Introduction to SYS/BIOS

i3 Texas INSTRUMENTS

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ Overview

¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ Overview

¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Need for an Operating System

Input Process
Event + ISR Data Processing
Device Driver Algorithm

e Simple system: single I-P-O is easy to manage

e As system complexity increases (multiple threads):

Output

» Can they all meet real time ?

> Priorities of threads/algos

?

Event + ISR
Device Driver

» Synchronization of events?
> Data sharing/passing ?

* Two options: “home-grown” or use existing (SYS/BIOS)

(either option requires overhead)

e If you choose an existing O/S, what should you consider?

> Is it modular?
> ls it easy to use?
> How much does it cost?

> Is it reliable?

> Data sharing/passing?
» What code overhead exists?

¥ TEXAS INSTRUMENTS

Multicore Training

SYS/BIOS Overview

Input Stream) | Process Stream) | Output
1 1

— Queue — Queue

Hwi Swi, Task Hwi
“Driver” “Driver”

SYS/BIOS
Scheduler Data Sharing/Passing Synchronization Memory Mgmt

SYS/BIOS is a scalable, real-time kernel used in 1000s of systems today:

® Pre-emptive Scheduler to design system to meet real-time (including sync/priorities)
e Modular — Include only what is needed

*APl - pre-defined interface for inter-thread communications

 Reliable — 1000s of applications have used it for more than 10 years

e Footprint — deterministic, small code size, can choose which modules you desire

e Cost — free of charge

®i TEXAS INSTRUMENTS Multicore Training

SYS/BIOS Modules & Services

=J-33% SYS/BIOS - -
A é o / BIOS Configuration \
4 Communication ¢ Memory Management
+- Diagnostics
= [ﬁn Memory Management ¢ Cache
i Cache ¢ Heaps
+ [ﬁn Heaps . .
ah Memory ¢ Realtime Analysis
@ Realtme Analysis ¢ Logs
= EE 5.E|'|EI.'|LI|iI'|I;| ¢ Loads
£E Clock .
i ¢ Execution Graph
‘glf"e ¢ Scheduling
Swi
& Task ¢ All thread types
ﬂﬁ Timer . .
= Eﬂl Synchronization ¢ SynChronlzatlon
¥ Coent ¢ Events
-3, Gates ¢ Gates
+ @ System

W3 TEXAS INSTRUMENTS Multicore Training

SYS/BIOS Environment

User Code SYS/BIOS Library

#include <log.h> || #include <swi.h> Hwi Swi Task Idle
funcl func2 I :
{ API Stream Mailbox Semaphore
Log_infol(...); Swi_post(...); Queue Clock Log HeapMem
} D oy :
HeapBuf HeapMultiBuf

¢ SYS/BIOS is a library that contains modules with a particular
interface and data structures.

¢ Application Program Interfaces (APIl) define the interactions
(methods) with a module and data structures (objects).

¢ Objects are structures that define the state of a component.

+ Pointers to objects are called handles. pointer structure

+ Object-based programming offers: handle > element1
+ Better encapsulation and abstraction f_'ementz
+ Multiple instance ability object

W3 TEXAS INSTRUMENTS Multicore Training

Definitions / Vocabulary
¢ In this workshop, we’ll be using these terms often:

Real-time System
> Where processing must keep up with the rate of 1/0

Function

> Sequence of program instructions that produce a given result

Thread @

» Function that executes within a specific context (regs, stack, PRIORITY)

API

» Application Programming Interface provides methods for interacting
with library routines and data objects

{'} TEXAS INSTRUMENTS

Multicore Training

Comparing RTOS and GP/OS

GP/OS (e.g. Linux)

RTOS (e.g. SYS/BIOS)

Scope General Specific

Size Large: 5M-50M Small: 5K-50K
Event response Imsto.1lms 100-10ns
File management FAT, etc. FatFS
Dynamic Memory Yes Yes

Threads

Processes, pThreads, Ints

Hwi, Swi, Task, Idle

Scheduler

Time Slicing

Preemption

Host Processor

ARM, x86, Power PC

ARM, MSP430, DSP

{ip TEXAS INSTRUMENTS

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ Overview

¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

ity

Jolg

Pr

SYS/BIOS Thread Types

Hwi

Hardware Interrupts

Swi

Software Interrupts

Idle

Background

\ 4
\ 4
\ 4

¢

* o

Implements ‘urgent’ part of real-time event
Hardware interrupt triggers ISRs to run
Priorities set by hardware

Performs HWI follow-up activity
Posted by software

Periodic (Clock) functions are prioritized as Swi
processes

Up to 32 priority levels

Runs programs concurrently under separate contexts

Usually enabled to run by posting a semaphore
(a task signaling mechanism)

