number: SLAU132H
June 2013

I3 TEXAS
INSTRUMENTS

Contents

5] =T 9
1 Introduction to the Software Development TOOIS ..o.iiiiiiiiiiii s 12
11 Software Development TOOIS OVEIVIEWueiueeiiseirseriaterseiasesrserasessss i taas s rasaainesannss 13
1.2 C/CH+ COMPIIET OVEIVIEW 1 uttiistiseensttssss st rse s st sa s saa s e s e ta e s s e s s s s e s nasseraneans 14
2 R A NN S S @ 205 = g T =T 14

07 O T U 11 0 1= 15

2 T O o 431 o1 1= gl 1 (= = Lo S 15

0 1111 15

2 USING the C/CH+ COMPIlEr e e et e e e e e e aeas 16
21 Y 0T 1 1 TSI 0 1 1 o1 17
2.2 INVOKING the C/CH+ COMPIIET .ttt ettt st s s e a e e saa e saae e saan s s s e aanrsannesannaaneanns 17
2.3 Changing the Compiler's Behavior With OPtioNS ...uiiiiiiiiiiiiii i s s saaseesaannressannneesannnes 18
P72 TR0 N IR g (=T G o] 17 o 25

2.3.2 Frequently USEed OPtiONS ..uuuueteirieeeeretsssaasessaaassssaassnssaassnessaasssssaansnsssannsssssnnnnessns 27

2.3.3 Miscellaneous USefUl OptioNS ...ueiiieseetseiseesiaaneeessaneessaannesssannressssnnessesnnessssnnnesssnnnenss 28

2.3.4 RUN-TIME MOUEl OPLONS .utiiueeiutirneiastesstrss e srs s a s s ar s ar s aaneaaness 30

2.3.5 Symbolic DebUggiNg OPtiONS . ..uuiieieiiiteeiiite e sra it rr i e s saaas e s saaane s saanaassaanneninn 31

2.3.6 SPECITYING FIlENAMES ..uiiiiiiieiiii it i it e et e saaas e s saanneesaasnnessannnessannneessannnessannnnernnn 31

2.3.7 Changing How the Compiler Interprets Filenamesc.cvvieiiiiiiiiiiiii i 32

2.3.8 Changing How the Compiler Processes C FileSeiiiiiieiiiiiiiiiiiiii i rrinresnanes 32

2.3.9 Changing How the Compiler Interprets and Names EXENSIONScvvviiiereriiinnrereiineerssinnessnnnes 32

P22 T O S o T= o 1T T 0T =01 (o = 33

B2 B0 o R X110 o] (= @ o 1T 1S 33

P22 A B 1T o1 (=T o= L (=0 I @) (o] =S 34

2.4 Controlling the Compiler Through Environment Variablesc.oviiiiiiiiiiiiiiii s 34
2.4.1 Setting Default Compiler Options (MSP430_C_OPTION) ..uuiiiiiiiiiiiiiieiiiineesiaissssrannsessannnss 34

2.4.2 Naming an Alternate Directory (MSP430_C DIR) ..uuviiiiiieiiiieeeiiiineesiannnesssannsessannsessesnnees 35

25 L C=ToTo] o1 =T I o == Lo o T o] o o] o 36
2.5.1 Automatic Precompiled HEAAENo.uuueiiiiii i r s s e s r e s aanee s 36

2.5.2 Manual Precompiled HEAdErueiiiieieiiiii i i s s i s s i e s s s e e s saanne s s sannnessannnessannneennn 36

2.5.3 Additional Precompiled Header OPtioNSevvuseiissisiseristirsesisrssserasessisssasissssinrsaarsraneias 36

2.6 (070] g1 0] T aTo JR1 g L= o 1= 0] {0 oL o] 37
2.6.1 Predefined Macro NAIMES ...uiueiusiisiratiseieraserare st errraes 37

2.6.2 The Search Path for #iNClude FileSuiiiuiiiieiiiiiiiii i 38

2.6.3 Generating a Preprocessed Listing File (--preproc_only Option)cvviveieiiiiiiieriiieeiniineaaans 39

2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option)cceevvviiinneennns 39

2.6.5 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option) 39

2.6.6 Generating a Preprocessed Listing File with Line-Control Information (--preproc_with_line Option) . 39

2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)cceeen.. 40

2.6.8 Generating a List of Files Included with the #include Directive (--preproc_includes Option) 40

2.6.9 Generating a List of Macros in a File (--preproc_macros OPtioN)eevvivererriirrerriinreiriinneeianns 40

2.7 Understanding DiagNOStiC MESSATES uuvuriiiurteriennrreraannressaanressasnnessssnneessssnnessssnnesssssnressesnnensnn 40
P2 0 R @ o1 (o] [T o I = Vo | T L] 41

2.7.2 How You Can Use Diagnostic SUPPresSSion OPLIONS ..ueviieeeerriieesirainnesiaiiesssaainsssiaansnssaannes 42

2.8 (01 1= AV 1= ETSY= To = 43
2 Contents SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS
www.ti.com
29 Generating Cross-Reference Listing Information (--gen_acp_xref Option)vveevvieiviiiiieiiiiiirinian, 43
2.10 Generating a Raw Listing File (--gen_acp_raw OPLioN)eeiiiiieeririnesiaatnsraaanressaanrrsaaannresaaanness 43
2.11 Using Inline FUNCLION EXPANSION 4uuuuutstiiattessunesssianesssasnsssassesssassssssassestsasnsssannnessssnnnessns 45
P22 0 R 1o 7o 1T T TN 1] o3 @ o T= = o 45
2200 5 0 1o 1 T o T L= T 1o S 46
2200 7 U L= g T T (=3 [a7
2.13 Controlling Application Binary INtErfaceiceeiieeiiiiiriiirii s rareanns 48
2.14 Enabling Entry Hook and EXxit HOOK FUNCHONSueieiiiiiiiiiiiei e st r e s s nn s s e e snnnne s annnee s 49
3 OPLIMIZING YOUT GO uiuiiiiiit ittt ettt ettt e e et et et e et et e ea s e et e e ea e e e e eaeaeanananens 50
3.1 LAY (T T I @] o] 1132172 1o o S 51
3.2 Performing File-Level Optimization (--opt_level=3 Option)c.cvveiiiiiiii i 52
3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options)covvviiiiiiiiiiiiiiii s 52
3.2.2 Creating an Optimization Information File (--gen_opt_info Option)cvviiiiriiiiiiiiiiriiineennns 52
3.3 Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options) 53
3.3.1 Controlling Program-Level Optimization (--call_assumptions Option)ccevviieerriiinererninnneenes 53
3.3.2 Optimization Considerations When Mixing C/C++ and Assemblyocoiiiiiiiiiiiiiiiiiiineennns 54
3.4 Link-Time Optimization (--0Opt_leVel=4 OPtioN)ueivueirieeriaterseiaesisass i i rase s 55
o R @ o] o o TN o =T 0 T |1 S 55
34,2 INCOMPALDIE Ty PES uttiiiinttetiiieee s aaineesseannestaasneessannnesseanneessannessaanneesssnnnessssnnesssnnnness 56
35 Accessing Aliased Variables in Optimized COOEvueiiieiiiuiirieiii i rraneraas 56
3.6 Use Caution With asm Statements in Optimized COOec.ueiiiiiiiiiiiii i i raanns 56
3.7 Automatic Inline Expansion (--auto_inling OPtioN)iiiieeiseiieeiisiessaieesssannsessasnresseannressannneeenns 57
3.8 Using the Interlist Feature With OptimiZationeveseiiseiiirii i s raeaas 57
3.9 (D=7 010 o To T aTo @) 011 14 174=T o I @ o o =S 59
3.10 Controlling Code Size VErSUS SPEEAuuieiiiinieeiiiteeraasnnesaasnnessaasnessaannesseannnessesnnessssnnnesssnnnes 59
3.11 What Kind of Optimization Is Being Performed?coeiiieiiiiiiiiiniisie s saaes 60
3.11.1 Cost-Based Register AllOCAtION ...i...eeeiiiiieiiiiee it rs s rr s sr s s ssaanssaannenss 60
3.11.2 Alias DiSambigUationeeeiiiieeeiieiessrieessasneessaaneeessaneessaanneesaannressannnesaannneesannnness 60
3.11.3 Branch Optimizations and Control-Flow Simplificationccovviiiiiiiiiiiiii e 61
3.11.4 Data FIOW OPtMIZAtIONS .uiuuueseiiietetiiitseraaete s s e ssaa s s saaaansssaannssssannnsssannnnssnn 61
3.11.5 EXpression SimplfiCationeuiieeeeeiiessiiiesaaineesaaineessaannesssanressaannesssannressannreesannnees 61
3.11.6 Inline EXpansion Of FUNCHONSuiiiesiiiseiiteiiie i sae s s s s n e raas s s srnenas 61
0 5 O A W o4 T T3/] o I 1= T T S 61
3.11.8 Induction Variables and Strength REAUCHONcoiiiiiiiiiiiiii i resir e ssanne e sannnesannnes 62
3.11.9 Loop-Invariant Code MOLIONiiueireeiistiiiri e s s e raneaaanens 62
1 0 5 0t 0 T I Yo o J (] = L1 T o N 62
R 700 I O 1 1 0 o1 T TS o 1= [T 62
00 I 100 2 = V11V =T o T 62
3.11.13 Integer Division With CONStANt DIVISOFuuueeiiieeiiiiiee s iiite s raaars s saaaressaaarrssaanreaaannness 62
4 LinKiNg C/C++ COUE ..iviiiiiiiiiii e e e 63
4.1 Invoking the Linker Through the Compiler (-Z OPtioN) ..uvueeiseiiirii i aaeess 64
4.1.1 Invoking the Linker Separatelycoooeoiiiiiiiiiii it rr e s e aanns 64
4.1.2 Invoking the Linker as Part of the Compile Stepcccuviiiiiiieiiiii e 65
4.1.3 Disabling the Linker (--compile_only Compiler OPtion)cvveeevieeiieinieeiiirierirneaaineaans 65
4.2 Linker Code OPtMIZAtiONSeeeiiietseiietesraite s aaas e ssaan e s s an e e saaansessaannasssannnessaannesssannnessnnn 66
4.2.1 Generating Function Subsections (--gen_func_subsections Compiler Option)cccvviieiniinnnnn. 66
A 7 o110 g F= LN T] o 66
4.3 Controlling the LINKING PrOCESS ... uuiiiiiiiiiiiiitetra it r s et r e e s ra e s ssass et sanr e s saann e e saannresaanness 67
4.3.1 Including the RUN-Time-Support LIDIaryuveeeeiiiieieiiiisniisssiss s sssassssssse s ssnnnssssannes 67
4.3.2 RUN-TIME INItIANZALION uuiseiiietiie i e r e s e s e s s r s e s s s ane e saneans 68
4.3.3 Initialization by the INtErrupt VECIOEeiieiiii it r e e r i ar e s ann e s rrnna s s annns 68
4.3.4 Initialization of the FRAM Memory Protection UNitc.eeiiiiiieiiiiieiiii i riieesninnnenaas 68
4.3.5 Initialization of Cinit and Watchdog Timer HOldcoiiiiiiiiiiiiiin i e 68
SLAU132H—-June 2013 Contents 3

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS
www.ti.com
4.3.6 Global ODbJECt CONSIIUCIONS .uuiuseiutirseiastisseriat e s s s s st rsrr e ran e aanesannss 69
4.3.7 Specifying the Type of Global Variable Initializationoeeviiiiiiiiiiiiiii s 69
4.3.8 Specifying Where to Allocate Sections in MEMOIY ...uueeiiiieeeiiiiiesiiirerairesraanresaaannesaaas 70
4.3.9 A Sample Linker Command Fileeieeiiueiiiniirii s 72
MSP430 C/C++ Language IMplementationocooeieieiiiiiiii e e e e e e e 73
5.1 CharacteristiCs Of MSPA30 € ..uuueiiiiiiieei it raat e st e e sa s e s s st e s s s s e s s s aae s s saanessaannessaannnnsss 74
5.2 CharacteristiCs Of MSPA30 CH+ 1uuiuuiseiueitirsirseresias e raes 74
5.3 USING MISRA-C:2004 . .tiueiitiititieerae st ssae st s saa s s e st s s s s s s s st s s s s s s s st aanaaassssnnannannnss 75
5.4 USING the ULP AQVISOT .. ettt it ae st as et st e s ss s s st s a s e s s s n e s s san e s s sannessaannreannns 75
5.5 DAL TY S tuuuuunnnnnnnssssssssssssssnsnssssssssssssssssssssssssssnsssssssssssssssssssssnnnnessssssssssssssssnnnnneensnnsns 76
5.6 L0517 (0L 77
5.6.1 The CONSt KEYWOIT .uuuuetsiiiteiieteisaiate s s ias e ssa s e s s aaae s saaaan st saane s sannnasssannnsssannnessnnn 78
5.6.2 The __ interrupt KEYWOIO ..oiiuueieiiiieieesiieeessasneessasnnessaanneesaasnnessannnessssnneesssnnnessennnnesnns 78
5.6.3 The restriCt KEYWOIT .uuuuetitiiseiiterseiss st s saa s s s s s s s s e s s s s s s r s rneaaneans 79
5.6.4 The volatile KEYWOIAuiiiiiiiiiii e r e s s e s a e e s s aae st saaan e s sann e s sannnneannn 80
5.7 (0% (o= 1[0 T = Vg To |11V P 81
5.8 Register Variables and Parametersiieeiiiiiieiiiii i s e 81
5.9 I ST =] S = =T 1= 82
5.10 Pragma DirCHVES .uuviueteiieintesseineesasannessasnnessasnneessannesseanneesssnnnessesnneesssnnnessssnneesssnneessnns 83
5.10.1 The BIS_IEL INTERRUPT ...utiutiiiiititiiertiatitsrae st sssasssasss st saassassassaesanssassansnnsnnss 84
5.10.2 The CHECK_MISRA Pragma ..ouueiueiutisiseieisiserse s sissansansnns 84
5.10.3 The CLINK PragmMa .iiueeeiieetessaaneeessaneessasnnessasnnessssnnnessssnnessesnnesssssnnessssnnessssnnnesens 84
5.10.4 The CODE_SECTION PragiMa ...cueueiueseesusintineanaesrstinssanssnssasinssmnssarinniansmnssnnianians 85
5.10.5 The DATA_ALIGN Pragma .iueieeeueiutiueiserseitisisessrtissassssstissasssissasiassassnrsnnians 87
5.10.6 The DATA _SECTION PragMa .eeuieeseessesueeessasseessesnneessssnmessssnnessssnnesssssnnessssnnessssnnnnsss 87
5.10.7 The DiagnostiCc MESSAgE PragMaseivueeruseiiseisserintisssiinsianerassiannerasiaisssisrianrsraeins 88
5.10.8 The FUNC_ALWAYS_INLINE Pragmacvueeseuerueiuesnsirnereinenssrnisiinsnssrsiisiansaeanine 88
5.10.9 The FUNC_CANNOT_INLINE Pragmaeiueeesisseruerernnirsereinesnsersrsiserrnn 89
5.10.10 The FUNC_EXT_CALLED PragMaciueiuesssesnsruernsssnsrnssnesnssanssnssnesassasinninmsmsmnmines 89
5.10.11 The FUNC_IS_PURE PragMa ...iueiueiuserseiunisinsrnesnsssansiesansassassiiesaniasasiin 89
5.10.12 The FUNC_NEVER_RETURNS Pragmaccevvueiueieinsirnereiisrnserrsnsennsns 90
5.10.13 The FUNC_NO_GLOBAL_ASG PragiMaeeeeeueruessessssrnnresnnemneannrnsianmmssnrinnimnmmemnnie 90
5.10.14 The FUNC_NO_IND_ASG Pragmaeeeiueieisuerneiuesininnereineiasiatrsiinsassatsins 90
5.10.15 The FUNCTION_OPTIONS PragMaueiseruesssesseruernmmsemsememnemmsersmemia 91
5.10.16 The INTERRUPT PragMa ...eiueeueiutiueseernsrtisssssussatsassanssnssasiasssnssnsmnninnssnssnninninns 91
5.10.17 The LOCATION PragM@a ..euueiuseuseutruesussssssiuesssassaasss sttt 91
5.10.18 The NOINIT and PERSISTENT PragmMas ...eceveeeeeesesuseessesneessssnneesssnnmessssnneessssnsessssnnes 92
5.10.19 The NO_HOOKS Pragma ...eeeeruerueineseerertissasessantsassanssassassassanssarsanianssssnninnians 93
5.10.20 The PACK Pragima ...eeeiiieeieiiiateeriietesraatsssaaassssaaasssssasnestaasssstaansssssaannsssannnnesnns 93
5.10.21 The RESET_MISRA Pragma ..ueuieeseeeteestessanneeeseannsessasnnessssnneessssnmessssnnesssssnnesssnnnenss 94
5.10.22 The RETAIN PragMa ..uueeuseiueinseississssinsssssiaseessssassssisssannssasstaisssinsiainsinsiannes 94
5.10.23 The SET_CODE_SECTION and SET_DATA_SECTION Pragmasc.veeveeerueririinsinsiiesinias 95
5.10.24 The VECIOr Pragma .uueeeiiieieiiiiieesssneessaaneessasnnessassneessasnnessasnnessssnnnesssnnsesssnnnnesnnn 96
ST I R I U= T o = To 0 P T =T (o) 97
5.12 Application Binary INTErfaceeeiieiiiiiiiiiii i s e s e s s s s s raaa e s saann e s s ranneaanas 98
S0 It R O T L = 98
00 Y = 98
5.13 Object File Symbol Naming Conventions (LINKNAMES)uueeiiiiiieiiiiies i sriiate s srannrsssanresaaannees 99
5.14 Initializing Static and Global Variables in COFF ABI MOGE ...ciiiiiieiiiiiine i isainsessaanseessannnessannnes 99
5.14.1 Initializing Static and Global Variables With the LinKerccviiiiiiiiiiiiiiiiiiii s 100
5.14.2 Initializing Static and Global Variables With the const Type Qualifierccccviiiiiiiiiiinnnnn. 100
5.15 Changing the ANSI/ISO C Language MOOEciviiueeeiiineesiinnnesssanneessaanressasnneesssnnnessssnnessssnneess 101
5.15.1 Compatibility With K&R C (--kr_compatible Option)cceviiiiiiiiiiiiiiiiiii e 101
Contents SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com

5.15.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --relaxed_ansi

(@10 1) I 102

5.15.3 Enabling Embedded C++ Mode (--embedded_cpp OptionN)vvveeeeiiiiiriiiiinreiriieririinneeianns 103

5.16 GNU Language EXIENSIONS ..uueiuueiruetrstesseisssssssasssssssasss e sase s et ssasssansssasstainssannsannes 104
S0 T80 R =4 (= 1= (o] 104

5.16.2 FUNCLION ALHDULES 1t s r e s 105

5.16.3 Variable AttrDULES ...uuieiiii i e 105

B5.16.4 TYPE AlNDULES et ettt e et s s e s s e e e ra s e e s a e nee s 106

5.16.5 BUIlt-IN FUNCHONS 1ttt s st et s e s s s s s s s aaa e e s sa s s ssann s ssann e s aaannness 106

ST A o 01 01 =T G I35 107
6 RUN-TIME ENVIFONMENT L.ttt et e e e e e e e e e e s e e e e e e e e s e e e n e e ananeeraeannes 108
6.1 1= 0 o] Y20 1Y o T 1= 109
S0 0 R @ To [T 1/ =T T T V1Y, [To 1= £ 109

6.1.2 Data MemOry MOGEIS ..uiuueiiiiiieiirte s st a s s s ran e aaneans 109

L0 e T T U o) o To 4 A {0 g N[= L - - 110

G0t T =T o1 1oL 110

6.1.5 C/CH+ SOWAIE STACK .uuuuutiruseiseiiteiseisrir s s s s e e aaness 111

6.1.6 Dynamic Memory AlIOCALIONuueiieieiiiiiir e s s s s sr e s ssaan e s sann e s saannneaaannes 112

6.1.7 Initialization of Variables in COFF ABIuuiieiisiriiiiiiiirrinaserae s raenas 112

6.2 (@] o] =Tot Q=T o] =TT =T] 7= T o 113
L 20 R B - L= B I3/ 01T (0] (=0 113

6.2.2 Character String CONSIANTS +...uuueeriiinreessanresrasnneesasnnnesaaannessasnneessannnessesnneesssnnnesrennnes 114

6.3 =0 115 (=] GO0 1V =T o T 115
6.4 Function Structure and Calling CONVENLIONSuuueriiiiiieeiiire i rainresraarsssaaes s ssannesaaannesss 116
6.4.1 How a Function Makes @ Calliieiieiiuiiiiieiiiinriir e 117

6.4.2 How a Called FUNCLION RESPONAS .uuiuueiiuniiiteiineiie st s s rerans 117

6.4.3 Accessing Arguments and Local Variablesvoiieiiiiiiiiiiii i 118

6.5 Interfacing C and C++ With Assembly LanQUagecivivieeriiiieieriiiieeriinnressaannressannressasnnesssnnnness 118
6.5.1 Using Assembly Language Modules With C/C++ COUEuvviiiiiiiiiiineiiiiesraineesaannneaaanns 118

6.5.2 Accessing Assembly Language FUuNnctions From C/CH+ ...uuiiiiiiieriiiiineiiiiee s iiinesisansnssaanns 119

6.5.3 Accessing Assembly Language Variables From C/C++uiiiiiiiiiiiiieeiiiineessasnesssanneessnnnes 120

6.5.4 Sharing C/C++ Header Files With ASSEmMbBIlY SOUICEvvieiiiiiiiiiiiiiiiii e 121

6.5.5 Using Inline ASSEmMDBIlY LanNQUAGEuueeeiiiiiiiiiieiniite s srias s s saanne s ssanaas s sannsasiaannes 121

6.6 L1 (=13 U o] B F= 3 o |1 T S 121
6.6.1 Saving Registers DUNNG INTEITUPLS wuuuueiiusiists e sra s sr e asa e sannsrans 121

6.6.2 Using C/C++ INtErrUPt ROULINES . .uuiiieteiiiiissisite it st s ssaiass s ssaae s saaansessaannnsssannns 122

6.6.3 Using Assembly Language INterrupt ROULINES ...viiieieeiiiieiesiiiieesiisnnessaanneesasnnnessannneesnnnns 122

LG 101 (=] (1] =T (0 £ 122

6.6.5 Other Interrupt INfOrMatioNeeiii e r s s s an e s aannees 122

6.7 Using Intrinsics to Access Assembly Language StatemMentSviiveeeiieiieerreiineerssineessasnnesssnnneessnnnes 123
6.7.1 MSPA30 INIIINSICS «etetnnnnteerannesaaannessaaneesaannessaannessaannnessaannnssaannnessaanneesssnneesssnnnes 123

6.7.2 The __delay_CycCle INHNSIC «uuuuueeeiiiiiei i e e s s s s s e e s sranna s ssannnesaannes 124

6.7.3 The _never_eXeCUted INTHNSIC ..uveiiiieieeriiitesrsanneesaaneesaaannessaanneessannnesssanneesssnnnesssnnnes 124

6.8 5351 (=T T 1= 2= Lo 126
6.8.1 System Pre-INitialiZationoceeeeiiiiiii i 126

6.8.2 RUN-TIME STACK 4euututiutisenstiatisirse st r s e aarennes 126

6.8.3 COFF ABI Automatic Initialization of Variablesccvviiiiiiiiiiiii s 127

6.8.4 EABI Automatic Initialization of Variablesciiiiiiiiiiii i 129

6.8.5 Initialization TablES ...uieiiueiitiii e 134

6.9 Compiling for 20-Bit MSPA430X DEVICES +uuutiuuteiuseiiunerinsisssssisssaserassisisssasssasssasssanrsrasiannesns 136
7 Using Run-Time-Support Functions and Building Librariescccoiiiiiiiiiineeeenn 137
7.1 C and C++ RUN-TIMe SUPPOIt LIDIANES .uuuiiiueseiiiiteiinieisiiaesssaissssssise s isaasessaassesssansssssannns 138
7.1.1 Linking Code With the ODbJect LIDIaryc.evveeiieiiiiiiiiiinii e saees 138
SLAU132H—-June 2013 Contents 5

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS
www.ti.com
A O o 1= = Vo 1= 1= 138
7.1.3 Modifying @ Library FUNCHONeeiii i et r e e s s e s s sann e s sanne e aanns 139
7.1.4 Support for String HanAliNgueeeiiieieiiiiri i i s s s s s s rannes 139
7.1.5 Minimal Support for InternationaliZationc.evieiiieeiiii i 139
7.1.6 Allowable Number of Open FIleS ...t e rr e s s e e rannns 139
7.1.7 Nonstandard Header FileS iN MSSIC.ZIP .uuuiviuuuesiiinsseiiiintesiainressaannessainnressannrssaainssinnnns 140
7.1.8 Library Naming CONVENTIONS 1.ueuuueeiseirusssnssruseissssessasssssssinssass i sannsranstsinssannsanns 140
7.2 LI L O O 2 U 1o I 141
7.2.1 High-LeVel I/O FUNCHONS .uuuiiiteiiitesniittessiisessssiee s ssaas st sssse s ssansssssannnasssannnsssannnes 142
7.2.2 Overview of Low-Level /O Implementationo.cvvieeiieeiiiiriii i snes 143
7.2.3 Device-Driver Level I/O FUNCHONS .uuiiueirstiisssiseissesissiassssisssasss s saanesasssassssasssanssrnns 146
7.2.4 Adding a User-Defined Device Driver for C 1/O ..uiueeiiiiiieiiiiiiiiiii s s snnnessanns 150
7.2.5 The deViCe PrefiX vuuuiieiiiii i s e e e r s a e s e e e 151
7.3 Handling Reentrancy (_register_lock() and _register_unlock() FUNCLIONS)uueeiiiiiiiiiiiii i iiaes 153
7.4 I o] 7= T2 = YU 1 Lo I 0T o= 154
7.4.1 Required Non-Texas INStruments SOftWArEuvvueiiieiiieiiiiriii i ras 154
7.4.2 Using the Library-Build PrOCESS ...uiiieieiiiiitiiiiaeteeraate e ssaantesaaine s ssane s ssannnessannnnssaannns 154
7.4.3 EXtending MKIID . .ueeiiii i e 157
CH+ Name DeMANGIENcouiii e 158
8.1 INnvoking the C++ Name DemaNGIEr ...u.uuiiiusiiseiiteriseiari s sar e ra s saaneras 159
8.2 C++ Name Demangler OPtONSueiiieeeiiiee sttt raaate s ssaat et saaa s e s saas s s ssaaanssaaannsssaannnessnnnes 159
8.3 Sample Usage of the C++ Name Demanglerciiiiieeiiiiiesiiiieesiaanressasnneessannnessasnnessssnnnessnnnes 159
(L0372 P 162
Contents SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
1-1. MSP430 Software DevelopmENt FIOW ...t s aaneraas 13
L I /[T o g o] A I Y011 | o) Y - 1 114
6-2. Use of the Stack During a FUNCON Call.....oiuiiiiiiiiii i ans 116
6-3. Format of Initialization Records in the .CiNit SECHONuiieiiiiiiiii i e 127
6-4. Autoinitialization at RUN TiME uuiiueiiieiiiiiiiiii i s aaes 128
L T [01 (= 2= o T = L 0 Y= o o T 129
6-6. Autoinitialization at Run Time in EABI MOGE ...uvvuuiiiiiiiiiiiini s s s nae s 130
6-7. Initialization at Load Time in EABI MOOEiiuiiiiiiiiiiiiiiiiiiii i nsnenans 133
6-8. Constructor Table for EABI MOOEuuiiuiiiiiiitirsiie st e s s ss s s s san s raas s e e s sanees 133
6-9. Format of Initialization Records in the .CiNit SECHONuiieiiiiiiii e 134
6-10. Format of Initialization Records in the .pinit SECONviviiiiiiiii 136
List of Tables

2 I = o o7 L= o G @] oo 1 18
N © | o] 1101 2= Lo] o 18
P T Ao \VZ= 1 (ot =To @ o)] 01 = Vi o] g I) o] g I 19
S 1= 10 T @ o] (o] g1 19
2-5. Advanced Debug OptioNS eeiiieiiiiie s ira e r s 19
P22 T [0 Tox 0T L= @ o] 110 19
P R U 1 = o V710 o 1T o 19
22 TR O o 1] I o] 1] oL 20
P2 TR I U o 7= o =T 0) o 0 20
2-10. Parser PreproCeSSiNg OPtiONSuueeerreeesanessaaneesaaanessaassessaaassessaansessaaanssssaannessssnnsessnns 21
P I S o =T =Y] =T IS} g 0T 3 o] o g 21
p I - Vo [10 1S3 1102 o] 1T o 21
2-13. RUN-TIME MOUEI OPLIONS 1.t ettiiiiee it et a e e et s ae et s aas e s ssaaa s st saann e s s aaan e e ssannnessannessaannnssnnnns 22
I S 011774 =01 S o0 G 1] 22
2-15. Library Function ASSUMPLIONS OPLIONS . uuuueuuutiuesineinsrssissssisssasss s sanrs s tsisssanssansssanssanness 22
P T ANt T= T] o] (=T @ o 1T o 23
2-17. File TYpe SPECIfIEr OPtiONS . uuueeeieeeiniiaeetsiies st traassssaste s saaasssssaanrsssaaanrsssannnssaainnsssnnns 23
2-18. DirecCtory SPeCIfier OPtiONS ... uu sttt ittt et s s s s st esar s 23
2-19. Default File EXtENSIONS OPLIONS ..uuuuetiiieteiraitee st e saaise s ssaaae et saansessaannassaaanressaannresaannrersnns 24
2-20. ComMMAN FilES OpPtIONS 4 tuuuuuutteisatessaatessraee s s tsasae st saate s saaass et saaasessaannssssannnsssasnnsssnnns 24
B I 11T T @2 010 7 @ o 1) o 24
P W | o1 =T gl = = TS o @) o] o 25
2-23. File Search Path OptioNSeeeiiiieiiiiieissie st sat e s ss st s s ss s a s s saaan s s s s s e ssaannsssaannesannnns 25
2-24. Command File PreproCesSing OPLiONSueeruusiruseiutiiterineissssinrssss i rasisisssanrsanssrassanness 25
P4 ST T To | [0 11 o3 @ o] o] o 1S 25
P ST g1 =T @ 1111 11] oo g 26
2-27. Symbol Management OPLtiONS .u.uueiusereeiueisesrastsrse s srae e saa s saas s saas e s asarssanessaassansraneias 26
2-28. RUN-TIMe ENVIrONMENT OPtIONS +..uuuatteieteeaaeeessaaaesssaane s ssaassssaansessaannesssannssssaannsessannsessnns 26
2-29. Link-Time OptimiZation OPtiONS .uuuuuesessesessieressiaestaasestsiaestsarssestaasssstsaasrsssaanressannnsssnns 26
P20 I 1Tt =T g T o U @ o 1T] o 27
2-31. Compiler Backwards-Compatibility OptionS SUMIMAIY ..uuueiiusriiussriseiaerinriasssissare i 34
2-32. Predefined MSP430 MaCIO NAIMES +..uuuiistiiueiiintiisisiiseiiterissiaisssisssasssrassareraeaisisraaneiaseies 37
2-33. Raw Listing File IdeNntifiersueuieiiiiiie i e st s s e s e s s r e an e nas 44
2-34. Raw Listing File DiagnoStiC [deNtfIErsuueeeiiie i e r e e s r e s rranne s s rannenaas 44
SLAU132H-June 2013 List of Figures 7

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS
www.ti.com
3-1. Interaction Between Debugging and Optimization OPLiONS ...vvueeiiseisieerieriiiseririireiirierarraeesanes 52
3-2. Options That You Can Use With --0pt_lEVEI=3 s e r e e e eas 52
3-3. Selecting a File-Level Optimization OPtiONeuveseesiriuesesrastseraisresriinnsssainsssssaisnssasasssiaainnesss 52
3-4. Selecting a Level for the --gen_opt_info Optionviieeiiiiiiri i e 52
3-5. Selecting a Level for the --call_assumptions OPtioNuvvseisisriiseriseiairiariane s 53
3-6. Special Considerations When Using the --call_assumptions Optionc.evvviiieriiiiieeiniiiiineiians 54
3-7. Interaction Between Debugging and Optimization OPLiONS ...vueeiiseirieerieriiirirrneeirrirarsaeesans 59
4-1. Initialized Sections Created by the Compiler for Both ABIS......cviiiiiiiiiiiii i i raniee s raanes 70
4-2 Initialized Sections Created by the Compiler for the COFF ABI ONlY ...uvviiiiiiiiiiiiiiiiiiininesinnnneens 70
4-3. Initialized Sections Created by the Compiler for EABI ONlY ...uueiieiiiiiiiiiiieiiiriss s sianenaees 70
4-4. Uninitialized Sections Created by the Compiler for Both ABISicuviiiiiiiiiiiiiiiiiiri s 70
5-1. MSP430 C/C++ COFF ABI Data TYPES «1utuseuserutrutiusssneransssssssssanissssssrsissansssrissaan 76
5-2. MSPA430 C/C++ EABI DAtA TYPES +euuuteruteiuesnntiantssnssatesissiasssisssansstassiannssassiaissainrrannsinnis 76
5-3. Data Sizes fOr MSPA30 POINTEIS 1uuuuutiuseiiseissssistsssesassssse st sastssarerasssasrasnsraneins 77
5-4. GCC LaNQUage EXIENSIONS ... uuttiuunteiratessssesssasssssaissesssasssessanssessaansnsssannnsssasnnesssannnsssnns 104
6-1 Summary of Sections and Memory PIaCeMENT ...v.ueireiiiiiie i arinerans 111
6-2. Data Representation in RegiSters and MeMOIYceiiieieiiiiieei it iaareesaanressaanressaanreaaannness 113
6-3. How Register Types Are Affected by the CONVENLIONSueiiiiiiiiiiiii i i aees 115
6-4. Register Usage and Preservation CONVENTIONSuuse it iantissssisssssssissiaineransissesanrsansssins 115
LG 1V S 27 T I 1]] 123
7-1. The mMKIID Program OPUtiONSeeuiuueseireeessiunessainesisaaesssaassestaasssssasssessaasssrsassnsssasnnsesans 156
8 List of Tables SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Preface
l ?Eé(?lgUMENTS SLAU132H—-June 2013

Read This First

About This Manual

The MSP430 Optimizing C/C++ Compiler User's Guide explains how to use these compiler tools:

» Compiler

e Library build utility

» C++ name demangler

The compiler accepts C and C++ code conforming to the International Organization for Standardization

(ISO) standards for these languages. The compiler supports the 1989 version of the C language and the
2003 version of the C++ language.

This user's guide discusses the characteristics of the C/C++ compiler. It assumes that you already know
how to write C/C++ programs. The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie
(hereafter referred to as K&R) book as a supplement to this manual. References to K&R C (as opposed to
ISO C) in this manual refer to the C language as defined in the first edition of Kernighan and Ritchie's The
C Programming Language.

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#include <stdio.h>

main()
{ printf(""hello, cruel world\n');
}

» In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

e Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘cl430 [options] [filenames] [--run_linker [link_options] [object files]] ‘

» Braces ({and}) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_maodel or --ram_model option:

¢l430 --run_linker {--rom_model | --ram_model} filenames [--output_file= hame.out]
--library= libraryname

SLAU132H-June 2013 Read This First 9

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Related Documentation www.ti.com

* In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes|, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive. This
syntax is shown as [, ..., parameter].
Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 14882-2003, International Standard - Programming Languages - C++ (The 2003 C++
Standard), International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by
Prentice Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0,
TIS Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup,
Free Standards Group, 2005 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)

10 Read This First SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://dwarfstd.org
http://www.sco.com/developers/gabi/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS

INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

You can use the following books to supplement this user's guide:

SLAU131— MSP430 Assembly Language Tools User's Guide. Describes the assembly language tools
(the assembler, linker, and other tools used to develop assembly language code), assembler
directives, macros, object file format, and symbolic debugging directives for the MSP430 devices.

SLAA534— MSP430 Embedded Application Binary Interface Application Report. Specifies the ELF-
based ABI for MSP430 processors. The ABI is a broad standard that specifies the low-level
interface between tools, programs, and program components.

SLAU049— MSP430x1xx Family User's Guide. Describes the MSP430x1xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU144— MSP430x2xx Family User's Guide. Describes the MSP430x2xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU012— MSP430x3xx Family User's Guide. Describes the MSP430x3xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAUO56— MSP430x4xx Family User's Guide. Describes the MSP430x4xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU208— MSP430x5xx Family User's Guide. Describes the MSP430x5xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU134— MSP430FE42x ESP30CE1 Peripheral Module User's Guide. Describes common
peripherals available on the MSP430FE42x and ESP430CE1 ultra-low power microcontrollers. This
book includes information on the setup, operation, and registers of the ESP430CEL1.

SPRAAB5— The Impact of DWARF on Tl Object Files. Describes the Texas Instruments extensions to
the DWARF specification.

SPRUEX3— TI SYS/BIOS Real-time Operating System User's Guide. SYS/BIOS gives application
developers the ability to develop embedded real-time software. SYS/BIOS is a scalable real-time
kernel. It is designed to be used by applications that require real-time scheduling and
synchronization or real-time instrumentation. SYS/BIOS provides preemptive multithreading,
hardware abstraction, real-time analysis, and configuration tools.

MSP430x1xx, MSP430x2xx, MSP430x3xx, MSP430x4xx, MSP430x5xx, MSP430 are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SLAU132H-June 2013 Read This First 11
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/slau131
http://www.ti.com/lit/pdf/slaa534
http://www.ti.com/lit/pdf/slau049
http://www.ti.com/lit/pdf/slau144
http://www.ti.com/lit/pdf/slau012
http://www.ti.com/lit/pdf/slau056
http://www.ti.com/lit/pdf/slau208
http://www.ti.com/lit/pdf/slau134
http://www.ti.com/lit/pdf/spraab5
http://www.ti.com/lit/pdf/SPRUEX3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

. Chapter 1
l ’}-‘IE)S(’?I§UMENTS SLAU132H-June 2013

Introduction to the Software Development Tools

The MSP430™ is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++
compiler. The assembler and linker are discussed in detail in the MSP430 Assembly Language Tools

User's Guide.
Topic Page
1.1 Software Development TOOIS OVEIVIEWcuiuinieiieeieanie it eeaeeenee e eeaeeneneesereaeaenenns 13
1.2 C/CH+ COMPIlEr OVEIVIEW . .unieieieieeieeie et e e e et et e e e e et e e e e a e na e enanen e eaens 14
12 Introduction to the Software Development Tools SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Software Development Tools Overview

11

Software Development Tools Overview

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral
functions that enhance the development process.

Hex-conversion
utility

Figure 1-1. MSP430 Software Development Flow

C/IC++
source
files

Macro
source C/C++
files compiler

C/C++ name

Assembler

demanglin
source gling

11111137

Macro
library Assembler
Object Librat.nll_;build Delt)uglging
files utility ools
L Run-time-
Library of 4 support
object > library
files
Executable
object file

EPROM
programmer

Cross-reference
lister

Object file

Absolute lister i
utilities

The following list describes the tools that are shown in Figure 1-1:

The compiler accepts C/C++ source code and produces MSP430 assembly language source code.
See Chapter 2.

The assembler translates assembly language source files into machine language relocatable object
files. The MSP430 Assembly Language Tools User's Guide explains how to use the assembler.

The linker combines relocatable object files into a single absolute executable object file. As it creates
the executable file, it performs relocation and resolves external references. The linker accepts
relocatable object files and object libraries as input. See Chapter 4. The MSP430 Assembly Language
Tools User's Guide provides a complete description of the linker.

SLAU132H—-June 2013

Introduction to the Software Development Tools 13

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

C/C++ Compiler Overview www.ti.com

The archiver allows you to collect a group of files into a single archive file, called a library. The
archiver allows you to modify such libraries by deleting, replacing, extracting, or adding members. One
of the most useful applications of the archiver is building a library of object files. The MSP430
Assembly Language Tools User's Guide explains how to use the archiver.

The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler.
See Chapter 7.

You can use the library-build utility to build your own customized run-time-support library. See
Section 7.4. Source code for the standard run-time-support library functions for C and C++ are
provided in the self-contained rtssrc.zip file.

The hex conversion utility converts an object file into other object formats. You can download the
converted file to an EPROM programmer. The MSP430 Assembly Language Tools User's Guide
explains how to use the hex conversion utility and describes all supported formats.

The absolute lister accepts linked object files as input and creates .abs files as output. You can
assemble these .abs files to produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and would require many manual
operations. The MSP430 Assembly Language Tools User's Guide explains how to use the absolute
lister.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definitions, and their references in the linked source files. The MSP430 Assembly Language Tools
User's Guide explains how to use the cross-reference utility.

The C++ name demangler is a debugging aid that converts names mangled by the compiler back to
their original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++
name demangler on the assembly file that is output by the compiler; you can also use this utility on the
assembler listing file and the linker map file. See Chapter 8.

The disassembler decodes object files to show the assembly instructions that they represent. The
MSP430 Assembly Language Tools User's Guide explains how to use the disassembler.

The main product of this development process is an executable object file that can be executed in a
MSP430 device.

