{'} TEXAS INSTRUMENTS = REAL WORLD SIGNALPROCESSING™

SOFTWARE ARCHITECTURE TEMPLATE

SATA

Driver Design Document

Rev |Author(s) Revision History Date Approval(s)
No
0.1 Swaminathan Generic ATA/ATAPI Driver Nov 2008
subrathanam
0.2 Ravi B Added support for SATA Feb 2009

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.

Version 0.2 Texas Instruments Proprietary Information Page 1 of 19

*{i TeEXAS INSTRUMENTS THE WORLD LEADER IN DIGITAL SIGNAL PROCESSING SOLUTIDNS

Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document

Version 0.0 Page 2 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

TABLE OF CONTENTS

1 B 3 T 1T ot o o J o 4
1.1 PUIPOSE & S0P ittt it e s 5
1.2 Terms & Abbreviations.....ccciii i 5
1.3 S (=] =1 oL PP 5
2 SYStEM OVEIVIiEW . iiiiiiiiiraere s s s s s ra s s ke s sra s ara s anansnannnnRannnnss 6
2.1 Freon SATA SUDSYSeM ... e e e 6
2.2 Serial ATA SYSLEM OVEIVIEW t.uiiriiriiie i s s aaae e sas s ar s saeearannaneaneans 7
3 Design Considerations......ciccicieiircriaririrsmiss s ss s s s s s s sn s sasannmannas 8
3.1 Assumptions & DEPeNndENCIESc.ucuiiieie i s 8
3.2 General ConStraintS .. i i s e e 8
3.3 Hardware Limitations . ..o i s e e e e s a e s e s e e e e s 8
3.4 Design Goals & GUIAEINESeeiie i e e e e 9
System Architecture.......cciiciiirirrcrr s s s s s r s r s n s n s nnnnns 10
5 0 T - T I 1= T« o 12
5.1 ATA/ATAPL INterface DIV .ot e e e e e e e e 12
5.1.1 ATA/ATAPI Raw Mode INterface...... ..o 14
5.1.2 ATA/ATAPI INterface LiDraryo oot 14
5.1.3 ATA/ATAPI QUEUE MANAGEL ...cueiesieisiisaasasassaassasnsiessasssasnsanssssnsenssineinens 14
5.2 AHCI compliance SATA Controller DriVerc.oe i 14
6 0 = = T o 15
6.1 SYSEEM BOOL UP uiiiiiiiii i e s 15
LT L - { o T | 15
(SO 2 D) = B o 1V =T ol U o] [AR 15
6.1.3 Media DFIVEIr INIt e e et eae e 15
6.1.4 Device Operating Mode (DMA) ... e aeaeeae 16
6.2 DEVICE I/O flOW . e e 16
6.2.1 ATAPI (Packet Command) Device IO FIOWccoveniieiiiiiiiiiiiiieieieeieaen 17
6.2.2 Non-Data Command FIOW.........ouuueieiiiiiiiiiasastaasisaassessaaaansaiesinnnens 17
6.3 (o] an]ant=TaTe I 110 g =To 18 | Sl =l (o PP 17
6.4 DeEVICE/BUS RESEL FIOW . uuiiiiiiiitetiiiiiessissriniinsssissrsssssssraneessssrsranessnnnnrernns 18
(I Yo V2= T =B =L =1 AP 18
(I o a2 =Y = 18
6.4.3 HBA FESEL. ... s 18
6.5 Power Management ...o.u i e 19

Version 0.1 Texas Instruments Proprietary Information Page 3 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

TABLE OF FIGURES

Figure 1 Serial ATA CONNECtIVILY ..cuuieiiiiniiiissenenisseienssnniessseeessssnencssssteesssssessssssssssssssesssssssssssssasssssssassssansassssan 6
Figure 2 Serial ATA SyStem OVEIVIEWuceiciereiiiseeenisneiesssnnessssnescssseesssssssesssssssssssssesssssssssssssssssssssassssassassssane 7
Figure 3 System AYCRItECTUIC.....cceiieeiiiiiriinitiiiiiintiinnneiinnneeieinneessisnteesssntesssssasssssssasssssssesssssssssssssassssnsasssse 10
Figure 4 ATA/ATAPI Interface Driver MOAUIESccccueeeriiuniieinunienisseniessneeicssnneecsssneesssneesssssneesssssssssssssasssses 12

Version 0.1 Texas Instruments Proprietary Information Page 4 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

1 Introduction

This document explains the serial ATA driver software design for SATA subsystem of
Freon SOC. This covers the high level architecture of ATA stack for BIOS and SATA

driver design.