Up to 32 priority levels

Multiple Idle functions

Runs as an infinite loop (like traditional while(1)
loop)

Single priority level

{ip TEXAS INSTRUMENTS

Multicore Training

Hwi Signaling Swi/Task

INTX
New paradigm: “Hwi (ISR) handles URGENT activity,
then posts follow-up thread”
Hwi: Vv
urgent code
Swi_post();
- -> Swi (or Task)
Semaphore_post();
<€— ints disabled —» rather than all this time =
Hwi Swi
+ Fast response to interrupts + Latencyin response time
+ Minimal context switching + Context switch performed
+ High priority only + Selectable priority levels
+ Can post Swi + Can post another Swi

+ Use for urgent code only — then

*

Execution managed by

post follow up activity scheduler

i3 Texas INSTRUMENTS

Multicore Training

Swi and Tasks

SWi Swi_post (Swi);
/
start /
System “run to
Stack completion”
(Hwi/Swi)

A

y

end

¢ Similar to hardware interrupt, but

triggered when posted

+ All Swi activities share system

software stack with Hwi activities.

Task Semaphore_post (Sem);
J

S

Semaphore_pend >— Pause

(blocked

start state)
Private
Stack
Eile (Task)

¢ Unblocking triggers execution
(also could be mailbox, events, etc.)

¢ Each Task has its own stack, which
allows them to pause (i.e. block)

+ Topology: prologue, loop,
epilogue...

{ip TEXAS INSTRUMENTS

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ Overview

¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Thread (Object) Creation in BIOS

Users can create threads (BIOS resources or “objects”):
e Statically (via the GUI or .cfg script)
e Dynamically (via C code)

e BIOS doesn’t care — but you might...

Dynamic (C Code)
#include <ti/sysbios/hal/Hwi.h>
. . Hwi_Params hwiParams; app.c
| | or Scri .— .)
Static (GU or Sc pt) Hwi_Params_init(&hwiParams);
49 Generic Hardware Interrupt Instance hwiParams.eventld = 61;
Hwi_create(5, isrAudio, &hwiParams, NULL);
+ Basic Settings w Interrupt Scheduling Options
Mame HWI_INTS Interrupts to mask | MaskingOption_SELF L
ISR function isrAudio Priority 5
Interrupt Mumber | 5 Event Id 61
Enabled at startup

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');
var hwiParams = new Hwi.Params(); app.cfg
hwiParams.eventld = 61;

Hwi.create(5, "&isrAudio”, hwiParams);

®i TEXAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ Overview

¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

System Timeline

Hardware Software
Reset BOOT Provided main.c Provided by TI
HIW MODE by TI
Device Boot BIOS_ init() System | BIOS_start() SYS/BIOS
Reset Loader (_c_int00) Init Code | (Provided by TI) Scheduler

s) P (e I I S S I E R E E N E R E R

¢ RESET: Device is reset, then jumps to bootloader or code
entry point (c_int00)

¢ BOOT MODE runs bootloader (if applicable)

¢ BIOS init () configures static BIOS objects, jumpstoc_int00
to init Stack Pointer (SP), globals/statics, then calls main ()

¢ main()
¢ User initialization
4 Must execute BIOS start () to enable BIOS Scheduler & INTs

®i TEXAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS
¢ Overview
¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools

¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Built-in Real-Time Analysis Tools

¢ Gather data on target (30-40 CPU cycles)
¢ Format data on host (1000s of host PC cycles)
¢ Data gathering does NOT stop target CPU
¢ Halt CPU to see results (stop-time debug)
= &Y bios_led.out [tnstances RunTime Ob] View (ROV)
B i name handle state priority | timeaut
= & bios Tskide 0x1181132c Running 0 0 ¢ Halt to see results
= 8 rov -
@ K ¢ Displays stats about all
o threads in system
® MEM b
Ras CPU Load 22 = B8
) BT SRR - a2 o FEE T
=% -
" — CPU/Thread Load Graph
% I f | ¢ Analyze time NOT
= 3 f_f ﬁ — spent in Idle
oo | I
% - 1000000000 11000000000 tirme (ns}leOGGGGGOO 31000000000 Multicore Training

Built-in Real-Time Analysis Tools

Logs
¢ Send DBG Msgs to PC

¢ Data displayed during
stop-time

¢ Deterministic, low CPU
cycle count

ame
4, 257,279,253
4,257,280,226
4,357,270,273
4,357,271,406
4,357,275,486
4, 457,286,080

seqlD

143
126
127
123
129
130

module formattedMsg

Mam

Main
Pain
Main
Mlam

Main

o fled.ct, line 47
“led.c, line 49;
" Jed.c”, line 43:
“..Jlad.c”, lina 47:
Lfied.c line 49:

T =
fied.C IR %3:

P

CPU LOAD = [38]
TOGGLED LED [42] times
BENCHMARK = [3221757] cydes
CPULOAD = [38]

TOGGLED LED [43] times

BENCHMARK = [3224677] cydes

¢ WAY more efficient than
traditional printf ()

Execution Graph

¢ View system events down
to the CPU cycle

¢ Calculate benchmarks

Log_info1(*TOGGLED LED [%u] times”, count);

Hwi

awi

Event

¥ TEXAS INSTRUMENTS

Semaphore

currentThread

Idle_loop()
FIR. process

T I
L
| |
|

1= 1= 1=
AN

Multicore Training

Outline

¢ Intro to SYS/BIOS
¢ Overview
¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools

¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

¢ Create CCS Project (as normal), then click: é Next> || Finsh |

Building a NEW SYS/BIOS Project

¢ Select a SYS/BIOS Example:

& New CCS Project

Project Templates

¥ TEXAS INSTRUMENTS

AR ARREAREE S

Select one of the available project templates,

li=| Empty Projects

|52 Empty Project
|51 Empty Assembly-only Project

li=| Basic Examples
li=| DSP/BIOS w5,xx Examples

|3

IPC and I/0 Examples

|3

SY5,/BIOS

587 Minimal
E= 1 Typical

It Typical {with separate config praject)

li=| Generic Examples

What is in the project
created by Typical?

e Paths to SYS/BIOS tools

* .CFGfile (app.cfg)
that contains a “typical”
configuration for static
objects (e.g. Swi, Task).

 Source files (main.c) that
contain the appropriate
#includes of header files.

Multicore Training

SYS/BIOS Project Settings

Select versions for XDC, IPC, SYS/BIOS, xDAIS.

¢ Select the Platform (similar to the .tcf seed file for memory).

¥ TEXAS INSTRUMENTS

CCS Build

Build configuration: |Debug

] General | = RTSC | L Link Order | o2 Dependencies

¥DCtools version: | 3.22.1.21 W

B Products and Repositories ﬁq} Order

=[] Bk Inter-processor Communication
S5 -
e
=I-[v] Bk 5YS/BIOS
E e 22.2.30
=[] Bk ¥DAIS
[]&* 7.10.0.06

Target: fi.targets.Ca74
Platform: ti.platforms.evma 743

Build-profile: release

Multicore Training

Outline

¢ Intro to SYS/BIOS
¢ Overview
¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

¢ BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Static BIOS Configuration

Users interact with the CFG file via the GUI — XGCONF:
 XGCONF shows Available Products; Right-click and select Use Mod.

* Mod shows up in Outline view. Right-click and select Add New.
* All graphical changes in GUI are displayed in .cfg source code.

¥ TEXAS INSTRUMENTS

& Available Products &3

= B8

| type filter text

4424

=333 IPC (Multicore and 10}
@. Input/Qutput
@. Multicore Modules
Ak Utlities

=343 sY5/BIOS

)

P Bos

@. Communication
#4 Diagnostics
[i Memory Management
EB Scheduling
ﬁl Synchronization
@ System
EB Target Specific Support
Ak Utlities
(=348 ¥DCtools
#4 Diagnostics

& GE Scheduling
:‘-: Clock
W i

3 Jidle

@ Task
@3 Time
Eﬂ Synchro
% System
GB Target S

[i Memory Management
ﬁl Synchronization
@ System

Fo

Help

Refresh View
Packages Path...
Show Repositories

b sl

type filter text

Agent

BIOS

Clock
Defaults
Diags

Error

Log
LoggerBuf
2@ loggerd

®e®

Main
Memory
Program
Semaphore
S

SysMin
System
Task

Text
Timestamp

dPddOOOOOOEY OO DPOODOODE

Static Config — .CFG Files

& Users interact with the CFG file via the GUI — XGCONF

 When you Add New, a dialogue box is provided to set up parameters.
e This window provides two views:

= Basic
= Advanced

& SYS/BIOS Idle - Basic Options

Add Idle function management to my configuration

w User Defined Idle Functions <

The functions below are added to the list of functions executed whenever there is no

not idled.

User idle function 0 | Sl
User idle function 1 | null

User idle function 2 | null

¥ TEXAS INSTRUMENTS

type filter text

Agent

BIOS

Clock
Defaults
Diags

Error

Log
LoggerBuf
2@ loggerd
Main

®e®

Memory
Program
Semaphore
S

Sy=Min
System
Task

Text
Timestamp

dPddOOOOOOEY OO DPOODOODE

.CFG Files (XDC script)

¢ All changes made to the GUI are reflected with

java script in the corresponding .CFG file.