1.2 C/C++ Compiler Overview
The following subsections describe the key features of the compiler.
1.2.1 ANSI/ISO Standard
The compiler supports both the 1989 and 1999 versions of the C language and the 2003 version of the
C++ language. The C and C++ language features in the compiler are implemented in conformance with
the following 1SO standards:
* ISO-standard C
The C compiler supports the 1989 version of the C language.
— C89. The compiler conforms to the ISO/IEC 9899:1990 C standard, which was previously ratified as
ANSI X3.159-1989. The names "C89" and "C90" refer to the same programming language. "C89" is
used in this document.
The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R).
* ISO-standard C++
The C/C++ compiler conforms to the C++ Standard ISO/IEC 14882:1998. The language is also
described in Ellis and Stroustrup's The Annotated C++ Reference Manual (ARM), but this is not the
standard. The compiler also supports embedded C++. For a description of unsupported C++ features,
see Section 5.2.
» |ISO-standard run-time support
The compiler tools come with an extensive run-time library. Library functions conform to the 1ISO C/C++
library standard unless otherwise stated. The library includes functions for standard input and output,
string manipulation, dynamic memory allocation, data conversion, timekeeping, trigonometry, and
14 Introduction to the Software Development Tools SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Compiler Overview

exponential and hyperbolic functions. Functions for signal handling are not included, because these
are target-system specific. For more information, see Chapter 7.

See Section 5.15 for command line options to select the C or C++ standard your code uses.

1.2.2 Output Files

These types of output files are created by the compiler:
e COFF object files

Common obiject file format (COFF) provides basic modular (separately-compiled) compilation features,
such as relocations. COFF is a legacy format; it will continue to be supported, but support for some
modern language features will not be added

» ELF object files

Executable and linking format (ELF) enables supporting modern language features like early template
instantiation and exporting inline functions.

1.2.3 Compiler Interface

These features enable interfacing with the compiler:
e Compiler program

The compiler tools include a compiler program (cl430) that you use to compile, optimize, assemble,
and link programs in a single step. For more information, see Section 2.1

* Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write assembly and C functions that
call each other. For more information, see Chapter 6.

1.2.4 Utilities

These features are compiler utilities:

» Library-build utility
The library-build utility lets you custom-build object libraries from source for any combination of run-
time models. For more information, see Section 7.4.

* C++ name demangler

The C++ name demangler (dem430) is a debugging aid that translates each mangled name it detects
in compiler-generated assembly code, disassembly output, or compiler diagnostic messages to its
original name found in the C++ source code. For more information, see Chapter 8.

e Hex conversion utility

For stand-alone embedded applications, the compiler has the ability to place all code and initialization
data into ROM, allowing C/C++ code to run from reset. The COFF files output by the compiler can be
converted to EPROM programmer data files by using the hex conversion utility, as described in the
MSP430 Assembly Language Tools User's Guide.

SLAU132H-June 2013 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS

The compiler translates your source program into machine language object code that the MSP430 can
execute. Source code must be compiled, assembled, and linked to create an executable object file. All of

Chapter 2

Using the C/C++ Compiler

these steps are executed at once by using the compiler.

Topic

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Page

ADOUL the COMPIIEE ..t e e et e e e e e e e e nea e e 17
Invoking the C/CH++ COMPIlEr e et et e e e e e e e aanas 17
Changing the Compiler's Behavior with Optionsccooiiiiiiiiiiiiieeee e 18
Controlling the Compiler Through Environment Variablesccccoeiiiiiiiiiiiiinnnnnn, 34
Precompiled Header SUPPOIT ..ttt et e e et e e s e e e e eaea s e eeees 36
CoNtrolliNg the PrepPrOCESSOr ..uue i ieeee et e e et e eaea e e e e eenenrareaeaeenenrerens 37
Understanding DiagnNOStiC MESSAQES ...uvurueuiuinieeiiieanenieataeenenenaeaeaeaeenanaeanaeenns 40
(@ 1 Y= 1Y [T E o= T 43
Generating Cross-Reference Listing Information (--gen_acp_xref Option) 43
Generating a Raw Listing File (--gen_acp_raw Option)c.cooviiiiiiiiiiiiiiieieiieianenes 43
Using Inline FUNCLION EXPANSION .cuttieitiiiiiitiiitieeeateeeseaseea e e eaeasaeneneneenenananenen 45
L LS o 0=] 47
Controlling Application Binary INterfacecccoeioiiiiiiiiiiieiii i eeeeeeeeeens 48
Enabling Entry Hook and Exit HOOK FUNCLIONScccieieiiiiiie i eee 49

16

Using the C/C++ Compiler

Copyright © 2013, Texas Instruments Incorporated

SLAU132H—-June 2013

SLAU132H-June 2013
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com About the Compiler

2.1 About the Compiler
The compiler lets you compile, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:
e The compiler accepts C/C++ source code and assembly code, and produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.9 for more information.

» The linker combines object files to create an executable object file. The linker is optional, so you can
compile and assemble many modules independently and link them later. See Chapter 4 for information
about linking the files.

Invoking the Linker

NOTE: By default, the compiler does not invoke the linker. You can invoke the linker by using the --
run_linker compiler option. See Section 4.1.1 for details.

For a complete description of the assembler and the linker, see the MSP430 Assembly Language Tools
User's Guide.

2.2 Invoking the C/C++ Compiler

To invoke the compiler, enter:

‘cl430 [optionsg] [filenames] [--run_linker [link_options] object files]]

cl430 Command that runs the compiler and the assembler.

options Options that affect the way the compiler processes input files. The options are listed
in Table 2-8 through Table 2-30.

filenames One or more C/C++ source files, assembly language source files, or object files.

--run_linker Option that invokes the linker. The --run_linker option's short form is -z. See
Chapter 4 for more information.

link_options Options that control the linking process.

object files Name of the additional object files for the linking process.

The arguments to the compiler are of three types:
» Compiler options

* Link options

* Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file flenames can
be placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named
seek.asm, and link to create an executable program called myprogram.out, you will enter:

cl430 symtab.c file.c seek.asm --run_linker --library=Ink.cmd
--output_file=myprogram.out

SLAU132H-June 2013 Using the C/C++ Compiler 17

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Changing the Compiler's Behavior with Options

13 TEXAS

INSTRUMENTS

2.3 Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions

and an option summary table. It also provides detailed descriptions of the most frequently used options,

including options used for type-checking and assembling.

For a help screen summary of the options, enter cl430 with no parameters on the command line.

The following apply to the compiler options:

» Options are preceded by one or two hyphens.

» Options are case sensitive.

» Options are either single letters or sequences of characters.

» Individual options cannot be combined.

e An option with a required parameter should be specified with an equal sign before the parameter to
clearly associate the parameter with the option. For example, the option to undefine a constant can be
expressed as --undefine=name. Although not recommended, you can separate the option and the
parameter with or without a space, as in --undefine name or -undefinename.

* An option with an optional parameter should be specified with an equal sign before the parameter to
clearly associate the parameter with the option. For example, the option to specify the maximum
amount of optimization can be expressed as -O=3. You can specify the parameter directly after the
option, as in -O3. No space is allowed between the option and the optional parameter, so -O 3 is not
accepted.

* Files and options except the --run_linker option can occur in any order. The --run_linker option must
follow all other compile options and precede any link options.

You can define default options for the compiler by using the MSP430_C_OPTION environment variable.

For a detailed description of the environment variable, see Section 2.4.1.

Table 2-8 through Table 2-30 summarize all options (including link options). Use the references in the

tables for more complete descriptions of the options.

Table 2-1. Processor Options
Option Alias Effect Section
--silicon_version={msp|mspx} -V Selects the instruction set Section 2.3.4
--abi={coffabi|eabi} Selects application binary interface. Default is coffabi. Section 2.13
--code_model={small|large} Specifies the code memory model Section 6.1.1
--data_model={small|large| Specifies the data memory model Section 6.1.2
restricted}
--near_data={globals|none} Specifies what data must be near. Default is globals. Section 6.1.3

Table 2-2. Optimization Options®

Option Alias Effect Section
--opt_level=off -Ooff Disables all optimization Section 3.1
--opt_level=0 -00 Optimizes register usage (default) Section 3.1
--opt_level=1 -01 Uses -O0 optimizations and optimizes locally Section 3.1
--opt_level=2 -02 Uses -O1 optimizations and optimizes globally Section 3.1
--opt_level=3 -03 Uses -O2 optimizations and optimizes the file Section 3.1
Section 3.2
--opt_level=4 -04 Uses -O3 optimizations and performs link-time optimization Section 3.4
--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this Section 3.10
option is specified without n, the default value is 4. If this option is
not specified, the default setting is 1.
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode Section 2.3.3

@ Note: Machine-specific options (see Table 2-13) can also affect optimization.

18

Using the C/C++ Compiler SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

www.ti.com

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-3. Advanced Optimization Options®

Option Alias Effect Section
--auto_inline=[size] -0i Sets automatic inlining size (--opt_level=3 only). If size is not Section 3.7
specified, the default is 1.
--call_assumptions=0 -op0 Specifies that the module contains functions and variables that are Section 3.3.1
called or modified from outside the source code provided to the
compiler
--call_assumptions=1 -opl Specifies that the module contains variables modified from outside Section 3.3.1
the source code provided to the compiler but does not use
functions called from outside the source code
--call_assumptions=2 -op2 Specifies that the module contains no functions or variables that Section 3.3.1
are called or modified from outside the source code provided to the
compiler (default)
--call_assumptions=3 -op3 Specifies that the module contains functions that are called from Section 3.3.1
outside the source code provided to the compiler but does not use
variables modified from outside the source code
--gen_opt_info=0 -on0 Disables the optimization information file Section 3.2.2
--gen_opt_info=1 -onl Produces an optimization information file Section 3.2.2
--gen_opt_info=2 -on2 Produces a verbose optimization information file Section 3.2.2
--optimizer_interlist -0s Interlists optimizer comments with assembly statements Section 3.8
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions Section 2.14
--single_inline Inlines functions that are only called once -
--aliased_variables -ma Assumes variables are aliased Section 3.5
@ Note: Machine-specific options (see Table 2-13) can also affect optimization.
Table 2-4. Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation of Section 2.3.5
debug information no longer impacts optimization. Therefore, Section 3.9
generating debug information is enabled by default. If you explicitly
use the -g option but do not specify an optimization level, no
optimization is performed.
--symdebug:none Disables all symbolic debugging Section 2.3.5
Section 3.9
--symdebug:skeletal (Deprecated; has no effect.)
--optimize_with_debug -mn (Deprecated; has no effect.)
Table 2-5. Advanced Debug Options
Option Alias Effect Section
--symdebug:keep_all_types Keep unreferenced type information Section 2.3.5
Table 2-6. Include Options
Option Alias Effect Section
--include_path=directory -1 Defines #include search path Section 2.6.2.1
--preinclude=filename Includes filename at the beginning of compilation Section 2.3.3
Table 2-7. ULP Advisor Options
Option Alias Effect Section
--advice:power[={alljnone|rule}] Enables checking of the specified ULP Advisor rules. (Default is all.) Section 2.3.3
--advice:power_severity={error| Sets the diagnostic severity for ULP Advisor rules Section 2.3.3

warning|remark|suppress}

SLAU132H-June 2013
Submit Documentation Feedback

Using the C/C++ Compiler

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

Changing the Compiler's Behavior with Options

TEXAS
INSTRUMENTS

www.ti.com

Table 2-8. Control Options

Option Alias Effect Section
--compile_only -C Disables linking (negates --run_linker) Section 4.1.3
--help -h Prints (on the standard output device) a description of the options Section 2.3.2
understood by the compiler.
--run_linker -z Enables linking Section 2.3.2
--skip_assembler -n Compiles only Section 2.3.2
Table 2-9. Language Options
Option Alias Effect Section
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.7
--create_pch=filename Creates a precompiled header file with the name specified Section 2.5
--embedded_cpp -pe Enables embedded C++ mode Section 5.15.3
--exceptions Enables C++ exception handling Section 5.7
--extern_c_can_throw Allow extern C functions to propagate exceptions (EABI only) -
--float_operations_allowed={none| Restricts the types of floating point operations allowed. Section 2.3.3
all|32|64}
--gcc Enables support for GCC extensions. Equivalent to the -- Section 5.16
relaxed_ansi option.
--gen_acp_raw -pl Generates a raw listing file Section 2.10
--gen_acp_xref -px Generates a cross-reference listing file Section 2.9
--keep_unneeded_statics Keeps unreferenced static variables. Section 2.3.3
--kr_compatible -pk Allows K&R compatibility. Applies only to C code, not to C++ code. Section 5.15.1
The --strict_ansi option cannot be used with the --kr_compatible
option.
--multibyte_chars -pc Enables support for multibyte character sequences in comments, -
string literals and character constants. If you use multibyte
characters in your source code, enable this option.
--no_inlining -pi Disables definition-controlled inlining (but --opt_level=3 (or -O3) Section 2.11
optimizations still perform automatic inlining)
--no_intrinsics -pn Disables intrinsic functions. No compiler-supplied intrinsic functions -
will be predefined. Intrinsic functions can be enabled or disabled in
both strict and relaxed ANSI mode. The --no_intrinsics setting has no
effect on the --strict_ansi setting, and vice versa.
--pch Creates or uses precompiled header files Section 2.5
--pch_dir=directory Specifies the path where the precompiled header file resides Section 2.5.2
--pch_verbose Displays a message for each precompiled header file that is Section 2.5.3
considered but not used
--program_level_compile -pm Combines source files to perform program-level optimization Section 3.3
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. Section 5.15.2
--rtti -rtti Enables C++ run-time type information (RTTI) —
--static_template_instantiation Instantiate all template entities with internal linkage —
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this Section 5.15.2

--use_pch=filename

mode, language extensions that conflict with ANSI/ISO C/C++ are
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are

reported as errors. Violations that are considered discretionary may

be reported as warnings instead.
Specifies the precompiled header file to use for this compilation

Section 2.5.2

20 Using the C/C++ Compiler

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-10. Parser Preprocessing Options

Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 2.6.7
output, writes a list of dependency lines suitable for input to a
standard make utility
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 2.6.8
output, writes a list of files included with the #include directive
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user- Section 2.6.9
defined macros to a file with the same name as the input but with a
.pp extension.
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 2.6.3
with the same name as the input but with a .pp extension.
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 2.6.5
the comments, to a file with the same name as the input but with a
.pp extension.
--preproc_with_compile -ppa Continues compilation after preprocessing Section 2.6.4
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line- Section 2.6.6
control information (#line directives) to a file with the same name as
the input but with a .pp extension.
Table 2-11. Predefined Symbols Options
Option Alias Effect Section
--define=name[=def] -D Predefines name Section 2.3.2
--undefine=name -U Undefines name Section 2.3.2
Table 2-12. Diagnostics Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits -
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning Section 2.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on)
--display_error_number -pden Displays a diagnostic's identifiers along with its text Section 2.7.1
--emit_warnings_as_errors -pdew Treat warnings as errors Section 2.7.1
--issue_remarks -pdr Issues remarks (nonserious warnings) Section 2.7.1
--no_warnings -pdw Suppresses warning diagnostics (errors are still issued) Section 2.7.1
--quiet -q Suppresses progress messages (quiet) --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 2.7.1
this number of errors. (The default is 100.)
--super_quiet -qq Super quiet mode --
--tool_version -version Displays version number for each tool --
--verbose Display banner and function progress information --
--verbose_diagnostics -pdv Provides verbose diagnostics that display the original source with Section 2.7.1
line-wrap
--write_diagnostics_file -pdf Generates a diagnostics information file. Compiler only option. Section 2.7.1

SLAU132H-June 2013
Submit Documentation Feedback

Using the C/C++ Compiler

Copyright © 2013, Texas Instruments Incorporated

21

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

Changing the Compiler's Behavior with Options

TEXAS
INSTRUMENTS

www.ti.com

Table 2-13. Run-Time Model Options

Option Alias Effect Section
--common={on|off} On by default when compiling with EABI. No effect with COFF. Section 2.3.4
When on, uninitialized file scope variables are emitted as common
symbols. When off, common symbols are not created.
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic Section 2.3.3
--gen_func_subsections={on|off} Puts each function in a separate subsection in the object file Section 4.2.1
--global_register={r4|r5} Reserves register for use by user
--large_memory_model -ml Uses a large memory model when compiling for the MSP430X. Section 2.3.4
(Deprecated)
—-plain_char={signed|unsigned} -mc Changes variables of type char from unsigned to signed Section 2.3.4
—-silicon_errata={errata} Generates code to work around the specified silicon errata
--small_enum Uses the smallest possible size for the enumeration type Section 2.3.4
Table 2-14. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks Section 2.14
--entry_parm={none|name| Specifies the parameters to the function to the --entry_hook option Section 2.14
address}
--exit_hook[=name] Enables exit hooks Section 2.14
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option Section 2.14
Table 2-15. Library Function Assumptions Options
Option Alias Effect Section
--printf_support={nofloat|full| Enables support for smaller, limited versions of the printf function Section 2.3.3
minimal} family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions.
--std_lib_func_defined -ol1 or -oL1 Informs the optimizer that your file declares a standard library Section 3.2.1
function
--std_lib_func_not_defined -0l2 or -oL2 Informs the optimizer that your file does not declare or alter library Section 3.2.1
functions. Overrides the -0l0 and -ol1 options (default).
--std_lib_func_redefined -0l0 or -oL0 Informs the optimizer that your file alters a standard library function ~ Section 3.2.1

22 Using the C/C++ Compiler

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-16. Assembler Options

Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file Section 2.3.11
--asm_listing -al Generates an assembly listing file Section 2.3.11
--c_src_interlist -SS Interlists C source and assembly statements Section 2.12
Section 3.8
--src_interlist -s Interlists optimizer comments (if available) and assembly source Section 2.3.2
statements; otherwise interlists C and assembly source statements

--absolute_listing -aa Enables absolute listing Section 2.3.11
--asm_define=name[=def] -ad Sets the name symbol Section 2.3.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies Section 2.3.11
--asm_includes -api Performs preprocessing; lists only included #include files Section 2.3.11
--asm_undefine=name -au Undefines the predefined constant name Section 2.3.11
--copy_file=filename -ahc Copies the specified file for the assembly module Section 2.3.11
--cross_reference -ax Generates the cross-reference file Section 2.3.11
--include_file=filename -ahi Includes the specified file for the assembly module Section 2.3.11
--no_const_clink Stops generation of .clink directives for const global arrays. Section 2.3.3
--output_all_syms -as Puts labels in the symbol table Section 2.3.11
--Syms_ignore_case -ac Makes case insignificant in assembly source files Section 2.3.11

Table 2-17. File Type Specifier Options

Option Alias Effect Section

--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 2.3.7
extension. By default, the compiler and assembler treat .asm files as
assembly source files.

--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By Section 2.3.7
default, the compiler treats .c files as C source files.

--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 2.3.7
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.

--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 2.3.7
By default, the compiler and linker treat .obj files as object code files.

Table 2-18. Directory Specifier Options

Option Alias Effect Section

--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler Section 2.3.10
uses the .obj directory.

--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses Section 2.3.10
the current directory.

--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file Section 2.3.10
directory By default, the compiler uses the .obj directory.

--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the Section 2.3.10
current directory.

--output_file=filename -fe Specifies a compilation output file name; can override -- Section 2.3.10
obj_directory.

--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses Section 2.3.10
the current directory.

--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the Section 2.3.10

current directory.

SLAU132H-June 2013
Submit Documentation Feedback

Using the C/C++ Compiler

Copyright © 2013, Texas Instruments Incorporated

23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-19. Default File Extensions Options

Option Alias Effect Section
--asm_extension=[.]Jextension -ea Sets a default extension for assembly source files Section 2.3.9
--c_extension=[.]Jextension -ec Sets a default extension for C source files Section 2.3.9
--cpp_extension=[.]Jextension -ep Sets a default extension for C++ source files Section 2.3.9
--listing_extension=[.]Jextension -es Sets a default extension for listing files Section 2.3.9
--obj_extension=[.]Jextension -eo Sets a default extension for object files Section 2.3.9
Table 2-20. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Section 2.3.2
Multiple -@ instances can be used.
Table 2-21. MISRA-C:2004 Options
Option Alias Effect Section
--check_misra[={all|required| Enables checking of the specified MISRA-C:2004 rules. Default is Section 2.3.3
advisory|none|rulespec}] all.
--misra_advisory={error|warning| Sets the diagnostic severity for advisory MISRA-C:2004 rules Section 2.3.3
remark|suppress}
--misra_required={error|warning| Sets the diagnostic severity for required MISRA-C:2004 rules Section 2.3.3

remark|suppress}

24 Using the C/C++ Compiler

SLAU132H—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

2.3.1 Linker Options

The following tables list the linker options. See Chapter 4 of this document and the MSP430 Assembly

Language Tools User's Guide for details on these options.

Table 2-22. Linker Basic Options

Option Alias Description

--run_linker 4 Enables linking.

--output_file=file -0 Names the executable output file. The default filename is a.out.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in filename

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the
stack size. Default = 128 bytes

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a
global symbol that specifies the heap size. Default = 128 bytes

Table 2-23. File Search Path Options

Option Alias Description

--library=file -l Names an archive library or link command file as linker input

--search_path=pathname -1 Alters library-search algorithms to look in a directory named with pathname before
looking in the default location. This option must appear before the --library option.

--priority -priority Satisfies unresolved references by the first library that contains a definition for that
symbol

--reread_libs -X Forces rereading of libraries, which resolves back references

--disable_auto_rts

Disables the automatic selection of a run-time-support library

Table 2-24. Command File Preprocessing Options

Option Alias Description
--define=name=value Predefines name as a preprocessor macro.
--undefine=name Removes the preprocessor macro name.
--disable_pp Disables preprocessing for command files

Table 2-25. Diagnostic Options
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error
--diag_remark=num Categorizes the diagnostic identified by num as a remark
--diag_suppress=num Suppresses the diagnostic identified by num
--diag_warning=num Categorizes the diagnostic identified by num as a warning
--display_error_number Displays a diagnostic's identifiers along with its text
--emit_warnings_as_errors -pdew Treat warnings as errors
--issue_remarks Issues remarks (nonserious warnings)
--no_demangle Disables demangling of symbol names in diagnostics
--no_warnings Suppresses warning diagnostics (errors are still issued)
--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The

default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap
--warn_sections -w Displays a message when an undefined output section is created

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Using the C/C++ Compiler

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-26. Linker Output Options

Option Alias Description

--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --absolute_exe
nor --relocatable is specified, the linker acts as if --absolute_exe were specified.

--ecc:data_error Inject specified errors into the output file for testing

--ecc:ecc_error Inject specified errors into the Error Correcting Code (ECC) for testing

--mapfile_contents=attribute Controls the information that appears in the map file.

--relocatable -r Produces a nonexecutable, relocatable output object file

--rom Creates a ROM object

--run_abs -abs Produces an absolute listing file

--xml_link_info=file

Generates a well-formed XML file containing detailed information about the result of a
link

Table 2-27. Symbol Management Options

Option Alias Description

--entry_point=symbol -e If_DIefines a global symbol that specifies the primary entry point for the executable object
ile

--globalize=pattern Changes the symbol linkage to global for symbols that match pattern

--hide=pattern Hides symbols that match the specified pattern

--localize=pattern Make the symbols that match the specified pattern local

--make_global=symbol -g Makes symbol global (overrides -h)

--make_static -h Makes all global symbols static

--n0_sym_merge -b Disables merge of symbolic debugging information in COFF object files

--no_symtable -s Strips symbol table information and line number entries from the executable object file

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions

--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with
references to the defname symbol. The --symbol_map option is now supported when
used with --opt_level=4.

--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol

--unhide=pattern

Excludes symbols that match the specified pattern from being hidden

Table 2-28. Run-Time Environment Options

Option Alias Description

--arg_size=size --args Reserve size bytes for the argc/argv memory area

--cinit_hold_wdt={on|off} Link in an RTS auto-initialization routine that either holds (on) or does not hold (off) the
watchdog timer during cinit auto-initialization. See Section 4.3.5.

--fill_value=value -f Sets default fill value for holes within output sections

--ram_model -cr Initializes variables at load time

--rom_model -C Autoinitializes variables at run time

--use_hw_mpy[={16|32|F5}]

Replaces all references to the default integer/long multiply routine with the version of the
multiply routine that uses the hardware multiplier support.

Table 2-29. Link-Time Optimization Options

Option

Description

--cinit_compression[=compression_kind]

--copy_compression[=compression_kind]

Specifies the type of compression to apply to the c auto initialization data. Default is rle.
Compresses data copied by linker copy tables. Default is rle.

26 Using the C/C++ Compiler

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Compiler's Behavior with Options
Table 2-30. Miscellaneous Options
Option Alias Description
--disable_clink A Disables conditional linking of COFF object files
--linker_help [-]-help Displays information about syntax and available options
--preferred_order=function Prioritizes placement of functions
--strict_compatibility[=off|on] Performs more conservative and rigorous compatibility checking of input object files.

Default is on.

2.3.2 Frequently Used Options
Following are detailed descriptions of options that you will probably use frequently:

--Cc_src_interlist Invokes the interlist feature, which interweaves original C/C++ source
with compiler-generated assembly language. The interlisted C
statements may appear to be out of sequence. You can use the interlist
feature with the optimizer by combining the --optimizer_interlist and --
c_src_interlist options. See Section 3.8. The --c_src_interlist option can
have a negative performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. You can use this option
to avoid limitations on command line length or C style comments
imposed by the host operating system. Use a # or ; at the beginning of a
line in the command file to include comments. You can also include
comments by delimiting them with /* and */. To specify options, surround

hyphens with quotation marks. For example, "--"quiet.

You can use the --cmd_file option multiple times to specify multiple files.
For instance, the following indicates that file3 should be compiled as
source and filel and file2 are --cmd_file files:
cl430 --cmd_file=filel --cmd_file=File2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which
specifies linking. The --compile_only option's short form is -c. Use this
option when you have --run_linker specified in the MSP430_C_OPTION
environment variable and you do not want to link. See Section 4.1.3.

--define=name[=def] Predefines the constant name for the preprocessor. This is equivalent to
inserting #define name def at the top of each C source file. If the
optional[=def] is omitted, the name is set to 1. The --define option's short
formis -D.

If you want to define a quoted string and keep the quotation marks, do
one of the following:

e For Windows, use --define=name="\"string def\
define=car="\"sedan\""

e For UNIX, use --define=name=
define=car="'sedan"

» For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

--help Displays the syntax for invoking the compiler and lists available options.
If the --help option is followed by another option or phrase, detailed
information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for
#include files. The --include_path option's short form is -I. You can use
this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a
directory name, the preprocessor ignores the --include_path option. See
Section 2.6.2.1.

. For example, --

string def". For example, --

SLAU132H-June 2013 Using the C/C++ Compiler 27

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Changing the Compiler's Behavior with Options www.ti.com
--keep_asm Retains the assembly language output from the compiler or assembly
optimizer. Normally, the compiler deletes the output assembly language
file after assembly is complete. The --keep_asm option's short form is -k.
--quiet Suppresses banners and progress information from all the tools. Only
source filenames and error messages are output. The --quiet option's
short form is -q.
--run_linker Runs the linker on the specified object files. The --run_linker option and

--skip_assembler

--src_interlist

--tool_version

--undefine=name

--verbose

its parameters follow all other options on the command line. All
arguments that follow --run_linker are passed to the linker. The --
run_linker option's short form is -z. See Section 4.1.

Compiles only. The specified source files are compiled but not
assembled or linked. The --skip_assembler option's short form is -n. This
option overrides --run_linker. The output is assembly language output
from the compiler.

Invokes the interlist feature, which interweaves optimizer comments or
C/C++ source with assembly source. If the optimizer is invoked (--
opt_level=n option), optimizer comments are interlisted with the
assembly language output of the compiler, which may rearrange code
significantly. If the optimizer is not invoked, C/C++ source statements are
interlisted with the assembly language output of the compiler, which
allows you to inspect the code generated for each C/C++ statement. The
--src_interlist option implies the --keep_asm option. The --src_interlist
option's short form is -s.

Prints the version number for each tool in the compiler. No compiling
occurs.

Undefines the predefined constant name. This option overrides any --
define options for the specified constant. The --undefine option's short
formis -U.

Displays progress information and toolset version while compiling.
Resets the --quiet option.

2.3.3 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--advice:power={alljnone|
rulespec}

Enables checking code against MSP430 ULP (ultra low power)
Advisor rules for possible power inefficiencies. More detailed
information can be found at www.ti.com/ulpadvisor. The rulespec
parameter is a comma-separated list of specifiers. See Section 5.4 for
details.

--advice:power_severity={error| Sets the diagnostic severity for ULP Advisor rules.

warning|remark|suppress}
--check_misra={all|required]|
advisory|none|rulespec}

--float_operations_allowed=
{noneJall|32|64}

Displays the specified amount or type of MISRA-C documentation.
The rulespec parameter is a comma-separated list of specifiers. See
Section 5.3 for details.

Restricts the type of floating point operations allowed in the
application. The default is all. If set to none, 32, or 64, the application
is checked for operations that will be performed at runtime. For
example, declared variables that are not used will not cause a
diagnostic. The checks are performed after relaxed mode
optimizations have been performed, so illegal operations that are
completely removed result in no diagnostics.

28 Using the C/C++ Compiler

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/ulpadvisor
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

--fp_mode={relaxed|strict}

--fp_reassoc={on]off}

--keep_unneeded_statics

--no_const_clink

--misra_advisory={error|
warning|remark|suppress}

--misra_required={error|
warning|remark|suppress}

The default floating-point mode is strict. Relaxed floating-point mode
causes double-precision floating-point computations and storage to
be converted to single-precision floating-point or integers where
possible. This behavior does not conform with 1ISO, but it results in
faster code, with some loss in accuracy. The following specific
changes occur in relaxed mode:

« If the result of a double-precision floating-point expression is
assigned to a single-precision floating-point or an integer or
immediately used in a single-precision context, the computations in
the expression are converted to single-precision computations.
Double-precision constants in the expression are also converted to
single-precision if they can be correctly represented as single-
precision constants.

« Calls to double-precision functions in math.h are converted to their
single-precision counterparts if all arguments are single-precision
and the result is used in a single-precision context. The math.h
header file must be included for this optimization to work.

« Division by a constant is converted to inverse multiplication.

In the following examples, iN=integer variable, fN=float variable, and
dN=double variable:

il fl + f2 * 5.0 -> +, * are float, 5.0 is converted to 5.0Ff
il dl + d2 * d3 -> +, * are float

Tl f2 + f3 * 1.1; -> +, * are float, 1.1 is converted to 1.1f

To enable relaxed floating-point mode use the --fp_mode=relaxed
option, which also sets --fp_reassoc=on. To disable relaxed floating-
point mode use the --fp_mode=strict option, which also sets --
fp_reassoc=off.

If --strict_ansi is specified, --fp_mode=strict is set automatically. You
can enable the relaxed floating-point mode with strict ANSI mode by
specifying --fp_mode=relaxed after --strict_ansi.

Enables or disables the reassociation of floating-point arithmetic. If --
strict_ansi is set, --fp_reassoc=off is set since reassociation of
floating-point arithmetic is an ANSI violation.

Because floating-point values are of limited precision, and because
floating-point operations round, floating-point arithmetic is neither
associative nor distributive. For instance, (1 + 3e100) - 3e100 is not
equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the
compiler cannot, in general, reassociate floating-point operations.
Using --fp_reassoc=on allows the compiler to perform the algebraic
reassociation, at the cost of a small amount of precision for some
operations.

Prevents the compiler from deleting unreferenced static variables.
The parser by default remarks about and then removes any
unreferenced static variables. The --keep_unneeded_statics option
keeps the parser from deleting unreferenced static variables and any
static functions that are referenced by these variable definitions.
Unreferenced static functions will still be removed.

Tells the compiler to not generate .clink directives for const global
arrays. By default, these arrays are placed in a .const subsection and
conditionally linked.

Sets the diagnostic severity for advisory MISRA-C:2004 rules.

Sets the diagnostic severity for required MISRA-C:2004 rules.

SLAU132H-June 2013
Submit Documentation Feedback

Using the C/C++ Compiler 29

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

--preinclude=filename

--printf_support={full|
nofloat|minimal}

2.3.4 Run-Time Model Options

Includes the source code of filename at the beginning of the
compilation. This can be used to establish standard macro definitions.
The filename is searched for in the directories on the include search
list. The files are processed in the order in which they were specified.

Enables support for smaller, limited versions of the printf function
family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions. The valid values are:

« full: Supports all format specifiers. This is the default.

 nofloat: Excludes support for printing and scanning floating-point
values. Supports all format specifiers except %a, %A, %f, %F, %g,
%G, %e, and %E.

e minimal: Supports the printing and scanning of integer, char, or
string values without width or precision flags. Specifically, only
the %%, %d, %0, %c, %s, and %x format specifiers are supported

There is no run-time error checking to detect if a format specifier is
used for which support is not included. The --printf_support option
precedes the --run_linker option, and must be used when performing
the final link.

These options are specific to the MSP430 toolset. See the referenced sections for more information.
MSP430-specific assembler options are listed in Section 2.3.11.

--abi={eabi|coffabi}

--common={on|off}

--code_model={large|small}

--data_model={restricted|large|
small}

--large_memory_model
--near_data={globals|none}

--plain_char={unsigned|signed}

Specifies application binary interface (ABI). Default support is for
COFF ABI. See Section 2.13.

All code in an EABI application must be built for EABI. Make sure all
your libraries are available in EABI mode before migrating your
existing COFF ABI systems to MSP430 EABI.

When on (the default with EABI), uninitialized file scope variables are
emitted as common symbols. When off, common symbols are not
created. The benefit of allowing common symbols to be created is
that generated code can remove unused variables that would
otherwise increase the size of the .bss section. (Uninitialized variables
of a size larger than 32 bytes are separately optimized through
placement in separate subsections that can be omitted from a link.)
Variables cannot be common symbols if they are assigned to a
section other than .bss. This option has no effect with COFF.

Specifies the code memory model: small (16-bit function pointers and
low 64K memory) or large (20-bit function pointers and 1MB address
space). See Section 6.1.1 for details.

Specifies the data memory model: small (16-bit data pointers and low
64K memory), restricted (32-bit data pointers, objects restricted to
64K, and 1IMB memory), and large (32-bit data pointers and 1MB
memory). See Section 6.1.2 for details.

This option is deprecated. Use --data_model=large.

Specifies that global read/write data must be located in the first 64K
of memory. See Section 6.1.3 for details.

Specifies how to treat C/C++ plain char variables, default is unsigned.

30 Using the C/C++ Compiler

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Compiler's Behavior with Options
--silicon_version Selects the instruction set version. Using --silicon_version=mspx

generates code for MSP430X devices (20-bit code addressing). Using
--silicon_version=msp generates code for 16-bit MSP430 devices.

Modules assembled/compiled for 16-bit MSP430 devices are not
compatible with modules that are assembled/compiled for 20-bit
MSPx devices. The linker generates errors if an attempt is made to
combine incompatible object files.

--small_enum By default, the MSP430 compiler uses 16 bits for every enum when
using the COFF ABI and a varying size when using EABI. When you
use the --small_enum option, the smallest possible byte size for the
enumeration type is used. For example, enum example_enum {first =
-128, second = 0, third = 127} uses only one byte instead of 16 bits
when the --small_enum option is used.

2.3.5 Symbolic Debugging Options

The following options are used to select symbolic debugging:

--symdebug:dwarf (Default) Generates directives that are used by the C/C++ source-level
debugger and enables assembly source debugging in the assembler.
The --symdebug:dwarf option's short form is -g. See Section 3.9.

For more information on the DWARF debug format, see The DWARF
Debugging Standard.

--symdebug:keep_all_types Affects the ability to view unused types in the debugger that are from a
COFF executable. Use this option to view the details of a type that is
defined but not used to define any symbols. Such unused types are not
included in the debug information by default for COFF. However, in EABI
mode, all types are included in the debug information and this option has

no effect.
--symdebug:none Disables all symbolic debugging output. This option is not recommended;
it prevents debugging and most performance analysis capabilities.
--symdebug:skeletal Deprecated. Has no effect.

See Section 2.3.12 for a list of deprecated symbolic debugging options.

2.3.6 Specifying Filenames

The input files that you specify on the command line can be C source files, C++ source files, assembly
source files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type

.asm, .abs, or .s* (extension begins with s) Assembly source

.C C source

.C Depends on operating system
.cpp, .CXX, .cC C++ source

.obj .o* .dll .so Object

NOTE: Case Sensitivity in Filename Extensions

Case sensitivity in filename extensions is determined by your operating system. If your
operating system is not case sensitive, a file with a .C extension is interpreted as a C file. If
your operating system is case sensitive, a file with a .C extension is interpreted as a C++ file.

SLAU132H—-June 2013 Using the C/C++ Compiler 31

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior with Options www.ti.com

2.3.7

2.3.8

239

For information about how you can alter the way that the compiler interprets individual filenames, see
Section 2.3.7. For information about how you can alter the way that the compiler interprets and names the
extensions of assembly source and object files, see Section 2.3.10.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by
system; use the appropriate form listed in your operating system manual. For example, to compile all of
the files in a directory with the extension .cpp, enter the following:

cl430 *.cpp

NOTE: No Default Extension for Source Files is Assumed

If you list a filename called example on the command line, the compiler assumes that the
entire filename is example not example.c. No default extensions are added onto files that do
not contain an extension.

Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use
are different from those recognized by the compiler, you can use the filename options to specify the type
of file. You can insert an optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy,
use the --asm_file and --c_file options to force the correct interpretation:

cl430 --c_file=file.s --asm_file=assy

You cannot use the filename options with wildcard specifications.

Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler
treats files with a .c extension as C files. See Section 2.3.9 for more information about filename extension
conventions.

Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they
apply to on the command line. You can use wildcard specifications with these options. An extension can
be up to nine characters in length. Select the appropriate option for the type of extension you want to

specify:

--asm_extension=new extension for an assembly language file
--C_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--0bj_extension=new extension for an object file

32

Using the C/C++ Compiler SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

The following example assembles the file fit.rrr and creates an object file hamed fit.o:
cl430 --asm_extension=.rrr --obj_extension=.0 fit.rrr

The period (.) in the extension is optional. You can also write the example above as:
cl430 --asm_extension=rrr --obj_extension=o0 fit.rrr

2.3.10 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the
current directory. If you want the compiler program to place these files in different directories, use the

following options:

--abs_directory=directory

--asm_directory=directory

--list_directory=directory

--obj_directory=directory

--output_file=filename

--pp_directory=directory

--temp_directory=directory

2.3.11 Assembler Options

Specifies the destination directory for absolute listing files. The default is

to use the same directory as the object file directory. For example:
cl430 --abs_directory=d:\abso_list

Specifies a directory for assembly files. For example:
cl430 --asm_directory=d:\assembly

Specifies the destination directory for assembly listing files and cross-
reference listing files. The default is to use the same directory as the
object file directory. For example:

cl430 --list_directory=d:\listing

Specifies a directory for object files. For example:
cl430 --obj_directory=d:\object
Specifies a compilation output file name; can override --obj_directory . For

example:
cl430 --output_file=transfer

Specifies a preprocessor file directory for object files (default is .). For
example:
cl430 --pp_directory=d:\preproc

Specifies a directory for temporary intermediate files. For example:
cl430 --temp_directory=d:\temp

Following are assembler options that you can use with the compiler. For more information, see the
MSP430 Assembly Language Tools User's Guide.

--absolute_listing

--asm_define=name[=def]

--asm_dependency

Generates a listing with absolute addresses rather than section-relative
offsets.

Predefines the constant name for the assembler; produces a .set directive
for a constant or an .arg directive for a string. If the optional [=def] is
omitted, the name is set to 1. If you want to define a quoted string and
keep the quotation marks, do one of the following:

e For Windows, use --asm_define=name="\"string def\
-asm_define=car="\"sedan\"""

» For UNIX, use --asm_define=name="'string def". For example: --
asm_define=car="""sedan""

. For example: -

» For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

Performs preprocessing for assembily files, but instead of writing
preprocessed output, writes a list of dependency lines suitable for input to
a standard make utility. The list is written to a file with the same name as
the source file but with a .ppa extension.

SLAU132H-June 2013
Submit Documentation Feedback

Using the C/C++ Compiler 33

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Controlling the Compiler Through Environment Variables

13 TEXAS
INSTRUMENTS

www.ti.com

--asm_includes

--asm_listing
--asm_undefine=name

--copy_file=filename

--cross_reference
--include_file=filename

--output_all_syms

--syms_ignore_case

2.3.12 Deprecated Options

Performs preprocessing for assembily files, but instead of writing
preprocessed output, writes a list of files included with the #include
directive. The list is written to a file with the same name as the source file
but with a .ppa extension.

Produces an assembly listing file.

Undefines the predefined constant name. This option overrides any --
asm_define options for the specified name.

Copies the specified file for the assembly module; acts like a .copy
directive. The file is inserted before source file statements. The copied file
appears in the assembly listing files.

Produces a symbolic cross-reference in the listing file.

Includes the specified file for the assembly module; acts like an .include
directive. The file is included before source file statements. The included
file does not appear in the assembly listing files.

Puts labels in the symbol table. Label definitions are written to the COFF
symbol table for use with symbolic debugging.

Makes letter case insignificant in the assembly language source files. For
example, --syms_ignore_case makes the symbols ABC and abc
equivalent. If you do not use this option, case is significant (this is the
default).

Several compiler options have been deprecated. The compiler continues to accept these options, but they
are not recommended for use. Future releases of the tools will not support these options. Table 2-31 lists
the deprecated options and the options that have replaced them.

Table 2-31. Compiler Backwards-Compatibility Options Summary

Old Option Effect Option to Use Instead
-gp Allowed function-level profiling of optimized code --symdebug:dwarf or -g
-gw Enabled symbolic debugging using the DWARF debugging format --symdebug:dwarf or -g

--symdebug:skeletal
--optimize_with_debug

Enabled minimal debugging. Now has no effect.