1.1 Purpose & Scope

This document explains high level architecture of ATA/ATAPI Driver design and AHCI
Compatible Serial ATA controller driver design.

1.2 Terms & Abbreviations

Term Description
API Application Programming Interface
SATA Serial ATA
ATA Advanced Technical Attachment
AHCI Advanced Host Controller Interface
HBA Host Bus adopter , referred for AHCI host controller
ATAPI ATA Packet Interface

1.3 References

Document Description

1 | SATA specification SATA Specification 1.0a and 2.6

2 | AHCI Specification AHCI Specification Revision 1.1

3 | ATA/ATAPI standard ATA/ATAPI-6 standard

4 | SATASS Functional spec. C6748/OMAPL138 SOC SATA subsystem specification
Version 0.1 Texas Instruments Proprietary Information Page 5 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

2 System overview

The figure shows the Serial ATA drives are connected to AHCI compatible Serial ATA Host
Bus Adopter. The AHCI compliance SATA HBA consists one or many ports, SATA hard disk
drive are directly connected to AHCI port interface or through Port Multiplier support, where
multiple SATA HDD can be connected to single port. The Driver or SATA driver interfaces
with operating system in turn with the user application.

Figure 1 Serial ATA Connectivity

2.1 Freon SATA Subsystem

The AHCI compliance Freon SATA Subsystem provides the following features.

Serial ATA 1.5Gbps and 3Gbps speeds [2]

Integrated TI SERDES [6,7]

Integrated Rx and Tx data buffers

Supports all SATA power management features

Internal DMA Engine

Hardware-assisted Native Command Queuing (NCQ) for up to 32 entries
Supports port multiplier with command-based switching

Activity LED support

Mechanical Presence Switch

Cold Presence Detect

Version 0.1 Texas Instruments Proprietary Information Page 6 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

2.2 Serial ATA System overview

BIOS Operating System

ﬂ\

File System
A

A
Media Driver
1\
Y

Serial ATA AHCI Driver
A

A

Serial ATA AHCI H/W Controller

Figure 2 Serial ATA System Overview

The figure illustrate the Serial ATA systems view,

Serial ATA Driver

The Serial ATA AHCI Controller Hardware is managed by the serial ATA Driver
Module. This provides an ATA/ATAPI abstraction for any type of storage device
(Hard Disk, CD, DVD etc) on the SATA bus connected to the SATA AHCI Controller
Hardware.

Media Driver

The “Media Driver” manages the specific type of Storage device such as Hard Disk,
CD, DVD, Compact Flash etc. The “Media Driver” uses the ATA/ATAPI Driver to
interact with the corresponding device. It remains transparent to the ATA/ATAPI
protocol due to the abstraction provided by the ATA/ATAPI Driver. It implements the
device specific functionalities such as “Read, Write, Erase, Special operations”.

The Media Driver interfaces with File System above to present a device interface.

File System

Version 0.1 Texas Instruments Proprietary Information Page 7 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

3.2

3.3

File System component of the system implements the OS view of the Device
Contents at the logical level while Media Driver implements the physical level.

Operating System

OS interacts with the Application and the rest of the system.

Design Considerations

Assumptions & Dependencies

The ATA Driver stack is re-usable component, originally implemented for other
platforms and ported for the following operating system

- BIOS 5

The “ATA/ATPI Interface Driver” is implemented basically supports various IDE
controllers basically of PATA devices, now is adopted to support the SATA devices.

The following assumptions are made during the Serial ATA Driver Software design:
o ATA/ATAPI-6 standard is used for the design of ATA/ATAPI Driver.
o “Serial ATA Controller Driver” design is applicable for AHCI compatible HBA.

o A Media Driver is available to manage the device and it uses the ATA/ATAPI
Driver to communicate with the ATA/ATAPI device.

o The Media Driver will comply with the interfaces of the ATA/ATAPI Interface
Driver.

o Implementation will be done only in ANSI C, however no assumption should
be made about the compiler.