¢ Click on a module in the Outline view to see
the corresponding script in the app.cfqg file.

& app.cfg &5

BICS = xde.useModule('ti.svskics.BICSE") ;
Clock = xdc.useModule ('ti.svsbios.knl.Clock'):
Swi = xdc.useModule ('ti.syskbios.knl.5wi') ;
Tazk = xdc.:seH:d:;Ei‘:;.333b;:3.x:;.iaak‘];
Semaphore = xdc.dseludﬂ;ei Ci.zyskbios. knl. Semaphore') ;
Hwi = xdc.useModule ('ti.syskbios.hal. . Hwi');
ITdle = xdc.useModule ('ti.=sy=sbios.knl.Idle');
Timestanp = Xdco.useModule ('xdc.runtime.Timestamg') ;s

T —————— T Tr————— ——r——r—rar——

22 Idle.idleFxn=[0] "&ledT cggle"

(=

¥ TEXAS INSTRUMENTS

®e®

dPddOOOOOOEY OO DPOODOODE

type filter text

Agent
BIOS

Clock
Defaults
Diags
Error
lae.

Log
LoggerBuf
2@ loggerd
Main
Memory
Program
Semaphore
S
SysMin
System
Task

Text
Timestamp

Configuration Build Flow (CFG)
e SYS/BIOS: User configures system with CFG file
e The rest is “under the hood.”

UNDER THE HOOD (Tools)

* BIOS pkgs (.cfg) XDC

« Platform/Target —— [Configuro] compiler.opt .cmd
* Build Options

-1 -L

\ 4 \ 4

> Compiler > Linker ——>| app.out

N

e BIOS modules (e.g., Hwi, Clock, Semaphore, etc.) are
delivered as RTSC compliant packages.

* RTSC (Real Time Software Components) are packages that BIOS libs
contain libraries and metadata (similar to Java.jar files)

« XDC (eXpress DSP Components) is a set of tools that consume
RTSC packages (knows how to read RTSC metadata).

®i TEXAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS
¢ Overview
¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Platform (Memory Config)

Window Help
° ° Port Connect -
Memory Configuration o } @
= [l .
¢ Create Internal Memory ath po-cf
Segments (e.g. IRAM) Device Detail rofle N[Piatform »| Edthien [
¢ Conﬁgure Cache Device Mame TMS320C6748 cou I — || Mew I
Dievice Family Cca00n
¢ Define External Memory| o spesd i) [3000
S eg me nts Device Memory
. Marme Base Length Space ArCcess
Section Placement
¢ Canlink code, data,
and stack to any
defined mem segment
L1D Cache: |32k w | L1P Cache: |32k | L2 Cache: |0k
CUStom Platform DCustnmizE Mernaory
External Memary
¢ Use Import button e .

" ” Marme Base Length Space ArCcess
to copy “seed” pl gtform DDR 0%CO000000 0%03000000 code/dats RYVX
and then customize ey e

Code Memary: |IRAM * | Data Memory: |IRAM » | Stack Memory: |[IRAM

W3 TEXAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS
¢ Overview
¢ Threads and Scheduling
¢ Creating a BIOS Thread
¢ System Timeline

¢ Real-Time Analysis Tools
¢ Create A New Project

4 BIOS Configuration (.CFG)
¢ Platforms

¢ For More Information

¢ BIOS Threads

Hardware

Wi TExAS INSTRUMENTS Multicore Training

For More Information (1)
¢ SYS/BIOS Product Page http://www.ti.com/sysbios

SYS/BIOS Real-Time Operating System (RTOS) staius

CACTIVE
SYSBIOS

E Description/Features g Technical Documents . Support & Community
Order Now

Part Number Texas Instruments Status F

SYSBIOSE: Get Software ACTIVE |
SYS/BIOS 6. Real-Time Operating System (previously DSE/BIOS vE)

Description

Advanced RTOS Solution

SYS/BIOS™ 6.x iz an advanced, real-time operating system for use in a wide range of DSFs,
ARM=, and microcontrollers. It is designed for use in embedded applications that need real-time
scheduling, synchronization, and instrumentation. It provides preemptive multitasking, hardware
abstraction, and memory management. Compared to its predecessor, DSE/BIOS™ 5.k, it has
numerous enhancements in functionality and performance.