--symdebug:none

Enabled optimization with debugging. Now this is default behavior.

Option has no effect.

The --large_memory_model (-ml) option is deprecated for MSP430. Use --data_model=large instead.

Controlling the Compiler Through Environment Variables

An environment variable is a system symbol that you define and assign a string to. Setting environment
variables is useful when you want to run the compiler repeatedly without re-entering options, input

filenames, or pathnames.

NOTE: C_OPTION and C_DIR

The C_OPTION and C_DIR environment variables are deprecated. Use the device-specific
environment variables instead.

Setting Default Compiler Options (MSP430_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default options using the
MSP430_C_OPTION environment variable. If you do this, the compiler uses the default options and/or
input filenames that you name MSP430_C_OPTION every time you run the compiler.

Using the C/C++ Compiler

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Controlling the Compiler Through Environment Variables

24.2

Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and
the input filenames, it looks for the MSP430_C_OPTION environment variable and processes it.

The table below shows how to set the MSP430_C_OPTION environment variable. Select the command
for your operating system:

Operating System Enter
UNIX (Bourne shell) MSP430_C_OPTION=" option, [option, . . .]"; export MSP430_C_OPTION
Windows set MSP430_C_OPTION= option, [;option, . . .]

Environment variable options are specified in the same way and have the same meaning as they do on
the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++
source interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
MSP430_C_OPTION environment variable as follows:

set MSP430_C OPTION=--quiet --src_interlist --run_linker

In the following examples, each time you run the compiler, it runs the linker. Any options following --
run_linker on the command line or in MSP430_C_OPTION are passed to the linker. Thus, you can use the
MSP430_C_OPTION environment variable to specify default compiler and linker options and then specify
additional compiler and linker options on the command line. If you have set --run_linker in the environment
variable and want to compile only, use the compiler --compile_only option. These additional examples
assume MSP430_C_OPTION is set as shown above:

cl430 *c ; compiles and links
cl430 --compile_only *.c ; only compiles
cl430 *.c --run_linker Ink.cmd ; compiles and links using a command file

cl430 --compile_only *.c --run_linker Ink.cmd
; only compiles (--compile_only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see the Linker Description
chapter in the MSP430 Assembly Language Tools User's Guide.

Naming an Alternate Directory (MSP430_C_DIR)

The linker uses the MSP430_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) MSP430_C_DIR=" pathname, ; pathname, ;..."; export MSP430_C_DIR
Windows set MSP430_C_DIR= pathname, ; pathname, ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:
e Pathnames must be separated with a semicolon.

e Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after
the semicolon in the following is ignored:

set MSP430_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools

* Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set MSP430_C_DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset MSP430_C DIR
Windows set MSP430_C DIR=

SLAU132H—-June 2013 Using the C/C++ Compiler 35
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Precompiled Header Support www.ti.com
2.5 Precompiled Header Support
Precompiled header files may reduce the compile time for applications whose source files share a
common set of headers, or a single file which has a large set of header files. Using precompiled headers,
some recompilation is avoided thus saving compilation time.
There are two ways to use precompiled header files. One is the automatic precompiled header file
processing and the other is called the manual precompiled header file processing.
2.5.1 Automatic Precompiled Header
The option to turn on automatic precompiled header processing is: --pch. Under this option, the compile
step takes a shapshot of all the code prior to the header stop point, and dump it out to a file with suffix
.pch. This snapshot does not have to be recompiled in the future compilations of this file or compilations of
files with the same header files.
The stop point typically is the first token in the primary source file that does not belong to a preprocessing
directive. For example, in the following the stopping point is before int i:
#include "x.h"
#include "y.h"
int i;
Carefully organizing the include directives across multiple files so that their header files maximize common
usage can increase the compile time savings when using precompiled headers.
A precompiled header file is produced only if the header stop point and the code prior to it meet certain
requirements.
2.5.2 Manual Precompiled Header
You can manually control the creation and use of precompiled headers by using several command line
options. You specify a precompiled header file with a specific filename as follows:
--create_pch=filename
The --use_pch=filename option specifies that the indicated precompiled header file should be used for this
compilation. If this precompiled header file is invalid, if its prefix does not match the prefix for the current
primary source file for example, a warning is issued and the header file is not used.
If --create_pch=filename or --use_pch=filename is used with --pch_dir, the indicated filename, which can
be a path name, is tacked on to the directory name, unless the filename is an absolute path name.
The --create_pch, --use_pch, and --pch options cannot be used together. If more than one of these
options is specified, only the last one is applied. In manual mode, the header stop points are determined
in the same way as in automatic mode. The precompiled header file applicability is determined in the
same manner.
2.5.3 Additional Precompiled Header Options
The --pch_verbose option displays a message for each precompiled header file that is considered but not
used. The --pch_dir=pathname option specifies the path where the precompiled header file resides.
36 Using the C/C++ Compiler SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Preprocessor

2.6 Controlling the Preprocessor

This section describes specific features that control the preprocessor, which is part of the parser. A
general description of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard
C/C++ preprocessing functions, which are built into the first pass of the compiler. The preprocessor
handles:

* Macro definitions and expansions

» #include files

» Conditional compilation

» Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the
error occurred are printed along with a diagnostic message.

2.6.1 Predefined Macro Names
The compiler maintains and recognizes the predefined macro names listed in Table 2-32.

Table 2-32. Predefined MSP430 Macro Names

Macro Name Description

__DATE__® Expands to the compilation date in the form mmm dd yyyy

_ _FILE__® Expands to the current source filename

_ _LARGE_CODE_MODEL_ _ Defined if --code_model=large is specified

_ _LARGE_DATA_MODEL_ _ Defined if --data_model=large or ——data_model=restricted is specified

__LINE__® Expands to the current line number

_ _LONG_PTRDIFF_T_ _ Defined when --data_model=large is specified. Indicates ptrdiff_t is a long.

_ _MSP430_ _ Always defined

_ _MSP430X_ _ Defined if --silicon_version=mspx is specified

_ _MSP430X461X_ _ Defined if --silicon_version=mspx is specified

_ _PTRDIFF_T_TYPE_ _ Set to the type of ptrdiff_t. Determined by the --data_model option.

_ _signed_chars_ _ Defined if char types are signed by default (--plain_char=signed)

__SIZE_T_TYPE_ _ Set to the type of size_t. Determined by the --data_model option.

__STbCc__ @ Defined to indicate that compiler conforms to ISO C Standard. See Section 5.1 for
exceptions to ISO C conformance.

_ _STDC_VERSION_ _ C standard macro

__TI_COMPILER_VERSION_ _ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does

not contain a decimal. For example, version 3.2.1 is represented as 3002001. The
leading zeros are dropped to prevent the number being interpreted as an octal.

_ _TILEABIL_ _ Defined to 1 if the EABI is enabled (see Section 2.13); otherwise, it is undefined.

_ _TI_GNU_ATTRIBUTE_SUPPORT_ _ Defined if GCC extensions are enabled (the --gcc option is used); otherwise, it is
undefined.

_ _TI_STRICT_ANSI_MODE__ Defined if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it
is undefined.

_ _TI_STRICT_FP_MODE_ _ Defined to 1 if --fp_mode=strict is used (or implied); otherwise, it is undefined.

_ _TIME_ @ Expands to the compilation time in the form "hh:mm:ss"

_ _unsigned_chars_ _ Defined if char types are unsigned by default (default or —- plain_char=unsigned)

_ _UNSIGNED_LONG_SIZE_ T_ _ Defined when --data_model=large is specified. Indicates size_t is an unsigned long.

_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.

Regardless of any optimization, always undefined when --no_inlining is used.

@ Specified by the 1SO standard

SLAU132H—-June 2013 Using the C/C++ Compiler 37

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Controlling the Preprocessor www.ti.com

2.6.2

You can use the names listed in Table 2-32 in the same manner as any other defined name. For example,
printf ("%s %s" , __TIME__ , _ DATE_);

translates to a line such as:
printf ("%s %s'" , "13:58:17'", "Jan 14 1997");

The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can
be a complete pathname, partial path information, or a filename with no path information.

» If you enclose the filename in double quotes (" "), the compiler searches for the file in the following
directories in this order:

1. The directory of the file that contains the #include directive and in the directories of any files that
contain that file.

2. Directories named with the --include_path option.
3. Directories set with the MSP430_C_DIR environment variable.

» If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:

1. Directories named with the --include_path option.
2. Directories set with the MSP430_C_DIR environment variable.

See Section 2.6.2.1 for information on using the --include_path option. See Section 2.4.2 for more
information on input file directories.

2.6.2.1 Changing the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path
option's short form is -I. The format of the --include_path option is:

--include_path=directoryl [--include_path= directory?2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --
include_path option names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the directory information with the -
-include_path option. For example, assume that a file called source.c is in the current directory. The file
source.c contains the following directive statement:

#include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX ltools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter
UNIX cl430 --include_path=/tools/files source.c
Windows cl430 --include_path=c:\tools\files source.c
38 Using the C/C++ Compiler SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com Controlling the Preprocessor

2.6.3

264

2.6.5

2.6.6

NOTE: Specifying Path Information in Angle Brackets

If you specify the path information in angle brackets, the compiler applies that information
relative to the path information specified with --include_path options and the MSP430_C_DIR
environment variable.

For example, if you set up MSP430_C_DIR with the following command:

MSP430_C_DIR */usr/include;/usr/ucb™; export MSP430_C_DIR

or invoke the compiler with the following command:
cl430 --include_path=/usr/include file.c

and file.c contains this line:
#include <sys/proc.h>

the result is that the included file is in the following path:
/usr/include/sys/proc.h

Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an
fe“>(<at.ension of .pp. The compiler's preprocessing functions perform the following operations on the source

» Each source line ending in a backslash (\) is joined with the following line.

» Trigraph sequences are expanded.

+ Comments are removed.

» #include files are copied into the file.

» Macro definitions are processed.

e All macros are expanded.

« All other preprocessing directives, including #line directives and conditional compilation, are expanded.

Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your source
code. To override this feature and continue to compile after your source code is preprocessed, use the --
preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file
with a .pp extension, and compile your source code.

Generating a Preprocessed Listing File with Comments (--preproc_with_comment
Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp extension. Use the --
preproc_with_comment option instead of the --preproc_only option if you want to keep the comments.

Generating a Preprocessed Listing File with Line-Control Information (--
preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line
directives, use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only
and writes preprocessed output with line-control information (#line directives) to a file named as the
source file but with a .pp extension.

SLAU132H—-June 2013 Using the C/C++ Compiler 39
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Understanding Diagnostic Messages www.ti.com

2.6.7

2.6.8

2.6.9

2.7

Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only, but instead of writing preprocessed
output, writes a list of dependency lines suitable for input to a standard make utility. If you do not supply
an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension.

Generating a List of Files Included with the #include Directive (--preproc_includes
Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output,
writes a list of files included with the #include directive. If you do not supply an optional filename, the list is
written to a file with the same name as the source file but with a .pp extension.

Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not
supply an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension. Predefined macros are listed first and indicated by the comment /* Predefined */. User-defined
macros are listed next and indicated by the source filename.

Understanding Diagnhostic Messages

One of the primary functions of the compiler and linker is to report diagnostic messages for the source
program. A diagnostic message indicates that something may be wrong with the program. When the
compiler or linker detects a suspect condition, it displays a message in the following format:

"file.c", line n ; diagnostic severity : diagnostic message

"file.c" The name of the file involved

linen: The line number where the diagnostic applies

diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have a severity, as follows:

» Afatal error indicates a problem so severe that the compilation cannot continue. Examples of such
problems include command-line errors, internal errors, and missing include files. If multiple source files
are being compiled, any source files after the current one will not be compiled.

e An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may
continue, but object code is not generated.

A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For
example, the compiler emits a warning for an unused variable, because although an unused variable
does not affect program execution, its existence suggests that you might have meant to use it.
Compilation continues and object code is generated (if no errors are detected).

e Aremark is less serious than a warning. It may indicate something that is a potential problem in rare
cases, or the remark may be strictly informational. Compilation continues and object code is generated
(if no errors are detected). By default, remarks are not issued. Use the --issue_remarks compiler option
to enable remarks.

» Advice provides information about recommended usage. It is not provided in the same way as the
other diagnostic categories described here. Instead, it is only available in Code Composer Studio in the
Advice area, which is a tab that appears next to the Problems tab. This advice cannot be controlled or
accessed via the command line. The advice provided includes suggested settings for the --opt_level
and --opt_for_speed options. In addition, messages about suggested code changes from the ULP
(Ultra-Low Power) Advisor are provided in this tab.

Diagnostics are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch
break;

N

40

Using the C/C++ Compiler SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com Understanding Diagnostic Messages

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display
the source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the
position indicated by the ”* character) follows the message. If several diagnostics apply to one source line,
each diagnostic has the form shown; the text of the source line is displayed several times, with an
appropriate position indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric
identifier be included in the diagnostic message. When displayed, the diagnostic identifier also indicates
whether the diagnostic can have its severity overridden on the command line. If the severity can be
overridden, the diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is
present. For example:
"Test_name.c", line 7: error #64-D: declaration does not declare anything

struct {};

"Test_name.c", line 9: error #77: this declaration has no storage class or type specifier

XXXXX 3
n

Because errors are determined to be discretionary based on the severity in a specific context, an error can
be discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are
listed following the initial error message:
"test.c”, line 4: error: more than one instance of overloaded function "f"
matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)
f(1.5);
N

In some cases, additional context information is provided. Specifically, the context information is useful
when the front end issues a diagnostic while doing a template instantiation or while generating a
constructor, destructor, or assignment operator function. For example:

"test.c", line 7: error: "A::A(Q)" is inaccessible

B X;
N

detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

2.7.1 Controlling Diagnostics
The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostics. The
diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_error=num to recategorize
the diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_remark=num to
recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostics.

SLAU132H-June 2013 Using the C/C++ Compiler 41

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Understanding Diagnostic Messages www.ti.com

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate compile. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_warning=num to
recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostics.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is discretionary.
A discretionary diagnostic is one whose severity can be overridden. A
discretionary diagnostic includes the suffix -D; otherwise, no suffix is present.
See Section 2.7.

--emit_warnings_as__ Treats all warnings as errors. This option cannot be used with the --
errors no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.
--issue_remarks Issues remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).

--set_error_limit=num Sets the error limit to num, which can be any decimal value. The compiler
abandons compiling after this number of errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

--write_diagnostics_file Produces a diagnostics information file with the same source file name with an
.err extension. (The --write_diagnostics_file option is not supported by the
linker.)

2.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler.
You control the linker diagnostic messages in a similar manner.

int one();
int I;
int mainQ)
{
switch (1){
case 1;
return one ();
break;
default:
return O;
break;
3
T

If you invoke the compiler with the --quiet option, this is the result:

“err.c", line 9: warning: statement is unreachable
"err.c", line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at the end of each case arm to
avoid the fall-through condition, these warnings can be ignored. Using the --display_error_number option,
you can find out the diagnostic identifier for these warnings. Here is the result:

[err.c]

"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

42

Using the C/C++ Compiler SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS

INSTRUMENTS

www.ti.com Other Messages

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation now produces no diagnostic messages (because remarks are
disabled by default).

NOTE: You can suppress any non-fatal errors, but be careful to make sure you only suppress
diagnostic messages that you understand and are known not to affect the correctness of
your program.

2.8 Other Messages
Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability
to find specified files, are usually fatal. They are identified by the symbol >> preceding the message.
2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)
The --gen_acp_xref option generates a cross-reference listing file that contains reference information for
each identifier in the source file. (The --gen_acp_xref option is separate from --cross_reference, which is
an assembler rather than a compiler option.) The cross-reference listing file has the same name as the
source file with a .crl extension.
The information in the cross-reference listing file is displayed in the following format:
sym-id name X filename line number column number
sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:
D Definition
d Declaration (not a definition)
M Modification
A Address taken
U Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate
filename The source file
line number The line number in the source file
column number The column number in the source file
2.10 Generating a Raw Listing File (--gen_acp_raw Option)
The --gen_acp_raw option generates a raw listing file that can help you understand how the compiler is
preprocessing your source file. Whereas the preprocessed listing file (generated with the --preproc_only, --
preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options) shows a
preprocessed version of your source file, a raw listing file provides a comparison between the original
source line and the preprocessed output. The raw listing file has the same name as the corresponding
source file with an .rl extension.
The raw listing file contains the following information:
» Each original source line
» Transitions into and out of include files
» Diagnostics
» Preprocessed source line if nontrivial processing was performed (comment removal is considered
trivial; other preprocessing is nontrivial)
SLAU132H—-June 2013 Using the C/C++ Compiler 43

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Generating a Raw Listing File (--gen_acp_raw Option) www.ti.com

Each source line in the raw listing file begins with one of the identifiers listed in Table 2-33.

Table 2-33. Raw Listing File Identifiers

Identifier Definition
N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source
if nontrivial preprocessing occurs.
Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:

1 = entry into an include file
2 = exit from an include file

The --gen_acp_raw option also includes diagnostic identifiers as defined in Table 2-34.

Table 2-34. Raw Listing File Diagnostic Identifiers

Diagnostic Identifier Definition
E Error
F Fatal
R Remark
W Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S

filename

line number
column number
diagnostic

One of the identifiers in Table 2-34 that indicates the severity of the diagnostic
The source file

The line number in the source file

The column number in the source file

The message text for the diagnostic

Diagnostics after the end of file are indicated as the last line of the file with a column number of 0. When
diagnostic message text requires more than one line, each subsequent line contains the same file, line,
and column information but uses a lowercase version of the diagnostic identifier. For more information
about diagnostic messages, see Section 2.7.

44

Using the C/C++ Compiler

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Using Inline Function Expansion

2.11 Using Inline Function Expansion

When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point
of the call. This is known as inline function expansion, commonly called function inlining or just inlining.
Inline function expansion can speed up execution by eliminating function call overhead. This is particularly
beneficial for very small functions that are called frequently. Function inlining involves a tradeoff between
execution speed and code size, because the code is duplicated at each function call site. Large functions
that are called frequently are poor candidates for inlining.

Function inlining is triggered by the following situations:

» The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined
automatically, even though no function body exists.

* Use of the inline keyword or the equivalent __inline keyword. Functions declared with the inline
keyword may be inlined by the compiler if you set --opt_level=3 or greater. The inline keyword is a
suggestion from the programmer to the compiler. Even if your optimization level is high, inlining is still
optional for the compiler. The compiler decides whether to inline a function based on the length of the
function, the number of times it is called, your --opt_for_speed setting, and any contents of the function
that disqualify it from inlining (see Section 2.11.2). Functions can be inlined at --opt_level=3 if the
function body is visible in the same module or if -pm is also used and the function is visible in one of
the modules being compiled. Functions may be inlined at link time if the file containing the definition
and the call site were both compiled with --opt_level=4.

» Use of static inline functions. Functions defined as both static and inline are more likely to be inlined.

* When --opt_level=3 or greater is used, the compiler may automatically inline eligible functions even if
they are not declared as inline functions. The same list of decision factors listed for functions explicitly
defined with the inline keyword is used. For more information about automatic function inlining, see
Section 3.7

e The pragma FUNC_ALWAYS_INLINE forces a function to be inlined unless --opt_level=off.
e The pragma FUNC_CANNOT _INLINE prevents a function from being inlined.

NOTE: Function Inlining Can Greatly Increase Code Size

Function inlining increases code size, especially inlining a function that is called in a number
of places. Function inlining is optimal for functions that are called only from a small number
of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline
keyword in C++ code follow the C++ standard. The inline keyword is supported in relaxed C89 mode, but
because it is a language extension that could conflict with a strictly conforming program, the keyword is
disabled in strict ANSI C89 mode (when you use the --strict_ansi compiler option). If you want to define
inline functions while in strict ANSI C89 mode, use the alternate keyword _ _inline.

Compiler options that affect inlining are: --opt_level, --no_inlining, --auto_inline, -
remove_hooks_when_inlining, --single_inline, and -opt_for_speed.

NOTE: Using the --no_inlining Option with Level 3 Optimizations

The --no_inlining option turns off prioritizing inlining for functions declared with the inline
keyword. If you use --no_inlining with --opt_level=3 , automatic inlining is still performed.

2.11.1 Inlining Intrinsic Operators

The compiler has built-in function-like operations called intrinsics. Intrinsic operations look like function
calls, and can be implemented very efficiently with the target's instruction set. The compiler automatically
inlines the intrinsic operators of the target system by default. Inlining happens whether or not you use the
optimizer. Intrinsic ininling can be disabled with the --no_intrinsics compiler option.

For details about intrinsics, and a list of the intrinsics, see Section 6.7.1.
The abs function is considered an intrinsic operator.

SLAU132H—-June 2013 Using the C/C++ Compiler 45

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Using Inline Function Expansion www.ti.com

2.11.2

Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in

Section 2.11. In addition, there are several restrictions that can disqualify a function from being inlined by
automatic inlining or inline keyword-based inlining. The FUNC_ALWAYS_INLINE pragma overrides these
disqualifications, so you should be aware of situations that can cause problems if you are using the
FUNC_ALWAYS_INLINE pragma.

Has a FUNC_CANNOT_INLINE pragma

Is not defined in the current compilation unit and you are not using -O4 optimization
Never returns

Is a recursive or nonleaf function that exceeds the depth limit

Has a variable-length argument list

Has a different number of arguments than the call site

Has an argument whose type is incompatible with the corresponding call site argument
Has a class, struct, or union parameter

Contains a volatile local variable or argument

Contains local static variables but is not a static inline function.

Is not declared inline and contains an asm() statement that is not a comment

Is the main() function

Is an interrupt function

Is not declared inline and returns void but its return value is needed.

Is not declared inline and will require too much stack space for local array or structure variables.

Furthermore, inlining should be used for small functions or functions that are called in a few places
(though the compiler does not enforce this).

NOTE: Excessive Inlining Can Degrade Performance

Excessive inlining can make the compiler dramatically slower and degrade the performance
of generated code.

46

Using the C/C++ Compiler SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Using Interlist

2.12 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements into the assembly language
output of the compiler. The interlist feature enables you to inspect the assembly code generated for each
C statement. The interlist behaves differently, depending on whether or not the optimizer is used, and
depending on which options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the
interlist on a program called function.c, enter:

cl430 --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output
file. The output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between
the code generator and the assembler. It reads both the assembly and C/C++ source files, merges them,
and writes the C/C++ statements into the assembly file as comments.

Using the --c_src_interlist option can cause performance and/or code size degradation.
Example 2-1 shows a typical interlisted assembly file.

For more information about using the interlist feature with the optimizer, see Section 3.8.

Example 2-1. An Interlisted Assembly Language File

;* MSP430 C/C++ Codegen Unix v0.2.0 *
;* Date/Time created: Tue Jun 29 14:54:28 2004 *

.compiler_opts --mem_model:code=flat --mem_model:data=flat --symdebug:none
; acp430 -@/var/tmp/T1764/AAAV0aGVG

.sect " otext"

.align 2

.clink

-global main

;* FUNCTION NAME: main *
- % *
3* Regs Modified : SP,SR,r11,r12,r13,r14,r15 *
3* Regs Used : SP,SR,r11,r12,r13,r14,r15 *
;* Local Frame Size : 2 Args + O Auto + 0 Save = 2 byte *
main
R e e e e e e e e *

SUB.W #2,SP
; 5 | printf("'Hello, world\n");

MOV . W #CSL1+0,0(SP) ; 151

CALL #printf ; 151

;151

; 7 | return O;

MOV . W #0,r12 ;171

ADD.W #2,SP ;171

RET ;171

;171
;* STRINGS *

SLAU132H-June 2013 Using the C/C++ Compiler 47

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Controlling Application Binary Interface www.ti.com

Example 2-1. An Interlisted Assembly Language File (continued)

.sect ".const"
.align 2
CSL1: .string "Hello, world™,10,0

;* UNDEFINED EXTERNAL REFERENCES *

-global printf

2.13 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together,

regardless of their source, and allows the resulting executable to run on any system that supports that
ABI.

Object files conforming to different ABIs cannot be linked together. The linker detects this situation and
generates an error.

The MSP430 compiler supports two ABIs. The ABI is chosen through the --abi option as follows:
e COFF ABI (--abi=coffabi)

The COFF ABI is the original ABI format. There is no COFF to ELF conversion possible; recompile or
reassemble assembly code.

* MSP430 EABI (--abi=eabi)
Use this option to select the MSP430 Embedded Application Binary Interface (EABI).

All code in an EABI application must be built for EABI. Make sure all your libraries are available in
EABI mode before migrating your existing COFF ABI systems to MSP430 EABI.

For more details on the different ABIs, see Section 5.12.

48 Using the C/C++ Compiler SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Enabling Entry Hook and Exit Hook Functions

2.14 Enabling Entry Hook and Exit Hook Functions

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a
routine that is called upon exit of each function. Applications for hooks include debugging, trace, profiling,
and stack overflow checking.

Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise,
the default entry hook function name is __entry_hook.
--entry_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void

hook(void);
--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise,
the default exit hook function name is __exit_hook.
--exit_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void
hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given
signature. If a declaration or definition of the hook function appears in the compilation unit compiled with
the options, it must agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as
other inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same
function can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any
function which itself has hook calls inserted. To help prevent this, hooks are not generated for inline
functions, or for the hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are
auto-inlined by the optimizer.

See Section 5.10.19 for information about the NO_HOOKS pragma.

SLAU132H—-June 2013 Using the C/C++ Compiler 49

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

. Chapter 3
I TEXAS SLAU132H-June 2013

INSTRUMENTS
Optimizing Your Code

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of
C and C++ programs by simplifying loops, rearranging statements and expressions, and allocating
variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when
performing optimization and how you can debug optimized code.

Topic Page
3.1 INVOKING OPLIMIZAION . ..uieieieeeieie et ettt e e e e et et e e aen e e e e e e e eaenenreee e enenanns 51
3.2 Performing File-Level Optimization (--opt_level=3 option)cccoviviiiiiiiiiiniiiinnenen. 52
3.3 Performing Program-Level Optimization (--program_level compile and --

(oY o) A (=AVZ=1 i T o1 o] 1) I PP 53
3.4 Link-Time Optimization (--opt_level=4 Option)ccoeiiiiiiiiiiiiee e eas 55
3.5 Accessing Aliased Variables in Optimized COdec..vuiiiiiiiiiiiiiiiiieie e 56
3.6 Use Caution With asm Statements in Optimized Codecccoeiviiiiiiiiiiieiiiieaeenen. 56
3.7 Automatic Inline Expansion (--auto_inline OPtion)coiveieiiiiiiiiiiiiiieeie e 57
3.8 Using the Interlist Feature With Optimizationcccoeieiiiiiiii e eeaens 57
3.9 Debugging OptiMIZEA COOE ..uiiuiuiuiniiiiiiii ettt e et s e e e e aaaeaaens 59
3.10 Controlling Code Size VErsuS SPEEA ...civiiiuiuiuiiiiiiiiiieieieat i ia et aaeeaeaeaaanaaans 59
3.11 What Kind of Optimization Is Being Performed?coiiiiiiiiiiiiiiiiiieeeeeeeenen 60

50 Optimizing Your Code SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Invoking Optimization

3.1 Invoking Optimization

The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use high-level
optimization levels, such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option
on the compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of
optimization (0, 1, 2, 3, and 4), which controls the type and degree of optimization.

e --opt_level=off or -Ooff
Performs no optimization
» --opt_level=0 or -O0
— Performs control-flow-graph simplification
— Allocates variables to registers
— Performs loop rotation
— Eliminates unused code
— Simplifies expressions and statements
— Expands calls to functions declared inline
» --opt_level=1 or-O1
Performs all --opt_level=0 (-O0) optimizations, plus:
— Performs local copy/constant propagation
— Removes unused assignments
— Eliminates local common expressions
» --opt_level=2 or -02
Performs all --opt_level=1 (-O1) optimizations, plus:
Performs loop optimizations
Eliminates global common subexpressions
Eliminates global unused assignments
Performs loop unrolling
» --opt_level=3 or -O3
Performs all --opt_level=2 (-O2) optimizations, plus:
— Removes all functions that are never called
— Simplifies functions with return values that are never used
— Inlines calls to small functions

— Reorders function declarations; the called functions attributes are known when the caller is
optimized

— Propagates arguments into function bodies when all calls pass the same value in the same
argument position

— ldentifies file-level variable characteristics
If you use --opt_level=3 (-O3), see Section 3.2 and Section 3.3 for more information.
e --opt_level=4 or -O4
Performs link-time optimization. See Section 3.4 for details.

By default, debugging is enabled and the default optimization level is unaffected by the generation of
debug information. However, the optimization level used is affected by whether or not the command line
includes the -g option and the --opt_level option as shown in the following table:

SLAU132H-June 2013 Optimizing Your Code 51

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Performing File-Level Optimization (--opt_level=3 option) www.ti.com
Table 3-1. Interaction Between Debugging and Optimization Options
Optimization no -g -g
no --opt_level --opt_level=0 --opt_level=0
--opt_level --opt_level=2 --opt_level=0
--opt_level=n optimized as specified optimized as specified

The levels of optimizations described above are performed by the stand-alone optimization pass. The
code generator performs several additional optimizations, particularly processor-specific optimizations. It
does so regardless of whether you invoke the optimizer. These optimizations are always enabled,
although they are more effective when the optimizer is used.

3.2 Performing File-Level Optimization (--opt_level=3 option)
The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level
optimization. You can use the --opt_level=3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The options listed in Table 3-2
work with --opt_level=3 to perform the indicated optimization:
Table 3-2. Options That You Can Use With --opt_level=3
If You ... Use this Option See
Have files that redeclare standard library functions --std_lib_func_defined Section 3.2.1
--std_lib_func_redefined
Want to create an optimization information file --gen_opt_level=n Section 3.2.2
Want to compile multiple source files --program_level_compile Section 3.3
3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options)
When you invoke the compiler with the --opt_level=3 option, some of the optimizations use known
properties of the standard library functions. If your file redeclares any of these standard library functions,
these optimizations become ineffective. Use Table 3-3 to select the appropriate file-level optimization
option.
Table 3-3. Selecting a File-Level Optimization Option
If Your Source File... Use this Option
Declares a function with the same name as a standard library function --std_lib_func_redefined
Contains but does not alter functions declared in the standard library --std_lib_func_defined
Does not alter standard library functions, but you used the --std_lib_func_redefined or -- --std_lib_func_not_defined
std_lib_func_defined option in a command file or an environment variable. The --
std_lib_func_not_defined option restores the default behavior of the optimizer.
3.2.2 Creating an Optimization Information File (--gen_opt_info Option)
When you invoke the compiler with the --opt_level=3 option, you can use the --gen_opt_info option to
create an optimization information file that you can read. The number following the option denotes the
level (0, 1, or 2). The resulting file has an .nfo extension. Use Table 3-4 to select the appropriate level to
append to the option.
Table 3-4. Selecting a Level for the --gen_opt_info Option
If you... Use this option
Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 --gen_opt_info=0
option in a command file or an environment variable. The --gen_opt_level=0 option restores the
default behavior of the optimizer.
Want to produce an optimization information file --gen_opt_info=1
Want to produce a verbose optimization information file --gen_opt_info=2
52 Optimizing Your Code SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)

3.3

3.3.1

Performing Program-Level Optimization (--program_level_compile and --opt_level=3
options)

You can specify program-level optimization by using the --program_level_compile option with the --
opt_level=3 option (aliased as -O3) or --opt_level=4 (-O4). With program-level optimization, all of your
source files are compiled into one intermediate file called a module. The module moves to the optimization
and code generation passes of the compiler. Because the compiler can see the entire program, it
performs several optimizations that are rarely applied during file-level optimization:

» If a particular argument in a function always has the same value, the compiler replaces the argument
with the value and passes the value instead of the argument.

» If a return value of a function is never used, the compiler deletes the return code in the function.
» If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 or higher in order to perform these
optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to
generate an information file. See Section 3.2.2 for more information.

In Code Composer Studio, when the --program_level _compile option is used, C and C++ files that have
the same options are compiled together. However, if any file has a file-specific option that is not selected
as a project-wide option, that file is compiled separately. For example, if every C and C++ file in your
project has a different set of file-specific options, each is compiled separately, even though program-level
optimization has been specified. To compile all C and C++ files together, make sure the files do not have
file-specific options. Be aware that compiling C and C++ files together may not be safe if previously you
used a file-specific option.

Compiling Files With the --program_level_compile and --keep_asm Options

NOTE: If you compile all files with the --program_level_compile and --keep_asm options, the
compiler produces only one .asm file, not one for each corresponding source file.

Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3,
by using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in
other modules can call a module's external functions or modify a module's external variables. The number
following --call_assumptions indicates the level you set for the module that you are allowing to be called or
modified. The --opt_level=3 option combines this information with its own file-level analysis to decide
whether to treat this module's external function and variable declarations as if they had been declared
static. Use Table 3-5 to select the appropriate level to append to the --call_assumptions option.

Table 3-5. Selecting a Level for the --call_assumptions Option

If Your Module ... Use this Option

Has functions that are called from other modules and global variables that are modified in other --call_assumptions=0
modules

Does not have functions that are called by other modules but has global variables that are modified in --call_assumptions=1
other modules

Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules

Has functions that are called from other modules but does not have global variables that are modified --call_assumptions=3
in other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you
specified, or it might disable program-level optimization altogether. Table 3-6 lists the combinations of --
call_assumptions levels and conditions that cause the compiler to revert to other --call_assumptions
levels.

SLAU132H—-June 2013 Optimizing Your Code 53
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options) www.ti.com

3.3.2

Table 3-6. Special Considerations When Using the --call_assumptions Option

Then the --call_assumptions

If Your Option is... Under these Conditions... Level...

Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2

Not specified The compiler sees calls to outside functions under the -- Reverts to --call_assumptions=0
opt_level=3 optimization level

Not specified Main is not defined Reverts to --call_assumptions=0

--call_assumptions=1 or No function has main defined as an entry point and functions are Reverts to --call_assumptions=0

--call_assumptions=2 not identified by the FUNC_EXT_CALLED pragma

--call_assumptions=1 or No interrupt function is defined Reverts to --call_assumptions=0

--call_assumptions=2

--call_assumptions=1 or Functions are identified by the FUNC_EXT_CALLED pragma Remains --call_assumptions=1

--call_assumptions=2 or --call_assumptions=2

--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level _compile and --opt_level=3, you must use a --
call_assumptions option or the FUNC_EXT_CALLED pragma. See Section 3.3.2 for information about
these situations.

Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the --
program_level_compile option. The compiler recognizes only the C/C++ source code and not any
assembly code that might be present. Because the compiler does not recognize the assembly code calls
and variable modifications to C/C++ functions, the --program_level_compile option optimizes out those
C/C++ functions. To keep these functions, place the FUNC_EXT_CALLED pragma (see Section 5.10.10)
before any declaration or reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the --
call_assumptions=n option with the --program_level_compile and --opt_level=3 options (see
Section 3.3.1).

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or --
call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

Situation — Your application consists of C/C++ source code that calls assembly functions. Those
assembly functions do not call any C/C++ functions or modify any C/C++ variables.

Solution — Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler
that outside functions do not call C/C++ functions or modify C/C++ variables. See Section 3.3.1 for
information about the --call_assumptions=2 option.

If you compile with the --program_level _compile --opt_level=3 options only, the compiler reverts
from the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler
uses --call_assumptions=0, because it presumes that the calls to the assembly language functions
that have a definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

Situation — Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution — Try both of these solutions and choose the one that works best with your code:
* Compile with --program_level_compile --opt_level=3 --call_assumptions=1.

e Add the volatile keyword to those variables that may be modified by the assembly functions and
compile with --program_level _compile --opt_level=3 --call_assumptions=2.
See Section 3.3.1 for information about the --call_assumptions=n option.

54

Optimizing Your Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Link-Time Optimization (--opt_level=4 Option)

3.4

3.4.1

Situation — Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the
assembly functions call are never called from C/C++. These C/C++ functions act like main: they
function as entry points into C/C++.

Solution — Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then,
you can optimize your code in one of these ways:

* You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the
entry-point functions called from the assembly language interrupts, and then compiling with --
program_level_compile --opt_level=3 --call_assumptions=2. Be sure that you use the pragma
with all of the entry-point functions. If you do not, the compiler might remove the entry-point
functions that are not preceded by the FUNC_EXT_CALLED pragma.

e Compile with --program_level _compile --opt_level=3 --call_assumptions=3. Because you do not
use the FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is
less aggressive than the --call_assumptions=2 option, and your optimization may not be as
effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the
compiler removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED
pragma to keep these functions.

Link-Time Optimization (--opt_level=4 Option)

Link-time optimization is an optimization mode that allows the compiler to have visibility of the entire
program. The optimization occurs at link-time instead of compile-time like other optimization levels.

Link-time optimization is invoked by using the --opt_level=4 option. This option must be used in both the
compilation and linking steps. At compile time, the compiler embeds an intermediate representation of the
file being compiled into the resulting object file. At link-time this representation is extracted from every
object file which contains it, and is used to optimize the entire program.

Link-time optimization provides the same optimization opportunities as program level optimization
(Section 3.3), with the following benefits:

» Each source file can be compiled separately. One issue with program-level compilation is that it
requires all source files to be passed to the compiler at one time. This often requires significant
modification of a customer's build process. With link-time optimization, all files can be compiled
separately.

» References to C/C++ symbols from assembly are handled automatically. When doing program-level
compilation, the compiler has no knowledge of whether a symbol is referenced externally. When
performing link-time optimization during a final link, the linker can determine which symbols are
referenced externally and prevent eliminating them during optimization.

» Third party object files can participate in optimization. If a third party vendor provides object files that
were compiled with the --opt_level=4 option, those files participate in optimization along with user-
generated files. This includes object files supplied as part of the Tl run-time support. Object files that
were not compiled with —opt_level=4 can still be used in a link that is performing link-time optimization.
Those files that were not compiled with —opt_level=4 do not participate in the optimization.

» Source files can be compiled with different option sets. With program-level compilation, all source files
must be compiled with the same option set. With link-time optimization files can be compiled with
different options. If the compiler determines that two options are incompatible, it issues an error.

Option Handling

When performing link-time optimization, source files can be compiled with different options. When
possible, the options that were used during compilation are used during link-time optimization. For options
which apply at the program level, --auto_inline for instance, the options used to compile the main function
are used. If main is not included in link-time optimization, the option set used for the first object file
specified on the command line is used. Some options, --opt_for_speed for instance, can affect a wide
range of optimizations. For these options, the program-level behavior is derived from main, and the local
optimizations are obtained from the original option set.

SLAU132H—-June 2013 Optimizing Your Code 55
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Accessing Aliased Variables in Optimized Code www.ti.com

3.4.2

3.5

3.6

Some options are incompatible when performing link-time optimization. These are usually options which
conflict on the command line as well, but can also be options that cannot be handled during link-time
optimization.

Incompatible Types

During a normal link, the linker does not check to make sure that each symbol was declared with the
same type in different files. This is not necessary during a normal link. When performing link-time
optimization, however, the linker must ensure that all symbols are declared with compatible types in
different source files. If a symbol is found which has incompatible types, an error is issued. The rules for
compatible types are derived from the C and C++ standards.

Accessing Aliased Variables in Optimized Code

Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers
point to the same object or when a pointer points to a named object. Aliasing can disrupt optimization
because any indirect reference can refer to another object. The optimizer analyzes the code to determine
where aliasing can and cannot occur, then optimizes as much as possible while still preserving the
correctness of the program. The optimizer behaves conservatively. If there is a chance that two pointers
are pointing to the same object, then the optimizer assumes that the pointers do point to the same object.

The compiler assumes that if the address of a local variable is passed to a function, the function changes
the local variable by writing through the pointer. This makes the local variable's address unavailable for
use elsewhere after returning. For example, the called function cannot assign the local variable's address
to a global variable or return the local variable's address. In cases where this assumption is invalid, use
the --aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case
aliasing, any indirect reference can refer to such a variable.

Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements in optimized code. The
compiler rearranges code segments, uses registers freely, and can completely remove variables or
expressions. Although the compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is inserted can differ significantly
from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but asm
statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are
correct and maintain the integrity of the program.

56

Optimizing Your Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS

INSTRUMENTS

www.ti.com Automatic Inline Expansion (--auto_inline Option)

3.7

3.8

Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option (aliased as -03), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold. Any function larger than
the size threshold is not automatically inlined. You can use the --auto_inline=size option in the following
ways:

» If you set the size parameter to O (--auto_inline=0), automatic inline expansion is disabled.

» If you set the size parameter to a nonzero integer, the compiler uses this size threshold as a limit to
the size of the functions it automatically inlines. The compiler multiplies the number of times the
function is inlined (plus 1 if the function is externally visible and its declaration cannot be safely
removed) by the size of the function.

The compiler inlines the function only if the result is less than the size parameter. The compiler measures
the size of a function in arbitrary units; however, the optimizer information file (created with the --
gen_opt_level=1 or --gen_opt_level=2 option) reports the size of each function in the same units that the --
auto_inline option uses.

The --auto_inline=size option controls only the inlining of functions that are not explicitly declared as inline.
If you do not use the --auto_inline=size option, the compiler inlines very small functions.

Optimization Level 3 and Inlining

NOTE: In order to turn on automatic inlining, you must use the --opt_level=3 option. If you desire the
--opt_level=3 optimizations, but not automatic inlining, use --auto_inline=0 with the --
opt_level=3 option.

Inlining and Code Size

NOTE: Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions. To prevent increases in code size because of
inlining, use the --auto_inline=0 and --no_inlining options. These options, used together,
cause the compiler to inline intrinsics only.