Proper documentation for ATA/ATAPI Interface will be provided for Media Driver
developer’s reference.

General Constraints
» Should be easily portable to Pr OS, Linux, Nucleus+, BIOS
» Must be ANSI ATA/ATAPI-6 standards compliant

» Implement ATA/ATAPI performance enhancements options such as
ATA/ATAPI device queues across all supported ATA/ATAPI devices (if the
same is supported by the device) as per customers requirement.

Hardware Limitations

Serial ATA AHCI compliance synopsis core for Freon subsystem support SATA-I
Supports speed of 1.5Gbps and SATA-II supports 3.0Gpbs, the approximate
throughput 150MB/sec and 300MB/sec respectively for SATA-I/SATA-II.

Version 0.1 Texas Instruments Proprietary Information Page 8 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

3.4 Design Goals & Guidelines

Following design goals and guidelines have been considered for designing Serial
ATA/ATAPI Driver. These design goals and guidelines are applicable at a macro level
and there could be necessary deviations in micro level.

» Portability across any available RTOS

Phased ATA/ATAPI standard support based on the requirements
Flexibility to support newer ATA/ATAPI standards/features
Quality strategies conforming to TII process

Hooks for easy debugging and testing

Performance and scalability

V V V V V V

Predictable memory utilization (Avoid using dynamic memory allocations as
much as possible) and memory optimization keeping in mind future additions.

» Reusable and modular design of software.

Version 0.1 Texas Instruments Proprietary Information Page 9 of 19

& SATA Device Driver
b TEXAS Desigh Document
INSTRUMENTS

4 System Architecture

The following figure illustrates the system aspect of usage of the ATA/ATAPI driver in

more detail.
Operating System
File System

| .
A
HDD Driver CD Driver DVD Driver CF Driver L
o
S

ATA/ATAPI Interface
ATA/ATAPI Interface Driver Z
$ L
S
IDE Controller Interface Y
S

IDE Controller Driver

IDE Controller (H/W)

Figure 3 System Architecture

As shown in the figure above the different components that form the complete
solution are

ATA/ATAPI Interface Driver

This module implements the ATA/ATAPI abstraction for any ATA/ATAPI compliant
“Media Device” (Hard Disk, CD etc.). This module exports a set of ATA/ATAPI
interface’s to the “Media Driver”. This layer contains the ATA/ATAPI standard
intelligence and hence the ATA/ATAPI context of the addressed device. It is
responsible for ensuring the completion of ATA/ATAPI commands on the addressed

Version 0.1 Texas Instruments Proprietary Information Page 10 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

device. It will return the status of the commands queued by the “Media Driver” back
to it with or without data.

This layer will also implement the performance enhancement options such as SATA
Native Command queues, overlapped operations etc. on the addressed device. Thus
the “Media Driver” is agnostic of the underlying scheduling of its requests and only
has to manage the sequence of requests to its addressed device.

It will schedule the requests of the addressed devices in an efficient manner so as to
be fair to all the addressed devices on the same ATA bus.

SATA AHCI Controller Driver

This module will manage the interaction with the underlying AHCI Compliance SATA
Host Bus Adaptor or SATA IDE controller hardware. It exposes a set of SATA IDE
Controller interfaces which the ATA/ATAPI Interface Driver uses to interact with this
module. By doing so we ensure an easily portable ATA/ATAPI driver across various
IDE Controller hardware. The driver will translate the ATA/ATAPI Interface Driver
requests to corresponding hardware requests (through register FIS) Will configure
and manage the IDE Controller hardware optimally for ensuring a high level of
throughput for any give system scenario.

This driver will work with the ATA/ATAPI Interface driver to ensure a high
performance data path between the addressed ATA/ATAPI device and the
corresponding “Media Driver”.