Wi TExAS INSTRUMENTS Multicore Training

For More Information (2)

¢ CCS Help Contents

L Help - Code Composer Studio

Search:

Contents

@ XDAIS 7.10.00.06 Help

@ XDCtools 3.22.01.21

""@‘ Code Composer Help

@ IPC (Multicore and I,/0) 1.23.02

@ SYS/BIOS 6.32.02.39
B Release Motes
B Getting Started Guide
B users Guide
B Legacy Applicatiop
L APT reference
@ DsP/BIOS 5.41.10.36

* User Guides
* API Reference (knl)

[ti.sysbios.heaps
(A i, sysbios.interfaces
SYEE fisyshios.knl
B Clock
B Event
B 1dle

B Mailbox
El semaphore
Bl swi

Bl Task
(A ti.sysbios.rta
LA ti.sysbios.syncs
Bl ti.syshios. timers
[i sysbios. imers. dmtim
[ti,syshios, timers. gptim:
[i sysbios, timers. timere
=1 B ti.sysbios.utils
Bl Load
=1 CH xdc.runtime
B Assert
B Defaults
B Diags
EI Error
B Gate
B Gatenull
E] HeapMin
Bl Heapstd
B IFilterLogger
B I1GateProvider
B IHeap
B Instance
B ILogger

®i3 TEXAS INSTRUMENTS

2L IMadile

Contents p‘n}@ 8 || 5YS/BIOS 6.32.02.39
~

ok bios.knl

i
AT
WX

| ge ti.sy

Contains core threading modules
Many real-time applications must perform aJ
such as the availability of data or the pres

important. [more ...]

KDCzpec declarations

requires ti.sysbiocs.interfaces;
requires ti_.sayskics._ family;

peckege ti._syskbics. knl [Z2, O, O, O] {

module Clock;

'/ Systemn Clock Manager
module Event;

/! Event Manager
module Idle;

/f 1dle Thread Manager
module Mailbox;

/f Mailbox Manager
module Semaphore;

/f Zemaphore Manager
module Swi;

'/ Software Interrupt Manager
module Task;

J/f Task Manager

}

Multicore Training |

Download Latest Tools

¢ Download Target Content
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/

¥ TEXAS INSTRUMENTS

BIOS Platform Support Packages

Target Content Infrastructure Product Downloads

DSP/BIOS and SYS/BIOS

¢ DSP/BIOS

DSP/BIOS BIOSUSE Product

¢ SYS/BIOS

DSP/BIOS Utilities

¢ Utilities

Digital Video Sotware Development Kits (DWVSDK)

¢ SyslLink

DSP Link and SysLink

* SysLink (BIOS &)
* DSE Link (BIOS 5)

4 DSP Link
¢ |PC
¢ Etc.

Graphics SDH

EDMAZ Low-level Driver

Interprocessor Communication [IPC)

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ BIOS Threads
¢ Hardware Interrupts (Hwi)

¢ Software Interrupts (Swi)
¢ Tasks (Tsk)
4 Semaphores (Sem)

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Hwi Scheduling

Hard
R/T

Hwi ¢ Hwi priorities set by hardware

Hardware Interrupts ¢ Fixed number, preemption optional

¢ Idle events run in sequence when no Hwi are posted.
¢ Hwi is ISR with automatic vector table generation + context save/restore.

¢ Any Hwi preempts Idle, Hwi may preempt other Hwi if desired.

W3 TEXAS INSTRUMENTS Multicore Training

Foreground / Background Scheduling

J
init init
\ BIOS start()

while(1) e —— —|- =
nonRT IL Idle :
' nonRT .
| +instrumentation | [&1
=5 |
' - ® |
ISR | L e
get buffer | get buffer o |
process H Process |
printf() : LOG_info1() :

¢ Idle events run in sequence when no Hwi are posted.
¢ Hwi is ISR with automatic vector table generation + context save/restore.

¢ Any Hwi preempts Idle, Hwi may preempt other Hwi if desired.

%3 Texas InsrrovenTs Which real-time "event" causes the Hwi to execute? Multicore Training

CPU Interrupts from Peripheral (SPI)

CPU XRBUF12 +— XRSR +—
RRDY=1 -
“Ready to Read”

SPI_INT

elullvNelNe]

XRBUF'1l1l —> XRSR —/——

XRDY=1 -
“Ready to Write”

¢ A peripheral (e.g., SPl on C6678) causes an interrupt to
the CPU to indicate “service required.”

¢ This “event” will have an ID (datasheet) and can be tied
to a specific CPU interrupt (target specific).

How do we configure SYS/BIOS to respond
to this interrupt and call the appropriate ISR?