Using the Interlist Feature With Optimization

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On
option) with the --optimizer_interlist and --c_src_interlist options.

e The --optimizer_interlist option interlists compiler comments with assembly source statements.

e The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the
original C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a
separate pass. Instead, the compiler inserts comments into the code, indicating how the compiler has
rearranged and optimized the code. These comments appear in the assembly language file as comments
starting with ;**. The C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the
compiler extensively rearranges your program. Therefore, when you use the --optimizer_interlist option,
the compiler writes reconstructed C/C++ statements.

Example 3-1 shows a function that has been compiled with optimization (--opt_level=2) and the --
optimizer_interlist option. The assembly file contains compiler comments interlisted with assembly code.

Impact on Performance and Code Size
NOTE: The --c_src_interlist option can have a negative effect on performance and code size.

SLAU132H-June 2013 Optimizing Your Code 57
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Using the Interlist Feature With Optimization

13 TEXAS
INSTRUMENTS

www.ti.com

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts
its comments and the interlist feature runs before the assembler, merging the original C/C++ source into

the assembly file.

Example 3-2 shows the function from Example 3-1 compiled with the optimization (--opt_level=2) and the -
-c_src_interlist and --optimizer_interlist options. The assembly file contains compiler comments and C
source interlisted with assembly code.

Example 3-1. The Function From Example 2-1 Compiled With the -O2 and --optimizer_interlist Options

main

-%
SUB.W #2,SP

;** 5 ____________________
CALL #printf

;** 6 ____________________
MOV .W #0,r12
ADD.W #2,SP
RET

MOV . W #$CSSL1+0,0(SP)

printf((const unsigned char *)"Hello, world\n");

; 151

; 151
;151
return O;
161

Example 3-2. The Function From Example 2-1 Compiled with the --opt_level=2, --optimizer_interlist, and -

-c_src_interlist Options

MOV . W #CSL1+0,0(SP)
CALL #printf

MOV . W #0,
ADD.W #2,SP
RET

;151

151

;151
return O;
161

58

Optimizing Your Code

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Debugging Optimized Code

3.9

3.10

Debugging Optimized Code

Generating symbolic debugging information no longer affects the ability to optimize code. The same
executable code is generated regardless of whether generation of debug information is turned on or off.
For this reason, debug information is now generated by default. You do not need to specify the -g option
in order to debug your application.

If you do not specify the -g option and allow the default generation of debug information to be used, the
default level of optimization is used unless you specify some other optimization level.

The --symdebug:dwarf option no longer disables optimization, because generation of debug information no
longer impacts optimization.

If you specify the -g option explicitly but do not specify an optimization level, no optimization is performed.
This is because while generating debug information does not affect the ability to optimize code, optimizing
code does make it more difficult to debug code. At higher levels of optimization, the compiler's extensive
rearrangement of code and the many-to-many allocation of variables to registers often make it difficult to
correlate source code with object code for debugging purposes. It is recommended that you perform
debugging using the lowest level of optimization possible.

If you specify an --opt_level (aliased as -O) option, that optimization level is used no matter what type of
debugging information you enabled.

The optimization level used if you do not specify the level on the command line is affected by whether or
not the command line includes the -g option and the --opt_level option as shown in the following table:

Table 3-7. Interaction Between Debugging and Optimization Options

Optimization no -g -g

no --opt_level --opt_level=0 --opt_level=0

--opt_level --opt_level=2 --opt_level=0

--opt_level=n optimized as specified optimized as specified

Debug information increases the size of object files, but it does not affect the size of code or data on the
target. If object file size is a concern and debugging is not needed, use --symdebug:none to disable the
generation of debug information.

The --optimize_with_debug and --symdebug:skeletal options have been deprecated and no longer have
any effect.

Controlling Code Size Versus Speed

The latest mechanism for controlling the goal of optimizations in the compiler is represented by the --
opt_for_speed=num option. The num denotes the level of optimization (0-5), which controls the type and
degree of code size or code speed optimization:

e --opt_for_speed=0

Enables optimizations geared towards improving the code size with a high risk of worsening or
impacting performance.

e --opt_for_speed=1

Enables optimizations geared towards improving the code size with a medium risk of worsening or
impacting performance.

e --opt_for_speed=2

Enables optimizations geared towards improving the code size with a low risk of worsening or
impacting performance.

e --opt_for_speed=3

Enables optimizations geared towards improving the code performance/speed with a low risk of
worsening or impacting code size.

e --opt_for_speed=4
Enables optimizations geared towards improving the code performance/speed with a medium risk of

SLAU132H—-June 2013 Optimizing Your Code 59
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

What Kind of Optimization Is Being Performed?

13 TEXAS
INSTRUMENTS

www.ti.com

3.11

worsening or impacting code size.
e --opt_for_speed=5

Enables optimizations geared towards improving the code performance/speed with a high risk of
worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If
you do not specify the --opt_for_speed option, the default setting is 1

What Kind of Optimization Is Being Performed?

The MSP430 C/C++ compiler uses a variety of optimization techniques to improve the execution speed of
your C/C++ programs and to reduce their size.

Following are some of the optimizations performed by the compiler:

Optimization

See

Cost-based register allocation
Alias disambiguation
Branch optimizations and control-flow simplification

Data flow optimizations
« Copy propagation
« Common subexpression elimination
* Redundant assignment elimination

Expression simplification

Inline expansion of functions

Function Symbol Aliasing

Induction variable optimizations and strength reduction
Loop-invariant code motion

Loop rotation

Instruction scheduling

Section 3.11.1
Section 3.11.1
Section 3.11.3
Section 3.11.4

Section 3.11.5
Section 3.11.6
Section 3.11.7
Section 3.11.8
Section 3.11.9
Section 3.11.10
Section 3.11.11

MSP430-Specific Optimization

See

Tail merging
Integer division with constant divisor

Section 3.11.12
Section 3.11.13

3.11.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary
values according to their type, use, and frequency. Variables used within loops are weighted to have
priority over others, and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a
simple counting loop and unroll or eliminate the loop. Strength reduction turns the array references into
efficient pointer references with autoincrements.

3.11.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine
whether or not two or more | values (lowercase L: symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often prevents the compiler from
retaining values in registers because it cannot be sure that the register and memory continue to hold the
same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

60

Optimizing Your Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com What Kind of Optimization Is Being Performed?

3.11.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of
operations (basic blocks) to remove branches or redundant conditions. Unreachable code is deleted,
branches to branches are bypassed, and conditional branches over unconditional branches are simplified
to a single conditional branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are
reduced to conditional instructions, totally eliminating the need for branches.

3.11.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and
remove unnecessary assignments, and avoid operations that produce values that are already computed.
The compiler with optimization enabled performs these data flow optimizations both locally (within basic
blocks) and globally (across entire functions).

e Copy propagation. Following an assignment to a variable, the compiler replaces references to the
variable with its value. The value can be another variable, a constant, or a common subexpression.
This can result in increased opportunities for constant folding, common subexpression elimination, or
even total elimination of the variable.

* Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

 Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference
before another assignment or before the end of the function). The compiler removes these dead
assignments.

3.11.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer
instructions or registers. Operations between constants are folded into single constants. For example, a =
(b+4)-(c+1)becomesa=b-c+3.

3.11.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a
function call as well as providing increased opportunities to apply other optimizations.

3.11.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two

functions have the same signature (same return value and same number of parameters with the same
type, in the same order), then the compiler can make the calling function an alias of the called function.
For example, consider the following:

int bbb(int argl, char *arg2);

int aaa(int n, char *str)

{

}

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa
should be redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of
function aaa can be removed and the symbol aaa is defined at the same address as bbb.

return bbb(n, str);

SLAU132H-June 2013 Optimizing Your Code 61

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

What Kind of Optimization Is Being Performed? www.ti.com

3.11.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions
of the loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence of array elements is replaced
with code that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your loop-
control variable, allowing its elimination.

3.11.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The
computation is moved in front of the loop, and each occurrence of the expression in the loop is replaced
by a reference to the precomputed value.

3.11.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In
many cases, the initial entry conditional check and the branch are optimized out.

3.11.11 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a
way that improves performance while maintaining the semantics of the original order. Instruction
scheduling is used to improve instruction parallelism and hide latencies. It can also be used to reduce
code size.

3.11.12 Tail Merging

If you are optimizing for code size, tail merging can be very effective for some functions. Tail merging finds
basic blocks that end in an identical sequence of instructions and have a common destination. If such a
set of blocks is found, the sequence of identical instructions is made into its own block. These instructions
are then removed from the set of blocks and replaced with branches to the newly created block. Thus,
there is only one copy of the sequence of instructions, rather than one for each block in the set.

3.11.13 Integer Division With Constant Divisor

The optimizer attempts to rewrite integer divide operations with constant divisors. The integer divides are
rewritten as a multiply with the reciprocal of the divisor. This occurs at optimization level 2 (--opt_level=2
or -O2) and higher. You must also compile with the --opt_for_speed option, which selects compile for
speed.

62 Optimizing Your Code SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

. Chapter 4
l ’}-‘IE)S(’?I§UMENTS SLAU132H-June 2013

Linking C/C++ Code

The C/C++ compiler and assembly language tools provide two methods for linking your programs:

e You can compile individual modules and link them together. This method is especially useful when you
have multiple source files.

* You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements
of linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and
allocating the program into memory. For a complete description of the linker, see the MSP430 Assembly
Language Tools User's Guide.

Topic Page

4.1 Invoking the Linker Through the Compiler (-z Option) ...covevieiiiiiiiieieeeeeeeaeeens 64

4.2 Linker Code OptiMiZatiONsS ...c.c.eeieieeeienieieee et e e e e e e e e e sa e e eenenes 66

4.3 Controlling the LiNKING PrOCESSuiuiuiiiiiie ittt ettt e e e e e e e e e e aaaaeenaens 67
SLAU132H—-June 2013 Linking C/C++ Code 63

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Invoking the Linker Through the Compiler (-z Option) www.ti.com

4.1 Invoking the Linker Through the Compiler (-z Option)

This section explains how to invoke the linker after you have compiled and assembled your programs: as
a separate step or as part of the compile step.

4.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

¢l430 --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

cl430 --run_linker
--rom_model | --ram_model

filenames

options

--output_file= name.out
--library= library

Ink.cmd

The command that invokes the linker.

Options that tell the linker to use special conventions defined by the
C/C++ environment. When you use cl430 --run_linker, you must use -
-rom_model or --ram_model. The --rom_model option uses
automatic variable initialization at run time; the --ram_model option
uses variable initialization at load time.

Names of object files, linker command files, or archive libraries. The
default extension for all input files is .obj; any other extension must be
explicitly specified. The linker can determine whether the input file is
an object or ASCII file that contains linker commands. The default
output filename is a.out, unless you use the --output_file option to
name the output file.

Options affect how the linker handles your object files. Linker options
can only appear after the --run_linker option on the command line,
but otherwise may be in any order. (Options are discussed in detail in
the MSP430 Assembly Language Tools User's Guide.)

Names the output file.

Identifies the appropriate archive library containing C/C++ run-time-
support and floating-point math functions, or linker command files. If
you are linking C/C++ code, you must use a run-time-support library.
You can use the libraries included with the compiler, or you can
create your own run-time-support library. If you have specified a run-
time-support library in a linker command file, you do not need this
parameter. The --library option's short form is -I.

Contains options, filenames, directives, or commands for the linker.

When you specify a library as linker input, the linker includes and links only those library members that
resolve undefined references. The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker command file to customize
the allocation process. For information, see the MSP430 Assembly Language Tools User's Guide.

You can link a C/C++ program consisting of object files progl.obj, prog2.obj, and prog3.obj, with an
executable object file filename of prog.out with the command:

cl430 --run_linker --rom_model progl prog2 prog3 --output_file=prog.out

--library=rts430.1lib

64 Linking C/C++ Code

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Invoking the Linker Through the Compiler (-z Option)

4.1.2

Invoking the Linker as Part of the Compile Step
This is the general syntax for linking C/C++ programs as part of the compile step:

cl430 filenames [options] --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

The --run_linker option divides the command line into the compiler options (the options before --
run_linker) and the linker options (the options following --run_linker). The --run_linker option must follow all
source files and compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can
be linker command files, additional object files, linker options, or libraries. These arguments are the same
as described in Section 4.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments
can be C/C++ source files, assembly files, or compiler options. These arguments are described in
Section 2.2.

You can compile and link a C/C++ program consisting of object files progl.c, prog2.c, and prog3.c, with an
executable object file filename of prog.out with the command:

cl430 progl.c prog2.c prog3.c --run_linker --rom_model --output_file=prog.out --library=rts430.1ib

NOTE: Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes
arguments to the linker in the following order:

1. Object filenames from the command line

2. Arguments following the --run_linker option on the command line

3. Arguments following the --run_linker option from the MSP430_C_OPTION environment
variable

4.1.3 Disabling the Linker (--compile_only Compiler Option)
You can override the --run_linker option by using the --compile_only compiler option. The -run_linker
option's short form is -z and the --compile_only option's short form is -c.
The --compile_only option is especially helpful if you specify the --run_linker option in the
MSP430_C_OPTION environment variable and want to selectively disable linking with the --compile_only
option on the command line.
SLAU132H—-June 2013 Linking C/C++ Code 65
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Linker Code Optimizations www.ti.com

4.2

421

4.2.2

Linker Code Optimizations

Generating Function Subsections (--gen_func_subsections Compiler Option)

The compiler translates a source module into an object file. It may place all of the functions into a single
code section, or it may create multiple code sections. The benefit of multiple code sections is that the
linker may omit unused functions from the executable.

When the linker collects code to be placed into an executable file, it cannot split code sections. If the
compiler did not use multiple code sections, and any function in a particular module needs to be linked
into the executable, then all functions in that module are linked in, even if they are not used.

An example is a library .obj file that contains a signed divide routine and an unsigned divide routine. If the
application requires only signed division, then only the signed divide routine is required for linking. If only
one code section was used, both the signed and unsigned routines are linked in since they exist in the
same .obj file.

The --gen_func_subsections compiler option remedies this problem by placing each function in a file in its
own subsection. Thus, only the functions that are referenced in the application are linked into the final
executable. This can result in an overall code size reduction.

The default setting for the --gen_func_subsections option is on.

Conditional Linking

The conditional linking paradigm is different under COFF compared to ELF. In COFF, you must mark a
section with the .clink directive to make it eligible for removal during conditional linking. In ELF, all sections
are considered eligible for removal through conditional linking, except the .reset section. Sections are not
removed if they are referenced or if they are marked with the .retain directive.

Under COFF, when you compile with the -gen_func_subsections option, in addition to placing each
function in a separate subsection, the compiler also annotates that subsection with the conditional linking
directive, .clink. This directive marks the section as a candidate to be removed if it is not referenced by
any other section in the program. The compiler does not place a .clink directive in a subsection for a trap
or interrupt function, as these may be needed by a program even though there is no symbolic reference to
them anywhere in the program.

Under COFF, if a section that has been marked for conditional linking is never referenced by any other
section in the program, that section is removed from the program. Under ELF, a section that is never
referenced by any other section in the program is removed from the program automatically, unless it is
marked with .retain or is the .reset section. Conditional linking is disabled when performing a partial link or
when relocation information is kept with the output of the link. Conditional linking can also be disabled with
the --disable_clink linker option.

66

Linking C/C++ Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

4.3

431

Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special requirements apply when linking
C/C++ programs. You must:

e Include the compiler's run-time-support library

» Specify the type of boot-time initialization

» Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default

linker command file. For more information about how to operate the linker, see the linker description in the
MSP430 Assembly Language Tools User's Guide

Including the Run-Time-Support Library

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++
functions as well as functions used by the compiler to manage the C/C++ environment. The following
sections describe two methods for including the run-time-support library.

4.3.1.1 Automatic Run-Time-Support Library Selection

The linker assumes you are using the C and C++ conventions if either the --rom_model or --ram_model
linker option is specified, or if the link step includes the compile step for a C or C++ file, or if you link
against the index library libc.a.

If the linker assumes you are using the C and C++ conventions and the entry point for the program
(normally c_int0O0) is not resolved by any specified object file or library, the linker attempts to automatically
include the most compatible run-time-support library for your program. The run-time-support library chosen
by the compiler is searched after any other libraries specified with the --library option on the command line
or in the linker command file. If libc.a is explicitly used, the appropriate run-time-support library is included
in the search order where libc.a is specified.

You can disable the automatic selection of a run-time-support library by using the --disable_auto_rts
option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is
generated indicating which run-time support library was linked in. If a different run-time-support library is
desired than the one reported by --issue_remarks, you must specify the name of the desired run-time-
support library using the --library option and in your linker command files when necessary.

Example 4-1. Using the --issue_remarks Option

cl430 --issue_remarks main.c --run_linker --rom_model

<Linking>

remark: linking in "libc.a"

remark: linking in "rts430.1ib" in place of "libc.a"

4.3.1.2 Manual Run-Time-Support Library Selection

You can bypass automatic library selection by explicitly specifying the desired run-time-support library to
use. Use the --library linker option to specify the name of the library. The linker will search the path
specified by the --search_path option and then the MSP430_C_DIR environment variable for the named
library. You can use the --library linker option on the command line or in a command file.

¢l430 --run_linker {--rom_model | --ram_model} filenames --library= libraryname

SLAU132H—-June 2013 Linking C/C++ Code 67
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Controlling the Linking Process www.ti.com

4.3.1.3 Library Order for Searching for Symbols

4.3.2

4.3.3

434

4.3.5

Generally, you should specify the run-time-support library as the last name on the command line because
the linker searches libraries for unresolved references in the order that files are specified on the command
line. If any object files follow a library, references from those object files to that library are not resolved.
You can use the --reread_libs option to force the linker to reread all libraries until references are resolved.
Whenever you specify a library as linker input, the linker includes and links only those library members
that resolve undefined references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then
the definition from the same library that introduced the unresolved reference is used. Use the --priority
option if you want the linker to use the definition from the first library on the command line that contains
the definition.

Run-Time Initialization

You must link all C/C++ programs with a bootstrap routine, which will initialize the C/C++ environment
and begin the program. The bootstrap routine is responsible for the following tasks:

1. Set up the stack

2. Process the .cinit run-time initialization table to autoinitialize global variables (when using the --
rom_model option)

3. Call all global constructors (.pinit for COFF or .init_array for EABI) for C++
4. Call the function main
5. Call exit when main returns

A sample bootstrap routine is _c_int00, provided in boot.obj in the run-time support object libraries. The
entry point is usually set to the starting address of the bootstrap routine.

NOTE: The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as
the entry point for the program.

Initialization by the Interrupt Vector

If your C/C++ program begins running at RESET, you must set up the RESET vector to branch to a
suitable bootstrap routine, such as _c_int00. You must also make sure the interrupt vectors are included in
the project, typically by using the --undef_sym linker option to make a symbol at the start of the interrupt
vector a root linker object. The boot.obj object in the run-time support library provides a section named
.reset containing a reference to _c_int00 which is suitable to place in the RESET vector in the linker
command file.

Initialization of the FRAM Memory Protection Unit

The linker supports initialization of the FRAM memory protection unit (MPU). The linker uses a boot
routine that performs MPU initialization based on the definition of certain symbols. The TI-provided linker
command files that are used by default for different devices define the necessary symbols so MPU
initialization happens automatically. Code and data sections are automatically given the correct access
permissions. If you want to manually adjust how the MPU is initialized you can modify the __mpuseg and
__mpusam definitions in the linker command file. The MPU-specific boot routine is used when these two
symbols are defined and it sets the value of the MPUSEG and MPUSAM registers based on these values.
If you do not want the MPU initialized you can remove these definitions from the linker command file.

Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option to specify whether the watchdog timer should be held (on) or not
held (off) during cinit auto-initialization. Setting this option causes an RTS auto-initialization routine to be
linked in with the program to handle the desired watchdog timer behavior.

68

Linking C/C++ Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS

INSTRUMENTS

www.ti.com Controlling the Linking Process

4.3.6

Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler
produces a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code,
but the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before the function main is
called. Global destructors are invoked during the exit run-time support function, similar to functions
registered through atexit.

Section 6.8.3.4 discusses the format of the global constructor table for COFFABI mode.
Section 6.8.4.6 discusses the format of the global constructor table for EABI mode.

4.3.7 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 6.8.3.1 discusses the

format of these initialization tables for COFFABI. The initialization tables are used in one of the following

ways:

* Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.8.3.2).

* Global variables are initialized at load time. Use the --ram_model linker option (see Section 6.8.3.3).

When you link a C/C++ program, you must use either the --rom_model or --ram_model option. These

options tell the linker to select initialization at run time or load time.

When you compile and link programs, the --rom_model option is the default. If used, the --rom_model

option must follow the --run_linker option (see Section 4.1). The following list outlines the linking

conventions for COFFABI used with --rom_model or --ram_model:

* The symbol _c_int00 is defined as the program entry point; it identifies the beginning of the C/C++ boot
routine in boot.obj. When you use --rom_model or --ram_model, _c_int00 is automatically referenced,
ensuring that boot.obj is automatically linked in from the run-time-support library.

» The initialization output section is padded with a termination record so that the loader (load-time
initialization) or the boot routine (run-time initialization) knows when to stop reading the initialization
tables.

» The global constructor output section is padded with a termination record.

* When initializing at load time (the --ram_model option), the following occur:

— The linker sets the initialization table symbol to -1. This indicates that the initialization tables are not
in memory, so no initialization is performed at run time.

— The STYP_COPY flag is set in the initialization table section header. STYP_COPY is the special
attribute that tells the loader to perform autoinitialization directly and not to load the initialization
table into memory. The linker does not allocate space in memory for the initialization table.

* When autoinitializing at run time (--rom_model option), the linker defines the initialization table symbol
as the starting address of the initialization table. The boot routine uses this symbol as the starting point
for autoinitialization.

» The linker defines the starting address of the global constructor table. The boot routine uses this
symbol as the beginning of the table of global constructors.

For details on linking conventions for EABI used with --rom_model and --ram_model, see Section 6.8.4.3

and Section 6.8.4.5, respectively.

NOTE: Boot Loader

A loader is not included as part of the C/C++ compiler tools. See the "Program Loading and
Running" chapter of the MSP430 Assembly Language Tools User's Guide for more about
boot loading.
SLAU132H—-June 2013 Linking C/C++ Code 69

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Controlling the Linking Process

13 TEXAS
INSTRUMENTS

www.ti.com

4.3.8 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated
in memory in a variety of ways to conform to a variety of system configurations. See Section 6.1.4 for a
complete description of how the compiler uses these sections.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 4-1 summarizes the
initialized sections created under the COFF ABI mode. Table 4-3 summarizes the initialized sections
created under the EABI mode. Table 4-4 summarizes the uninitialized sections. Be aware that the COFF
ABI .cinit and .pinit (.init_array in EABI) tables have different formats in EABI.

Table 4-1. Initialized Sections Created by the Compiler for Both ABIs

Name

Contents

.args
.cinit
.const

.ppdata
.ppinfo
.switch
text

Command argument for host-based loader; read-only (see the --arg_size option).
Tables for explicitly initialized global and static variables.

Global and static const variables, including string constants and initializers for local
variables.

Data tables for compiler-based profiling (see the --gen_profile_info option).
Correlation tables for compiler-based profiling (see the --gen_profile_info option).
Jump tables for large switch statements.

Executable code and constants.

Table 4-2. Initialized Sections Created by the Compiler for the COFF ABI Only

Name

Contents

.pinit

Table of constructors to be called at startup.

Table 4-3. Initialized Sections Created by the Compiler for EABI Only

Name

Contents

.mspabi.exidx
.mspabi.extab
.data
.init_array
.name.load

.rodata
.Tl.noinit

.Tl.persistent

Index table for exception handling; read-only (see --exceptions option).

Unwinded instructions for exception handling; read-only (see --exceptions option).
Global and static non-const variables that are explicitly initialized.

Table of constructors to be called at startup.

Compressed image of section name; read-only (See the MSP430 Assembly
Language Tools User's Guide for information on copy tables.)

Global and static variables that have const qualifiers.

The pragma NOINIT causes a non-initailized variable to be placed in the .Tl.noinit
section. The default linker command file places this section with .bss. See
Section 5.10.18 for details about the NOINIT and PERSISTENT pragmas.

The pragma PERSISTENT causes an initialized variable to be placed in the
.Tl.persistent section. The default linker command file places this section with .data.

Table 4-4. Uninitialized Sections Created by the Compiler for Both ABIs

Name

Contents

.args

.bss

.cio
.stack
.sysmem

Linker-created section used to pass arguments from the command line of the loader
to the program

Uninitialized global and static variables

Buffers for stdio functions from the run-time support library
Function call frame stack

Memory pool (heap) for dynamic memory allocation (malloc, etc)

70 Linking C/C++ Code

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

When you link your program, you must specify where to allocate the sections in memory. In general,
initialized sections are linked into ROM or RAM; uninitialized sections are linked into RAM. With the

exception of .text, the initialized and uninitialized sections created by the compiler cannot be allocated into
internal program memory.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information
about allocating sections into memory, see the MSP430 Assembly Language Tools User's Guide.

SLAU132H-June 2013 Linking C/C++ Code 71
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Controlling the Linking Process www.ti.com

4.3.9 A Sample Linker Command File

Example 4-2 shows a typical linker command file that links a 32-bit C program. The command file in this
example is named Ink32.cmd and lists several link options:

——-rom_model Tells the linker to use autoinitialization at run time
--stack_size Tells the linker to set the C stack size at 0x140 bytes
--heap_size Tells the linker to set the heap size to 0x120 bytes
--library Tells the linker to use an archive library file, rts430.lib

To link the program, enter:
cl430 --run_linker object_file(s) --output_file= file --map_file= file Ink.cmd

Example 4-2. Linker Command File

--rom_model
--stack_size=0x0140
--heap_size=0x120
--library=rts430.1lib

/ /
/* SPECIFY THE SYSTEM MEMORY MAP */
/ /
MEMORY
{

SFR(R) : origin = 0x0000, length = 0x0010

PERIPHERALS_8BIT : origin = 0x0010, length = Ox00FO
PERIPHERALS_16BIT: origin = 0x0100, length = 0x0100

RAM(RW) : origin = 0x0200, length = 0x0800
INFOA : origin = 0x1080, length = 0x0080
INFOB : origin = 0x1000, length = 0x0080
FLASH : origin = 0x1100, length = OxXEEEO
VECTORS(R) : origin = OXFFEO, length = OxO01E
RESET : origin = OXFFFE, length = 0x0002

}

/ /

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

/ /

SECTIONS

{
-bss : {3 > RAM /* UNINITIALIZED GLOBAL, STATIC */
-sysmem : {3 > RAM /* DYNAMIC MEMORY ALLOCATION AREA */
.stack : {3 > RAM /* SOFTWARE SYSTEM STACK */
.cio : {3 > RAM /* C 1/0 BUFFER */
-text : {3 > FLASH /* PROGRAM CODE */
.data : {3 > FLASH /* INITIALIZED GLOBAL, STATIC */
.const : {3 > FLASH /* CONSTANT DATA */
.args : {3 > FLASH /* PROGRAM ARGUMENTS */
.cinit : {3 > FLASH /* GLOBAL INITIALIZATION DATA */
-pinit : {3 > FLASH /* COFF C++ GLOBAL CONSTRUCTOR TABLE */
-init_array : {3 > FLASH /* EABI C++ GLOBAL CONSTRUCTOR TABLE */
-.mspabi.exidx : {} > FLASH /* EABI TDEH METADATA */
-mspabi.extab : {} > FLASH /* EABI TDEH METADATA */
-intvecs : {3 > VECTORS /* INTERRUPT VECTORS */
.reset : > RESET

72 Linking C/C++ Code SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS

Chapter

5

SLAU132H—-June 2013

MSP430 C/C++ Language Implementation

The C/C++ compiler supports the C/C++ language standard that was developed by a committee of the
American National Standards Institute (ANSI) and subsequently adopted by the International Standards
Organization (1S0).

The C++ language supported by the MSP430 is defined by the ANSI/ISO/IEC 14882:2003 standard with
certain exceptions.

Topic Page
5.1 CharacteristiCS Of MSPA30 € ...vuvirieiiiiiitiee ettt e et et a e e e e e aenaae e eanannnnns 74
5.2 CharacteriStiCs 0f MSPA30 Cr ouiuiuititiiiiiininit et teeses ettt e eeaes e e eaeaeaenea e senenenenns 74
5.3 USING MISRA-C:2004cuieiinieiie et et eae st e e e e en s e ea st aa e ae s enseanaenansenaeenens 75
5.4 USING the ULP AQVISOr ...uuiiiiieieiie ettt ettt et e ettt e a e e et e ean e e eaeee e anns 75
LR T D - = T 1Y/ 0 = P 76
LG (=)Ao] o £ PP 77
ST AR O = o = qot =T o { [o] TN = 2 o |11 q Yo PP 81
5.8 Register Variables and Parameterso.oeociiieieieieiieeieieeeaeeenaaseeeaeareneneaenes 81
5.9 The _ @SM SEAlEMENT ..uieiiiiiiiei ettt e et e e s e s et e s e e e ensare e enenanaens 82
5.10 Pragma DilFECHIVES ...uiuiiiiitieiei ettt et et et e et et ea e a s e e et eaeatnee e e aeanananenen 83
5.11 The Pragma OPEratir .ouueuuiuiuiueiieitisiueneteeeaeatseaeeeetessseneeeaeetrnsaeaeaeaeaersrnenenenes 97
5.12 Application Binary INTErfaCeccciuieiiiiiiii e e e s e e eaees 98
5.13 Object File Symbol Naming Conventions (LINKNames)cccociviviieiiiieneiiiiieeeenen. 99
5.14 Initializing Static and Global Variables in COFF ABI MOdeccovvviiiiiiiiiiiiiiieieenens 99
5.15 Changing the ANSI/ISO C Language MOOEccuiuininiiieiiiiiiiieeeneee e eeenas 101
5.16 GNU Language EXTENSIONS . .cuuiuiuiuiuiititieieaeeatat e eneeeaeaeeaaataeaeaetaaananaeneneaeannes 104
L0 A @Y 1T oY1 =T I PP 107

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 73

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Characteristics of MSP430 C www.ti.com
5.1 Characteristics of MSP430 C

The compiler supports the C language as defined by ISO/IEC 9899:1990, which is equivalent to American

National Standard for Information Systems-Programming Language C X3.159-1989 standard, commonly

referred to as C89, published by the American National Standards Institute. The compiler can also accept

many of the language extensions found in the GNU C compiler (see Section 5.16).

The compiler supports some features of C99 (that is, ISO/IEC 9899:1999) in the relaxed C89 mode. See

Section 5.15.

The ANSI/ISO standard identifies some features of the C language that are affected by characteristics of

the target processor, run-time environment, or host environment. For reasons of efficiency or practicality,

this set of features can differ among standard compilers.

Unsupported features of the C library are:

* The run-time library has minimal support for wide and multibyte characters. The type wchar_t is
implemented as unsigned int for both COFF and EABI (16-bits). The wide character set is equivalent to
the set of values of type char. The library includes the header files <wchar.h> and <wctype.h>, but
does not include all the functions specified in the standard.

* The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-
coded to the behavior of the C locale, and attempting to install a different locale by way of a call to
setlocale() will return NULL.

5.2 Characteristics of MSP430 C++

The MSP430 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2003 standard, including

these features:

e Complete C++ standard library support, with exceptions noted below.

» Templates

» Exceptions, which are enabled with the --exceptions option; see Section 5.7.

* Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The exceptions to the standard are as follows:

» The compiler does not support embedded C++ run-time-support libraries.

* The library supports wide chars (wchar_t), in that template functions and classes that are defined for
char are also available for wchar_t. For example, wide char stream classes wios, wiostream,
wstreambuf and so on (corresponding to char classes ios, iostream, streambuf) are implemented.
However, there is no low-level file I/O for wide chars. Also, the C library interface to wide char support
(through the C++ headers <cwchar> and <cwctype>) is limited as described above in the C library.

» For COFF ABI only: If the definition of an inline function contains a static variable, and it appears in
multiple compilation units (usually because it's a member function of a class defined in a header file),
the compiler generates multiple copies of the static variable rather than resolving them to a single
definition. The compiler emits a warning (#1369) in such cases.

» The reinterpret_cast type does not allow casting a pointer-to-member of one class to a pointer-to-
member of another class if the classes are unrelated.

» Two-phase name binding in templates, as described in [tesp.res] and [temp.dep] of the standard, is not
implemented.

» The export keyword for templates is not implemented.

» A typedef of a function type cannot include member function cv-qualifiers.

» A partial specialization of a class member template cannot be added outside of the class definition.

74 MSP430 C/C++ Language Implementation SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Using MISRA-C:2004

5.3 Using MISRA-C:2004

You can alter your code to work with the MISRA-C:2004 rules. The following enable/disable the rules:
» The --check_misra option enables checking of the specified MISRA-C:2004 rules.

 The CHECK_MISRA pragma enables/disables MISRA-C:2004 rules at the source level. This pragma is
equivalent to using the --check misra option. See Section 5.10.2.

» RESET_MISRA pragma resets the specified MISRA-C:2004 rules to the state they were before any
CHECK_MISRA pragmas were processed. See Section 5.10.21.

The syntax of the option and pragmas is:

--check_misra={all|required|advisory|none|rulespec}
#pragma CHECK_MISRA ("{all[required|advisory|none|rulespec}");
#pragma RESET_MISRA ("{all[required|advisory|rulespec}");

The rulespec parameter is a comma-separated list of these specifiers:

[-]X Enable (or disable) all rules in topic X.
[-]X-Z Enable (or disable) all rules in topics X through Z.
[[IX.A Enable (or disable) rule A in topic X.

[-(]X.A-C Enable (or disable) rules A through C in topic X.

Example: --check _misra=1-5,-1.1,7.2-4

e Checks topics 1 through 5

» Disables rule 1.1 (all other rules from topic 1 remain enabled)
» Checks rules 2 through 4 in topic 7

Two options control the severity of certain MISRA-C:2004 rules:
» The --misra_required option sets the diagnostic severity for required MISRA-C:2004 rules.
* The --misra_advisory option sets the diagnostic severity for advisory MISRA-C:2004 rules.

The syntax for these options is:

--misra_advisory={error|warning|remark|suppress}
--misra_required={error|warning|remark|suppress}

5.4 Using the ULP Advisor

You can alter your code based on feedback from the ULP Advisor rules (for more detailed rule information
see www.ti.com/ulpadvisor).

The --advice:power option enables checking of the specified ULP Advisor rules. The syntax is:

--advice:power={alljnone]|rulespec}

The rulespec parameter is a comma-separated list of these specifiers. See Section 5.3 for details.
Example: --advice:power=1-5,-1.1,7.2-4
The --advice:power_severity option sets the diagnostic severity for ULP Advisor rules. The syntax is:

--advice:power_severity={error|warning|remark|suppress}

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 75

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/ulpadvisor
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Data Types

13 TEXAS
INSTRUMENTS

www.ti.com

5.5

Data Types

Table 5-1 lists the size, representation, and range of each scalar data type for the MSP430 compiler for
COFF ABI. See Table 5-2 for the EABI data types. Many of the range values are available as standard
macros in the header file limits.h.

Table 5-1. MSP430 C/C++ COFF ABI Data Types

Range
Type Size Representation ~ Minimum Maximum
signed char 8 bits Binary -128 127
char 8 bits AsCII Oor-128 @ 255 or 127 @
unsigned char, bool, _Bool 8 bits Binary 0 255
short, signed short 16 bits 2s complement -32 768 32767
unsigned short 16 bits Binary 0 65 535
int, signed int 16 bits 2s complement -32 768 32767
unsigned int, wchar_t 16 bits Binary 0 65 535
long, signed long 32 bits 2s complement -2 147 483 648 2 147 483 647
unsigned long 32 bits Binary 0 4 294 967 295
long long, signed long long 64 bits 2s complement -9 223 372 036 854 775 808 9 223 372 036 854 775 807
unsigned long long 64 bits Binary 0 18 446 744 073 709 551 615
enum 16 bits 2s complement -32 768 32767
float 32 bits IEEE 32-bit 1.175 495e-38@ 3.40 282 35e+38
double 32 bits IEEE 32-bit 1.175 495e-38@ 3.40 282 35e+38
long double 32 bits IEEE 32-bit 1.175 495e-38@ 3.40 282 35e+38

function and data pointers (see

Table 5-3)

@ "Plain" char has the same representation as either signed char or unsigned char. The --plain_char option specifies whether

"plain” char is signed or unsigned. The default is unsigned.

@ Figures are minimum precision.

Table 5-2. MSP430 C/C++ EABI Data Types

Range
Type Size Alignment Representation Minimum Maximum
signed char 8 bits 8 Binary -128 127
char 8 bits 8 ASCII Oor-128 @ 255 or 127 @
unsigned char 8 bits 8 Binary 0 255
bool (C99) 8 bits 8 Binary 0 (false) 1 (true)
_Bool (C99) 8 bits 8 Binary 0 (false) 1 (true)
bool (C++) 8 bits 8 Binary 0 (false) 1 (true)
short, signed short 16 bits 16 2s complement -32 768 32767
unsigned short 16 bits 16 Binary 0 65 535
int, signed int 16 bits 16 2s complement -32 768 32767
unsigned int 16 bits 16 Binary 0 65 535
long, signed long 32 bits 16 2s complement -2 147 483 648 2 147 483 647
unsigned long 32 bits 16 Binary 0 4 294 967 295
long long, signed long long 64 bits 16 2s complement -9 223 372 036 854 9 223 372 036 854
775 808 775 807
unsigned long long 64 bits 16 Binary 0 18 446 744 073 709
551 615

@ "Plain" char has the same representation as either signed char or unsigned char. The --plain_char option specifies whether

"plain” char is signed or unsigned. The default is unsigned.

76 MSP430 C/C++ Language Implementation

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I} TEXAS
INSTRUMENTS
www.ti.com Keywords
Table 5-2. MSP430 C/C++ EABI Data Types (continued)
Range
Type Size Alignment Representation Minimum Maximum
enum varies @ 16 2s complement varies varies
float 32 bits 16 IEEE 32-bit 1.175 494e-38® 3.40 282 346e+38
double 64 bits 16 IEEE 64-bit 2.22 507 385e-308® 1.79 769 313e+308
long double 64 bits 16 IEEE 64-bit 2.22 507 385e-308® 1.79 769 313e+308
function and data pointers ~ varies (see 16

Table 5-3)

@ Normally the underlying type of an enum is int or unsigned int, unless neither can represent all the enumerators. In that case, if
long or unsigned long can represent all the enumerators, that type is used. Otherwise, the underlying type is long long or
unsigned long long.

® Figures are minimum precision.

The char type is unsigned by default. This is in contrast to the "signed char" and "unsigned char" types,
which specify their sign behavior. You can change the default for the "char" type using the --
plain_char=signed compiler option.
The additional types from C, C99 and C++ are defined as synonyms for standard types:

typedef unsigned int wchar_t;

typedef unsigned int wint_t;

MSP devices support multiple data and code memory models. The code and data model affects the size,
alignment, and storage space used for function pointers, data pointers, the size_t type, and the ptrdiff_t
type. Pointers with sizes that are not a power of 2 are always stored in a container with a size of a power
of 2 bits. That is, 20-bit types are stored in 32 bits.

Table 5-3. Data Sizes for MSP430 Pointers

Code or Data Model Type Size Storage Alignment
small code model function pointer 16 16 16
large code model function pointer 20 32 16
small data model data pointer 16 16 16
small data model size_t 16 16 16
small data model ptrdiff_t 16 16 16
restricted data model data pointer 20 32 16
restricted data model size_t 16 16 16
restricted data model ptrdiff_t 16 16 16
large data model @ data pointer 20 32 16
large data model size_t 32 32 16
large data model ptrdiff_t 32 32 16

@ MSP430X large-data model is specified by --silicon_version=mspx --data_model=large

5.6 Keywords
The MSP430 C/C++ compiler supports all of the standard C89 keywords, including const, volatile, and
register. It also supports standard C99 keywords, including inline and restrict. It also supports Tl extension
keywords __asm and __interrupt. Some keywords are not available in strict ANSI mode.
The following keywords may appear in other target documentation and require the same treatment as the
__interrupt and restrict keywords:
» trap
+ reentrant
» cregister

SLAU132H-June 2013 MSP430 C/C++ Language Implementation 77

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Keywords www.ti.com

5.6.1

5.6.2

The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const. This keyword gives you greater
optimization and control over allocation of storage for certain data objects. You can apply the const
qualifier to the definition of any variable or array to ensure that its value is not altered.

Global objects qualified as const are placed in the .const section. The linker allocates the .const section
from ROM or FLASH, which are typically more plentiful than RAM. The const data storage allocation rule
has two exceptions:

» If the keyword volatile is also specified in the definition of an object (for example, volatile const int x).
Volatile keywords are assumed to be allocated to RAM. (The program is not allowed to modify a const
volatile object, but something external to the program might.)

» If the object has automatic storage (function scope).
In both cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword within a definition is important. For example, the first statement below
defines a constant pointer p to a modifiable int. The second statement defines a modifiable pointer g to a
constant int:
int * const p
const int * q

&X;
&x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};

The __interrupt Keyword

The compiler extends the C/C++ language by adding the __interrupt keyword, which specifies that a
function is treated as an interrupt function. This keyword is an IRQ interrupt. The alternate keyword,
“interrupt”, may also be used except in strict ANSI C or C++ modes.

Functions that handle interrupts follow special register-saving rules and a special return sequence. The
implementation stresses safety. The interrupt routine does not assume that the C run-time conventions for
the various CPU register and status bits are in effect; instead, it re-establishes any values assumed by the
run-time environment. When C/C++ code is interrupted, the interrupt routine must preserve the contents of
all machine registers that are used by the routine or by any function called by the routine. When you use
the __interrupt keyword with the definition of the function, the compiler generates register saves based on
the rules for interrupt functions and the special return sequence for interrupts.