Version 0.1 Texas Instruments Proprietary Information Page 11 of 19

IT SATA Device Driver
U TeExAs Design Document

INSTRUMENTS
5 Detail Design
51 ATA/ATAPI Interface Driver

This module provides the Media Driver with a set of ATA/ATAPI interfaces. The
Media Driver uses these interfaces to communicate with the ATA/ATAPI device. The
interface driver uses the underlying SATA AHCI Controller interface to queue the
request of the Media driver after forming the ATA/ATAPI command for that request.
The ATA/ATAPI Interface driver shall be further decomposed as follows

ATA/ATAPI ATA/ATAPI
Raw Mode Interface Interface Library
: v
IDE Controller
Information
ATA/ATAPI Queue Manager < > N
ATA/ATAPI
Device Info
\ J
a M
IDE Controller
Interface
¢ 4

Figure 4 ATA/ATAPI Interface Driver Modules

The IDE controller used here is AHCI compliance Serial ATA Host Bus Adopter.

ATA/ATAPI Interface Driver provides the IDE Controller Driver with the following
interface for registering itself with the ATA/ATAPI Interface Driver. Every IDE
Controller Driver has to register with the ATA/ATAPI Interface Driver so that the
devices on those Controllers can be accessed by the Media Drivers.

int ATA_IDE_Register (IDE_INT_Ops_t *pIdeOps, void *pHandle);
To register the IDE Controller Driver with the ATA/ATAPI Interface Driver.
pldeOps [IN] IDE Controller or AHCI HBA operations

Version 0.1 Texas Instruments Proprietary Information Page 12 of 19

Ju'? TEXAS

SATA Device Driver
Design Document

INSTRUMENTS
pHandle [IN] Handle to be used for future IDE transactions
Return: Int Success/Failure

ATA/ATAPI Interface Driver provides the Media Driver with the
following interface for registering itself as the driver for an ATA/ATAPI
device. The device ATA/ATAPI requests are completed and returned to
the registered Media Driver through the given callback.

int ATA_MED_Register (ATA_DEV_Ident_t *pDeviceldent,

ATA_MED_Callback_t MediaCallback,
ATA_INT_Ops_t **pAtaIntOps,
Ptr *pHandle);

Identify the requested device on the ATA Bus and register as the media driver
for that device with ATA Interface.

pDeviceldent [IN]

Device Indentification Information

pMediaCallBack [IN]

Callback routine for the registered Media Driver

pAtalntOps [OUT]

ATA Interface API's

pHandle [OUT]

Handle to device (to be used for future transactions)

Return int

Success/Error

ATA/ATAPI Unregister provides the Media driver a means for closing the device.
But this is permitted only when are no out standing requests on the device else
an error is returned. If there are no out standing requests pending on this device
then this device is unregistered by the ATA/ATAPI driver and the device state is
set to be “Available”. Once this is done if another Media Driver wants to register
for this device the same can be done.

int ATA_MED_UnRegister (Ptr Handle);

return ATA_ERR_GEN.

Free the requested device on the ATA Bus. If the device has a active request we

pHandle [IN]

Handle to device

Return int

Success/Error

int ATA_Init (void) : Init the ATA/ATAPI Interface Driver.
int ATA_Delnit (void): De-Init the ATA/ATAPI Interface Driver.

Version 0.1 Texas Instruments Proprietary Information Page 13 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

5.1.1 ATA/ATAPI Raw Mode Interface

This provides a raw ATA/ATAPI interface. The interface driver will not form the
command rather will expect a formatted ATA/ATAPI command to be given to it. In
the raw mode the interface driver will just queue the request into the ATA/ATAPI
device queue (without actually assembling the command) through the ATA/ATAPI
Queue Manager. This mode can be used by the Media driver to communicate
device specific ATA/ATAPI command which the generic ATA/ATAPI interface library
will not provide.

5.1.2 ATA/ATAPI Interface Library

This library will assemble the requested ATA/ATAPI command depending on the
request from the Media Driver. This module provides some generic interfaces and
options for each interface for the Media Driver. The Media Driver can select a
particular mode of an ATA command and submit the request along with supporting
arguments (such as buffers).

There are other API’s to set the device to operate in low power modes. Accordingly
when I0 request arrives the commands are appropriately handled by this library.

After the command and its associated arguments are assembled into an IO request it
is queued into the specified device ATA/ATAPI device queue through the
ATA/ATAPI Queue Manager.