®i TEXAS INSTRUMENTS Multicore Training

Configuring an Hwi: Statically via GUI

Example: Tie SPI_INT to the CPU HWI,

@ Use Hwi module (Available Products), insert new Hwi (Outline View)

=38 scheduling ® EIOS
:‘:.: Clock @ Defaults
", j|> ® Dizgs NOTE: BIOS objects
(9 1dle ® Error can be created via the GUI,
B swi = @ Hwi))
& Task w1 INTS script code, or C code (dynamic).
ﬁf Timer ® [og e
@ Configure Hwi: Event ID, CPU Int #, ISR vector:

& Generic Hardware Interrupt Instance

= Basic Settings = Interrupt Scheduling Options

Mame HWI_IMTS Interrupts to mask | MaskingQption_SELF w

ISR function isr&udio Priority g

Interrupt Mumber | 5 Event Id 61

Enabled at startup
To enable INT at startup, check the box Jlﬂ

Where do you find the Event Id #?

W3 TEXAS INSTRUMENTS Multicore Training

Hardware Event IDs

¢ How do you know the names of the interrupt events
and their corresponding event numbers?

Look it up in the datasheet.

Source: TMS320C6678 datasheet

52 PCIEXpress_Legacy_INTC Legacy interrupt mode
53 PCIEXpress_Legacy_INTD Legacy interrupt mode
54 SPIINTO SPlinterrupt0
55 SPIINT1 SPlinterrupt1
56 SPIXEVT Transmit event
57N\ SPIRE' 7 Ceste rew o I == ===
58 12CINT}| Perams

\ Marne Value Summary

narme hwill Mame of the instance

a4 Create Args
intMum
hwiFxn

arg
enablelnt
eventld

priority

@

null
null

MaskingOption_SELF
0

true

56

5

interrupt number _
Create Args

pointer to ISR functio

mask5etting, Default is Hwi_MaskingOption_SELF
I5R function argument, Default is 0

Enable this interrupt now? Default is true
Interrupt event ID (Interrupt Selection Number)
Interrupt priority

| ok || Cancel

]

¢ As appropriate, refer to the datasheet for your target platform.

4p Tows Insrruvienrs What happens in the ISR ?

Multicore Training

Example ISR (SPI)

Example ISR for SPIXEVT_INT interrupt

+ Basic Settings

Mame

&= e

isrAudio: —

T . - ! - e
J-I-l '.E! | '\.D: ||.|M:|:

—

L | 1 a B
ISR funcbon s, | isrAudD

5

I._I T T —E

ra &l

pInBuf [blkCnt] = SPI->RCV;
SPI->XMT = pOutBuf [blkCnt]
blkCnt+=1;

if(blkCnt >= BUFFSIZE)

{
memcpy (pOut, pIn, Len);
blkCnt = O0;

pingPong = 1;

//
//
//

//
//
//

READ audio sample from SPI

WRITE audio sample to SPI

increment blk counter

Copy pIn to pOut (Algo)

reset blkCnt for new buf’s

PING/PONG buffer boolean

Can one interrupt preempt another?

{ip TEXAS INSTRUMENTS

Multicore Training

Enabling Preemption of Hwi

+ Interrupt Scheduling Options

Interrupts to mask |MaskingOption_SELF W
. MaskingOption_MOMNE
Priority rﬂaSkjniﬂEﬁnn ALL
MaskingOption_BITMASK
v |Enabled at start{MaskingOption LOWER

¢ Default mask is SELF, which means all other Hwi
activities can pre-empt except for itself.

¢ Can choose other masking options as required:

ALL: Best choice if ISR is short & fast

NONE: Dangerous; Make sure ISR code is re-entrant.
BITMASK: Allows custom mask

LOWER: Masks any interrupt(s) with lower priority (ARM)

W3 TEXAS INSTRUMENTS Multicore Training

SYS/BIOS Hwi APIs

Other useful Hwi APIs:

Hwi_disableInterrupt ()
Hwi_enablelInterrupt ()

Hwi_clearInterrupt ()

Set enable bit=0
Set enable bit=1
Clear INT flag bit=0

New in SYS/BIOS

Hwi_post ()

Post INT # (in code)

Hwi disable()
Hwi_ enable ()

Hwi restore ()

Global INTs disable
Global INTs enable
Global INTs restore

{'} TEXAS INSTRUMENTS

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ BIOS Threads
¢ Hardware Interrupts (Hwi)

¢ Software Interrupts (Swi)
¢ Tasks (Tsk)
¢ Semaphores (Sem)

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Swi Scheduling

Swi ¢ Up to 32 priority levels

Software Interrupts ¢ Any number possible, all preemptive

¢ SYS/BIOS provides for Hwi and Swi management.
¢ SYS/BIOS allows the Hwi to post a Swi to the ready queue.