You can only use the __interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or
global variables. For example:

__interrupt void int_handler()

{ unsigned int flags;
--}

The name c_int0O0 is the C/C++ entry point. This name is reserved for the system reset interrupt. This
special interrupt routine initializes the system and calls the function main. Because it has no caller, c_int00
does not save any registers.

Hwi Objects and the __interrupt Keyword

NOTE: The __interrupt keyword must not be used when DSP/BIOS HWI objects or SYS/BIOS Hwi
objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher contain this functionality, and the use of the C modifier can cause negative
results.

78

MSP430 C/C++ Language Implementation SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Keywords

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device specific interrupts that do not have an associated
interrupt service routine. However, a default vector handler is now provided by the run-time
support (RTS) library, so you should not see this error if you are linking with the provided
RTS library.

5.6.3 The restrict Keyword

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with
the restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references,
and arrays. Its use represents a guarantee by you, the programmer, that within the scope of the pointer
declaration the object pointed to can be accessed only by that pointer. Any violation of this guarantee
renders the program undefined. This practice helps the compiler optimize certain sections of code
because aliasing information can be more easily determined.

In Example 5-1, the restrict keyword is used to tell the compiler that the function funcl is never called with
the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through
a and b will never conflict; therefore, a write through one pointer cannot affect a read from any other
pointers. The precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO
C Standard.

The "restrict" keyword is a C99 keyword, and cannot be accepted in strict ANSI C89 mode. Use the
" restrict" keyword if the strict ANSI C89 mode must be used. See Section 5.15.

Example 5-1. Use of the restrict Type Qualifier With Pointers

void funcl(int * restrict a, int * restrict b)

{

/* funcl®s code here */

}

Example 5-2 illustrates using the restrict keyword when passing arrays to a function. Here, the arrays c
and d must not overlap, nor may ¢ and d point to the same array.

Example 5-2. Use of the restrict Type Qualifier With Arrays

void func2(int c[restrict], int d[restrict])

{

int i;

for(i = 0; 1 < 64; i++)
{
c[i] += d[i];
d[i] += 1;
b
3

For more information about restrict see http://processors.wiki.ti.com/index.php/Restrict Type Qualifier,
especially the Performance Tuning with the "Restrict" Keyword article.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 79

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Restrict_Type_Qualifier
http://processors.wiki.ti.com/images/f/ff/Bartley%3DWiki_1.1%3DPerformance_Tuning_with_the_RESTRICT_Keyword.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Keywords www.ti.com

5.6.4 The volatile Keyword

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis to
figure out when it is legal. However, some memory accesses may be special in some way that the
compiler cannot see, and in such cases you must use the volatile keyword to prevent the compiler from
optimizing away something important. The compiler does not optimize out any accesses to variables
declared volatile. The number and order of accesses of a volatile variable are exactly as they appear in
the C/C++ code, no more and no less.

There are different ways to understand how volatile works, but fundamentally it is a hint to the compiler
that something it cannot understand is going on, and so the compiler should not try to be over-clever.

Any variable which might be modified by something external to the obvious control flow of the program
(such as an interrupt service routine) must be declared volatile. This tells the compiler that an interrupt
function might modify the value at any time, so the compiler should not perform optimizations which will
change the number or order of accesses of that variable. This is the primary purpose of the volatile
keyword. In the following example, the loop intends to wait for a location to be read as OxFF:

unsigned int *ctrl;
while (*ctrl 1=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-
memory read. To get the desired result, define ctrl as:
volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

Volatile must also be used when accessing memory locations that represent memory-mapped peripheral
devices. Such memory locations might change value in ways that the compiler cannot predict. These
locations might change if accessed, or when some other memory location is accessed, or when some
signal occurs.

Volatile must also be used for local variables in a function which calls setjmp, if the value of the local
variables needs to remain valid if a longjmp occurs.

Example 5-3. Volatile for Local Variables With setjmp

#include <stdlib.h>
Jjmp_buf context;
void function()

{
volatile int x = 3;
switch(setjmp(context))
{
case 0: setup(); break;
default:
{
printf("'x == %d\n", x); /* We can only reach here if longjmp has occurred; because x"s
lifetime begins before the setjmp and lasts through the longjmp,
the C standard requires x be declared *"volatile™ */
break;
}
}
}
80 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com C++ Exception Handling

5.7

5.8

C++ Exception Handling

The compiler supports all the C++ exception handling features as defined by the ANSI/ISO 14882 C++
Standard. More details are discussed in The C++ Programming Language, Third Edition by Bjarne
Stroustrup.

The compiler --exceptions option enables exception handling. The compiler’s default is no exception
handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions
option, regardless of whether exceptions occur in a particular file. Mixing exception-enabled object files
and libraries with object files and libraries that do not have exceptions enabled can lead to undefined
behavior.

Exception handling requires support in the run-time-support library, which come in exception-enabled and
exception-disabled forms; you must link with the correct form. When using automatic library selection (the
default), the linker automatically selects the correct library Section 4.3.1.1. If you select the library
manually, you must use run-time-support libraries whose name contains _eh if you enable exceptions.

Using --exceptions causes the compiler to insert exception handling code. This code will increase the size
of the program, particularly for the COFF ABI. For COFF, the cost is larger code size and execution time;
the compiler must add setjmp calls at every point an exception could be seen, and that cost is paid even if
the exception is never taken. EABI implements exception handling in a more efficient manner. The
exception information is placed in data tables, and a special RTS function processes these tables when an
exception occurs. This requires negligible execution time overhead when exceptions are not taken, which
is the predominant case. The EABI implementation requires smaller code size overhead by moving the
information to const data sections.

See Section 7.1 for details on the run-time libraries.

Register Variables and Parameters

The C/C++ compiler treats register variables (variables defined with the register keyword) differently,
depending on whether you use the --opt_level (-O) option.

e Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values
by using an algorithm that makes the most efficient use of registers.

* Compiling without optimization
If you use the register keyword, you can suggest variables as candidates for allocation into registers.

The compiler uses the same set of registers for allocating temporary expression results as it uses for
allocating register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it
frees a register by moving its contents to memory. If you define too many objects as register variables,
you limit the number of registers the compiler has for temporary expression results. This limit causes
excessive movement of register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function,
some of the parameters are copied to a location on the stack where they are referenced during the
function body. The compiler copies a register parameter to a register instead of the stack, which speeds
access to the parameter within the function.

For more information about register conventions, see Section 6.3.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 81
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

The __

13 TEXAS
INSTRUMENTS

asm Statement www.ti.com

5.9

The __asm Statement

The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language implemented
through the __asm keyword. The __asm keyword provides access to hardware features that C/C++
cannot provide.

The alternate keyword, "asm", may also be used except in strict ANSI C mode. It is available in relaxed C
and C++ modes.

Using __asm is syntactically performed as a call to a function named __asm, with one string constant
argument:

‘_asm(" assembler text ");

The compiler copies the argument string directly into your output file. The assembler text must be
enclosed in double quotes. All the usual character string escape codes retain their definitions. For
example, you can insert a .byte directive that contains quotes as follows:

__asm('STR: .byte \"abc\'""");

The inserted code must be a legal assembly language statement. Like all assembly language statements,
the line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or
semicolon). The compiler performs no checking on the string; if there is an error, the assembler detects it.
For more information about the assembly language statements, see the MSP430 Assembly Language
Tools User's Guide.

The __asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can
appear as a statement or a declaration, even outside of blocks. This is useful for inserting directives at the
very beginning of a compiled module.

The __asm statement does not provide any way to refer to local variables. If your assembly code needs to
refer to local variables, you will need to write the entire function in assembly code.

For more information, refer to Section 6.5.5.

NOTE: Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with __asm statements. The compiler does
not check the inserted instructions. Inserting jumps and labels into C/C++ code can cause
unpredictable results in variables manipulated in or around the inserted code. Directives that
change sections or otherwise affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with __asm statements. Although the
compiler cannot remove __asm statements, it can significantly rearrange the code order near
them and cause undesired results.

82

MSP430 C/C++ Language Implementation SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.10 Pragma Directives
Pragma directives tell the compiler how to treat a certain function, object, or section of code. The MSP430
C/C++ compiler supports the following pragmas:
* BIS_IE1_INTERRUPT (See Section 5.10.1)
« CHECK_MISRA (See Section 5.10.2)
* CLINK (See Section 5.10.3)
»+ CODE_SECTION (See Section 5.10.4)
» DATA _ALIGN (See Section 5.10.5)
+ DATA_SECTION (See Section 5.10.6)
» diag_suppress, diag_remark, diag_warning, diag_error, and diag_default (See Section 5.10.7)
* FUNC_ALWAYS_INLINE (See Section 5.10.8)
» FUNC_CANNOT_INLINE (See Section 5.10.9)
* FUNC_EXT_CALLED (See Section 5.10.10)
* FUNC_IS_PURE (See Section 5.10.11)
*+ FUNC_NEVER_RETURNS (See Section 5.10.12)
* FUNC_NO_GLOBAL_ASG (See Section 5.10.13)
e FUNC_NO_IND_ASG (See Section 5.10.14)
* FUNCTION_OPTIONS (See Section 5.10.15)
» INTERRUPT (See Section 5.10.16)
* LOCATION (EABI only; see Section 5.10.17)
* NOINIT (EABI only; see Section 5.10.18)
e NO_HOOKS (See Section 5.10.19)
* PACK (See Section 5.10.20)
* PERSISTENT (EABI only; see Section 5.10.18)
 RESET_MISRA (See Section 5.10.21)
* RETAIN (See Section 5.10.22)
+ SET_CODE_SECTION (See Section 5.10.23)
+ SET_DATA_SECTION (See Section 5.10.23)

The arguments func and symbol cannot be defined or declared inside the body of a function. You must
specify the pragma outside the body of a function; and the pragma specification must occur before any
declaration, definition, or reference to the func or symbol argument. If you do not follow these rules, the
compiler issues a warning and may ignore the pragma.

For the pragmas that apply to functions or symbols (except CLINK and RETAIN), the syntax for the
pragmas differs between C and C++. In C, you must supply the name of the object or function to which
you are applying the pragma as the first argument. In C++, the name is omitted; the pragma applies to the
declaration of the object or function that follows it.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 83

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com
5.10.1 The BIS_IE1 INTERRUPT

The BIS_IE1_INTERRUPT pragma treats the named function as an interrupt routine. Additionally, the
compiler generates a BIS operation on the IE1 special function register upon function exit. The mask
value, which must be an 8-bit constant literal, is logically ORed with the IE1 SFR, just before the RETI
instruction. The compiler assumes the IE1 SFR is mapped to address 0x0000.

The syntax of the pragma in C is:

#pragma BIS_IE1_INTERRUPT (func , mask); |

The syntax of the pragma in C++ is:

#pragma BIS_IE1_INTERRUPT (mask); |

In C, the argument func is the name of the function that is an interrupt. In C++, the pragma applies to the
next function declared.

5.10.2 The CHECK_MISRA Pragma

The CHECK_MISRA pragma enables/disables MISRA-C:2004 rules at the source level. This pragma is
equivalent to using the --check_misra option.

The syntax of the pragma in C is:

#pragma CHECK_MISRA (" {all[required|advisory|none|rulespec} ");

The rulespec parameter is a comma-separated list of specifiers. See Section 5.3 for details.
The RESET_MISRA pragma can be used to reset any CHECK _MISRA pragmas; see Section 5.10.21.

5.10.3 The CLINK Pragma

The CLINK pragma can be applied to a code or data symbol. It causes a .clink directive to be generated
into the section that contains the definition of the symbol. The .clink directive indicates to the linker that the
section is eligible for removal during conditional linking. Therefore, if the section is not referenced by any
other section in the application that is being compiled and linked, it will not be included in the output file
result of the link.

The syntax of the pragma in C/C++ is:

#pragma CLINK (symbol)

The RETAIN pragma has the opposite effect of the CLINK pragma. See Section 5.10.22 for more details.

84 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.10.4 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

’#pragma CODE_SECTION (symbol , "section name ") ‘

The syntax of the pragma in C++ is:

‘#pragma CODE_SECTION (" section name ")

The CODE_SECTION pragma is useful if you have code objects that you want to link into an area
separate from the .text section.

The following examples demonstrate the use of the CODE_SECTION pragma.

Example 5-4. Using the CODE_SECTION Pragma C Source File

#pragma CODE_SECTION(funcA,"codeA™)
int funcA(int a)

{
int i;
return (i = a);

Example 5-5. Generated Assembly Code From Example 5-4

.sect '"‘codeA"
.align 2
.clink
-global funcA

* FUNCTION NAME: funcA *
* *
;* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,r12 *
* Local Frame Size : 0 Args + 4 Auto + 0 Save = 4 byte *
funcA
e e e e e *

SUB.W #4 ,SP

MOV . W ri2,0(SP) ;141

MOV .W 0(SP),2(SP) ; 161

MOV . W 2(SP),ri12 ;161

ADD . W #4,SP

RET

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 85

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Pragma Directives

13 TEXAS
INSTRUMENTS

www.ti.com

Example 5-6. Using the CODE_SECTION Pragma C++ Source File

#pragma CODE_SECTION("'codeB'™)
int i_arg(int x) { return 1; }
int ¥ arg(float x) { return 2; }

Example 5-7. Generated Assembly Code From Example 5-6

.sect '"'‘codeB"

.align
.clink
-global i_arg_ Fi
;* FUNCTION NAME: i_arg(int) *
-k *
3* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,ri12 *
;* Local Frame Size : O Args + 2 Auto + 0 Save = 2 byte *
i_arg_ Fi
e e e *
SUB.W #2,SP
MOV . W r12,0(SP) ;121
MOV . W #1,r12 ;120
ADD . W #2,SP
RET
.sect "._text"
.align 2
-clink
-global f_arg_ Ff
;* FUNCTION NAME: f arg(float) *
-k *
;* Regs Modified : SP,SR,ri12 *
;* Regs Used : SP,SR,r12,r13 *
3* Local Frame Size *

: 0 Args + 4 Auto + 0 Save = 4 byte

#4,SP
r12,0(SP) ;131
ri3,2(SP) ;131
#2,r12 ; 131
#4,SP

86 MSP430 C/C++ Language Implementation

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.10.5 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of
the constant in bytes. The constant must be a power of 2. The maximum alignment is 32768.

The DATA_ALIGN pragma cannot be used to reduce an object's natural alignment.
The syntax of the pragma in C is:

‘#pragma DATA_ALIGN (symbol , constant); ‘

The syntax of the pragma in C++ is:

[#pragma DATA_ALIGN (constant); |

5.10.6 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

‘#pragma DATA_SECTION (symbol , " section name "); ‘

The syntax of the pragma in C++ is:

]#pragma DATA_SECTION (" section name "); ‘

The DATA_SECTION pragma is useful if you have data objects that you want to link into an area separate
from the .bss section.

Example 5-8 through Example 5-10 demonstrate the use of the DATA_SECTION pragma.

Example 5-8. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTION(bufferB, "my_sect™)
char bufferA[512];
char bufferB[512];

Example 5-9. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA_SECTION("my_sect')
char bufferB[512];

Example 5-10. Using the DATA_SECTION Pragma Assembly Source File

-global bufferA
-bss bufferA,512,2
-global bufferB

bufferB: .usect "my_sect",512,2

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 87
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.10.7 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the
corresponding command line options:

Pragma Option Description

diag_suppress num -pds=num[, num,, num,...] Suppress diagnostic num
diag_remark num -pdsr=num[, num,, nums...] Treat diagnostic num as a remark
diag_warning num -pdsw=num[, num,, nums...] Treat diagnostic num as a warning
diag_error num -pdse=num[, num,, nums...] Treat diagnostic num as an error
diag_default num n/a Use default severity of the diagnostic

The syntax of the pragmas in C is:

’#pragma diag_xxx [=]num[, num,, hums...]

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal
sign (=) is optional. Any diagnostic can be overridden to be an error, but only diagnostics with a severity of
discretionary error or below can have their severity reduced to a warning or below, or be suppressed. The
diag_default pragma is used to return the severity of a diagnostic to the one that was in effect before any
pragmas were issued (i.e., the normal severity of the message as modified by any command-line options).

The diagnostic identifier number is output along with the message when the -pden command line option is
specified.

5.10.8 The FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function. The
compiler only inlines the function if it is legal to inline the function and the compiler is invoked with any
level of optimization (--opt_level=0). See Section 2.11 for details about interaction between various types
of inlining.

This pragma must appear before any declaration or reference to the function that you want to inline. In C,
the argument func is the name of the function that will be inlined. In C++, the pragma applies to the next
function declared.

This pragma can be used to force inlining at link time across C files.

The syntax of the pragma in C is:

‘#pragma FUNC_ALWAYS_INLINE (func); ‘

The syntax of the pragma in C++ is:

| #pragma FUNC_ALWAYS_INLINE; |

The following example uses this pragma:

#pragma FUNC_ALWAYS_INLINE(functionThatMustGetinlined)
static inline void functionThatMustGetInlined(void) {
P10UT |= 0x01;
P10OUT &= ~0x01;

Use Caution with the FUNC_ALWAYS_INLINE Pragma

NOTE: The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse of
this pragma could result in increased compilation times or memory usage, potentially enough
to consume all available memory and result in compilation tool failures.

88 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.10.9 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded
inline. Any function named with this pragma overrides any inlining you designate in any other way, such as
using the inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the
next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_CANNOT_INLINE (func); ‘

The syntax of the pragma in C++ is:

| #pragma FUNC_CANNOT_INLINE; |

5.10.10 The FUNC_EXT_CALLED Pragma

When you use the --program_level_compile option, the compiler uses program-level optimization. When
you use this type of optimization, the compiler removes any function that is not called, directly or indirectly,
by main. You might have C/C++ functions that are called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C functions or any other
functions that these C/C++ functions call. These functions act as entry points into C/C++.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that you do not want removed. In C++, the pragma applies
to the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_EXT_CALLED (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_EXT_CALLED; |

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the
name of the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with
certain options. See Section 3.3.2.

5.10.11 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This
allows the compiler to do the following:

» Delete the call to the function if the function's value is not needed
» Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_IS_PURE (func);

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 89

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Pragma Directives

13 TEXAS
INSTRUMENTS

www.ti.com

The syntax of the pragma in C++ is:

#pragma FUNC_IS_PURE;

5.10.12 The FUNC_NEVER_RETURNS Pragma
The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its

caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that does not return. In C++, the pragma applies to the next

function declared.
The syntax of the pragma in C is:

‘#pragma FUNC_NEVER_RETURNS (func);

The syntax of the pragma in C++ is:

‘#pragma FUNC_NEVER_RETURNS;

5.10.13 The FUNC_NO_GLOBAL_ASG Pragma
The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments

to named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to

the next function declared.
The syntax of the pragma in C is:

‘#pragma FUNC_NO_GLOBAL_ASG (func);

The syntax of the pragma in C++ is:

| #pragma FUNC_NO_GLOBAL_ASG;

5.10.14 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments

through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to

the next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_NO_IND_ASG (func);

The syntax of the pragma in C++ is:

| #pragma FUNC_NO_IND_ASG;

90

MSP430 C/C++ Language Implementation

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.10.15 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with
additional command-line compiler options. The affected function will be compiled as if the specified list of
options appeared on the command line after all other compiler options. In C, the pragma is applied to the
function specified. In C++, the pragma is applied to the next function.

The syntax of the pragma in C is:

‘#pragma FUNCTION_OPTIONS (func, "additional options"); ‘

The syntax of the pragma in C++ is:

| #pragma FUNCTION_OPTIONS("additional options”); |

5.10.16 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

| #pragma INTERRUPT (func); |

The syntax of the pragma in C++ is:

| #pragma INTERRUPT ; |

The code for the function will return via the IRP (interrupt return pointer).

Except for _c_int00, which is the name reserved for the system reset interrupt for C programs, the name
of the interrupt (the func argument) does not need to conform to a naming convention.

Hwi Objects and the INTERRUPT Pragma

NOTE: The INTERRUPT pragma must not be used when DSP/BIOS HWI objects or SYS/BIOS Hwi
objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher contain this functionality, and the use of the C modifier can cause negative
results.

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device specific interrupts that do not have an associated
interrupt service routine. However, a default vector handler is now provided by the run-time
support (RTS) library, so you should not see this error if you are linking with the provided
RTS library.

5.10.17 The LOCATION Pragma

The compiler supports the ability to specify the run-time address of a variable at the source level. This can
be accomplished with the LOCATION pragma or attribute. Location support is only available in EABI.

The syntax of the pragma in C is:

#pragma LOCATION(x , address);
int x;

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 91

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

The syntax of the pragmas in C++ is:

#pragma LOCATION(address);
int x;

The syntax of the pragma for IAR is:

#pragma location=address
int x;

The syntax of the GCC attribute is:

int x __attribute__ ((location(address)));

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations; see Section 5.10.18.

5.10.18 The NOINIT and PERSISTENT Pragmas

When using EABI, global and static variables will be zero-initialized. However, in applications using non-
volatile memory, it may be desirable to have variables that are not initialized. Noinit variables are global or
static variables that are not zero-initialized at startup or reset.

Persistent and noinit variables behave identically with the exception of whether or not they are initialized at
load time.

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations, like memory-mapped registers, without generating unwanted writes. The NOINIT
pragma may only be used with uninitialized variables.

The PERSISTENT pragma is similar to the NOINIT pragma, except that it may only be used with
statically-initialized variables. Persistent variables disable startup initialization; they are given an initial
value when the code is loaded, but are never again initialized.

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero loaded
into RAM. The program can increment that variable over time as a counter, and that count will not
disappear if the device loses power and restarts, because the memory is non-volatile and the boot
routines do not initialize it back to zero. For example:

#pragma PERSISTENT(X)

#pragma location = OxC200 // memory address in RAM

int x = 0;

void main() {
;ﬁﬁ_init();
while (1) {
run_actions(x);

__delay_cycles(1000000);
X++

92 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

The syntax of the pragmas in C is:

#pragma NOINIT (x);
int x;

#pragma PERSISTENT (x);
int x=10;

The syntax of the pragmas in C++ is:

#pragma NOINIT;
int x;

#pragma PERSISTENT,;
int x=10;

The syntax of the GCC attributes is:

‘int X __attribute__ ((noinit)); ‘

‘ int x =0 __ attribute__((persistent)); ‘

5.10.19 The NO_HOOKS Pragma
The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.
The syntax of the pragma in C is:

‘#pragma NO_HOOKS (func); ‘

The syntax of the pragma in C++ is:

‘#pragma NO_HOOKS; ‘

See Section 2.14 for details on entry and exit hooks.

5.10.20 The PACK Pragma

The PACK pragma can be used to control the alignment of fields within a class, struct, or union type. The
syntax of the pragma in C/C++ can be any of the following.

’#pragma PACK (n) ‘

This form of the PACK pragma affects the next class, struct, or union type declaration that occurs. It
forces the maximum alignment of each field to be the value specified by n. Valid values for n are 1, 2, 4, 8,
and 16 bytes.

#pragma PACK (push, n)
#pragma PACK (pop)

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 93

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

This form of the PACK pragma affects all class, struct, and union type declarations between the push and
pop directives. (A pop directive with no prior push results in a warning diagnostic being issued from the
compiler.) The maximum alignment of all fields declared is n. Valid values for n are 1, 2, 4, 8, and 16
bytes.

‘#pragma PACK (show)

This form of the PACK pragma sends a warning diagnostic to stderr to record the current state of the pack
pragma stack. You can use this form while debugging.

For more about packed fields, see Section 5.16.4.

5.10.21 The RESET_MISRA Pragma

The RESET_MISRA pragma resets the specified MISRA-C:2004 rules to the state they were before any
CHECK_MISRA pragmas (see Section 5.10.2) were processed. For instance, if a rule was enabled on the
command line but disabled in the source, the RESET_MISRA pragma resets it to enabled. This pragma
accepts the same format as the --check_misra option, except for the "none" keyword.

The syntax of the pragma in C is:

#pragma RESET_MISRA (" {all|required|advisory|rulespec} ")

The rulespec parameter is a comma-separated list of specifiers. See Section 5.3 for details.

5.10.22 The RETAIN Pragma

The RETAIN pragma can be applied to a code or data symbol. It causes a .retain directive to be
generated into the section that contains the definition of the symbol. The .retain directive indicates to the
linker that the section is ineligible for removal during conditional linking. Therefore, regardless whether or
not the section is referenced by another section in the application that is being compiled and linked, it will
be included in the output file result of the link.

The syntax of the pragma in C/C++ is:

#pragma RETAIN (symbol)

The CLINK pragma has the opposite effect of the RETAIN pragma. See Section 5.10.3 for more details.

94 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives
5.10.23 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas

These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

‘#pragma SET_CODE_SECTION ("section name") ‘

| #pragma SET_DATA_SECTION (" section name") |

In Example 5-11 x and y are put in the section mydata. To reset the current section to the default used by
the compiler, a blank parameter should be passed to the pragma. An easy way to think of the pragma is
that it is like applying the CODE_SECTION or DATA_SECTION pragma to all symbols below it.

Example 5-11. Setting Section With SET_DATA_SECTION Pragma

#pragma SET_DATA_SECTION("mydata')
int x;

int y;

#pragma SET_DATA_SECTIONQ)

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition,
the pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Example 5-12. Setting a Section With SET_CODE_SECTION Pragma

#pragma SET_CODE_SECTION("'funcl™)
extern void funcl(Q);
#pragma SET_CODE_SECTIONQ)

void funciQ) { ... }

In Example 5-12 funcl is placed in section funcl. If conflicting sections are specified at the declaration
and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override
the SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Example 5-13. Overriding SET_DATA_SECTION Setting

#pragma DATA_SECTION(x, ''x_data')
#pragma SET_DATA_SECTION("mydata')
int x;

int y;

#pragma SET_DATA_SECTIONQ)

In Example 5-13 x is placed in x_data and y is placed in mydata. No diagnostic is issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implicitly
created objects, such as implicit constructors and virtual function tables.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 95
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.10.24 The vector Pragma

The vector pragma indicates that the function that follows is to be used as the interrupt vector routine for
the listed vectors. The syntax of the pragma is:

#pragma vector = vecl][, vec2 , vecs, ...]

The vector pragma requires linker command file support. The command file must specify output sections
for each interrupt vector of the form .intxx where xx is the number of the interrupt vector. The output
sections must map to the physical memory location of the appropriate interrupt vector. The standard linker
command files are set up to handle the vector pragma. See Section 6.6.4.

If you do not specify an ISR routine for some interrupt vectors, an ISR routine will be provided for those
vectors from the RTS library and the RTS library will automatically be linked with your application. The
default ISR routine puts the device in low power mode. You can override the ISR provided by the RTS
with the unused_interrupts keyword as follows:

#pragma vector=unused_interrupts

interrupt void user_trap_function(void)

{
// code for handling all interrupts that do not have

// specific ISRs
b

The __even_in_range intrinsic provides a hint to the compiler when generating switch statements for
interrupt vector routines. The intrinsic is usually used as follows:

switch (__even_in_range(x , NUM))
{

}

The __even_in_range intrinsic returns the value x to control the switch statement, but also tells the
compiler that x must be an even value in the range of 0 to NUM, inclusive.

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device-specific interrupts that do not have an associated
interrupt service routine. However, a default vector handler is now provided by the run-time
support (RTS) library, so you should not see this error if you are linking with the provided

RTS library.
For more details, see the MSP430 Assembly Language Tools User's Guide section for the .intvec
directive.
96 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com The _Pragma Operator

5.11 The _Pragma Operator

The MSP430 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor
operator is similar to #pragma directives. However, _Pragma can be used in preprocessing macros
(#defines).

The syntax of the operator is:

’_Pragma (" string_literal ");

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal
must be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the
DATA_SECTION syntax:

#pragma DATA_SECTION(func ," section ");

Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION(func \" section \")")

The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:

#define EMIT_PRAGMA(X) _Pragma(#x)
#define COLLECT_DATA(var) EMIT_PRAGMA(DATA_SECTION(var,"mysection'))

COLLECT_DATA(X)
int x;

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the
section argument to the DATA_SECTION pragma.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 97

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Application Binary Interface www.ti.com

5.12 Application Binary Interface

Selecting one of the two ABIs supported by the MSP430 compiler is discussed in Section 2.13.

An ABI defines how functions that are compiled or assembled separately (possibly by compilers from
different vendors) can work together. This involves standardizing the data type representation, register
conventions, and function structure and calling conventions. It defines linkname generation from C symbol
names. It defines the object file format and the debug format. It defines how the system is initialized. In the
case of C++ it defines C++ name mangling and exception handling support.

An application must be entirely COFF ABI or EABI; these ABIs are not compatible.

5.12.1 COFF ABI

COFF ABI is the only ABI supported by older compilers. To generate object files compatible with older
COFF ABI object files, you must use COFF ABI (--abi=coffabi, the default). This option must also be used
when assembling hand-coded assembly source files intended to be used in a COFF ABI application.

5.12.2 EABI

EABI requires the ELF object file format which supports modern language features like early template
instantiation and exporting inline functions.

Tl-specific information on EABI mode is described in Section 6.8.4.

To generate object files compatible with EABI, you must use MSP430 compiler version 4.0 or greater; see
Section 2.13.

The __TI_EABI__ predefined symbol is defined and set to 1 if compiling for EABI and is not defined
otherwise.

For low-level details about the MSP430 EABI, see The MSP430 Embedded Application Binary Interface
(SLAAS534).

98

MSP430 C/C++ Language Implementation SLAU132H-June 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Object File Symbol Naming Conventions (Linknames)

5.13

5.14

Object File Symbol Naming Conventions (Linknames)

Each externally visible identifier is assigned a unique symbol name to be used in the object file, a so-
called linkname. This name is assigned by the compiler according to an algorithm which depends on the
name, type, and source language of the symbol. This algorithm may add a prefix to the identifier (typically
an underscore), and it may mangle the name.

For EABI, user-defined symbols in C code and in assembly code are in the same namespace, which
means you are responsible for making sure that your C identifiers do not collide with your assembly code
identifiers. You may have EABI identifiers that collide with assembly keywords (for instance, register
names); in this case, the compiler automatically uses an escape sequence to prevent the collision. The
compiler escapes the identifier with double parallel bars, which instructs the assembler not to treat the
identifier as a keyword. You are responsible for making sure that C identifiers do not collide with user-
defined assembly code identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name
mangling only occurs for C++ functions which are not declared ‘extern "C™. Mangling allows function
overloading, operator overloading, and type-safe linking. Be aware that the return value of the function is
not encoded in the mangled name, as C++ functions cannot be overloaded based on the return value.

For COFF ABI, the mangling algorithm used closely follows that described in The Annotated Reference
Manual (ARM).

For example, the general form of a C++ linkname for a function named func is:
func__F parmcodes
Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:
int foo(int 1){ } //global C++ function

This is the resulting assembly code:
foo__Fi

The linkname of foo is foo__Fi, indicating that foo is a function that takes a single argument of type int. To
aid inspection and debugging, a name demangling utility is provided that demangles names into those
found in the original C++ source. See Chapter 8 for more information.

For EABI, the mangling algorithm follows that described in the Itanium C++ ABI
(http://www.codesourcery.com/cxx-abi/abi.html).

int foo(int i) { } would be mangled " Z3fooi"

Initializing Static and Global Variables in COFF ABI Mode

The ANSI/ISO C standard specifies that global (extern) and static variables without explicit initializations
must be initialized to 0 before the program begins running. This task is typically done when the program is
loaded. Because the loading process is heavily dependent on the specific environment of the target
application system, in COFF ABI mode the compiler itself makes no provision for initializing to 0 otherwise
uninitialized static storage class variables at run time. It is up to your application to fulfill this requirement.

Initialize Global Objects

NOTE: You should explicitly initialize all global objects which you expected the compiler would set to
zero by default.

In MSP430 EABI mode the uninitialized variables are zero initialized automatically.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 99
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.codesourcery.com/cxx-abi/abi.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Initializing Static and Global Variables in COFF ABI Mode www.ti.com

5.14.1 Initializing Static and Global Variables With the Linker
If your loader does not preinitialize variables, you can use the linker to preinitialize the variables to 0 in the
object file. For example, in the linker command file, use a fill value of 0 in the .bss section:

SECTIONS
{

-bss: {} = 0x00;

}

Because the linker writes a complete load image of the zeroed .bss section into the output COFF file, this
method can have the unwanted effect of significantly increasing the size of the output file (but not the
program).

If you burn your application into ROM, you should explicitly initialize variables that require initialization.

The preceding method initializes .bss to 0 only at load time, not at system reset or power up. To make
these variables 0 at run time, explicitly define them in your code.

For more information about linker command files and the SECTIONS directive, see the linker description
information in the MSP430 Assembly Language Tools User's Guide.

5.14.2 |Initializing Static and Global Variables With the const Type Qualifier

Static and global variables of type const without explicit initializations are similar to other static and global
variables because they might not be preinitialized to 0 (for the same reasons discussed in Section 5.14).
For example:

const int zero; /* might not be initialized to 0 */

However, the initialization of const global and static variables is different because these variables are
declared and initialized in a section called .const. For example:

const int zero = 0 /* guaranteed to be 0 */

This corresponds to an entry in the .const section:

.sect .const
_zero
-word 0

This feature is particularly useful for declaring a large table of constants, because neither time nor space
is wasted at system startup to initialize the table. Additionally, the linker can be used to place the .const
section in ROM.

You can use the DATA_SECTION pragma to put the variable in a section other than .const. For example,
the following C code:
#pragma DATA_SECTION (var, ".mysect");

const int zero=0;

is compiled into this assembly code:

.sect -mysect
_zero
-word 0
100 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Changing the ANSI/ISO C Language Mode
5.15 Changing the ANSI/ISO C Language Mode

The language mode command-line options determine how the compiler interprets your source code. You
specify one option to identify which language standard your code follows. You can also specify a separate
option to specify how strictly the compiler should expect your code to conform to the standard.

Specify one of the following language options to control the language standard that the compiler expects
the source to follow. The options are:

» Kernighan and Ritchie (K&R) C (--kr_compatible or -pk, see Section 5.15.1.) Does not apply to C++
code.

 Embedded C++ (--embedded_cpp or -pe, see Section 5.15.3.)

Use one of the following options to specify how strictly the code conforms to the standard:
e Normal ANSI/ISO mode (default)

* Relaxed ANSI/ISO (--relaxed_ansi or -pr)

e Strict ANSI/ISO (--strict_ansi or -ps)

The default is normal ANSI/ISO mode. Under normal ANSI/ISO mode, most ANSI/ISO violations are
emitted as errors. Strict ANSI/ISO violations (those idioms and allowances commonly accepted by C/C++
compilers, although violations with a strict interpretation of ANSI/ISO), however, are emitted as warnings.
Language extensions, even those that conflict with ANSI/ISO C, are enabled.

5.15.1 Compatibility With K&R C (--kr_compatible Option)

The ANSI/ISO C language is a superset of the de facto C standard defined in Kernighan and Ritchie's The
C Programming Language. K&R C mode does not apply to C++ code, nor does it accept the strict
interpretation option. Most programs written for other non-ANSI/ISO compilers correctly compile and run
without modification.

There are subtle changes, however, in the language that can affect existing code. Appendix C in The C
Programming Language (second edition, referred to in this manual as K&R) summarizes the differences
between ANSI/ISO C and the first edition's C standard (the first edition is referred to in this manual as
K&R C).

To simplify the process of compiling existing C programs with the ANSI/ISO C/C++ compiler, the compiler
has a K&R option (--kr_compatible) that modifies some semantic rules of the language for compatibility
with older code. In general, the --kr_compatible option relaxes requirements that are stricter for ANSI/ISO
C than for K&R C. The --kr_compatible option does not disable any new features of the language such as
function prototypes, enumerations, initializations, or preprocessor constructs. Instead, --kr_compatible
simply liberalizes the ANSI/ISO rules without revoking any of the features.

The specific differences between the ANSI/ISO version of C and the K&R version of C are as follows:

» The integral promotion rules have changed regarding promoting an unsigned type to a wider signed
type. Under K&R C, the result type was an unsigned version of the wider type; under ANSI/ISO, the
result type is a signed version of the wider type. This affects operations that perform differently when
applied to signed or unsigned operands; namely, comparisons, division (and mod), and right shift:
unsigned short u;
int i;
if (u<i) /* SIGNED comparison, unless --kr_compatible used */

* ANSI/ISO prohibits combining two pointers to different types in an operation. In most K&R compilers,
this situation produces only a warning. Such cases are still diagnosed when --kr_compatible is used,
but with less severity:

int *p;
char *q = p; /* error without --kr_compatible, warning with --kr_compatible */
» External declarations with no type or storage class (only an identifier) are illegal in ANSI/ISO but legal
in K&R:
a; /* illegal unless --kr_compatible used */

* ANSI/ISO interprets file scope definitions that have no initializers as tentative definitions. In a single
module, multiple definitions of this form are fused together into a single definition. Under K&R, each
definition is treated as a separate definition, resulting in multiple definitions of the same object and

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 101

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Changing the ANSI/ISO C Language Mode www.ti.com

usually an error. For example:
int a;
int a; /* illegal if --kr_compatible used, OK if not */
Under ANSI/ISO, the result of these two definitions is a single definition for the object a. For most K&R
compilers, this sequence is illegal, because int a is defined twice.
* ANSI/ISO prohibits, but K&R allows objects with external linkage to be redeclared as static:

extern int a;
static int a; /* illegal unless --kr_compatible used */

» Unrecognized escape sequences in string and character constants are explicitly illegal under ANSI/ISO
but ignored under K&R:

char ¢ = "\q"; /* same as "q" if --kr_compatible used, error if not */

* ANSI/ISO specifies that bit fields must be of type int or unsigned. With --kr_compatible, bit fields can
be legally defined with any integral type. For example:
struct s

{

}:
* K&R syntax allows a trailing comma in enumerator lists:
enum { a, b, c, }; /7* illegal unless --kr_compatible used */
» K&R syntax allows trailing tokens on preprocessor directives:
#endif NAME /* illegal unless --kr_compatible used */

short £ - 2; /* illegal unless --kr_compatible used */

5.15.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --

relaxed_ansi Options)

The default ANSI/ISO mode is normal mode. Under normal ANSI/ISO mode, most ANSI/ISO violations are
emitted as errors. Strict ANSI/ISO violations (those idioms and allowances commonly accepted by C/C++
compilers, although violations with a strict interpretation of ANSI/ISO), however, are emitted as warnings.
Language extensions, even those that conflict with ANSI/ISO C, are enabled.

Use the --relaxed_ansi option to make the compiler accept language extensions that could potentially
conflict with a strictly conforming ANSI/ISO C/C++ program. Under strict ANSI mode, these language
extensions are suppressed so that the compiler will accept all strictly conforming programs.

Use the --strict_ansi option when you know your program is a conforming program and it will not compile
in relaxed mode. In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled and
the compiler will emit error messages where the standard requires it to do so. Violations that are
considered discretionary by the standard may be emitted as warnings instead.

Examples:

The following is strictly conforming C code, but will not be accepted by the compiler in the relaxed mode.
To get the compiler to accept this code, use strict ANSI mode. The compiler will suppress the interrupt
keyword language exception, and interrupt may then be used as an identifier in the code.

int mainQ)

{
int interrupt = 0;
return O;

The following is not strictly conforming code. The compiler will not accept this code in strict ANSI mode.
To get the compiler to accept it, use relaxed ANSI mode. The compiler will provide the interrupt keyword
extension and will accept the code

interrupt void isr(void);

int main()

{
return O;
}
102 MSP430 C/C++ Language Implementation SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Changing the ANSI/ISO C Language Mode

The following code is accepted in all modes. The __interrupt keyword does not conflict with the ANSI/ISO
C standard, so it is always available as a language extension.

__interrupt void isr(void);

int mainQ)

{

}

Relaxed ANSI mode accepts the broadest range of programs. It accepts all Tl language extensions, even
those which conflict with ANSI/ISO, and ignores some ANSI/ISO violations for which the compiler can do

something reasonable. The GCC language extensions described in Section 5.16 are available in relaxed

ANSI/ISO mode.

return O;

5.15.3 Enabling Embedded C++ Mode (--embedded_cpp Option)

The compiler supports the compilation of embedded C++. In this mode, some features of C++ are
removed that are of less value or too expensive to support in an embedded system. When compiling for
embedded C++, the compiler generates diagnostics for the use of omitted features.

Embedded C++ is enabled by compiling with the --embedded_cpp option.

Embedded C++ omits these C++ features:
» Templates

e Exception handling

* Run-time type information

* The new cast syntax

* The keyword mutable

* Multiple inheritance

» Virtual inheritance

» lostream (see below)

Under the standard definition of embedded C++, namespaces and using-declarations are not supported.
The MSP430 compiler nevertheless allows these features under embedded C++ because the C++ run-
time-support library makes use of them. Furthermore, these features impose no run-time penalty.

The default run-time support library does not support using iostream under embedded C++. Embedded
C++ equivalents of some header files, including iostream, are included in the RTS source file zip
distributed with the compiler, but these are not installed by default and will not work without an
appropriately-configured library. The compiler does not support embedded C++ run-time-support libraries.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 103

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

GNU Language Extensions

13 TEXAS
INSTRUMENTS

www.ti.com

5.16 GNU Language Extensions

The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C
and C++ standards. The definition and examples of these extensions (for GCC version 4.7) can be found
at the GNU web site, http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions.

Most of these extensions are also available for C++ source code.

