
Introduction to SYS/BIOS

Outline

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Input
Input

Need for an Operating System

Input

• Simple system: single I-P-O is easy to manage

• As system complexity increases (multiple threads):

Event + ISR
Device Driver

Data Processing
Algorithm

Event + ISR
Device Driver

Input
Input

Process

Input
Input

Output

• As system complexity increases (multiple threads):

� Can they all meet real time ?

� Priorities of threads/algos ?

� Synchronization of events?

� Data sharing/passing ?

• Two options: “home-grown” or use existing (SYS/BIOS)
(either option requires overhead)

• If you choose an existing O/S, what should you consider?

� Is it modular?

� Is it easy to use?

� How much does it cost?

� Is it reliable?

� Data sharing/passing?

� What code overhead exists?

SYS/BIOS Overview

Hwi
“Driver”

Swi, Task Hwi
“Driver”

SYS/BIOS

Scheduler Data Sharing/Passing Synchronization Memory Mgmt

Input
Input

Input Stream Stream
Input

Input
Process

Input
Input

Output

Queue Queue

Scheduler Data Sharing/Passing Synchronization Memory Mgmt

SYS/BIOS is a scalable, real-time kernel used in 1000s of systems today:

• Pre-emptive Scheduler to design system to meet real-time (including sync/priorities)

• Modular – Include only what is needed

•API - pre-defined interface for inter-thread communications

• Reliable – 1000s of applications have used it for more than 10 years

• Footprint – deterministic, small code size, can choose which modules you desire

• Cost – free of charge

SYS/BIOS Modules & Services

BIOS Configuration

� Memory Management
� Cache

� Heaps

� Realtime Analysis
� Logs

� Loads

� Execution Graph� Execution Graph

� Scheduling

� All thread types

� Synchronization
� Events

� Gates

� Semaphores

User Code

SYS/BIOS Environment

#include <log.h>

func1
{

Log_info1(...);
}

#include <swi.h>

func2
{

Swi_post(…);
}

API

SYS/BIOS Library

Hwi Swi Task Idle

Stream Mailbox Semaphore

Queue Clock Log HeapMem

HeapBuf HeapMultiBuf

� SYS/BIOS is a library that contains modules with a particular
interface and data structures.interface and data structures.

� Application Program Interfaces (API) define the interactions
(methods) with a module and data structures (objects).

� Objects are structures that define the state of a component.

� Pointers to objects are called handles.

� Object-based programming offers:

� Better encapsulation and abstraction

� Multiple instance ability

pointer

handle

structure

element1

element2

…

object

Definitions / Vocabulary

Real-time System

� In this workshop, we’ll be using these terms often:

� Where processing must keep up with the rate of I/O

Function

� Sequence of program instructions that produce a given result

Thread

� Function that executes within a specific context (regs, stack, PRIORITY)

API

� Application Programming Interface provides methods for interacting

with library routines and data objects

Comparing RTOS and GP/OS

GP/OS (e.g. Linux) RTOS (e.g. SYS/BIOS)

Scope General Specific

Size Large: 5M-50M Small: 5K-50K

Event response 1ms to .1ms 100 – 10 ns

File management FAT, etc. FatFS

Dynamic Memory Yes Yes

Threads Processes, pThreads, Ints Hwi, Swi, Task, Idle

Scheduler Time Slicing Preemption

Host Processor ARM, x86, Power PC ARM, MSP430, DSP

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

SYS/BIOS Thread Types
P

ri
o

ri
ty

Hwi

Hardware Interrupts

� Implements ‘urgent’ part of real-time event

� Hardware interrupt triggers ISRs to run

� Priorities set by hardware

Swi

Software Interrupts

� Performs HWI follow-up activity

� Posted by software

� Periodic (Clock) functions are prioritized as Swi
processes

� Up to 32 priority levels

P
ri

o
ri

ty � Up to 32 priority levels

Tsk

Tasks

� Runs programs concurrently under separate contexts

� Usually enabled to run by posting a semaphore
(a task signaling mechanism)

� Up to 32 priority levels

Idle

Background

� Multiple Idle functions

� Runs as an infinite loop (like traditional while(1)
loop)

� Single priority level

Hwi Signaling Swi/Task

INTx

Hwi:

urgent code

Swi_post();

[OR]

Semaphore_post();
Swi (or Task)

New paradigm: “Hwi (ISR) handles URGENT activity,New paradigm: “Hwi (ISR) handles URGENT activity,
then posts follow-up thread”

ints disabled rather than all this time

Hwi

� Fast response to interrupts

� Minimal context switching

� High priority only

� Can post Swi

� Use for urgent code only – then
post follow up activity

Swi

� Latency in response time

� Context switch performed

� Selectable priority levels

� Can post another Swi

� Execution managed by
scheduler

Swi and Tasks

Swi Swi_post (Swi);

start

“run to

completion”

Task

start

Pause

Semaphore_post (Sem);

(blocked
state)

Semaphore_pend

System
Stack

(Hwi/Swi) Private

� Similar to hardware interrupt, but
triggered when posted

� All Swi activities share system
software stack with Hwi activities.

end

� Unblocking triggers execution
(also could be mailbox, events, etc.)