5.1.3 ATA/ATAPI Queue Manager

This module will schedule the IO requests from the device/ATA Queues for submit
ion to the SATA AHCI Controller. This will interact with the AHCI Controller hardware
through the IDE Controller interface. If the free command slot available on SATA
HBA then Queue Manager will submit the pending/current request on any device on
that interface (SATA Bus). It keeps track of availability of free command slots for
submitting future IO requests on the underlying Controller interfaces.

This also implements the ATA Queuing and Overlapped feature set implementations
for ensuring high performance operation of the ATA devices. It communicates the
result of the completion of the I0 requests through “Call Back’s” registered by the
Media Driver’s on that device.

Currently the Queue Manager is implemented in run to completion mode. In this
mode the request submitted on a particular device are completed before the
requests queued on the next device on the same SATA Bus are selected for
execution.

5.2 AHCI compliance SATA Controller Driver

This is the AHCI compliance Serial ATA controller driver, this provides set of APIs to
manage the AHCI SATA controller.

The API’s to interface are -

Version 0.1 Texas Instruments Proprietary Information Page 14 of 19

AN

'. SATA Device Driver
Li TeExAs Design Document

INSTRUMENTS
API Use
ahcilnitSata Initialize the AHCI SATA subsystem
controller.
sataReadPio Read bytes in PIO mode (Not supported for
SATA)
sataWritePio Write bytes in PIO Mode (Not supported for
SATA)
sataSubmitReq Submit a ATA command to the SATA
device
sataCmdStatus Return the command completion status
sataDevSetMode Set the device operation modes and the
timing registers of the IDE controller
driver.
sataEndDma End the DMA operation on the device.
sataStartDma Start the DMA operation on the device.
sataRegAtaHandler For registering a ATA protocol layer.
6 Data Flow
6.1 System Boot Up

6.1.1

6.1.2

6.1.3

When the system gets booted up the following sequence of Init is performed
e SATA AHCI Driver or IDE Driver Init
e Media Driver Init

ATA_Init

The ATA_Init initializes the ATA Interface Driver's internal data structures (Like
creation of Device Queues, Power Mode Init etc.).

IDE Driver Init

During the IDE driver Init the IDE Driver initializes its own internal data structures,
allocates memory etc. It further calls ATA_IDE_Register () to register itself with
the ATA Interface Driver. The IDE Driver passes

e IDE Interface Handle
e IDE Interface reference (API)

Media Driver Init

When a Media Driver say HDD Driver Init is called it initializes its internal Data
Structures. It further calls the ATA_MED_Register (). Media Driver passes the
device signature, Call back function pointer as a parameter to ATA_MED_Register
(). The “Device Signature” will be used by the ATA/ATAPI Interface Driver to

Version 0.1 Texas Instruments Proprietary Information Page 15 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

identify the device present on the ATA Bus and the Callback function will be used for
returning back the status and events on the registered device.

The ATA/ATAPI Interface Driver uses the IDE Interface API “RegHndIr ()" to register
a callback with the IDE Controller Driver. A ATA “IDENTIFY DEVICE” command is
assembled and queued to the IDE Controller driver using "SubmitReq()” (of IDE
Controller) interface through the ATA/ATAPI driver Queue manager.

The “SubmitReq()” interface of IDE Controller Driver translates the device i/o request
into one or more Frame Information Structures (FIS) in memory , these FIS are
similar to taskfile. The FIS are part of command table entries, the command table
also includes the PRDT entries (various s/g buffers, lengths) which are used SATA
controller hardware once the corresponding command slot is execution is initated.
On return the ATA/ATAPI Interface driver synchronously waits to ensure a sequential
init of devices. On completion of the Identify command on the requested device the
ATA/ATAPI driver looks for command completion status, on error looks for “ATAPI
Device Signature”. If it matches then "ATAPI IDENTIFY” command is submitted and
ATA/ATAPI driver synch waits for command completion. If the command results in a
timeout/error then that device is marked as "NOT AVAIL".

On successful completion of ATA/ATAPI IDENTIFY command ATA/ATAPI interface
starts processing the returned data. Now the ATA/ATAPI Interface Driver compares
the returned device signature with the signature passed from the Media Driver. If a
match is found then the ATA/ATAPI interface Driver returns the “"Device handle”,
“DevOps Pointer” to be used with future ATA/ATAPI interface calls from the Media
Driver. The Media Driver will now register with the “File System” and the OS for a
device node representing a mass storage device.