5.16.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI
mode (--relaxed_ansi) or if the --gcc option is used.

The extensions that the TI compiler supports are listed in Table 5-4, which is based on the list of
extensions found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 5-4. GCC Language Extensions

Extensions

Descriptions

Statement expressions

Putting statements and declarations inside expressions (useful for creating smart 'safe’ macros)

Local labels

Labels local to a statement expression

Labels as values

Pointers to labels and computed gotos

Nested functions

As in Algol and Pascal, lexical scoping of functions

Constructing calls

Dispatching a call to another function

Naming types®

Giving a name to the type of an expression

typeof operator

typeof referring to the type of an expression

Generalized Ivalues

Using question mark (?) and comma (,) and casts in lvalues

Conditionals Omitting the middle operand of a ?: expression
Hex floats Hexadecimal floating-point constants

Complex Data types for complex numbers

Zero length Zero-length arrays

Variadic macros

Macros with a variable number of arguments

Variable length

Arrays whose length is computed at run time

Empty structures

Structures with no members

Subscripting

Any array can be subscripted, even if it is not an Ivalue.

Escaped newlines

Slightly looser rules for escaped newlines

Multi-line strings®

String literals with embedded newlines

Pointer arithmetic

Arithmetic on void pointers and function pointers

Initializers

Non-constant initializers

Compound literals

Compound literals give structures, unions, or arrays as values

Designated initializers

Labeling elements of initializers

Cast to union

Casting to union type from any member of the union

Case ranges

'‘Case 1 ... 9'and such

Mixed declarations

Mixing declarations and code

Function attributes

Declaring that functions have no side effects, or that they can never return

Attribute syntax

Formal syntax for attributes

Function prototypes

Prototype declarations and old-style definitions

C++ comments

C++ comments are recognized.

Dollar signs

A dollar sign is allowed in identifiers.

Character escapes

The character ESC is represented as \e

Variable attributes

Specifying the attributes of variables

Type attributes

Specifying the attributes of types

Alignment

Inquiring about the alignment of a type or variable

@ Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions. html#C-

Extensions

104 MSP430 C/C++ Language Implementation

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com

GNU Language Extensions

Table 5-4. GCC Language Extensions (continued)

Extensions Descriptions

Inline Defining inline functions (as fast as macros)

Assembly labels Specifying the assembler name to use for a C symbol
Extended asm Assembler instructions with C operands

Constraints Constraints for asm operands

Alternate keywords Header files can use __const__, __asm__, etc

Explicit reg vars Defining variables residing in specified registers
Incomplete enum types Define an enum tag without specifying its possible values
Function names Printable strings which are the name of the current function
Return address Getting the return or frame address of a function (limited support)
Other built-ins Other built-in functions (see Section 5.16.5)

Vector extensions Using vector instructions through built-in functions

Target built-ins Built-in functions specific to particular targets

Pragmas Pragmas accepted by GCC

Unnamed fields Unnamed struct/union fields within structs/unions
Thread-local Per-thread variables

Binary constants Binary constants using the 'Ob' prefix.

5.16.2 Function Attributes

The following GCC function attributes are supported: always_inline, const, constructor, deprecated,
format, format_arg, malloc, noinline, noreturn, pure, section, unused, used and warn_unused_result.

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
vsnprintf, scanf, fscanf, vfscanf, vscanf, vsscanf, and sscanf in stdio.h. Thus when GCC extensions are
enabled, the data arguments of these functions are type checked against the format specifiers in the
format string argument and warnings are issued when there is a mismatch. These warnings can be
suppressed in the usual ways if they are not desired.

The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

5.16.3 Variable Attributes

The following variable attributes are supported: aligned, deprecated, mode, section, transparent_union,
unused, and used.

The used attribute is defined in GCC 4.2 (see http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-
Attributes.html#Variable-Attributes).

In addition, the packed attribute may be applied to individual fields within a struct or union. The behavior of
the packed attribute for structure and union fields is described in Section 5.16.4.

In addition, the weak variable attribute is supported for EABI mode (--abi=eabi).

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 105
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

GNU Language Extensions www.ti.com

5.16.4 Type Attributes

The following type attributes are supported: aligned, deprecated, packed, transparent_union, and unused.
In addition, the visibility type attribute is supported for EABI mode (--abi=eabi).
The packed attribute is supported for struct and union types if the --relaxed_ansi option is used.

Members of a packed structure are stored as closely to each other as possible, omitting additional bytes of
padding usually added to preserve word-alignment. For example, assuming a word-size of 4 bytes
ordinarily has 3 bytes of padding between members c1 and i, and another 3 bytes of trailing padding after
member c2, leading to a total size of 12 bytes:

struct unpacked_struct { char cl; int i; char c2;};

However, the members of a packed struct are byte-aligned. Thus the following does not have any bytes of
padding between or after members and totals 6 bytes:

struct __ attribute_ ((__packed_)) packed_struct { char cl; int i; char c2; };

Subsequently, packed structures in an array are packed together without trailing padding between array
elements.

Bit fields of a packed structure are bit-aligned. The byte alignment of adjacent struct members that are not
bit fields does not change. However, there are no bits of padding between adjacent bit fields.

The packed attribute can only be applied to the original definition of a structure or union type. It cannot be
applied with a typedef to a non-packed structure that has already been defined, nor can it be applied to
the declaration of a struct or union object. Therefore, any given structure or union type can only be packed
or non-packed, and all objects of that type will inherit its packed or non-packed attribute.

The packed attribute is not applied recursively to structure types that are contained within a packed
structure. Thus, in the following example the member s retains the same internal layout as in the first
example above. There is no padding between c and s, so s falls on an unaligned boundary:

struct __ attribute__ ((__packed_)) outer_packed_struct { char c; struct unpacked_struct s; };

It is illegal to implicitly or explicitly cast the address of a packed struct member as a pointer to any non-
packed type except an unsigned char. In the following example, p1, p2, and the call to foo are all illegal.
void foo(int *param);
struct packed_struct ps;

int *pl = &ps.i;

int *p2 = (int *)&ps.i;

foo(&ps-i);
However, it is legal to explicitly cast the address of a packed struct member as a pointer to an unsigned
char:

unsigned char *pc = (unsigned char *)é&ps.i;

The packed attribute can also be applied to enumerated types. On an enum, packed indicates that the
smallest integral type should be used.

The Tl compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that
the representation is to be an integer type that is no smaller than int; in other words, it is not packed.

5.16.5 Built-In Functions

The following built-in functions are supported: __ builtin_abs, __ builtin_classify_type, __ builtin_constant_p,
__builtin_expect, __ builtin_fabs, __ builtin_fabsf, __ builtin_frame_address, __ builtin_labs,
__builtin_memcpy, and __builtin_return_address.

The __ builtin_frame_address function always returns zero.
The __ builtin_return_address function always returns zero.

106

MSP430 C/C++ Language Implementation SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Compiler Limits

5.17 Compiler Limits

Due to the variety of host systems supported by the C/C++ compiler and the limitations of some of these
systems, the compiler may not be able to successfully compile source files that are excessively large or
complex. In general, exceeding such a system limit prevents continued compilation, so the compiler aborts
immediately after printing the error message. Simplify the program to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure your filenames are shorter
than 500.

The compiler has no arbitrary limits but is limited by the amount of memory available on the host system.
On smaller host systems such as PCs, the optimizer may run out of memory. If this occurs, the optimizer
terminates and the shell continues compiling the file with the code generator. This results in a file compiled
with no optimization. The optimizer compiles one function at a time, so the most likely cause of this is a
large or extremely complex function in your source module. To correct the problem, your options are:

» Don't optimize the module in question.
» Identify the function that caused the problem and break it down into smaller functions.

» Extract the function from the module and place it in a separate module that can be compiled without
optimization so that the remaining functions can be optimized.

SLAU132H—-June 2013 MSP430 C/C++ Language Implementation 107

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS

This chapter describes the MSP430 C/C++ run-time environment. To ensure successful execution of
C/C++ programs, it is critical that all run-time code maintain this environment. It is also important to follow

Chapter 6

Run-Time Environment

the guidelines in this chapter if you write assembly language functions that interface with C/C++ code.

Topic

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Page

/1= 10 Y00 Lo = 109
(@) o) [=To3 R L=] o] =TT =]] = L1 [0 o PP 113
T o 1] =T g @0 o V2= 1 (o 0 115
Function Structure and Calling CONVENLIONSciuiuiiiiiiiiiiiiiiiieiee e aaaas 116
Interfacing C and C++ With Assembly Languagec.cceeiiiiiiiniiiiiieieiiiieieienennnns 118
1 =T U o) A =T o | 121
Using Intrinsics to Access Assembly Language Statementsc.cccoveveveieieienennnne. 123
System INItHAlIZAtION ... ettt e e e 126
Compiling for 20-Bit MSPA30X DEVICES ...cuuueiuiuientieieinieetaeiaeaseeeaeaeaeaneneeaeens 136

108

Run-Time Environment

Copyright © 2013, Texas Instruments Incorporated

SLAU132H—-June 2013

SLAU132H-June 2013
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com Memory Model

6.1

6.1.1

6.1.2

Memory Model

The MSP430 compiler treats memory as a single linear block that is partitioned into subblocks of code and
data. Each subblock of code or data generated by a C program is placed in its own continuous memory
space. The compiler assumes that the full 16-bit (for MSP430) or 20-bit (for MSP430X) address space is
available in target memory.

Code Memory Models

The MSP430 compiler supports two different code memory models, small and large, which are controlled
by the --code_model option.

» The small code model uses 16-bit function pointers and requires all code and all text sections to be
placed in the low 64K of memory. This is the only valid code model for 16-bit MSP430 devices.

» The large code model provides a 1MB address space for code and uses 20-bit function pointers. It is
the default for MSP430X devices. Interrupt service routines must still be placed in the low 64K of
memory (see Section 6.6.5).

The small code model is slightly more efficient in terms of run-time performance and memory usage when
compared to the large code model. Therefore, it is beneficial to use the small code model when all code
and text sections will fit in the low 64K of memory. Modules assembled/compiled using the small-code
model are not compatible with modules that are assembled/compiled using large-code model. The linker
generates an error if any attempt is made to combine object files that use different code memory models.
An appropriate run-time library must be used as well.

Data Memory Models

The MSP430 compiler supports three different data memory models: small, restricted and large. The data
model used is controlled by the --data_model option. The 16-bit MSP430 devices always use the small
data memory model. The 20-bit MSP430X devices can use any data memory model and use the small
data model by default.

« The small data model requires that all data sections be located in the low 64K of memory. Data
pointers are 16-bits in size. This is the most efficient data model in terms of performance and
application size.

» The restricted data model allows data to be located throughout the entire 1MB address space available
on MSP430X devices with only a minimal efficiency penalty over the small data model. It is restricted
because individual objects (structures, arrays, etc.) cannot be larger than 64K in size. Data pointers
are 32-bits in size.

e The large data model also allows data to be located throughout the entire 1IMB address space and also
places no restriction on the maximum size of an individual object. Permitting individual objects to be
greater than 64K in size causes code generated for the large data model to be less efficient than code
generated for the restricted data model.

Data memory is also affected by the --near_data option as described in Section 6.1.3.

The maximum size of an object (size_t) and the maximum difference between two pointers (ptrdiff_t) are
increased from 16-bits to 32-bits in the large data model. Applications that rely on size _t or ptrdiff t to be a
specific size may need to be updated.

Object files built with different data models are not compatible. All files in an application must be built with
the same data model. Additionally, a run-time-support library matching that data model must be used.
When using automatic library selection (the default), the linker will automatically select the correct library
Section 4.3.1.1. If you select the library manually, you must select the matching library according to
Section 7.1.8.

SLAU132H-June 2013 Run-Time Environment 109
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

6.1.3 Support for Near Data

All current MSP430X devices do not have any writeable memory above the 64K boundary. For these
devices, even when the restricted or large data models are used, only constant data will be placed above
64K. The compiler can take advantage of this knowledge to produce more efficient code. This is controlled
by the --near_data option.

When --near_data=globals is specified it tells the compiler that all global read/write data must be located in
the first 64K of memory. This is the default behavior. Global read/write data is placed by default in the .bss
and .data sections.

If --near_data=none is specified it tells the compiler that it cannot rely on this assumption to generate more
efficient code.

The Linker Defines the Memory Map

NOTE: The linker, not the compiler, defines the memory map and allocates code and data into
target memory. The compiler assumes nothing about the types of memory available, about
any locations not available for code or data (holes), or about any locations reserved for 1/0O or
control purposes. The compiler produces relocatable code that allows the linker to allocate
code and data into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into on-chip RAM or to
allocate executable code into external ROM. You can allocate each block of code or data
individually into memory, but this is not a general practice (an exception to this is memory-
mapped 1/O, although you can access physical memory locations with C/C++ pointer types).

6.1.4 Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allocated
into memory in a variety of ways to conform to a variety of system configurations. For more information
about sections and allocating them, see the introductory object file information in the MSP430 Assembly
Language Tools User's Guide.

There are two basic types of sections:

» Initialized sections contain data or executable code. Initialized sections are usually, but not always,
read-only. The C/C++ compiler creates the following initialized sections:

— For EABI only, the .binit section contains boot time copy tables. This is a read-only section. For
details on BINIT, see the MSP430 Assembly Language Tools User's Guide for linker command file
information.

— The .cinit section contains tables for initializing variables and constants. This is a read-only
section. In EABI mode, the compiler does not create this section; instead, the linker does.

— The .pinit section for COFF ABI, or the .init_array section for EABI, contains the table of pointers
to initialization routines for global C++ objects.

— For EABI only, the .data section contains initialized global and static variables.

— For EABI only, the .mspabi.exidx section contains the index table for exception handling. The
.mspabi.extab section contains unwinding instructions for exception handling. These sections are
read-only. See the --exceptions option for details.

— The .const section contains string constants, string literals, switch tables, and data defined with
the C/C++ qualifier const (provided the constant is not also defined as volatile). This is a read-only
section. String literals are placed in the .const:.string subsection to enable greater link-time
placement control.

— The .text section contains all the executable code and compiler-generated constants. This section
is usually read-only.

» Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run
time to create and store variables. The compiler creates the following uninitialized sections:

— The .bss section reserves space for global and static variables. At boot or load time, the C/C++
boot routine or the loader copies data out of the .cinit section (which can be in ROM) and stores it
in the .bss section.

110 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Memory Model

6.1.5

— For EABI only, the .bss section reserves space for uninitialized global and static variables.
Uninitialized variables that are also unused are usually created as common symbols (unless you
specify --common=off) instead of being placed in .bss so that they can be excluded from the
resulting application.

— The .stack section reserves memory for the C/C++ software stack.

— The .sysmem section reserves space for dynamic memory allocation. The reserved space is used
by dynamic memory allocation routines, such as malloc, calloc, realloc, or new. If a C/C++ program
does not use these functions, the compiler does not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. You can instruct the compiler to create
additional sections by using the CODE_SECTION and DATA_SECTION pragmas (see Section 5.10.4 and
Section 5.10.6).

The linker takes the individual sections from different object files and combines sections that have the
same name. The resulting output sections and the appropriate placement in memory for each section are
listed in Table 6-1. You can place these output sections anywhere in the address space as needed to
meet system requirements.

Table 6-1. Summary of Sections and Memory Placement

Section Type of Memory Section Type of Memory

.bss RAM .pinit or ROM or RAM
.init_array

.cinit ROM or RAM .stack RAM

.const ROM or RAM .sysmem RAM

.data RAM text ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-allocation
process. For more information about allocating sections into memory, see the linker description chapter in
the MSP430 Assembly Language Tools User's Guide.

C/C++ Software Stack

The C/C++ compiler uses a function frame stack to:
» Allocate local variables

e Pass arguments to functions

» Save register contents

The run-time stack grows from the high addresses to the low addresses. The compiler uses the R13
register to manage this stack. R13 is the stack pointer (SP), which points to the next unused location on
the stack.

The linker sets the stack size, creates a global symbol, STACK_SIZE (COFF) or __ Tl STACK_SIZE
(ELF), and assigns it a value equal to the stack size in bytes. The default stack size is 80 bytes. You can
change the stack size at link time by using the --stack_size option with the linker command. For more
information on the --stack_size option, see the linker description chapter in the MSP430 Assembly
Language Tools User's Guide.

Save-On-Entry Registers and C/C+ Stack Size

NOTE: Since register sizes increase for MSP430X devices (specified with --silicon_version=mspx),
saving and restoring save-on-entry registers requires 32-bits of stack space for each register
saved on the stack. When you are porting code originally written for 16-bit MSP430 devices,
you may need to increase the C stack size from previous values.

At system initialization, SP is set to a designated address for the top of the stack. This address is the first
location past the end of the .stack section. Since the position of the stack depends on where the .stack
section is allocated, the actual address of the stack is determined at link time.

SLAU132H-June 2013 Run-Time Environment 111
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

6.1.6

6.1.7

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to
restore the stack to the state before the function was entered. If you interface assembly language routines
to C/C++ programs, be sure to restore the stack pointer to the same state it was in before the function
was entered.

For more information about using the stack pointer, see Section 6.3; for more information about the stack,
see Section 6.4.

Stack Overflow

NOTE: The compiler provides no means to check for stack overflow during compilation or at run
time. A stack overflow disrupts the run-time environment, causing your program to fail. Be
sure to allow enough space for the stack to grow. You can use the --entry_hook option to
add code to the beginning of each function to check for stack overflow; see Section 2.14.

Dynamic Memory Allocation

The run-time-support library supplied with the MSP430 compiler contains several functions (such as
malloc, calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the
size of the .sysmem section by using the --heap_size=size option with the linker command. The linker also
creates a global symbol, SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes.
The default size is 128 bytes. For more information on the --heap_size option, see the linker description
chapter in the MSP430 Assembly Language Tools User's Guide.

If you use any C I/O function, the RTS library allocates an 1/O buffer for each file you access. This buffer
will be a bit larger than BUFSIZ, which is defined in stdio.h and defaults to 256. Make sure you allocate a
heap large enough for these buffers or use setvbuf to change the buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size
limited only by the amount of available memory in your system. To conserve space in the .bss section,
you can allocate large arrays from the heap instead of defining them as global or static. For example,
instead of a definition such as:

struct big table[100];

Use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

Initialization of Variables in COFF ABI

The C/C++ compiler produces code that is suitable for use as firmware in a ROM-based system. In such a
system, the initialization tables in the .cinit section are stored in ROM. At system initialization time, the
C/C++ boot routine copies data from these tables (in ROM) to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory and run, you can avoid
having the .cinit section occupy space in memory. A loader can read the initialization tables directly from
the object file (instead of from ROM) and perform the initialization directly at load time instead of at run
time. You can specify this to the linker by using the --ram_maodel link option. For more information, see
Section 6.8.

112

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Object Representation

6.2 Object Representation

This section explains how various data objects are sized, aligned, and accessed.

6.2.1 Data Type Storage

Table 6-2 lists register and memory storage for various data types:

Table 6-2. Data Representation in Registers and Memory

Data Type

Register Storage

Memory Storage

char

unsigned char
short

unsigned short

int

unsigned int
enum®

float

long

unsigned long

long long
unsigned long long
double (COFF)
double (EABI)

long double (COFF)
long double (EABI)

Bits 0-7 of register

Bits 0-7 of register

Bits 0-15 of register

Bits 0-15 of register

Entire register

Entire register

Entire register

Two registers, which need not be adjacent
Two registers, which need not be adjacent
Two registers, which need not be adjacent
Four registers, which need not be adjacent
Four registers, which need not be adjacent
Two registers, which need not be adjacent
Four registers, which need not be adjacent
Two registers, which need not be adjacent
Four registers, which need not be adjacent

8 bits aligned to 8-bit boundary

8 bits aligned to 8-bit boundary

16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary
32 bits aligned to 16-bit boundary
32 bits aligned to 16-bit boundary
32 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary
32 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary
32 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary

struct Members are stored as their individual types Multiple of 8 bits aligned to boundary of largest
require. member type; members are stored and aligned as
their individual types require.
array Members are stored as their individual types Members are stored as their individual types

require. All arrays inside a structure are aligned
according to the type of each element in the
array.

require.

Bits 0-15 of register for MSP430. Bits 0-19 of
register for MSP430X.

Components stored as their individual types
require

pointer to data member varies, see Table 5-3

pointer to member function 64 bits aligned to 32-bit boundary

@ The size of an enum varies by the size of the largest enum value and by whether it is packed or not.

6.2.1.1 Pointer to Member Function Types

Pointer to member function objects are stored as a structure with three members, and the COFF layout is
equivalent to:
struct {
short int d;
short int i;
union {
void () O;
long O; }
}:

The parameter d is the offset to be added to the beginning of the class object for this pointer. The
parameter | is the index into the virtual function table, offset by 1. The index enables the NULL pointer to
be represented. Its value is -1 if the function is nonvirtual. The parameter f is the pointer to the member
function if it is nonvirtual, when | is 0. The 0 is the offset to the virtual function pointer within the class
object.

SLAU132H—-June 2013

Run-Time Environment 113

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Object Representation www.ti.com

6.2.1.2 Structure and Array Alignment

Structures are aligned according to the member with the most restrictive alignment requirement.
Structures do not contain padding after the last member. Elements of arrays are stored in the same
manner as if they were individual objects.

The minimum alignment for arrays is that required by the type of its elements.

6.2.1.3 Field/Structure Alignment

When the compiler allocates space for a structure, it allocates as many words as are needed to hold all of
the structure's members and to comply with alignment constraints for each member.

When a structure contains a 32-bit (long) member, the long is aligned to a 1-word (16-bit) boundary. This
may require padding before, inside, or at the end of the structure to ensure that the long is aligned
accordingly and that the sizeof value for the structure is an even value.

All non-field types are aligned on word or byte boundaries. Fields are allocated as many bits as requested.
Adjacent fields are packed into adjacent bits of a word, but they do not overlap words. If a field would
overlap into the next word, the entire field is placed into the next word.

Fields are packed as they are encountered; the least significant bits of the structure word are filled first.
Example 6-1 shows the C code definition of var while Figure 6-1 shows the memory layout of var.

Example 6-1. C Code Definition of var
struct example { char c; long I; int bfl:1; int bf2:2; int bf3:3; int bf4:4; int bf5:5; int bf6:6; };

Figure 6-1. Memory Layout of var
16 15141312110 9 8 7 6 5 4 3 2 1 0
L 1 1 1 |

var+0 <pad> char c

var + 2 long (low)

var + 4 long (high)

var+6[1| 5 4 3 [2[4
var + 8 <pad 10 bits> 6

6.2.2 Character String Constants

In C, a character string constant is used in one of the following ways:

* To initialize an array of characters. For example:
char s[] = "abc";
When a string is used as an initializer, it is simply treated as an initialized array; each character is a
separate initializer. For more information about initialization, see Section 6.8.

* In an expression. For example:
strcpy (s, "abc™);
When a string is used in an expression, the string itself is defined in the .const section with the .string
assembler directive, along with a unique label that points to the string; the terminating 0 byte is

included. For example, the following lines define the string abc, and the terminating 0 byte (the label
SL5 points to the string):

.sect ".const"”
SL5: _string "abc",0
String labels have the form SLn, where n is a number assigned by the compiler to make the label
unigue. The number begins at 0 and is increased by 1 for each string defined. All strings used in a
source module are defined at the end of the compiled assembly language module.
The label SLn represents the address of the string constant. The compiler uses this label to reference
the string expression.

114 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Register Conventions

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a

program to modify a string constant. The following code is an example of incorrect string use:

const char *a = "abc"
a[1] = "x"; /* Incorrect! undefined behavior */

6.3 Register Conventions

Strict conventions associate specific registers with specific operations in the C/C++ environment. If you
plan to interface an assembly language routine to a C/C++ program, you must understand and follow
these register conventions.

The register conventions dictate how the compiler uses registers and how values are preserved across
function calls. Table 6-3 shows the types of registers affected by these conventions. Table 6-4
summarizes how the compiler uses registers and whether their values are preserved across calls. For
information about how values are preserved across calls, see Section 6.4.

Table 6-3. How Register Types Are Affected by the Conventions

Register Type Description

Argument register Passes arguments during a function call

Return register Holds the return value from a function call

Expression register Holds a value

Argument pointer Used as a base value from which a function's parameters (incoming
arguments) are accessed

Stack pointer Holds the address of the top of the software stack

Program counter Contains the current address of code being executed

Table 6-4. Register Usage and Preservation Conventions

Register Alias Usage Preserved by Function®
RO PC Program counter N/A
R1 SP Stack pointer N/A®@
R2 SR Status register N/A
R3 Constant generator N/A
R4-R10 Expression register Child
R11 Expression register Parent
R12 Expression register, argument pointer, return register Parent
R13 Expression register, argument pointer, return register Parent
R14 Expression register, argument pointer, return register Parent
R15 Expression register, argument pointer, return register Parent

@ The parent function refers to the function making the function call. The child function refers to the function being called.
@ The SP is preserved by the convention that everything pushed on the stack is popped off before returning.

SLAU132H-June 2013 Run-Time Environment

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

115

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Function Structure and Calling Conventions www.ti.com

6.4

Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support
functions, any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere
to these rules can disrupt the C/C++ environment and cause a program to fail.

The following sections use this terminology to describe the function-calling conventions of the C/C++
compiler:

e Argument block. The part of the local frame used to pass arguments to other functions. Arguments
are passed to a function by moving them into the argument block rather than pushing them on the
stack. The local frame and argument block are allocated at the same time.

* Register save area. The part of the local frame that is used to save the registers when the program
calls the function and restore them when the program exits the function.

» Save-on-call registers. Registers R11-R15. The called function does not preserve the values in these
registers; therefore, the calling function must save them if their values need to be preserved.

e Save-on-entry registers. Registers R4-R10. It is the called function's responsibility to preserve the
values in these registers. If the called function modifies these registers, it saves them when it gains
control and preserves them when it returns control to the calling function.

Figure 6-2 illustrates a typical function call. In this example, arguments are passed to the function, and the
function uses local variables and calls another function. The first four arguments are passed to registers

R12-R15. This example also shows allocation of a local frame and argument block for the called function.
Functions that have no local variables and do not require an argument block do not allocate a local frame.

Figure 6-2. Use of the Stack During a Function Call

Move arguments to
argument block;

! Allocate new frame and
Before call call function

argument block

Low Low Low

Callee’s +— gp
argument
block

Callee’s
local variables

Register
save area

Callers |¢— SP —SP
argument Argument 5.0 Argument 1 - register R12 | Argument 5...
block argument n Argument 2 - register R13 | argument n
Argument 3 - register R14
Argument 4 - register R15

Caller’s
local variables

Caller’s Caller’s
local variables local variables

Register) Register) Register
save area High | save area High save area

High

Legend: SP: stack pointer

116

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Function Structure and Calling Conventions

6.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another function (child function).

1.

The calling function (parent) is responsible for preserving any save-on-call registers across the call that
are live across the call. (The save-on-call registers are R11-R15.)

If the called function (child) returns a structure, the caller allocates space for the structure and passes
the address of that space to the called function as the first argument.

The caller places the first arguments in registers R12-R15, in that order. The caller moves the
remaining arguments to the argument block in reverse order, placing the leftmost remaining argument
at the lowest address. Thus, the leftmost remaining argument is placed at the top of the stack. An
argument with a type larger than 16 bits that would start in a save-on-call register may be split between
R15 and the stack.

The caller calls the function.

Functions defined in C++ that must be called in asm must be defined extern "C", and functions defined
in asm that must be called in C++ must be prototyped extern "C" in the C++ file.

6.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1.

If the function is declared with an ellipsis, it can be called with a variable number of arguments. The
called function pushes these arguments on the stack if they meet both of these criteria:

e The argument includes or follows the last explicitly declared argument.
e The argument is passed in a register.

The called function pushes register values of all the registers that are modified by the function and that
must be preserved upon exit of the function onto the stack. Normally, these registers are the save-on-

entry registers (R4-R10) if the function contains calls. If the function is an interrupt, additional registers
may need to be preserved. For more information, see Section 6.6.

The called function allocates memory for the local variables and argument block by subtracting a
constant from the SP. This constant is computed with the following formula:

size of all local variables + max = constant
The max argument specifies the size of all parameters placed in the argument block for each call.
The called function executes the code for the function.

If the called function returns a value, it places the value in R12, R12 and R13, or R12 through R15,
depending on the size of the return type.

If the called function returns a structure, it copies the structure to the memory block that the first
argument, R12, points to. If the caller does not use the return value, R12 is set to 0. This directs the
called function not to copy the return structure.

For EABI, structures and unions with size 32 bits or less are passed by value, either in registers or on
the stack. Structures and unions larger than 32 bits are passed by reference.

In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = func(x), where s is a structure and f is a function that returns a structure,
the caller can simply pass the address of s as the first argument and call f. The function f then copies
the return structure directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures, both at the point where they
are called (so the caller properly sets up the first argument) and at the point where they are declared
(so the function knows to copy the result).

The called function deallocates the frame and argument block by adding the constant computed in
Step 3.

The called function restores all registers saved in Step 2.
The called function (func) returns.

SLAU132H-June 2013 Run-Time Environment 117
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Interfacing C and C++ With Assembly Language www.ti.com

The following example is typical of how a called function responds to a call:

func: ; Called function entry point
PUSH.W rio
PUSH.W ro ; Save SOE registers

SUB.W #2,SP ; Allocate the frame
; Body of function

ADD.W #2,SP ; Deallocate the frame

POP ro ; Restore SOE registers
POP rio
RET ; Return

6.4.3 Accessing Arguments and Local Variables

A function accesses its local nonregister variables and stack arguments indirectly through the stack

pointer (SP or R1). The SP always points to the top of the stack (points to the most recently pushed

value).

Since the stack grows toward smaller addresses, the local data on the stack for the C/C++ function is

accessed with a positive offset from the SP register.

6.5 Interfacing C and C++ With Assembly Language

The following are ways to use assembly language with C/C++ code:

» Use separate modules of assembled code and link them with compiled C/C++ modules (see
Section 6.5.1).

» Use assembly language variables and constants in C/C++ source (see Section 6.5.3).

* Use inline assembly language embedded directly in the C/C++ source (see Section 6.5.5).

6.5.1 Using Assembly Language Modules With C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions

defined in Section 6.4, and the register conventions defined in Section 6.3. C/C++ code can access

variables and call functions defined in assembly language, and assembly code can access C/C++
variables and call C/C++ functions.

Follow these guidelines to interface assembly language and C:

* You must preserve any dedicated registers modified by a function. Dedicated registers include:

— Save-on-entry registers (R4-R10)

— Stack pointer (SP or R1)

If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly
function is free to use the stack as long as anything that is pushed onto the stack is popped back off
before the function returns (thus preserving SP).

Any register that is not dedicated can be used freely without first being saved.

* Interrupt routines must save all the registers they use. For more information, see Section 6.6.

* When you call a C/C++ function from assembly language, load the designated registers with
arguments and push the remaining arguments onto the stack as described in Section 6.4.1.
Remember that a function can alter any register not designated as being preserved without having to
restore it. If the contents of any of these registers must be preserved across the call, you must
explicitly save them.

* Functions must return values correctly according to their C/C++ declarations. Double values are
returned in R12 and R13, and structures are returned as described in Step 2 of Section 6.4.1. Any
other values are returned in R12.

» No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization
tables. Disrupting the tables by putting other information in .cinit can cause unpredictable results.

118 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Interfacing C and C++ With Assembly Language

» The compiler assigns linknames to all external objects. Thus, when you write assembly language code,
you must use the same linknames as those assigned by the compiler. See Section 5.13 for details.

* Any object or function declared in assembly language that is accessed or called from C/C++ must be
declared with the .def or .global directive in the assembly language modifier. This declares the symbol
as external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external
reference that the linker resolves.

* Any assembly routines that interface with MSP430x C programs are required to conform to the large-
code model:

— Use CALLA/RETA instead of CALL/RET

— Use PUSHM.A/POPM.A to save and restore any used save-on-entry registers. The entire 20-bit
register must be saved/restored.

— Manipulation of function pointers requires 20-bit operations (OP.A)

— If interfacing with C code compiled for the large-data model, data pointer manipulation must be
performed using 20-bit operations (OP.A).

6.5.2 Accessing Assembly Language Functions From C/C++

Functions defined in C++ that will be called from assembly should be defined as extern "C" in the C++ file.
Functions defined in assembly that will be called from C++ must be prototyped as extern "C" in C++.

Example 6-2 illustrates a C++ function called main, which calls an assembly language function called
asmfunc, Example 6-3. The asmfunc function takes its single argument, adds it to the C++ global variable
called gvar, and returns the result.

Example 6-2. Calling an Assembly Language Function From a C/C++ Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */

int gvar = 0; /* define global variable */
b
void main(Q)
{
int var = 5;
var = asmfunc(var); /* call function normally */

Example 6-3. Assembly Language Program Called by Example 6-2

-global asmfunc

-global gvar
asmfunc:

MOV &gvar,R11

ADD R11,R12

RET

In the C++ program in Example 6-2, the extern "C" declaration tells the compiler to use C naming
conventions (i.e., no name mangling). When the linker resolves the .global asmfunc reference, the
corresponding definition in the assembly file will match.

The parameter var is passed in R12, and the result is returned in R12.

SLAU132H-June 2013 Run-Time Environment 119

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Interfacing C and C++ With Assembly Language www.ti.com

6.5.3 Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly
language. There are several methods that you can use to accomplish this, depending on where and how
the item is defined: a variable defined in the .bss section, a variable not defined in the .bss section, or a
linker symbol.

6.5.3.1 Accessing Assembly Language Global Variables
Accessing variables from the .bss section or a section hamed with .usect is straightforward:
1. Use the .bss or .usect directive to define the variable.
2. Use the .def or .global directive to make the definition external.
3. Use the appropriate linkname in assembly language.
4. In C/C++, declare the variable as extern and access it normally.

Example 6-5 and Example 6-4 show how you can access a variable defined in .bss.

Example 6-4. Assembly Language Variable Program

.bss var,4,4 ; Define the variable
.global var ; Declare it as external

Example 6-5. C Program to Access Assembly Language From Example 6-4

extern int var; /* External variable */
var = 1; /* Use the variable */

6.5.3.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set directive in combination with
either the .def or .global directive, or you can define them in a linker command file using a linker
assignment statement. These constants are accessible from C/C++ only with the use of special operators.

For variables defined in C/C++ or assembly language, the symbol table contains the address of the value
contained by the variable. When you access an assembly variable by name from C/C++, the compiler gets
the value using the address in the symbol table.

For assembly constants, however, the symbol table contains the actual value of the constant. The
compiler cannot tell which items in the symbol table are addresses and which are values. If you access an
assembly (or linker) constant by name, the compiler tries to use the value in the symbol table as an
address to fetch a value. To prevent this behavior, you must use the & (address of) operator to get the
value (_symval). In other words, if X is an assembly language constant, its value in C/C++ is &x.

For more about symbols and the symbol table, refer to the section on "Symbols" in the MSP430 Assembly
Language Tools User's Guide.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 6-6 and
Example 6-7.

Example 6-6. Accessing an Assembly Language Constant From C

extern int table_size; /*external ref */
#define TABLE_SIZE ((int) _symval(&table_size))
/* use cast to hide address-of */

for (1=0; iI<TABLE_SIZE; ++1) /* use like normal symbol */

120 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com Interrupt Handling

Example 6-7. Assembly Language Program for Example 6-6

table_size .set 10000 ; define the constant

6.5.4

6.5.5

6.6

6.6.1

-global _table_size ; make it global

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared
type is unimportant. In Example 6-6, int is used. You can reference linker-defined symbols in a similar
manner.

Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code. For more information, see the C/C++ header files chapter in the
MSP430 Assembly Language Tools User's Guide.

Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into
the assembly language file created by the compiler. A series of asm statements places sequential lines of
assembly language into the compiler output with no intervening code. For more information, see

Section 5.9.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly
code string with a semicolon (;) as shown below:

asm(*';*** this is an assembly language comment™);

NOTE: Using the asm Statement

Keep the following in mind when using the asm statement:

¢ Be extremely careful not to disrupt the C/C++ environment. The compiler does not check
or analyze the inserted instructions.

¢ Avoid inserting jumps or labels into C/C++ code because they can produce
unpredictable results by confusing the register-tracking algorithms that the code
generator uses.

« Do not change the value of a C/C++ variable when using an asm statement. This is
because the compiler does not verify such statements. They are inserted as is into the
assembly code, and potentially can cause problems if you are not sure of their effect.

* Do not use the asm statement to insert assembler directives that change the assembly
environment.

¢ Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or
-g) option. The C environment’s debug information and the assembly macro expansion
are not compatible.

Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code without
disrupting the C/C++ environment. When the C/C++ environment is initialized, the startup routine does not
enable or disable interrupts. If the system is initialized by way of a hardware reset, interrupts are disabled.
If your system uses interrupts, you must handle any required enabling or masking of interrupts. Such
operations have no effect on the C/C++ environment and are easily incorporated with asm statements or
calling an assembly language function.

Saving Registers During Interrupts

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers
that are used by the routine or by any functions called by the routine. Register preservation must be
explicitly handled by the interrupt routine.

SLAU132H-June 2013 Run-Time Environment 121
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Interrupt Handling www.ti.com

6.6.2

6.6.3

6.6.4

6.6.5

Using C/C++ Interrupt Routines

A C/C++ interrupt routine is like any other C/C++ function in that it can have local variables and register
variables. Except for software interrupt routines, an interrupt routine must be declared with no arguments
and must return void. For example:

__interrupt void example (void)

{

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt handler
uses are saved and restored. However, if a C/C++ interrupt routine does call other functions, these
functions can modify unknown registers that the interrupt handler does not use. For this reason, the
routine saves all the save-on-call registers if any other functions are called. (This excludes banked
registers.) Do not call interrupt handling functions directly.

Interrupts can be handled directly with C/C++ functions by using the INTERRUPT pragma or the
__interrupt keyword. For information, see Section 5.10.16 and Section 5.6.2, respectively.

Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow the same register
conventions the compiler does. Like all assembly functions, interrupt routines can use the stack (16-bit
limit), access global C/C++ variables, and call C/C++ functions normally. When calling C/C++ functions, be
sure that any save-on-call registers are preserved before the call because the C/C++ function can modify
any of these registers. You do not need to save save-on-entry registers because they are preserved by
the called C/C++ function.

Interrupt Vectors

The interrupt vectors for the MSP430 and MSP430X devices are 16 bits. Therefore, interrupt service
routines (ISRs) must be placed into the low 64K of memory. Convenience macros are provided in the
MSP430X device headers file to declare interrupts to ensure 16-bit placement when linking.

Alternatively, use the CODE_SECTIONS pragma to place the code for ISRs into sections separate from
the default .text sections. Use the linker command file and the SECTIONS directive to ensure the code
sections associated with ISRs are placed into low memory.

If you do not specify an ISR for some interrupt vectors, an ISR will be provided for those vectors from the
RTS library and the RTS library will automatically be linked with your application. The default ISR puts the
device in low power mode. You can override the ISR provided by the RTS with the pragma vector and the
unused_interrupts keyword as shown in Section 5.10.24.

Other Interrupt Information

An interrupt routine can perform any task performed by any other function, including accessing global
variables, allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:

» It is your responsibility to handle any special masking of interrupts.

* A C/C++ interrupt routine cannot be called directly from C/C++ code. You need to arrange for an
interrupt signal to happen.

* In a system reset interrupt, such as _c_int00, you cannot assume that the run-time environment is set
up; therefore, you cannot allocate local variables, and you cannot save any information on the run-time
stack.

122

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Using Intrinsics to Access Assembly Language Statements

6.7 Using Intrinsics to Access Assembly Language Statements

The compiler recognizes a number of intrinsic operators. Intrinsics are used like functions and produce
assembly language statements that would otherwise be inexpressible in C/C++. You can use C/C++
variables with these intrinsics, just as you would with any normal function. The intrinsics are specified with
a double leading underscore, and are accessed by calling them as you do a function. (Both single and
double leading underscores can be used with intrinsics, but a double underscore is preferred. For
example:

short state;
state = _ _get_SR_register();

No declaration of the intrinsic functions is necessary.

6.7.1 MSP430 Intrinsics

Table 6-5 lists all of the intrinsic operators in the MSP430 C/C++ compiler. A function-like prototype is
presented for each intrinsic that shows the expected type for each parameter. If the argument type does
not match the parameter, type conversions are performed on the argument.

For more information on the resulting assembly language mnemonics, see the MSP430x1xx Family User’'s
Guide, the MSP430x3xx Family User's Guide, and the MSP430x4xx Family User’s Guide.

Table 6-5. MSP430 Intrinsics

Intrinsic Generated Assembly

unsigned short __bcd_add_short(unsigned short op1, unsigned short op2); MOV opl, dst
CLRC
DADD op2, dst

unsigned long __bcd_add_long(unsigned long op1, unsigned long op2); MOV opl_low, dst_low
MOV opl_hi, dst_hi
CLRC
DADD op2_low, dst_low
DADD op2_hi, dst_hi

unsigned short __bhic_SR_register(unsigned short mask); BIC mask, SR
unsigned short __bic_SR_register_on_exit(unsigned short mask); BIC mask, saved_SR
unsigned short __bhis_SR_register(unsigned short mask); BIS mask, SR
unsigned short __bis_SR_register_on_exit(unsigned short mask); BIS mask, saved_SR
unsigned long __datal6_read_addr(unsigned short addr); MOV.W addr, Rx
MOVA 0(Rx), dst
void __datal6_write_addr (unsigned short addr, unsigned long src); MOV.W addr, Rx
MOVA src, 0(Rx)
unsigned char __data20_read_char(unsigned long addr);® MOVA addr, Rx
MOVX.B 0(Rx), dst
unsigned long __data20_read_long(unsigned long addr);® MOVA addr, Rx

MOVX.W 0O(Rx), dst.lo
MOVX.W 2(Rx), dst.hi

unsigned short __data20_read_short(unsigned long addr);® MOVA addr, Rx
MOVX.W 0(Rx), dst

void __data20_write_char(unsigned long addr, unsigned char src);® MOVA addr, Rx
MOVX.B src, O(RX)

void __data20_write_long(unsigned long addr, unsigned long src);® MOVA addr, Rx

MOVX.W src.lo, O(Rx)
MOVX.W src.hi, 2(Rx)

void __data20_write_short(unsigned long addr, unsigned short src);® MOVA addr, Rx
MOVX.W src, O(Rx)
void __delay_cycles(unsigned long); See Section 6.7.2.
void __disable_interrupt(void); DINT
OR

__disable_interrupts(void);

@ Intrinsic encodes multiple instructions depending on the code. The most common instructions produced are presented here.