®i TEXAS INSTRUMENTS Multicore Training

Hardware and Software Interrupt System
Execution flow for flexible real-time systems:

INT ! —{ Hard R/T Process J—> Post Swi —>[Cleanup, RET] Hwi
Rz‘z'::ily —(Continue Processing...] SWI
Hwi IsrAudio: Swi
o Fastresponse to INTs *buf++ = *XBUF; ¢ Latency in response time
. . L cnt++; .
¢ Min context switching if (cnt >= BLKSZ) { ¢ Context switch
¢ High priority for CPU Swi_post (swiFir); ¢ Selectable priority levels
¢ Limited # of Hwi possible count = 0; ¢ Scheduler manages
pingPong *= 1; execution

}

¢ SYS/BIOS provides for Hwi and Swi management.
¢ SYS/BIOS allows the Hwi to post a Swi to the ready queue.

i3 Texas INSTRUMENTS Multicore Training

Scheduling Rules

Highest Priority Swi_post(swi_b)

| Hwi | —

A |
[swi_b (p2)] o I
sWi_a (pl) I I E EEEEEEEEE —
l Legend
Idle EEEEEEEEEEEEEEEEEEEEEEEEEEE NN S Runnlng
Y Ready
Lowest Priority | | | | | _ |
1 1 1 T 1 time 1 >

¢ Swi_post(mySwi) : Unconditionally post a software interrupt (in the ready state).
¢ If a higher priority thread becomes ready, the running thread is preempted.
¢ Swi priorities range from 1 to 32.

¢ Automatic context switch (uses system stack)
What if more than one Swi process is set to the same priority?

W3 TEXAS INSTRUMENTS Multicore Training

Scheduling Rules

Highest Priority Swi_post(swi_b)

[Hwi] oo
A

[swi_b (p1)] @stussannannunnunns —
(.) Y |

swi_a (pl) —— —

) v Legend
Idle | rmmmesmmmesmsssressr s G — Running
....... Ready

Lowest Priority

j j j T j time j

¢ Processes of same priority are scheduled first-in first-out (FIFO).

¢ Having threads at the SAME priority offers certain advantages,
such as resource sharing (without conflicts).

W3 TEXAS INSTRUMENTS Multicore Training

Configuring a Swi: Statically via GUI

Example:

Tie isrAudio() fxn to Swi; Use priority|1

@ Use Swi module (Available Products), insert new Hwi (Outline View)

e
= GE Scheduling

1%
iy Clock

@ Configure Swi — Object name, function, priority:
F. *app.cfg X

& Software Interrupt Instance

+ Thread Settings

Mame

Function

¥ TEXAS INSTRUMENTS

Priority

-

TT Tl e o T oo Tl el ¥

= @ Swi

C M firProcess

@ SysMin
& System

NOTE: BIOS objects
can be created via the GUI,
script code, or C code (dynamic).

firProcessSwi

FIR_process

1

Multicore Training

Other useful Swi APIs:

SYS/BIOS Swi APIs

Swi_inc ()
Swi dec ()
Swi_or ()

Swi_andn ()

Post, increment count
Decrement count, post if 0
Post, OR bit (signature)
ANDn bit, post if all posted

Swi_getPri ()

Get any Swi Priority

Swi enable
Swi disable ()

Swi restore ()

Global Swi enable
Global Swi disable

Global Swi restore

#i» TEXAS INSTRUMENTS

Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ BIOS Threads
¢ Hardware Interrupts (Hwi)

¢ Software Interrupts (Swi)
¢ Tasks (Tsk)
4 Semaphores (Sem)

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Task Scheduling

Tsk ¢ Up to 32 priority levels

Tasks 4 Any number possible, all preemptive

¢ All Tasks are preempted by all Swi and Hwi.

¢ All Swi are preempted by all Hwi.
¢ Preemption amongst Hwi is determined by user.
¢ In absence of Hwi, Swi, and Tsk, Idle functions run in loop.

W3 TEXAS INSTRUMENTS Multicore Training

Task Code Topology — Pending

Void taskFunction(...)
{

[* Prolog *| < ¢ |Initialization (runs once only)

while (‘condition’){ <—— ® Processing loop — (optional:
cond)

Semaphore_pend() <—
¢ Wi it for resources to be
[* Process */ < available

} ¢ Perform desired algo work...

[* Epilog *| -

} ¢ Shutdown (runs once - at most)

¢ Task can encompass three phases of activity.
¢ Semaphore can be used to signal resource availability to Task.
¢ Semaphore_pend () blocks Task until semaphore (flag) is posted.