If the device identification signatures do not match then the identify process
explained above is repeated on other device’s on the ATA Bus until we have
identified all the devices. The discovered devices are marked as being available
while those for which identification match exists are marked as being registered.

The devices which are marked as being available will be marked as being registered
once the Media drivers register for those drives. The process of probing will not be
done in those cases (as they have already been discovered).

6.1.4 Device Operating Mode (DMA)

Based on the identification parameters of the device (collected as the part of the
ATA/ATAPI Identify command) and the capabilities of the IDE Controller we can set
the best/requested operating mode of the device.

The device reports in its identification data the capabilities that it possesses. Based
on this we set the device in a particular operating mode (PIO/DMA). If the device
support NCQ or native command Queue, then upto 32 commands can be queued to
device based on the maximum number native commands supported by the device.
The AHCI compliance SATA controller does not recommend to use PIO mode of
operation.

6.2 Device 1/O flow

On a device I/O (READ, WRITE etc.) request from the File System the Media Driver
breaks it down to a sequence of device commands on the addressed device. The
Media Driver uses the interfaces provided by the ATA/ATAPI Interface Driver to
request for a specific ATA/ATAPI command to be sent to the device. It uses the

Version 0.1 Texas Instruments Proprietary Information Page 16 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

6.2.1

6.2.2

6.3

“Device handle” along with the “"DevOps” acquired during the Boot up process
(described above) to accomplish the task.

The ATA/ATAPI Interface library assembles the requested ATA/ATAPI Command
packet and queues it into the ATA/ATAPI device queue through the ATA/ATAPI
Queue Manager. If the bus is available then the command is directly submitted to
the IDE Controller driver through the “"SubmitReq()” interface.

On Command completion the AHCI Controller invokes the Callback of the ATA/ATAPI
Interface Driver (registered during Boot up). In the Callback the completion status is
looked at by the respective Request handler. On a successful command completion
the “"ATA/ATAPI request handler” calls the associated Media Driver Callback function
(registered as a part of the Boot up process). If an error occurs and the error can be
retried the request is again retried else the request is returned to the Media Driver
(through the Callback) with appropriate error code. The ATA/ATAPI Queue Manager
looks for any new request queued in the device queues for submission to the IDE
Controller. If so it initiates another I/0 cycle.

In the Media Driver Callback the filled buffer (with READ/WRITE data etc.) is
communicated to the File System.

ATAPI (Packet Command) Device 10 Flow

In the case of ATAPI devices that use ATA PACKET command mechanism to transfer
data the requests are routed through the ATA/ATAPI Raw Mode Interface. In
this case the ATAPI commands are assembled in the Media driver and then using the
ATA/ATAPI Raw Mode API’s are submitted to the ATA/ATAPI Queue Manager. In the
case of ATAPI request an ATA PACKET command is assembled by the ATA/ATAPI
RAW Mode API and the submitted ATAPI command is stored along with this ATA
PACKET command request. Once this request is submitted to the ATA/ATAPI Queue
manager an interrupt is generated to inform that the ATA PACKET command has
completed. A packet request handler handles the completion of this request. Once
the ATA PACKET command has completed successfully we now write the ATAPI
Command (assembled by the Media Driver) to the device (which is now waiting for
it). A handler is now set based on the device operating modes to handle the
completion of this request. After this, the request is handled as any other normal
request submitted through the ATA/ATAPI Interface Library (as described above).

Non-Data Command Flow

In the case of commands that do not accompany data transfers the command
completion is identified through the command timeout mechanism. In this case on
submission of the command a “Timeout” handler is also set for that request and
queued to the ATA/ATAPI Queue Manager. When a timeout happens the “Generic”
timeout handler looks for any specific timeout handler set for that request. If so
calls that handler to handle the timeout scenario. In the timeout scenario the
timeout handler for that request will look into the command completion state. If the
command completes then we ask the “Generic” timeout not to cause a Command
timeout. If the command did not complete then the timeout handler will initiate the
“Generic” timeout handler to cause a Command timeout scenario as described below.