SLAU132H-June 2013 Run-Time Environment 123
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Using Intrinsics to Access Assembly Language Statements www.ti.com
Table 6-5. MSP430 Intrinsics (continued)
Intrinsic Generated Assembly
void __enable_interrupt(void); EINT
OR
__enable_interrupts(void);
unsigned int __even_in_range(unsigned int, unsigned int); See Section 5.10.24.
unsigned short __get_interrupt_state(void); MOV SR, dst
unsigned short __get_RA4_register(void); MOV.W R4, dst
unsigned short __get_R5_register(void); MOV.W R5, dst
unsigned short __get_SP_register(void); MOV SP, dst
unsigned short __get_SR_register(void); MOV SR, dst
unsigned short __get_SR_register_on_exit(void); MOV saved_SR, dst
void __low_power_mode_0(void); BIS.W #0x18, SR
void __low_power_mode_1(void); BIS.W #0x58, SR
void __low_power_mode_2(void); BIS.W #0x98, SR
void __low_power_mode_3(void); BIS.W #0xD8, SR
void __low_power_mode_4(void); BIS.W #0xF8, SR
void __low_power_mode_off_on_exit(void); BIC.W #0xFO, saved_SR
void _never_executed(void); See Section 6.7.3.
void ___no_operation(void); NOP
void __op_code(unsigned short); Encodes whatever instruction
corresponds to the argument.
void __set_interrupt_state(unsigned short src); MOV src, SR
void __set_R4_register(unsigned short src); MOV.W src, R4
void __set_R5_register(unsigned short src); MOV.W src, R5
void __set_SP_register(unsigned short src); MOV src, SP
unsigned short __swap_bhytes(unsigned short src); MOV src, dst
SWPB dst

6.7.2

6.7.3

The _delay cycle Intrinsic

The __delay_cycles intrinsic inserts code to consume precisely the number of specified cycles with no
side effects. The number of cycles delayed must be a compile-time constant.

The never_executed Intrinsic

The MSP430 C/C++ Compiler supports a _never_executed() intrinsic that can be used to assert that a
default label in a switch block is never executed. If you assert that a default label is never executed the
compiler can generate more efficient code based on the values specified in the case labels within a switch
block.

6.7.3.1 Using _never_executed With a Vector Generator

The _never_executed() intrinsic is specifically useful for testing the values of an MSP430 interrupt vector
generator such as the vector generator for Timer A (TAIV). MSP430 vector generator values are mapped
to an interrupt source and are characterized in that they fall within a specific range and can only take on
even values. A common way to handle a particular interrupt source represented in a vector generator is to
use a switch statement. However, a compiler is constrained by the C language in that it can make no
assumptions about what values a switch expression may have. The compiler will have to generate code to
handle every possible value, which leads to what would appear to be inefficient code.

The _never_executed() intrinsic can be used to assert to the compiler that a switch expression can only
take on values represented by the case labels within a switch block. Having this assertion, the compiler
can avoid generating test code for handling values not specified by the switch case labels. Having this
assertion is specifically suited for handling values that characterize a vector generator.

124

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Using Intrinsics to Access Assembly Language Statements

Example 6-8 illustrates a switch block that handles the values of the Timer B (TBIV) vector generator.

Example 6-8. TBIV Vector Generator

__interrupt void Timer_Bl (void)
{
switch(TBIV)
{
case O0: break; /* Do nothing */
case 2: TBCCR1 += 255;
state +=1;
break;
case 4: TBCCRO 254;
TBCCR1 159;
state =200;
break;
case 6: break;
case 8: break;
case 10: break;
case 12: break;
case 14: break;
default: _never_executed();

In Example 6-8 using the _never_executed() intrinsic asserts that the value of TBIV can only take on the
values specified by the case labels, namely the even values from 0 to 14. Normally, the compiler would
have to generate code to handle any value which would result in extra range checks. Instead, for this
example, the compiler will generate a switch table where the value of TBIV is simply added to the PC to
jump to the appropriate code block handling each value represented by the case labels.

6.7.3.2 Using _never_executed With General Switch Expressions

Using the _never_executed() intrinsic at the default label can also improve the generated switch code for
more general switch expressions that do not involve vector generator type values.

Example 6-9. General Switch Statement

switch(val)

{

case O:
case 5: action(a); break;

case 14: action(b); break;

default: _never_executed();

}

Normally, for the switch expression values 0 and 5, the compiler generates code to test for both 0 and 5
since the compiler must handle the possible values 1-4. The _never_executed() intrinsic in Example 6-9
asserts that val cannot take on the values 1-4 and therefore the compiler only needs to generate a single
test (val < 6) to handle both case labels.

Additionally, using the _never_executed() intrinsic results in the assertion that if val is not 0 or 5 then it
has to be 14 and the compiler has no need to generate code to test for val == 14.

The _never_executed() intrinsic is only defined when specified as the single statement following a default
case label. The compiler ignores the use of the intrinsic in any other context.

SLAU132H-June 2013 Run-Time Environment 125

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

6.8

6.8.1

6.8.2

System Initialization

Before you can run a C/C++ program, you must create the C/C++ run-time environment. The C/C++ boot
routine performs this task using a function called _c_int00. The run-time-support source library, rts.src,
contains the source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the _c_int00 function can be called by reset hardware. You must link the
_c_int0O0 function with the other object files. This occurs automatically when you use the --rom_model or --
ram_model link option and include a standard run-time-support library as one of the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file to the
symbol _c_int0O.

The _c_int00 function performs the following tasks to initialize the environment:
1. Reserves space for the user mode run-time stack, and sets up the initial value of the stack pointer (SP)

2. ltinitializes global variables by copying the data from the initialization tables to the storage allocated for
the variables in the .bss section. If you are initializing variables at load time (--ram_model option), a
loader performs this step before the program runs (it is not performed by the boot routine). For more
information, see Section 6.8.3 for COFF ABI mode and Section 6.8.4 for EABI mode.

3. Executes the global constructors found in the global constructors table. For more information, see
Section 6.8.4.6 for EABI mode and Section 6.8.3.4 for COFF ABI mode.

4. Calls the function main to run the C/C++ program

You can replace or modify the boot routine to meet your system requirements. However, the boot routine
must perform the operations listed above to correctly initialize the C/C++ environment.

System Pre-Initialization

The _c_int00() initialization routine also provides a mechanism for an application to perform the MSP430
setup (set I/O registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

Before calling the routine that initializes C/C++ global data and calls any C++ constructors, the boot
routine makes a call to the function _system_pre_init(). A developer can implement a customized version
of _system_pre_init() to perform any application-specific initialization before proceeding with C/C++
environment setup. In addition, the default C/C++ data initialization can be bypassed if _system_pre_init()
returns a 0. By default, _system_pre_init() should return a non-zero value.

In order to perform application-specific initializations, you can create a customized version of
_system_pre_init() and add it to the application project. The customized version will replace the default
definition included in the run-time library if it is linked in before the run-time library.

The default stubbed version of _system_pre_init() is included with the run-time support (RTS) library. A
zip file containing the source files for the RTS library, including the pre_init.c file, is located in compiler
installation at <ccs_install_dir>\ccsv5\tools\compiler\<target_family>_#.#.#\lib.

Run-Time Stack

The run-time stack is allocated in a single continuous block of memory and grows down from high
addresses to lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the stack
grows beyond the limits of the memory space that was allocated for it. Be sure to allocate adequate
memory for the stack.

The stack size can be changed at link time by using the --stack_size link option on the linker command
line and specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack. If your
program uses a run-time stack when it is in other operating modes, you must also allocate space and set
up the run-time stack corresponding to those modes.

126

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization
6.8.3 COFF ABI Automatic Initialization of Variables

Some global variables must have initial values assigned to them before a C/C++ program starts running.
The process of retrieving these variables' data and initializing the variables with the data is called
autoinitialization.

The COFF ABI compiler builds tables in a special section called .cinit that contains data for initializing
global and static variables. Each compiled module contains these initialization tables. The linker combines
them into a single table (a single .cinit section). The boot routine or a loader uses this table to initialize all
the system variables.

Initializing Variables

NOTE: In ANSI/ISO C, global and static variables that are not explicitly initialized must be set to 0
before program execution. The COFF ABI C/C++ compiler does not perform any
preinitialization of uninitialized variables. Explicitly initialize any variable that must have an
initial value of 0.

Global variables are either autoinitialized at run time or at load time; see Section 6.8.3.2 and
Section 6.8.3.3. Also see Section 5.14. In EABI mode, the compiler automatically zero initializes the
uninitialized variables. See Section 6.8.4 for details.

6.8.3.1 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be
autoinitialized has a record in the .cinit section. Figure 6-3 shows the format of the .cinit section and the
initialization records.

Figure 6-3. Format of Initialization Records in the .cinit Section

.cinit section

Initialization record 1

Initialization record 2 | ™

~ Initialization record
Initialization record 3 |
N Size in Pointer to Initialization
I [] : S| bytes | bssarea data
|

Initialization record n

The fields of an initialization record contain the following information:

* The first field of an initialization record contains the size (in bytes) of the initialization data. The width of
this field is one word (16-bit).

» The second field contains the starting address of the area within the .bss section where the
initialization data must be copied. The width of this field is one word.

» The third field contains the data that is copied into the .bss section to initialize the variable. The width
of this field is variable.

Each variable that must be autoinitialized has an initialization record in the .cinit section.
Example 6-10 shows initialized global variables defined in C. Example 6-11 shows the corresponding
initialization table.

Example 6-10. Initialized Variables Defined in C

int i = 23;
int a[5] ={1, 2, 3, 4, 51};

SLAU132H-June 2013 Run-Time Environment 127

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

System Initialization

13 TEXAS
INSTRUMENTS

www.ti.com

Example 6-11. Initialized Information for Variables Defined in Example 6-10

.sect

.align
-field
-Field
-field

.sect
.align
-field
-Field
-field
-field
-Field
-field
-field
$CSIR_1:
-global
-bss
-global
-bss

".cinit”
2

2,16
i+0,16
23,16

".cinit”
2
CIR_1,16
a+0,16
1,16
2,16
3,16
4,16
5,16
.set 10
i

i,2,2

a

a,10,2

;1 @0

; a[0] @ o

; a[l] @ 16
; a[2] @ 32
; a[3] @ 48
; a[4] @ 64

6.8.3.2 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections, and
global variables are initialized at run time. The linker defines a special symbol called cinit that points to the
beginning of the initialization tables in memory. When the program begins running, the C/C++ boot routine
copies data from the tables (pointed to by .cinit) into the specified variables in the .bss section. This allows
initialization data to be stored in ROM and copied to RAM each time the program starts.

Figure 6-4 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into ROM.

Figure 6-4. Autoinitialization at Run Time

Object file

Memory

cint

.cinit
section -

Initialization
tables
(EXT_MEM)

.bss
section
(D_MEM)

Boot

rou

tine

128 Run-Time Environment

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

6.8.3.3 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model link option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

A loader (which is not part of the compiler package) must be able to perform the following tasks to use
initialization at load time:

» Detect the presence of the .cinit section in the object file

» Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory

» Understand the format of the initialization tables
Figure 6-5 illustrates the initialization of variables at load time.

Figure 6-5. Initialization at Load Time

Object file Memory

.bss

Regardless of the use of the --rom_model or --ram_model options, the .pinit section is always loaded and
processed at run time.

6.8.3.4 Global Constructors for COFF

All global C++ variables that have constructors must have their constructor called before main. The
compiler builds a table in a section called .pinit of global constructor addresses that must be called, in
order, before main. The linker combines the .pinit section form each input file to form a single table in the
.pinit section. The boot routine uses this table to execute the constructors. (See Section 6.8.4.6 for global
constructor details for EABI.)

6.8.4 EABI Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++
program starts running. The process of retrieving these variables' data and initializing the variables with
the data is called autoinitialization.

6.8.4.1 EABI Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized, must be set to 0 before program
execution. The C/C++ EABI compiler supports preinitialization of uninitialized variables by default. This
can be turned off by specifying the linker option --zero_init=off. COFF ABI does not support zero
initialization.

SLAU132H-June 2013 Run-Time Environment 129

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

6.8.4.2 EABI Direct Initialization

The EABI compiler uses direct initialization to initialize global variables. For example, consider the
following C code:

int i = 23;

int a[5] = {1, 2, 3, 4, 5 };

The compiler allocates the variables 'i' and 'a[] to .data section and the initial values are placed directly.
-global i
.data
.align 4

i:
-field 23,32 ;i @0
-global a
.data
.align 4

a:
-Field 1,32 ; a[o] @ O
.field 2,32 ; a[1] @ 32
.Field 3,32 ; a[2] @ 64
-Field 4,32 ; a[3] @ 96
.field 5,32 ; a[4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The linker
treats the .data section like any other initialized section and creates an output section. In the load-time
initialization model, the sections are loaded into memory and used by the program. See Section 6.8.4.5.

In the run-time initialization model, the linker uses the data in these sections to create initialization data
and an additional initialization table. The boot routine processes the initialization table to copy data from
load addresses to run addresses. See Section 6.8.4.3.

6.8.4.3 Autoinitialization of Variables at Run Time in EABI Mode

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the linker creates an initialization table and initialization data from the direct initialized
sections in the compiled module. The table and data are used by the C/C++ boot routine to initialize
variables in RAM using the table and data in ROM.

Figure 6-6 illustrates autoinitialization at run time in EABI Mode. Use this method in any system where
your application runs from code burned into ROM.

Figure 6-6. Autoinitialization at Run Time in EABI Mode

Object file Memory
C auto init C auto init
table and data
(ROM) table and data
(.cinit section) ()
Boot
routine
.data
uninitialized
(RAM)
130 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

6.8.4.4 Autoinitialization Tables in EABI Mode

In EABI mode, the compiled object files do not have initialization tables. The variables are initialized
directly . The linker, when the --rom_model option is specified, creates C auto initialization table and the
initialization data. The linker creates both the table and the initialization data in an output section named
.Cinit.

Migration from COFF to ELF Initialization

NOTE: The name .cinit is used primarily to simplify migration from COFF to ELF format and the .cinit
section created by the linker has nothing in common (except the name) with the COFF cinit
records.

The autoinitialization table has the following format:

_TI_CINIT_Base:

32-bit load address 32-bit run address

32-bit load address 32-bit run address

_TI_CINT_Limit;

The linker defined symbols __ Tl _CINIT_Base and __ TI_CINIT_Limit point to the start and end of the
table, respectively. Each entry in this table corresponds to one output section that needs to be initialized.
The initialization data for each output section could be encoded using different encoding.

The load address in the C auto initialization record points to initialization data with the following format:

8-bit index ‘ Encoded data ‘

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get the
address of a handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

_TI_Handler_Table Base:

32-bit handler 1 address

32-bit handler n address

_TI_Handler_Table_Limit:

The encoded data that follows the 8-bit index can be in one of the following format types. For clarity the 8-
bit index is also depicted for each format.

6.8.4.4.1 Length Followed by Data Format in EABI Mode

8-bit index ‘ 24-bit padding ‘ 32-bit length (N) | N byte initialization data (not compressed) |

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field
encodes the length of the initialization data in bytes (N). N byte initialization data is not compressed and is
copied to the run address as is.

The run-time support library has a function __Tl_zero_init() to process this type of initialization data. The
first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

SLAU132H-June 2013 Run-Time Environment 131

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

6.8.4.4.2 Zero Initialization Format in EABI Mode

| 8-bit index | 24-bit padding 32-bit length (N) |

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field
encodes the number of bytes to be zero initialized.

The run-time support library has a function __ Tl zero_init() to process the zero initialization. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is
the run address from the C auto initialization record.

6.8.4.4.3 Run Length Encoded (RLE) Format in EABI Mode

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses a simple
run length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B !=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

(a) If L == 0, then length is either a 16-bit, a 24-bit value, or we've reached the end of the data, read
next byte (L).

(i) If L==0, length is a 24-bit value or the end of the data is reached, read next byte (L).
() IfL==0, the end of the data is reached, go to step 7.
(i) Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
(i) Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
(b) Else if L >0 and L < 4, copy D to the output buffer L times. Go to step 2.
(c) Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.
The run-time support library has a routine __Tl_decompress_rle24() to decompress data compressed

using RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The
second argument is the run address from the C auto initialization record.

RLE Decompression Routine

NOTE: The previous decompression routine, __TI_decompress_rle(), is included in the run-time-
support library for decompressing RLE encodings that are generated by older versions of the
linker.

6.8.4.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

8-bit index ‘ Initialization data compressed using LZSS

132 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

The data following the 8-bit index is compressed using LZSS compression. The run-time support library
has the routine __ Tl _decompress_Izss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is
the run address from the C auto initialization record.

6.8.4.5 Initialization of Variables at Load Time in EABI Mode

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables and
data. The direct initialized sections (.data) in the compiled object files are combined according to the linker
command file to generate initialized output sections. The loader loads the initialized output sections into
memory. After the load, the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is performed.
Figure 6-7 illustrates the initialization of variables at load time in EABI mode.

Figure 6-7. Initialization at Load Time in EABI Mode
Object file Memory

.data
section w

.data section
(initialized)
(RAM)

6.8.4.6 Global Constructors in EABI Mode

All global C++ variables that have constructors must have their constructor called before main. The
compiler builds a table of global constructor addresses that must be called, in order, before main in a
section called .init_array. The linker combines the .init_array section form each input file to form a single
table in the .init_array section. The boot routine uses this table to execute the constructors. The linker
defines two symbols to identify the combined .init_array table as shown below. This table is not null
terminated by the linker.

Figure 6-8. Constructor Table for EABI Mode
__TIL_INITARRAY Base:

Address of constructor 1

Address of constructor 2

Address of constructor n

__TLINITARRAY _Limit:

SLAU132H-June 2013 Run-Time Environment 133

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

6.8.5

Initialization Tables

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be
autoinitialized has a record in the .cinit section. Figure 6-9 shows the format of the .cinit section and the
initialization records.

Figure 6-9. Format of Initialization Records in the .cinit Section

.cinit section

Initialization record 1

Initialization record 2 | ™.

~ Initialization record
Initialization record 3 | .
N Size in Pointer to Initialization
I [: S| bytes | bssarea data
|

Initialization record n

The fields of an initialization record contain the following information:
» The first field of an initialization record contains the size (in bytes) of the initialization data.

» The second field contains the starting address of the area within the .bss section where the
initialization data must be copied.

* The third field contains the data that is copied into the .bss section to initialize the variable.
Each variable that must be autoinitialized has an initialization record in the .cinit section.

Example 6-12 shows initialized global variables defined in C. Example 6-13 shows the corresponding
initialization table. The section .cinit:c is a subsection in the .cinit section that contains all scalar data. The
subsection is handled as one record during initialization, which minimizes the overall size of the .cinit
section.

Example 6-12. Initialized Variables Defined in C

int x;

short 1 = 23;

int *p =

int a[5] = {1,2,3,4,5};

134

Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

System Initialization

Example 6-13. Initialized Information for Variables Defined in Example 6-12

-global _x
-bss _X,4,4
.sect ".cinit:c"
.align 8
-field (CIR - $) - 8, 32
-Field _1+0,32
-field 23,16 ; _1@o
.sect "o text"”
-global _1
_: .usect ".bss:c",2,2
.sect ".cinit:c”
.align 4
-Field _X,32 ; _p@O
.sect " otext"
-global _p
_p: .usect "._bss:c",4,4
.sect tocinit”
.align 8
-Field IR_1,32
-Field _at+0,32
-field 1,32 ; _a[0] @ O
-Field 2,32 ; _a[1] @ 32
-Field 3,32 ; _a[2] @ 64
-field 4,32 ; _a[3] @ 96
-Field 5,32 ; _a[4] @ 128
IR_1: .set 20
.sect "o text"”
-global _a
.bss _a,20,4
;* MARK THE END OF THE SCALAR INIT RECORD IN CINIT:C *
CIR: .sect ".cinit:c"

The .cinit section must contain only initialization tables in this format. When interfacing assembly language
modules, do not use the .cinit section for any other purpose.

SLAU132H-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Run-Time Environment

135

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Compiling for 20-Bit MSP430X Devices www.ti.com

The table in the .pinit section simply consists of a list of addresses of constructors to be called (see
Figure 6-10). The constructors appear in the table after the .cinit initialization.

Figure 6-10. Format of Initialization Records in the .pinit Section

.pinit section

Address of constructor 1

Address of constructor 2

Address of constructor 3

[]

Address of constructor n

When you use the --rom_model or --ram_model option, the linker combines the .cinit sections from all the
C/C++ modules and appends a null word to the end of the composite .cinit section. This terminating record
appears as a record with a size field of 0 and marks the end of the initialization tables.

Likewise, the --rom_model or --ram_model link option causes the linker to combine all of the .pinit sections
from all C/C++ modules and append a null word to the end of the composite .pinit section. The boot
routine knows the end of the global constructor table when it encounters a null constructor address.

The const-qualified variables are initialized differently; see Section 5.6.1.

6.9 Compiling for 20-Bit MSP430X Devices
The MSP430 tools support compiling and linking code for MSP430 and MSP430X (MSP430X) devices.
See the following for more information on options and topics that apply to compiling for the MSP430X
devices:
» Use the --silicon_version=mspx option to compile for MSP430X devices. See Section 2.3.4.
» Function pointers are 20-bits. See Table 5-1 and Table 6-2.
e The compiler supports a large-code memory model while generating code for MSP430X devices. See
Section 6.1.1.
* The compiler supports a large-data memory model while generating code for MSP430X devices. See
Section 6.1.2.
* Any assembly routines that interface with MSP430X C programs must fit the large code model. See
Section 6.5.1.
« Interrupt service routines must be placed into low memory. See Section 6.6.4.
e Link with the rts430x.lib or rts430x_eh.lib run-time-support library.
136 Run-Time Environment SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

. Chapter 7
l TEXAS SLAU132H-June 2013

INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries

Some of the features of C/C++ (such as 1/O, dynamic memory allocation, string operations, and
trigonometric functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part of the
compiler itself. The Tl implementation of this library is the run-time-support library (RTS). The C/C++
compiler implements the ISO standard library except for those facilities that handle exception conditions,
signal and locale issues (properties that depend on local language, nationality, or culture). Using the
ANSI/ISO standard library ensures a consistent set of functions that provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and
Section 7.2.

A library-build utility is provided with the code generation tools that lets you create customized run-time-
support libraries. This process is described in Section 7.4 .

Topic Page

7.1 Cand C++ Run-Time Support LiDrariesoooeiiiiiiiii e 138

4 2 I o L= O 1@ N U1 T o 141

7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions) 153

7.4 LiDrary-BUild PrOCESS vttt et e et et s e e et e e an e e e e eanes 154
SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 137

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

C and C++ Run-Time Support Libraries www.ti.com

7.1 Cand C++ Run-Time Support Libraries

MSP430 compiler releases include pre-built run-time support (RTS) libraries that provide all the standard

capabilities. Separate libraries are provided for each ABI and C++ exception support. See Section 7.4 for

information on the library-naming conventions.

The run-time-support library contains the following:

* ANSI/ISO C/C++ standard library

e C /O library

» Low-level support functions that provide I/O to the host operating system

* Fundamental arithmetic routines

» System startup routine, _c_int00

» Compiler helper functions (to support language features that are not directly efficiently expressible in
C/C++)

The run-time-support libraries do not contain functions involving signals and locale issues.

The C++ library supports wide chars, in that template functions and classes that are defined for char are
also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and so
on (corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-
level file 1/0O for wide chars. Also, the C library interface to wide char support (through the C++ headers
<cwchar> and <cwctype>) is limited as described in Section 5.1.

The C++ library included with the compiler is licensed from Dinkumware, Ltd. The Dinkumware C++ library
is a fully conforming, industry-leading implementation of the standard C++ library.

Tl does not provide documentation that covers the functionality of the C++ library. Tl suggests referring to
one of the following sources:

* The Standard C++ Library: A Tutorial and Reference,Nicolai M. Josuttis, Addison-Wesley, ISBN 0-201-
37926-0

» The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley,
ISBN 0-201-88954-4 or 0-201-70073-5

« Dinkumware's reference documentation is provided in the Code Composer Studio installation in the
<ccs_install_dir>\ccsvb\tools\compilenarm_#.#.#\docs\dinkum directory.

7.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the linker input files so that
references to the I/O and run-time-support functions can be resolved. You can either specify the library or
allow the compiler to select one for you. See Section 4.3.1 for further information.

When a library is linked, the linker includes only those library members required to resolve undefined
references. For more information about linking, see the MSP430 Assembly Language Tools User's Guide.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

7.1.2 Header Files

You must use the header files provided with the compiler run-time support when using functions from
C/C++ standard library. Set the MSP_C_DIR environment variable to the absolute path of the "include"
directory in the compiler release.

138 Using Run-Time-Support Functions and Building Libraries SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.dinkumware.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

www.ti

INSTRUMENTS

.com C and C++ Run-Time Support Libraries

7.1.3

7.1.4

7.1.5

7.1.6

Modifying a Library Function

You can inspect or modify library functions by unzipping the source file (rtssrc.zip), changing the specific
function file, and rebuilding the library. When extracted (with any standard unzip tool on Windows, Linux,
or UNIX), this zip file recreates the run-time source tree for the run-time library.

The source for the libraries is included in the rtssrc.zip file for your target. You can use this source to
rebuild the rts430.lib library or to build a new library. See Section 7.4 for details on building.

Support for String Handling

The library includes the header files <string.h> and <strings.h>, which provide the following functions for
string handling beyond those required.

e string.h
— strdup(), which duplicates a string
e strings.h

— bcmp(), which is equivalent to memcmp()

— bcopy(), which is equivalent to memmove()

— bzero(), which replaces memory locations with zero-valued bytes

— ffs(), which finds the first bit set and returns the index of that bit

— index(), which is equivalent to strchr()

— rindex(), which is equivalent to strrchr()

— strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to
support non-ASCII character sets and conventions. Our implementation of these APlIs is limited in the
following ways:

* The library has minimal support for wide and multibyte characters. The type wchar_t is implemented

as

unsigned int. The wide character set is equivalent to the set of values of type char. The library includes

the header files <wchar.h> and <wctype.h> but does not include all the functions specified in the

standard. So-called multibyte characters are limited to single characters. There are no shift states. The

mapping between multibyte characters and wide characters is simple equivalence; that is, each wide
character maps to and from exactly a single multibyte character having the same value.

* The C library includes the header file <locale.h> but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-

coded to the behavior of the C locale, and attempting to install a different locale via a call to setlocale()

will return NULL.

Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro _NFILE,
which is set to 10. The impact is that you can only have 10 files simultaneously open at one time
(including the pre-defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines

the maximum number of files that can be opened at one time. The macro is defined in the stdio.h heade
file and can be modified by changing the value of the _NFILE macro and recompiling the library.

r

SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

139

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

C and C++ Run-Time Support Libraries www.ti.com

7.1.7 Nonstandard Header Files in rtssrc.zip

7.1.8

The rtssrc.zip self-processing zip file contains files that are not specified by the ISO/ANSI standard, but
are needed to build the library:

» The file.h file includes macros and definitions used for low-level I/O functions. This file is available to
be included by the user. Although it is non-standard, it is needed for building the library. There are
other header files in this same category, such as cpy_tbl.h.

» The format.h file includes structures and macros used in printf and scanf.

» The 430cio.h file includes low-level, target-specific C I/0O macro definitions. If necessary, you can
customize 430cio.h.

» The rtti.h file includes internal function prototypes necessary to implement run-time type identification.
» The vtbl.h file contains the definition of a class's virtual function table format.

Library Naming Conventions

By default, the linker uses automatic library selection to select the correct run-time-support library (see
Section 4.3.1.1) for your application. If you select the library manually, you must select the matching
library according to the following naming scheme:

rts430[x[I]][abi][_eh].lib

rts430
X
|

abi

Indicates a 16-bit MSP430 library.
Optional x indicates a 20-bit MSP430X library.

Optional | after x indicates a 20-bit large code, large-data model MSP430X library. (This
format is the old style.)

Indicates the application binary interface (ABI) used:
(blank) COFF ABI

_eabi EABI

Indicates the library has exception handling support
Indicates the library supports large code

Indicates the library supports small code

Indicates the library supports large data

Indicates the library supports restricted data
Indicates the library supports small data

The EABI analog of the COFF library rts430x.lib is rts430x_Ic_sd_eabi.lib.
The EABI analog of the COFF library rts430xl.lib is rts430x_Ic_Id_eabi.lib.

140

Using Run-Time-Support Functions and Building Libraries SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS
INSTRUMENTS

www.ti.com

The C I/O Functions

7.2

The C I/O Functions

The C 1/0O functions make it possible to access the host's operating system to perform 1/0O. The capability

to perform 1/0O on the host gives you more options when debugging and testing code.

The I/O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to perform I/O on
custom user-defined devices. This provides an easy way to use the sophisticated buffering of the high-

level 1/O functions on an arbitrary device.

Debugger Required for Default HOST

NOTE: For the default HOST device to work, there must be a debugger to handle the C I/O

requests; the default HOST device cannot work by itself in an embedded system. To work in

an embedded system, you will need to provide an appropriate driver for your system.

NOTE: C I/O Mysteriously Fails

If there is not enough space on the heap for a C I/O buffer, operations on the file will silently
fail. If a call to printf() mysteriously fails, this may be the reason. The heap needs to be at
least large enough to allocate a block of size BUFSIZ (defined in stdio.h) for every file on
which I/O is performed, including stdout, stdin, and stderr, plus allocations performed by the
user's code, plus allocation bookkeeping overhead. Alternately, declare a char array of size
BUFSIZ and pass it to setvbuf to avoid dynamic allocation. To set the heap size, use the --

heap_size option when linking (refer to the Linker Description chapter in theMSP430

Assembly Language Tools User's Guide).

NOTE: Open Mysteriously Fails

The run-time support limits the total number of open files to a small number relative to
general-purpose processors. If you attempt to open more files than the maximum, you may

find that the open will mysteriously fail. You can increase the number of open files by

extracting the source code from rts.src and editing the constants controlling the size of some
of the C I/O data structures. The macro _NFILE controls how many FILE (fopen) objects can

be open at one time (stdin, stdout, and stderr count against this total). (See also

FOPEN_MAX.) The macro _NSTREAM controls how many low-level file descriptors can be
open at one time (the low-level files underlying stdin, stdout, and stderr count against this
total). The macro _NDEVICE controls how many device drivers are installed at one time (the

HOST device counts against this total).

SLAU132H—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Using Run-Time-Support Functions and Building Libraries 141

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

The C I/O Functions www.ti.com

7.2.1 High-Level I/O Functions

The high-level functions are the standard C library of stream 1/O routines (printf, scanf, fopen, getchar, and
so on). These functions call one or more low-level I/O functions to carry out the high-level I/O request. The
high-level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level 1/O functions.

To use the high-level I/O functions, include the header file stdio.h, or cstdio for C++ code, for each module
that references a C I/O function.

For example, given the following C program in a file named main.c:
#include <stdio.h>;

void main(Q)

{
FILE *fid;
fid = fopen(myfile”,"w'");
fprintf(fid, "Hello, world\n");
fclose(fid);
printf(""Hello again, world\n');
3

Issuing the following compiler command compiles, links, and creates the file main.out from the run-time-
support library:

cl430 main.c --run_linker --heap_size=400 --library=rts430.1ib --output_file=main.out

Executing main.out results in
Hello, world

being output to a file and
Hello again, world

being output to your host's stdout window.

142 Using Run-Time-Support Functions and Building Libraries SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com open — Open File for /O

7.2.2

open

Syntax

Overview of Low-Level /0O Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, Iseek,
rename, and unlink. These low-level routines provide the interface between the high-level functions and
the device-level drivers that actually perform the /0O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not
actually disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as
Iseek) may not be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open,
representing an opened file. Multiple file descriptors may be associated with a file; each has its own
independent file position indicator.

Open File for 1/0

#include <file.h>

int open (const char * path , unsigned flags , int file_descriptor);

Description The open function opens the file specified by path and prepares it for 1/O.

Return

» The path is the filename of the file to be opened, including an optional directory path
and an optional device specifier (see Section 7.2.5).

» The flags are attributes that specify how the file is manipulated. The flags are
specified using the following symbols:
O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

Low-level I/O routines allow or disallow some operations depending on the flags used
when the file was opened. Some flags may not be meaningful for some devices,
depending on how the device implements files.

» The file_descriptor is assigned by open to an opened file.
The next available file descriptor is assigned to each new file opened.

Value The function returns one of the following values:
non-negative file descriptor if successful

-1 on failure

SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 143
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
close — Close File for I1/10 www.ti.com
close Close File for I/O
Syntax #include <file.h>

int close (int file_descriptor);
Description The close function closes the file associated with file_descriptor.

Return Value

read

Syntax

Description

Return Value

write

Syntax

Description

Return Value

The file_descriptor is the number assigned by open to an opened file.

The return value is one of the following:
0 if successful

-1 on failure

Read Characters from a File

#include <file.h>
int read (int file_descriptor , char * buffer , unsigned count);

The read function reads count characters into the buffer from the file associated with
file_descriptor.

» The file_descriptor is the number assigned by open to an opened file.
» The buffer is where the read characters are placed.
» The count is the number of characters to read from the file.

The function returns one of the following values:

0 if EOF was encountered before any characters were read
number of characters read (may be less than count)
-1 on failure

Write Characters to a File

#include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count);

The write function writes the number of characters specified by count from the buffer to
the file associated with file_descriptor.

» The file_descriptor is the number assigned by open to an opened file.
» The buffer is where the characters to be written are located.
* The count is the number of characters to write to the file.

The function returns one of the following values:
number of characters written if successful (may be less than count)

-1 on failure

144 Using Run-Time-Support Functions and Building Libraries

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com Iseek — Set File Position Indicator

Iseek Set File Position Indicator

Syntax for C #include <file.h>
off_t Iseek (int file_descriptor , off t offset, int origin);

Description The Iseek function sets the file position indicator for the given file to a location relative to
the specified origin. The file position indicator measures the position in characters from
the beginning of the file.

» The file_descriptor is the number assigned by open to an opened file.
» The offset indicates the relative offset from the origin in characters.
e The origin is used to indicate which of the base locations the offset is measured from.
The origin must be one of the following macros:
SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file
Return Value The return value is one of the following:
new value of the file position indicator if successful
(off_t)-1 on failure

unlink Delete File

Syntax #include <file.h>
int unlink (const char * path);

Description The unlink function deletes the file specified by path. Depending on the device, a deleted
file may still remain until all file descriptors which have been opened for that file have
been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix.
(See Section 7.2.5.)
Return Value The function returns one of the following values:
0 if successful
-1 on failure
SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 145

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
rename — Rename File www.ti.com
rename Rename File
Syntax for C #include {<stdio.h> | <file.h>}

int rename (const char * old_name , const char * new_name);
Syntax for C++ #include {<cstdio> | <file.h>}
int std::rename (const char * old_name , const char * new_name);

Description The rename function changes the name of a file.
e The old_name is the current name of the file.
* The new_name is the new name for the file.

NOTE: The optional device specified in the new name must match the device of
the old name. If they do not match, a file copy would be required to
perform the rename, and rename is not capable of this action.

Return Value The function returns one of the following values:
0 if successful
-1 on failure

NOTE: Although rename is a low-level function, it is defined by the C standard
and can be used by portable applications.

7.2.3 Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The default
device driver is the HOST device driver, which uses the debugger to perform file operations. The HOST
device driver is automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so that the
host can perform the C 1/O requested by the program. Instructions for C 1/O operations that the program
wants to perform are encoded in a special buffer named _CIOBUF _ in the .cio section. The debugger
halts the program at a special breakpoint (C$$I0$$), reads and decodes the target memory, and performs
the requested operation. The result is encoded into _CIOBUF _, the program is resumed, and the target
decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread, HOSTwrite,
HOSTIseek, HOSTunlink, and HOSTrename, which perform the encoding. Each function is called from the
low-level I/O function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful for all
devices, but all seven must be defined. Here we show the names of all seven functions as starting with
DEV, but you may chose any name except for HOST.

146 Using Run-Time-Support Functions and Building Libraries SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

DEV_open — Open File for 1/0

DEV_open
Syntax

Description

Return Value

Open File for 11O

int DEV_open (const char * path , unsigned flags , int llv_fd);

This function finds a file matching path and opens it for I/O as requested by flags.

« The path is the filename of the file to be opened. If the name of a file passed to open
has a device prefix, the device prefix will be stripped by open, so DEV_open will not
see it. (See Section 7.2.5 for details on the device prefix.)

* The flags are attributes that specify how the file is manipulated. The flags are
specified using the following symbols:
O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

See POSIX for further explanation of the flags.

* The llv_fd is treated as a suggested low-level file descriptor. This is a historical
artifact; newly-defined device drivers should ignore this argument. This differs from
the low-level 1/O open function.

This function must arrange for information to be saved for each file descriptor, typically
including a file position indicator and any significant flags. For the HOST version, all the
bookkeeping is handled by the debugger running on the host machine. If the device uses
an internal buffer, the buffer can be created when a file is opened, or the buffer can be
created during a read or write.

This function must return -1 to indicate an error if for some reason the file could not be
opened; such as the file does not exist, could not be created, or there are too many files
open. The value of errno may optionally be set to indicate the exact error (the HOST
device does not set errno). Some devices might have special failure conditions; for
instance, if a device is read-only, a file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor uniqgue among all
open files handled by the specific device. It need not be unique across devices. Only the
low-level I/O functions will see this device file descriptor; the low-level function open will
assign its own unique file descriptor.

SLAU132H—-June 2013

Using Run-Time-Support Functions and Building Libraries 147

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
DEV_close — Close File for I/O www.ti.com
DEV_close Close File for I/O
Syntax int DEV_close (int dev_fd);
Description This function closes a valid open file descriptor.

Return Value

DEV_read

Syntax

Description

Return Value

DEV_write

Syntax

Description

Return Value

On some devices, DEV_close may need to be responsible for checking if this is the last
file descriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that
the file is actually removed from the device and the resources reclaimed, if appropriate.

This function should return -1 to indicate an error if the file descriptor is invalid in some
way, such as being out of range or already closed, but this is not required. The user
should not call close() with an invalid file descriptor.

Read Characters from a File

int DEV _read (int dev_fd , char * bu, unsigned count);

The read function reads count bytes from the input file associated with dev_fd.

e The dev_fd is the number assigned by open to an opened file.

» The buf is where the read characters are placed.

» The count is the number of characters to read from the file.

This function must return -1 to indicate an error if for some reason no bytes could be

read from the file. This could be because of an attempt to read from a O_WRONLY file,
or for device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. O indicates that EOF
was reached before any bytes were read. It is not an error to read less than count bytes;
this is common if the are not enough bytes left in the file or the request was larger than
an internal device buffer size.

Write Characters to a File

int DEV_write (int dev_fd , const char * buf , unsigned count);

This function writes count bytes to the output file.

» The dev_fd is the number assigned by open to an opened file.
» The buffer is where the write characters are placed.

* The count is the number of characters to write to the file.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. This could be because of an attempt to read from a O_RDONLY file,
or for device-specific reasons.

148 Using Run-Time-Support Functions and Building Libraries

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS

www.ti.com

DEV_lseek — Set File Position Indicator

DEV_Iseek

Syntax

Description

Return Value

DEV_unlink

Syntax

Description

Return Value

DEV_rename

Syntax

Description

Return Value

Set File Position Indicator

off_t Iseek (int dev_fd , off_t offset, int origin);

This function sets the file's position indicator for this file descriptor as Iseek.

If Iseek is supported, it should not allow a seek to before the beginning of the file, but it
should support seeking past the end of the file. Such seeks do not change the size of
the file, but if it is followed by a write, the file size will increase.

If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. For many devices, the Iseek operation is nonsensical (e.g. a computer
monitor).

Delete File

int DEV_unlink (const char * path);

Remove the association of the pathname with the file. This means that the file may no
longer by opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device which
allows open file descriptors to point to unlinked files, the file will not actually be deleted
until the last file descriptor is closed. See Section 7.2.3.

This function must return -1 to indicate an error if for some reason the file could not be
unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

Rename File

int DEV_rename (const char * old_name , const char * new_name);

This function changes the name associated with the file.
e The old_name is the current name of the file.
* The new_name is the new name for the file.

This function must return -1 to indicate an error if for some reason the file could not be
renamed, such as the file doesn't exist, or the new name already exists.

NOTE: It is inadvisable to allow renaming a file so that it is on a different device.
In general this would require a whole file copy, which may be more
expensive than you expect.

If successful, this function returns 0.