%3 Texas INsTRUVENTS How is a Task is different from a Swi. Multicore Training

. Comparing Swi and Task

Swi Task
_post —>| void mySwi () { _createt>void myTask () {
// set local env // Prologue (set Task env)
while (cond) {
***x RUN *** Semaphore_pend() ;
v * % % RUN * % %
} }
Epilogue (free env
» “Ready” when POSTED // Ep = ()
* Initial state NOT preserved; Must set)

each time Swi is run |
* “Ready” when CREATED (BIOS_start or dynamic)

: ~ » P-L-E structure handy for resource creation (P)
* Context switch speed (~140c) and deletion (E), initial state preserved

* All Swi share system stack w/ Hwi « Can block/suspend on semaphore (flag)

* Usage: As follow-up to Hwi and/or when « Context switch speed (~160c)
memory size is an absolute premium

e CanNOT block (runs to completion)

e Uses its OWN stack to store context

» Usage: Full-featured sys, CPU w/more speed/mem

®i TEXAS INSTRUMENTS Multicore Training

Configuring a Task: Statically via the GUI

Example: Create firProcessTask, tie to FIR process (), priority 2

@ Use Task module (Available Products) , insert new Task (Outline View)

= EE Scheduling .
{8 Clock ® System
W Hyi = @ Task _
[,"j Ide :: > N FrProcessTaszk NOTE: BIOS objects
B swi & Text can be created via the GUI,
&= @ Timestamp script code, or C code (dynamic).
Eﬁ Timer

@ Configure Task: Object name, function, priority, stack size

w Thread Settings

Mame firProcessTask
Function | FIR_process

Priority 2

Use the vital flag to prevent system exit unti thi|
Task is vital

w Stack Control Options

Stack size 2043
®i TEXAS INSTRUMENTS Multicore Training

Task Object Concepts

_ myTsk | fxn *
Task object: environ |* ‘ .:,‘t1;ch:v
Pointer to task function oriority 6
¢ Priority: changable stack x|, S'{:L(k
Pointer to task’s stack F— Ipf |
& Stores local variables ‘ C fxn
& Nested function calls e.g., bk FIR
& makes blocking possible inst2 | fxn
, . struct
¢ Interrupts run on the system environ | myEnv
stack priority 6
. " [TSK
4 Pointer to text name of TSK stack " stack
¢ Environment: pointer to user name Ipf2

defined structure:

Task_setenv (Task_self (), &myEnv) ;

hMyEnv = Task_getenv (&myTsk) ;

®i TEXAS INSTRUMENTS Multicore Training

Outline

¢ Intro to SYS/BIOS

¢ BIOS Threads
¢ Hardware Interrupts (Hwi)

¢ Software Interrupts (Swi)
¢ Tasks (Tsk)
¢ Semaphores (Sem)

Hardware

Wi TExAS INSTRUMENTS Multicore Training

Semaphore Pend

Semaphore_pend (Sem, timeout);

/ true
yes timeout=0 false Count>0 Decrement
count
o
time.out Block task Semaphore Structure:
expires _ _
‘ + Non-negative 16-bit
counter
pﬁﬂ\gd + Pending queue (FIFO)
Return
BIOS_WAIT_FOREVER A [Il wait forever UL
Zero 0 | // don’t wait
value timeout | // system ticks

{9 TEXAS INSTRUMENTS

Multicore Training

Semaphore Post

Semaphore_post (Sem);

False

y

Increment count

Task

sem?

pending on

True Ready first
waiting task

Semaphore Structure:

2

2

Non-negative count
Pending queue (FIFO)

Return }e

Task switch will occur if
higher priority task is
made ready.

{'} TEXAS INSTRUMENTS

Multicore Training

Configuring a Semaphore: Statically via GUI
Example: Create spiReady, counting

@ Use Semaphore (Available Products), insert new Semaphore (Outline View)

¥ EB Scheduling = F'ru:ugrElr'r'l
= Eﬂ Synchronization 4 @ Sema P hore

'};" Event _
-4 Gates jl> @ spiReady
od Semaphore @ Startup

-8 Syncs @ SysStd

@ Configure Semaphore: Object name, initial count, type

4d Semaphore Instance - Basic Options

| Advanced

* Reguired Settings

Mame spiReady

Initial count]

Semaphore type @ Counting semaphore
Binary Semaphore

W3 TEXAS INSTRUMENTS Multicore Training

SYS/BIOS Semaphore/Task APIs
Other useful Semaphore APIs:

Semaphore_getCount () Get semaphore count

Other useful Task APIs:

Task_sleep () Sleep for N system ticks
Task_yield() Yield to same pri Task
Task setPri () Set Task priority
Task_getPri () Get Task priority

Task_get/setEnv () Get/set Task Env

Task_enable () Enable Task Mgr
Task_disable () Disable Task Mgr
Task_ restore () Restore Task Mgr

i3 Texas INSTRUMENTS Multicore Training

Questions?

¥ TEXAS INSTRUMENTS

Multicore Training