Command Timeout Flow

When an ATA/ATAPI command submitted to the device does not get completed
within the specified time period the bus is considered to be in a Timeout state.
Under these conditions a bus reset has to be performed to bring back the bus to a

Version 0.1 Texas Instruments Proprietary Information Page 17 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

usable state. The ATA/ATAPI Queue Manager starts a timeout timer on submitting
the command to the IDE controller. If the timeout expires before the submitted
command completes the command is returned with the "Command Timeout” error to
the Media driver. The media driver is expected to initiate a device reset to bring
back the device and the bus to fully functional mode.

6.4 Device/Bus Reset Flow

Under Command Timeout or when recovering from Device Power Sleep mode we
need to do a Device/Bus/Port reset. The type of reset Device/Bus depends on the
whether the device is ATAPI/ATA.

When HBA/Port reset occurs, phy communication shall be re-established with the
device through a COMRESET followed by the normal out of band communication
sequence defined in Serial ATA. At the end of the reset, the device, if working
properly, will send a D2H register FIS, which contains the device signature. When
the HBA receives this FIS, it updates PxTFD.STS and PxTFD.ERR register fields, and
updates the PxSIG register with the signature.

6.4.1 Software Reset

o When issuing the software reset there should not be any command pending in
the command list for execution,

» software must check PxCMD.ST wait till port to become idle (
PxCMD.CR=0), then reset PxCMD.ST=0.

» If PXTFD.STS.BSY/DRQ is still set due failure condition then a port
reset should be attempted or command list override should be used if
supported.

o This is used to reset a Serial ATA device by settting the SRST bit in Device
control register. Serial ATA has more robust mechanism called COMRESET,
also referred to as port reset. This is the preferred mechanism for the error
recovery..

o Step for software reset

» Set Cmdl.H2D_FIS.SRST = 1 and CMD1.H2D_FIS.C =0 .

= CMD1l.CommandTable.CommandHeader[R | C] =1

e Issue this CMD1 Register H2D for reset operation , this will
reset the device, but device does not send the D2H FIS.

= Send second Register FIS command CMD2.H2DFIS.SRST = 0,
CMD2.H2DFIS.C = 0. CMD2.CommandTable.CmdHeadr[R|C]=0.

6.4.2 Port Reset

o Steps for Port Reset
= wait port to goto idle state (PxCMD.CR=0, PxCMD.ST=0)
PxSCTL.DET = 1 (issue COMRESET)
Wait for 1ms time.
PxSCTL.DET = 0 (the HBA shall reset PxTFD.STS to 7F, upon receiving
a COMINIT from the attached device, PXTFD.STS.BSY shall be set to 1.
Wait for communication to re-establish
PxSERR = #1 (set 1 for all implemented bits)

6.4.3 HBA reset
o If HBA become unusable for multiple ports and a software reset or por reset

does not correct the problem, software may reset the entire HBA by setting
GHC.HR = 1.

Version 0.1 Texas Instruments Proprietary Information Page 18 of 19

& SATA Device Driver
¢ TEXﬁS Desigh Document
INSTRUMENTS

o Steps for HBA reset
» GHCHR =1
e HBA performs internal reset action. This bit will be cleared to 0
by HBA after the reset is complete.

» Poll for GHC.HR till it becomes 0.

= If GHC.HR is not cleared to 0 within 1 second the HBA is in hung or
locked state.

» HwlInit registers bits in HBA register or port registers are not modified
and all the port registers are reset to 0, Port specific registers
PxFB,PxCLB are not affected.

= If spin up device is supported, software should set SUD.

= Check PxSCLT.DET field, whether device present and link is established
with Serial ATA.

e Controller reset : This is the global reset which performs the complete reset of the
host bus adopter. Normally this reset will be done at last during, when none of the
other two reset recover the interface to operational state.

e Port Reset : This reset the specified port interface of the AHCI controller, other port
interfaces will not be affected.

e Device Reset : This is also called soft reset, which performs the reset of the device
connected to specified port. The SOFT RESET bit of FIS or taskfile is used to perform
the device reset.

6.5 Power Management
There are three power management modes supported by AHCI controller,
e Aggressive
e Slumber
e Partial

The AHCI controller driver supports the HBA to enter to into any of the 3 power
management modes, when aggressive mode is used the AHCI controller
automatically enter into power down state when there are no outstanding commands
are in command list.

Version 0.1 Texas Instruments Proprietary Information Page 19 of 19