SLAU132H—-June 2013

Using Run-Time-Support Functions and Building Libraries 149

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

DEV_rename — Rename File www.ti.com

7.2.4 Adding a User-Defined Device Driver for C I/O

The function add_device allows you to add and use a device. When a device is registered with
add_device, the high-level I/O routines can be used for 1/0 on that device.

You can use a different protocol to communicate with any desired device and install that protocol using
add_device; however, the HOST functions should not be modified. The default streams stdin, stdout, and
stderr can be remapped to a file on a user-defined device instead of HOST by using freopen() as in
Example 7-1. If the default streams are reopened in this way, the buffering mode will change to _|IOFBF
(fully buffered). To restore the default buffering behavior, call setvbuf on each reopened file with the
appropriate value (_IOLBF for stdin and stdout, |IONBF for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device instead of
HOST by using freopen() as shown in Example 7-1. Each function must set up and maintain its own data
structures as needed. Some function definitions perform no action and should just return.

Example 7-1. Mapping Default Streams to Device

#include <stdio.h>
#include <file.h>
#include "mydevice.h"

void main()

{
add_device("'mydevice', _MSA,
MYDEVICE_open, MYDEVICE_close,
MYDEVICE_read, MYDEVICE_write,
MYDEVICE_Iseek, MYDEVICE_unlink, MYDEVICE_rename);
/* ___ */
/* Re-open stderr as a MYDEVICE file */
/* ___ */
if (Ifreopen("'mydevice:stderrfile", "w", stderr))
{
puts(“'Failed to freopen stderr™);
exit(EXIT_FAILURE);
}
/* ___ */
/* stderr should not be fully buffered; we want errors to be seen as */
/* soon as possible. Normally stderr is line-buffered, but this example */
/* doesn®t buffer stderr at all. This means that there will be one call */
/* to write() for each character in the message. */
/* ___ */
if (setvbuf(stderr, NULL, _IONBF, 0))
{
puts(“'Failed to setvbuf stderr™);
exit(EXIT_FAILURE);
}
/* ___ */
/* Try it out! */
/* ___ */
printf("This goes to stdout\n');
fprintf(stderr, "This goes to stderr\n'); }
NOTE: Use Unique Function Names
The function names open, read, write, close, Iseek, rename, and unlink are used by the low-
level routines. Use other names for the device-level functions that you write.
150 Using Run-Time-Support Functions and Building Libraries SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com add_device — Add Device to Device Table

7.2.5

Use the low-level function add_device() to add your device to the device_table. The device table is a
statically defined array that supports n devices, where n is defined by the macro _NDEVICE found in
stdio.h/cstdio.

The first entry in the device table is predefined to be the host device on which the debugger is running.
The low-level routine add_device() finds the first empty position in the device table and initializes the
device fields with the passed-in arguments. For a complete description, see the add_device function.

The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The device
prefix is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen(“'mydevice:filel”, "r");
int fd = open(“'mydevice:file2, O_RDONLY, 0);

If no device prefix is used, the HOST device will be used to open the file.

add_device Add Device to Device Table

Synta

x for C #include <file.h>

int add_device(char * name,
unsigned flags ,
int (* dopen)(const char *path, unsigned flags, int llv_fd),
int (* dclose)(int dev_fd),
int (* dread)(intdev_fd, char *buf, unsigned count),
int (* dwrite)(int dev_fd, const char *buf, unsigned count),
off_t (* dlseek)(int dev_fd, off_t ioffset, int origin),
int (* dunlink)(const char * path),
int (* drename)(const char *old_name, const char *new_name));

Defined in lowlev.c in rtssrc.zip

Descr

iption The add_device function adds a device record to the device table allowing that device to
be used for I/O from C. The first entry in the device table is predefined to be the HOST
device on which the debugger is running. The function add_device() finds the first empty
position in the device table and initializes the fields of the structure that represent a
device.

To open a stream on a newly added device use fopen() with a string of the format
devicename : filename as the first argument.

e The name is a character string denoting the device name. The name is limited to 8
characters.

* The flags are device characteristics. The flags are as follows:
_SSA Denotes that the device supports only one open stream at a time
_MSA Denotes that the device supports multiple open streams
More flags can be added by defining them in file.h.

e The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are
function pointers to the functions in the device driver that are called by the low-level
functions to perform 1/O on the specified device. You must declare these functions
with the interface specified in Section 7.2.2. The device driver for the HOST that the
MSP430 debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful

-1 on failure
SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 151
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

add_device — Add Device to Device Table www.ti.com

Example Example 7-2 does the following:
» Adds the device mydevice to the device table
* Opens a file named test on that device and associates it with the FILE pointer fid
» Writes the string Hello, world into the file
* Closes the file

Example 7-2 illustrates adding and using a device for C I/O:

Example 7-2. Program for C I/O Device

#include <file.h>
#include <stdio.h>

/ /
/* Declarations of the user-defined device drivers */
/ /

extern int MYDEVICE_open(const char *path, unsigned flags, int fno);
extern int MYDEVICE_close(int fno);
extern int MYDEVICE_read(int fno, char *buffer, unsigned count);
extern int MYDEVICE_write(int fno, const char *buffer, unsigned count);
extern off_t MYDEVICE_lseek(int fno, off_t offset, int origin);
extern int MYDEVICE_unlink(const char *path);
extern int MYDEVICE_rename(const char *old_name, char *new_name);
main()
{
FILE *fid;
add_device("mydevice", _MSA, MYDEVICE_open, MYDEVICE_close, MYDEVICE_read,
MYDEVICE_write, MYDEVICE_lseek, MYDEVICE unlink, MYDEVICE_rename);
fid = fopen(‘'mydevice:test","w'");
fprintf(fid, "Hello, world\n");

fclose(fid);

152 Using Run-Time-Support Functions and Building Libraries SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I

TEXAS

INSTRUMENTS

www.ti.com Handling Reentrancy (_register_lock() and _register_unlock() Functions)

7.3

Handling Reentrancy (_register_lock() and _register_unlock() Functions)

The C standard assumes only one thread of execution, with the only exception being extremely narrow
support for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything
in a signal handler. However, SYS/BIOS applications have multiple threads which need to modify the
same global program state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does
provide rudimentary support for multi-threaded reentrancy by providing support for critical sections. This
implementation does not protect you from reentrancy issues such as calling run-time-support functions
from inside interrupts; this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a single-
threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded
system such as SYS/BIOS, the kernel arranges to install semaphore lock primitive functions in these
hooks, which are then called when the run-time-support enters code that needs to be protected by a
critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be
protected with a critical section, there are calls to the function _lock(). This calls the provided primitive, if
installed, and acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is
called to release the semaphore.

Usually SYS/BIOS is responsible for creating and installing the primitives, so you do not need to take any
action. However, this mechanism can be used in multi-threaded applications that do not use the
SYS/BIOS locking mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation
functions are called to instruct the run-time-support environment to use these new primitives:
void _register_lock (void (*lock)(Q));

void _register_unlock(void (*unlock)(Q);

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments
and return no values, and which implement some sort of global semaphore locking:

extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;

static int sema_depth = 0;

static void my_lock(void)

while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_ID);
sema_depth++;

}

static void my_unlock(void)

{

}
The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.

if (1--sema_depth) ATOMIC_CLEAR(sema);

SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 153
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS

INSTRUMENTS
Library-Build Process www.ti.com
7.4 Library-Build Process
When using the C/C++ compiler, you can compile your code under a large number of different
configurations and options that are not necessarily compatible with one another. Because it would be
infeasible to include all possible run-time-support library variants, compiler releases pre-build only a small
number of very commonly-used libraries such as rts430.lib.
To provide maximum flexibility, the run-time-support source code is provided as part of each compiler
release. You can build the missing libraries as desired. The linker can also automatically build missing
libraries. This is accomplished with a new library build process, the core of which is the executable mklib,
which is available beginning with CCS 5.1
7.4.1 Required Non-Texas Instruments Software
To use the self-contained run-time-support build process to rebuild a library with custom options, the
following are required:
* sh (Bourne shell)
* unzip (InfoZIP unzip 5.51 or later, or equivalent)
You can download the software from http://www.info-zip.org.
e gmake (GNU make 3.81 or later)
More information is available from GNU at http://www.gnu.org/software/make. GNU make (gmake) is
also available in earlier versions of Code Composer Studio. GNU make is also included in some UNIX
support packages for Windows, such as the MKS Toolkit, Cygwin, and Interix. The GNU make used on
Windows platforms should explicitly report "This program build for Windows32" when the following is
executed from the Command Prompt window:
gmake -h
All three of these programs are provided as a non-optional feature of CCS 5.1. They are also available as
part of the optional XDC Tools feature if you are using an earlier version of CCS.
The mklib program looks for these executables in the following order:
1. inyour PATH
2. in the directory getenv("CCS_UTILS_DIR")/cygwin
3. in the directory getenv("CCS_UTILS DIR")/bin
4. in the directory getenv("XDCROOT")
5. in the directory getenv("XDCROOT")/bin
If you are invoking mklib from the command line, and these executables are not in your path, you must set
the environment variable CCS_UTILS_DIR such that getenv("CCS_UTILS_DIR")/bin contains the correct
programs.
7.4.2 Using the Library-Build Process

You should normally let the linker automatically rebuild libraries as needed. If necessary, you can run
mkKlib directly to populate libraries. See Section 7.4.2.2 for situations when you might want to do this.

7.4.2.1 Automatic Standard Library Rebuilding by the Linker

The linker looks for run-time-support libraries primarily through the MSP430_C_DIR environment variable.
Typically, one of the pathnames in MSP430_C_DIR is your install directory/lib, which contains all of the
pre-built libraries, as well as the index library libc.a. The linker looks in MSP430_C_DIR to find a library
that is the best match for the build attributes of the application. The build attributes are set indirectly
according to the command-line options used to build the application. Build attributes include things like
CPU revision. If the library is explicitly named (e.qg. rts430.lib), run-time support looks for that library
exactly; otherwise, it uses the index library libc.a to pick an appropriate library.

The index library describes a set of libraries with different build attributes. The linker will compare the build
attributes for each potential library with the build attributes of the application and will pick the best fit. For
details on the index library, see the archiver chapter in the MSP430 Assembly Language Tools User's
Guide.

154

Using Run-Time-Support Functions and Building Libraries SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.info-zip.org
http://www.gnu.org/software/make
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Library-Build Process

Now that the linker has decided which library to use, it checks whether the run-time-support library is
present in MSP430_C_DIR . The library must be in exactly the same directory as the index library libc.a. If
the library is not present, the linker invokes mklib to build it. This happens when the library is missing,
regardless of whether the user specified the name of the library directly or allowed the linker to pick the
best library from the index library.

The mklib program builds the requested library and places it in 'lib' directory part of MSP430_C_DIR in the
same directory as the index library, so it is available for subsequent compilations.
Things to watch out for:

» The linker invokes mklib and waits for it to finish before finishing the link, so you will experience a one-
time delay when an uncommonly-used library is built for the first time. Build times of 1-5 minutes have
been observed. This depends on the power of the host (number of CPUSs, etc).

e In a shared installation, where an installation of the compiler is shared among more than one user, it is
possible that two users might cause the linker to rebuild the same library at the same time. The mklib
program tries to minimize the race condition, but it is possible one build will corrupt the other. In a
shared environment, all libraries which might be needed should be built at install time; see
Section 7.4.2.2 for instructions on invoking mklib directly to avoid this problem.

» The index library must exist, or the linker is unable to rebuild libraries automatically.

e The index library must be in a user-writable directory, or the library is not built. If the compiler
installation must be installed read-only (a good practice for shared installation), any missing libraries
must be built at installation time by invoking mklib directly.

» The mklib program is specific to a certain version of a certain library; you cannot use one compiler
version's run-time support's mklib to build a different compiler version's run-time support library.

7.4.2.2 Invoking mklib Manually

You may need to invoke mklib directly in special circumstances:
* The compiler installation directory is read-only or shared.

* You want to build a variant of the run-time-support library that is not pre-configured in the index library
libc.a or known to mklib. (e.g. a variant with source-level debugging turned on.)

7.4.2.2.1 Building Standard Libraries

You can invoke mklib directly to build any or all of the libraries indexed in the index library libc.a. The
libraries are built with the standard options for that library; the library names and the appropriate standard
option sets are known to mklib.

This is most easily done by changing the working directory to be the compiler run-time-support library
directory 'lib* and invoking the mklib executable there:
mklib --pattern=rts430.1ib

7.4.2.2.2 Shared or Read-Only Library Directory

If the compiler tools are to be installed in shared or read-only directory, mklib cannot build the standard
libraries at link time; the libraries must be built before the library directory is made shared or read-only.

At installation time, the installing user must build all of the libraries which will be used by any user. To
build all possible libraries, change the working directory to be the compiler RTS library directory 'lib' and
invoke the mklib executable there:

mklib —-all

Some targets have many libraries, so this step can take a long time. To build a subset of the libraries,
invoke mklib individually for each desired library.

SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 155

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Library-Build Process

13 TEXAS
INSTRUMENTS

www.ti.com

7.4.2.2.3 Building Libraries With Custom Options

You can build a library with any extra custom options desired. This is useful for building a debugging
version of the library, or with silicon exception workarounds enabled. The generated library is not a
standard library, and must not be placed in the 'lib' directory. It should be placed in a directory local to the
project which needs it. To build a debugging version of the library rts430.lib, change the working directory
to the 'lib' directory and run the command:

mklib --pattern=rts430.lib --name=rts430_debug.lib --install_to=$Project/Debug --extra_options="-

g

7.4.2.2.4 The mklib Program Option Summary

Run the following command to see the full list of options. These are described in Table 7-1.

mklib --help

Table 7-1. The mklib Program Options

Option

Effect

--index=filename

--pattern=filename

--all
--install_to=directory

--compiler_bin_dir=
directory

--name=filename
--options="str'

--extra_options="str'

--list_libraries
--log=filename
--tmpdir=directory
--gmake=filename
--parallel=N
--query=filename
--help or --h
--quiet or --q
--verbose or --v

The index library (libc.a) for this release. Used to find a template library for custom builds, and to find the
source files (rtssrc.zip). REQUIRED.

Pattern for building a library. If neither --extra_options nor --options are specified, the library will be the
standard library with the standard options for that library. If either --extra_options or --options are
specified, the library is a custom library with custom options. REQUIRED unless --all is used.

Build all standard libraries at once.

The directory into which to write the library. For a standard library, this defaults to the same directory as
the index library (libc.a). For a custom library, this option is REQUIRED.

The directory where the compiler executables are. When invoking mklib directly, the executables should
be in the path, but if they are not, this option must be used to tell mklib where they are. This option is
primarily for use when mklib is invoked by the linker.

File name for the library with no directory part. Only useful for custom libraries.

Options to use when building the library. The default options (see below) are replaced by this string. If
this option is used, the library will be a custom library.

Options to use when building the library. The default options (see below) are also used. If this option is
used, the library will be a custom library.

List the libraries this script is capable of building and exit. ordinary system-specific directory.
Save the build log as filename.

Use directory for scratch space instead of the ordinary system-specific directory.
Gmake-compatible program to invoke instead of "gmake"

Compile N files at once ("gmake -j N").

Does this script know how to build FILENAME?

Display this help.

Operate silently.

Extra information to debug this executable.

Examples:

To build all standard libraries and place them in the compiler's library directory:
mklib --all --index=$C_DIR/lib

To build one standard library and place it in the compiler's library directory:
mklib --pattern=rts430.1ib --index=$C_DIR/Ilib

To build a custom library that is just like rts430.lib, but has symbolic debugging support enabled:

mklib --pattern=rts430.lib --extra_options="-g" --index=$C_DIR/lib --install_to=$Project/Debug --
name=rts430_debug.lib

156

Using Run-Time-Support Functions and Building Libraries

SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Library-Build Process

7.4.3 Extending mklib

The mklib APl is a uniform interface that allows Code Composer Studio to build libraries without needing
to know exactly what underlying mechanism is used to build it. Each library vendor (e.g. the TI compiler)
provides a library-specific copy of 'mklib' in the library directory that can be invoked, which understands a
standardized set of options, and understands how to build the library. This allows the linker to
automatically build application-compatible versions of any vendor's library without needing to register the
library in advance, as long as the vendor supports mklib.

7.4.3.1 Underlying Mechanism

The underlying mechanism can be anything the vendor desires. For the compiler run-time-support
libraries, mklib is just a wrapper which knows how to unpack Makefile from rtssrc.zip and invoke gmake
with the appropriate options to build each library. If necessary, mklib can be bypassed and Makefile used
directly, but this mode of operation is not supported by Tl, and the you are responsible for any changes to
Makefile. The format of the Makefile and the interface between mklib and the Makefile is subject to change
without notice. The mklib program is the forward-compatible path.

7.4.3.2 Libraries From Other Vendors

Any vendor who wishes to distribute a library that can be rebuilt automatically by the linker must provide:
* Anindex library (like 'libc.a’, but with a different name)

» A copy of mklib specific to that library

» A copy of the library source code (in whatever format is convenient)

These things must be placed together in one directory that is part of the linker's library search path
(specified either in MSP430_C_DIR or with the linker --search_path option).

If mklib needs extra information that is not possible to pass as command-line options to the compiler, the
vendor will need to provide some other means of discovering the information (such as a configuration file
written by a wizard run from inside CCS).

The vendor-supplied mklib must at least accept all of the options listed in Table 7-1 without error, even if
they do not do anything.

SLAU132H-June 2013 Using Run-Time-Support Functions and Building Libraries 157

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Chapter 8

SLAU132H—-June 2013

TeEXAS
INSTRUMENTS

C++ Name Demangler

The C++ compiler implements function overloading, operator overloading, and type-safe linking by
encoding a function's prototype and namespace in its link-level name. The process of encoding the
prototype into the linkname is often referred to as name mangling. When you inspect mangled names,
such as in assembly files, disassembler output, or compiler or linker diagnostics, it can be difficult to
associate a mangled name with its corresponding name in the C++ source code. The C++ name
demangler is a debugging aid that translates each mangled name it detects to its original name found in
the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads
in input, looking for mangled names. All unmangled text is copied to output unaltered. All mangled names
are demangled before being copied to output.

Topic Page
8.1 Invoking the C++ Name Demangleriiiiiiiieiiiiiie et e et e s eeens 159
8.2 C++ Name Demangler OPtiONSciieeieie et e et eenra s e e e enenennanes 159
8.3 Sample Usage of the C++ Name Demanglerococieiiiiiiiiiieiiieeeeeiee e 159
158 C++ Name Demangler SLAU132H—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the C++ Name Demangler

8.1 Invoking the C++ Name Demangler

The syntax for invoking the C++ name demangler is:

‘ dem430 [options] [filenames]

dem430 Command that invokes the C++ name demangler.

options Options affect how the name demangler behaves. Options can appear anywhere on the
command line. (Options are discussed in Section 8.2.)

filenames Text input files, such as the assembly file output by the compiler, the assembler listing file,

the disassembly file, and the linker map file. If no filenames are specified on the command
line, dem430 uses standard input.

By default, the C++ name demangler outputs to standard output. You can use the -o file option if you want
to output to a file.

8.2 C++ Name Demangler Options

The following options apply only to the C++ name demangler:

--abi=eabi Demangles EABI identifiers

-h Prints a help screen that provides an online summary of the C++ name demangler
options

-0 file Outputs to the given file rather than to standard out

-u Specifies that external names do not have a C++ prefix

-v Enables verbose mode (outputs a banner)

8.3 Sample Usage of the C++ Name Demangler

The examples in this section illustrate the demangling process. Example 8-1 shows a sample C++
program. Example 8-2 shows the resulting assembly that is output by the compiler. In this example, the
linknames of all the functions are mangled; that is, their signature information is encoded into their names.

Example 8-1. C++ Code for calories_in_a_banana

class banana {

public:
int calories(void);
banana();
~banana();

¥

int calories_in_a_banana(void)
{

banana x;

return x.calories();

}

SLAU132H—-June 2013 C++ Name Demangler 159

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

Sample Usage of the C++ Name Demangler

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-2. COFF Resulting Assembly for calories_in_a_banana

calories_in_a banana__ Fv:

- %
s

Example

8-3. EABI Resulting Assembly for _Z20calories_in_a_banana

PUSH.W
SUB.W
MOV . W
CALL

MOV . W
CALL

MOV . W
MOV.W
CALL

MOV.W
ADD.W
POP
RET

#4,SP
SP,r12
#2,rl12
__ct__6bananaFv

SP,r12
#2,r12
#calories__6bananaFv

r12,0(SsP)

SP,r12

#2,rl12

#2,r13

__dt__6bananaFv

0(SP),ri2
#4,SP

rio

#2,SP

SP,r12
#_ZN6bananaClEv

SP,r12
#_ZN6banana8caloriesEv

ril2,r10
SP,rl12
#_ZN6bananaDl1Ev

rio,ri2
#2,SP
rio

Executing the C++ name demangler demangles all names that it believes to be mangled. Enter:
dem430 calories_in_a_banana.asm

The result is shown in Example 8-4. The linknames in Example 8-2 _ ct__6bananaFv,
_calories__6bananaFv, and ___dt__6bananaFv are demangled.

160 C++ Name Demangler

Copyright © 2013, Texas Instruments Incorporated

SLAU132H-June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com

Sample Usage of the C++ Name Demangler

Example 8-4. COFF Result After Running the C++ Name Demangler

calories_in_a banana():

SUB.W #4,SP
MOV . W SP,r12
ADD W #2,r12
CALL #banana: :banana()
MOV . W SP,r12
ADD W #2,rl12
CALL #banana: :calories()
MOV . W ri2,0(SP)
MOV . W SP,r12
ADD W #2,r12
MOV . W #2,rl3
CALL #banana: : ~banana()
MOV . W 0(SP),r12
ADD . W #4,SP
RET
Example 8-5. EABI Result After Running the C++ Name Demangler
PUSH.W rio
SUB.W #2,SP
MOV . W SP,r12
CALL #banana: :banana()
MOV . W SP,r12
CALL #banana: :calories()
MOV . W ri2,r10
MOV . W SP,r12
CALL #banana: :~banana()
MOV.W r10,ril2
ADD . W #2,SP
POP rio
RET

SLAU132H-June 2013
Submit Documentation Feedback

C++ Name Demangler 161

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

I3 TEXAS
INSTRUMENTS

Appendix A

SLAU132H—-June 2013

Glossary

absolute lister— A debugging tool that allows you to create assembler listings that contain absolute
addresses.

assignment statement— A statement that initializes a variable with a value.

autoinitialization— The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at run time— An autoinitialization method used by the linker when linking C code. The
linker uses this method when you invoke it with the --rom_maodel link option. The linker loads the
.Cinit section of data tables into memory, and variables are initialized at run time.

alias disambiguation— A technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

aliasing— The ability for a single object to be accessed in more than one way, such as when two
pointers point to a single object. It can disrupt optimization, because any indirect reference could
refer to any other object.

allocation— A process in which the linker calculates the final memory addresses of output sections.

ANSI— American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library— A collection of individual files grouped into a single file by the archiver.

archiver— A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

assembler— A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assignment statement— A statement that initializes a variable with a value.

autoinitialization— The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at run time— An autoinitialization method used by the linker when linking C code. The
linker uses this method when you invoke it with the --rom_model link option. The linker loads the
.Cinit section of data tables into memory, and variables are initialized at run time.

big endian— An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

BIS— Bit instruction set.
block— A set of statements that are grouped together within braces and treated as an entity.

.bss section— One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

162 Glossary SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Appendix A

byte— Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler— A software program that translates C source statements into assembly language
source statements.

code generator— A compiler tool that takes the file produced by the parser or the optimizer and
produces an assembly language source file.

COFF— Common object file format; a system of object files configured according to a standard
developed by AT&T. These files are relocatable in memory space.

command file— A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment— A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program— A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

configured memory— Memory that the linker has specified for allocation.
constant— A type whose value cannot change.

cross-reference listing— An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section— One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

direct call— A function call where one function calls another using the function's name.

directives— Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

disambiguation— See alias disambiguation

dynamic memory allocation— A technique used by several functions (such as malloc, calloc, and
realloc) to dynamically allocate memory for variables at run time. This is accomplished by defining a
large memory pool (heap) and using the functions to allocate memory from the heap.

ELF— Executable and Linkable Format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator— A hardware development system that duplicates the MSP430 operation.
entry point— A point in target memory where execution starts.

environment variable— A system symbol that you define and assign to a string. Environmental variables
are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog— The portion of code in a function that restores the stack and returns.

executable object file— A linked, executable object file that is downloaded and executed on a target
system.

expression— A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol— A symbol that is used in the current program module but defined or declared in a
different program module.

SLAU132H—-June 2013 Glossary 163

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Appendix A www.ti.com

file-level optimization— A level of optimization where the compiler uses the information that it has about
the entire file to optimize your code (as opposed to program-level optimization, where the compiler
uses information that it has about the entire program to optimize your code).

function inlining— The process of inserting code for a function at the point of call. This saves the
overhead of a function call and allows the optimizer to optimize the function in the context of the
surrounding code.

global symbol— A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

high-level language debugging— The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

indirect call— A function call where one function calls another function by giving the address of the
called function.

initialization at load time— An autoinitialization method used by the linker when linking C/C++ code. The
linker uses this method when you invoke it with the --ram_model link option. This method initializes
variables at load time instead of run time.

initialized section— A section from an object file that will be linked into an executable object file.
input section— A section from an object file that will be linked into an executable object file.

integrated preprocessor— A C/C++ preprocessor that is merged with the parser, allowing for faster
compilation. Stand-alone preprocessing or preprocessed listing is also available.

interlist feature— A feature that inserts as comments your original C/C++ source statements into the
assembly language output from the assembler. The C/C++ statements are inserted next to the
equivalent assembly instructions.

intrinsics— Operators that are used like functions and produce assembly language code that would
otherwise be inexpressible in C, or would take greater time and effort to code.

ISO— International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

K&R C— Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C
Programming Language (K&R). Most K&R C programs written for earlier, non-1ISO C compilers
should correctly compile and run without modification.

label— A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker— A software program that combines object files to form an executable object file that can be
allocated into system memory and executed by the device.

listing file— An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

little endian— An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader— A device that places an executable object file into system memory.

loop unrolling— An optimization that expands small loops so that each iteration of the loop appears in
your code. Although loop unrolling increases code size, it can improve the performance of your
code.

macro— A user-defined routine that can be used as an instruction.

macro call— The process of invoking a macro.

164

Glossary SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

www.ti.com Appendix A

macro definition— A block of source statements that define the name and the code that make up a
macro.

macro expansion— The process of inserting source statements into your code in place of a macro call.

map file— An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

memory map— A map of target system memory space that is partitioned into functional blocks.

name mangling— A compiler-specific feature that encodes a function name with information regarding
the function's arguments return types.

object file— An assembled or linked file that contains machine-language object code.
object library— An archive library made up of individual object files.

operand— An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer— A software tool that improves the execution speed and reduces the size of C programs.

options— Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output section— A final, allocated section in a linked, executable module.

parser— A software tool that reads the source file, performs preprocessing functions, checks the syntax,
and produces an intermediate file used as input for the optimizer or code generator.

partitioning— The process of assigning a data path to each instruction.
pop— An operation that retrieves a data object from a stack.

pragma— A preprocessor directive that provides directions to the compiler about how to treat a particular
statement.

preprocessor— A software tool that interprets macro definitions, expands macros, interprets header
files, interprets conditional compilation, and acts upon preprocessor directives.

program-level optimization— An aggressive level of optimization where all of the source files are
compiled into one intermediate file. Because the compiler can see the entire program, several
optimizations are performed with program-level optimization that are rarely applied during file-level
optimization.

prolog— The portion of code in a function that sets up the stack.

push— An operation that places a data object on a stack for temporary storage.

guiet run— An option that suppresses the normal banner and the progress information.
raw data— Executable code or initialized data in an output section.

relocation— A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

run-time environment— The run time parameters in which your program must function. These
parameters are defined by the memory and register conventions, stack organization, function call
conventions, and system initialization.

run-time-support functions— Standard I1SO functions that perform tasks that are not part of the C
language (such as memory allocation, string conversion, and string searches).

run-time-support library— A library file, rts.src, that contains the source for the run time-support
functions.

SLAU132H—-June 2013 Glossary 165

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

13 TEXAS
INSTRUMENTS

Appendix A www.ti.com

section— A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

sign extend— A process that fills the unused MSBs of a value with the value's sign bit.
simulator— A software development system that simulates MSP430 operation.

source file— A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

stand-alone preprocessor— A software tool that expands macros, #include files, and conditional
compilation as an independent program. It also performs integrated preprocessing, which includes
parsing of instructions.

static variable— A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class— An entry in the symbol table that indicates how to access a symbol.

string table— A table that stores symbol nhames that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure— A collection of one or more variables grouped together under a single name.

subsection— A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol— A string of alphanumeric characters that represents an address or a value.

symbolic debugging— The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as a simulator or an emulator.

target system— The system on which the object code you have developed is executed.

.text section— One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

trigraph sequence— A 3-character sequence that has a meaning (as defined by the ISO 646-1983
Invariant Code Set). These characters cannot be represented in the C character set and are
expanded to one character. For example, the trigraph ??' is expanded to ".

unconfigured memory— Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section— A object file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

unsigned value— A value that is treated as a nonnegative number, regardless of its actual sign.
variable— A symbol representing a quantity that can assume any of a set of values.

word— A 16-bit addressable location in target memory

166 Glossary SLAU132H-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132H

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class Il (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation —www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 C/C++ Compiler Overview
	1.2.1 ANSI/ISO Standard
	1.2.2 Output Files
	1.2.3 Compiler Interface
	1.2.4 Utilities

	2 Using the C/C++ Compiler
	2.1 About the Compiler
	2.2 Invoking the C/C++ Compiler
	2.3 Changing the Compiler's Behavior with Options
	2.3.1 Linker Options
	2.3.2 Frequently Used Options
	2.3.3 Miscellaneous Useful Options
	2.3.4 Run-Time Model Options
	2.3.5 Symbolic Debugging Options
	2.3.6 Specifying Filenames
	2.3.7 Changing How the Compiler Interprets Filenames
	2.3.8 Changing How the Compiler Processes C Files
	2.3.9 Changing How the Compiler Interprets and Names Extensions
	2.3.10 Specifying Directories
	2.3.11 Assembler Options
	2.3.12 Deprecated Options

	2.4 Controlling the Compiler Through Environment Variables
	2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)
	2.4.2 Naming an Alternate Directory (MSP430_C_DIR)

	2.5 Precompiled Header Support
	2.5.1 Automatic Precompiled Header
	2.5.2 Manual Precompiled Header
	2.5.3 Additional Precompiled Header Options

	2.6 Controlling the Preprocessor
	2.6.1 Predefined Macro Names
	2.6.2 The Search Path for #include Files
	2.6.2.1 Changing the #include File Search Path (--include_path Option)

	2.6.3 Generating a Preprocessed Listing File (--preproc_only Option)
	2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option)
	2.6.5 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
	2.6.6 Generating a Preprocessed Listing File with Line-Control Information (--preproc_with_line Option)
	2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
	2.6.8 Generating a List of Files Included with the #include Directive (--preproc_includes Option)
	2.6.9 Generating a List of Macros in a File (--preproc_macros Option)

	2.7 Understanding Diagnostic Messages
	2.7.1 Controlling Diagnostics
	2.7.2 How You Can Use Diagnostic Suppression Options

	2.8 Other Messages
	2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)
	2.10 Generating a Raw Listing File (--gen_acp_raw Option)
	2.11 Using Inline Function Expansion
	2.11.1 Inlining Intrinsic Operators
	2.11.2 Inlining Restrictions

	2.12 Using Interlist
	2.13 Controlling Application Binary Interface
	2.14 Enabling Entry Hook and Exit Hook Functions

	3 Optimizing Your Code
	3.1 Invoking Optimization
	3.2 Performing File-Level Optimization (--opt_level=3 option)
	3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options)
	3.2.2 Creating an Optimization Information File (--gen_opt_info Option)

	3.3 Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)
	3.3.1 Controlling Program-Level Optimization (--call_assumptions Option)
	3.3.2 Optimization Considerations When Mixing C/C++ and Assembly

	3.4 Link-Time Optimization (--opt_level=4 Option)
	3.4.1 Option Handling
	3.4.2 Incompatible Types

	3.5 Accessing Aliased Variables in Optimized Code
	3.6 Use Caution With asm Statements in Optimized Code
	3.7 Automatic Inline Expansion (--auto_inline Option)
	3.8 Using the Interlist Feature With Optimization
	3.9 Debugging Optimized Code
	3.10 Controlling Code Size Versus Speed
	3.11 What Kind of Optimization Is Being Performed?
	3.11.1 Cost-Based Register Allocation
	3.11.2 Alias Disambiguation
	3.11.3 Branch Optimizations and Control-Flow Simplification
	3.11.4 Data Flow Optimizations
	3.11.5 Expression Simplification
	3.11.6 Inline Expansion of Functions
	3.11.7 Function Symbol Aliasing
	3.11.8 Induction Variables and Strength Reduction
	3.11.9 Loop-Invariant Code Motion
	3.11.10 Loop Rotation
	3.11.11 Instruction Scheduling
	3.11.12 Tail Merging
	3.11.13 Integer Division With Constant Divisor

	4 Linking C/C++ Code
	4.1 Invoking the Linker Through the Compiler (-z Option)
	4.1.1 Invoking the Linker Separately
	4.1.2 Invoking the Linker as Part of the Compile Step
	4.1.3 Disabling the Linker (--compile_only Compiler Option)

	4.2 Linker Code Optimizations
	4.2.1 Generating Function Subsections (--gen_func_subsections Compiler Option)
	4.2.2 Conditional Linking

	4.3 Controlling the Linking Process
	4.3.1 Including the Run-Time-Support Library
	4.3.1.1 Automatic Run-Time-Support Library Selection
	4.3.1.2 Manual Run-Time-Support Library Selection
	4.3.1.3 Library Order for Searching for Symbols

	4.3.2 Run-Time Initialization
	4.3.3 Initialization by the Interrupt Vector
	4.3.4 Initialization of the FRAM Memory Protection Unit
	4.3.5 Initialization of Cinit and Watchdog Timer Hold
	4.3.6 Global Object Constructors
	4.3.7 Specifying the Type of Global Variable Initialization
	4.3.8 Specifying Where to Allocate Sections in Memory
	4.3.9 A Sample Linker Command File

	5 MSP430 C/C++ Language Implementation
	5.1 Characteristics of MSP430 C
	5.2 Characteristics of MSP430 C++
	5.3 Using MISRA-C:2004
	5.4 Using the ULP Advisor
	5.5 Data Types
	5.6 Keywords
	5.6.1 The const Keyword
	5.6.2 The __interrupt Keyword
	5.6.3 The restrict Keyword
	5.6.4 The volatile Keyword

	5.7 C++ Exception Handling
	5.8 Register Variables and Parameters
	5.9 The __asm Statement
	5.10 Pragma Directives
	5.10.1 The BIS_IE1_INTERRUPT
	5.10.2 The CHECK_MISRA Pragma
	5.10.3 The CLINK Pragma
	5.10.4 The CODE_SECTION Pragma
	5.10.5 The DATA_ALIGN Pragma
	5.10.6 The DATA_SECTION Pragma
	5.10.7 The Diagnostic Message Pragmas
	5.10.8 The FUNC_ALWAYS_INLINE Pragma
	5.10.9 The FUNC_CANNOT_INLINE Pragma
	5.10.10 The FUNC_EXT_CALLED Pragma
	5.10.11 The FUNC_IS_PURE Pragma
	5.10.12 The FUNC_NEVER_RETURNS Pragma
	5.10.13 The FUNC_NO_GLOBAL_ASG Pragma
	5.10.14 The FUNC_NO_IND_ASG Pragma
	5.10.15 The FUNCTION_OPTIONS Pragma
	5.10.16 The INTERRUPT Pragma
	5.10.17 The LOCATION Pragma
	5.10.18 The NOINIT and PERSISTENT Pragmas
	5.10.19 The NO_HOOKS Pragma
	5.10.20 The PACK Pragma
	5.10.21 The RESET_MISRA Pragma
	5.10.22 The RETAIN Pragma
	5.10.23 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
	5.10.24 The vector Pragma

	5.11 The _Pragma Operator
	5.12 Application Binary Interface
	5.12.1 COFF ABI
	5.12.2 EABI

	5.13 Object File Symbol Naming Conventions (Linknames)
	5.14 Initializing Static and Global Variables in COFF ABI Mode
	5.14.1 Initializing Static and Global Variables With the Linker
	5.14.2 Initializing Static and Global Variables With the const Type Qualifier

	5.15 Changing the ANSI/ISO C Language Mode
	5.15.1 Compatibility With K&R C (--kr_compatible Option)
	5.15.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --relaxed_ansi Options)
	5.15.3 Enabling Embedded C++ Mode (--embedded_cpp Option)

	5.16 GNU Language Extensions
	5.16.1 Extensions
	5.16.2 Function Attributes
	5.16.3 Variable Attributes
	5.16.4 Type Attributes
	5.16.5 Built-In Functions

	5.17 Compiler Limits

	6 Run-Time Environment
	6.1 Memory Model
	6.1.1 Code Memory Models
	6.1.2 Data Memory Models
	6.1.3 Support for Near Data
	6.1.4 Sections
	6.1.5 C/C++ Software Stack
	6.1.6 Dynamic Memory Allocation
	6.1.7 Initialization of Variables in COFF ABI

	6.2 Object Representation
	6.2.1 Data Type Storage
	6.2.1.1 Pointer to Member Function Types
	6.2.1.2 Structure and Array Alignment
	6.2.1.3 Field/Structure Alignment

	6.2.2 Character String Constants

	6.3 Register Conventions
	6.4 Function Structure and Calling Conventions
	6.4.1 How a Function Makes a Call
	6.4.2 How a Called Function Responds
	6.4.3 Accessing Arguments and Local Variables

	6.5 Interfacing C and C++ With Assembly Language
	6.5.1 Using Assembly Language Modules With C/C++ Code
	6.5.2 Accessing Assembly Language Functions From C/C++
	6.5.3 Accessing Assembly Language Variables From C/C++
	6.5.3.1 Accessing Assembly Language Global Variables
	6.5.3.2 Accessing Assembly Language Constants

	6.5.4 Sharing C/C++ Header Files With Assembly Source
	6.5.5 Using Inline Assembly Language

	6.6 Interrupt Handling
	6.6.1 Saving Registers During Interrupts
	6.6.2 Using C/C++ Interrupt Routines
	6.6.3 Using Assembly Language Interrupt Routines
	6.6.4 Interrupt Vectors
	6.6.5 Other Interrupt Information

	6.7 Using Intrinsics to Access Assembly Language Statements
	6.7.1 MSP430 Intrinsics
	6.7.2 The __delay_cycle Intrinsic
	6.7.3 The _never_executed Intrinsic
	6.7.3.1 Using _never_executed With a Vector Generator
	6.7.3.2 Using _never_executed With General Switch Expressions

	6.8 System Initialization
	6.8.1 System Pre-Initialization
	6.8.2 Run-Time Stack
	6.8.3 COFF ABI Automatic Initialization of Variables
	6.8.3.1 Initialization Tables
	6.8.3.2 Autoinitialization of Variables at Run Time
	6.8.3.3 Initialization of Variables at Load Time
	6.8.3.4 Global Constructors for COFF

	6.8.4 EABI Automatic Initialization of Variables
	6.8.4.1 EABI Zero Initializing Variables
	6.8.4.2 EABI Direct Initialization
	6.8.4.3 Autoinitialization of Variables at Run Time in EABI Mode
	6.8.4.4 Autoinitialization Tables in EABI Mode
	6.8.4.4.1 Length Followed by Data Format in EABI Mode
	6.8.4.4.2 Zero Initialization Format in EABI Mode
	6.8.4.4.3 Run Length Encoded (RLE) Format in EABI Mode
	6.8.4.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

	6.8.4.5 Initialization of Variables at Load Time in EABI Mode
	6.8.4.6 Global Constructors in EABI Mode

	6.8.5 Initialization Tables

	6.9 Compiling for 20-Bit MSP430X Devices

	7 Using Run-Time-Support Functions and Building Libraries
	7.1 C and C++ Run-Time Support Libraries
	7.1.1 Linking Code With the Object Library
	7.1.2 Header Files
	7.1.3 Modifying a Library Function
	7.1.4 Support for String Handling
	7.1.5 Minimal Support for Internationalization
	7.1.6 Allowable Number of Open Files
	7.1.7 Nonstandard Header Files in rtssrc.zip
	7.1.8 Library Naming Conventions

	7.2 The C I/O Functions
	7.2.1 High-Level I/O Functions
	7.2.2 Overview of Low-Level I/O Implementation
	7.2.3 Device-Driver Level I/O Functions
	7.2.4 Adding a User-Defined Device Driver for C I/O
	7.2.5 The device Prefix

	7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
	7.4 Library-Build Process
	7.4.1 Required Non-Texas Instruments Software
	7.4.2 Using the Library-Build Process
	7.4.2.1 Automatic Standard Library Rebuilding by the Linker
	7.4.2.2 Invoking mklib Manually
	7.4.2.2.1 Building Standard Libraries
	7.4.2.2.2 Shared or Read-Only Library Directory
	7.4.2.2.3 Building Libraries With Custom Options
	7.4.2.2.4 The mklib Program Option Summary

	7.4.3 Extending mklib
	7.4.3.1 Underlying Mechanism
	7.4.3.2 Libraries From Other Vendors

	8 C++ Name Demangler
	8.1 Invoking the C++ Name Demangler
	8.2 C++ Name Demangler Options
	8.3 Sample Usage of the C++ Name Demangler

	A Glossary