� Each Task has its own stack, which
allows them to pause (i.e. block)

� Topology: prologue, loop,
epilogue…

end

(Hwi/Swi) Private
Stack

(Task)

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Thread (Object) Creation in BIOS
Users can create threads (BIOS resources or “objects”):

• Statically (via the GUI or .cfg script)

• Dynamically (via C code)

• BIOS doesn’t care – but you might…

#include <ti/sysbios/hal/Hwi.h>

Hwi_Params hwiParams;

Hwi_Params_init(&hwiParams);

hwiParams.eventId = 61;

Hwi_create(5, isrAudio, &hwiParams, NULL);

app.c

Dynamic (C Code)

Static (GUI or Script)

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var hwiParams = new Hwi.Params();

hwiParams.eventId = 61;

Hwi.create(5, "&isrAudio", hwiParams);

app.cfg

Hwi_create(5, isrAudio, &hwiParams, NULL);

Outline

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Hardware Software
Reset
H/W

BOOT
MODE

Provided
by TI

main.c Provided by TI

Device
Reset

Boot
Loader

BIOS_init()
(_c_int00)

System
Init Code

BIOS_start()
(Provided by TI)

SYS/BIOS
Scheduler

System Timeline

RESET: Device is reset, then jumps to bootloader or code� RESET: Device is reset, then jumps to bootloader or code
entry point (c_int00)

� BOOT MODE runs bootloader (if applicable)

� BIOS_init()configures static BIOS objects, jumps to c_int00
to init Stack Pointer (SP), globals/statics, then calls main()

� main()

� User initialization

� Must execute BIOS_start()to enable BIOS Scheduler & INTs

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Built-in Real-Time Analysis Tools
� Gather data on target (30-40 CPU cycles)

� Format data on host (1000s of host PC cycles)

� Data gathering does NOT stop target CPU

� Halt CPU to see results (stop-time debug)

RunTime Obj View (ROV)
� Halt to see results

� Displays stats about all

� Analyze time NOT
spent in Idle

CPU/Thread Load Graph

� Displays stats about all
threads in system

Built-in Real-Time Analysis Tools

Log_info1(“TOGGLED LED [%u] times”, count);

� Send DBG Msgs to PC

� Data displayed during
stop-time

� Deterministic, low CPU
cycle count

� WAY more efficient than
traditional printf()

Logs

� View system events down
to the CPU cycle

� Calculate benchmarks

Execution Graph

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Building a NEW SYS/BIOS Project

� Create CCS Project (as normal), then click:

� Select a SYS/BIOS Example:

What is in the project
created by Typical?

• Paths to SYS/BIOS tools

• .CFG file (app.cfg)• .CFG file (app.cfg)

that contains a “typical”

configuration for static

objects (e.g. Swi, Task).

• Source files (main.c) that

contain the appropriate

#includes of header files.

SYS/BIOS Project Settings
� Select versions for XDC, IPC, SYS/BIOS, xDAIS.

� Select the Platform (similar to the .tcf seed file for memory).

Outline

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Static BIOS Configuration
Users interact with the CFG file via the GUI – XGCONF:
• XGCONF shows Available Products; Right-click and select Use Mod.

• Mod shows up in Outline view. Right-click and select Add New.

• All graphical changes in GUI are displayed in .cfg source code.

Static Config – .CFG Files
� Users interact with the CFG file via the GUI – XGCONF

• When you Add New, a dialogue box is provided to set up parameters.

• This window provides two views:

� Basic

� Advanced

.CFG Files (XDC script)
� All changes made to the GUI are reflected with

java script in the corresponding .CFG file.

� Click on a module in the Outline view to see

the corresponding script in the app.cfg file.

Configuration Build Flow (CFG)
• SYS/BIOS: User configures system with CFG file

• The rest is “under the hood.”

XDCXDC

compiler.opt .cmd

USER

Configuro

-I -L

• BIOS pkgs (.cfg)

• Platform/Target

• Build Options

UNDER THE HOOD (Tools)

.C Compiler Linker app.out

BIOS libs

-I -L

• BIOS modules (e.g., Hwi, Clock, Semaphore, etc.) are
delivered as RTSC compliant packages.

• RTSC (Real Time Software Components) are packages that
contain libraries and metadata (similar to Java.jar files)

• XDC (eXpress DSP Components) is a set of tools that consume
RTSC packages (knows how to read RTSC metadata).

Outline

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

Platform (Memory Config)

� Create Internal Memory
Segments (e.g. IRAM)

� Configure cache

� Define External Memory
Segments

Memory Configuration

Section Placement
� Can link code, data,

and stack to any
defined mem segment

Section Placement

� Use Import button
to copy “seed” platform
and then customize

Custom Platform

� Intro to SYS/BIOS

� Overview

� Threads and Scheduling

� Creating a BIOS Thread

� System Timeline

� Real-Time Analysis Tools

Outline

� Real-Time Analysis Tools

� Create A New Project

� BIOS Configuration (.CFG)

� Platforms

� For More Information

� BIOS Threads

For More Information (1)
� SYS/BIOS Product Page http://www.ti.com/sysbios

For More Information (2)
� CCS Help Contents

• User Guides

• API Reference (knl)

Download Latest Tools
� Download Target Content

� DSP/BIOS

� SYS/BIOS

� Utilities

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/

� Utilities

� SysLink

� DSP Link

� IPC

� Etc.

� Intro to SYS/BIOS

� BIOS Threads

� Hardware Interrupts (Hwi)

� Software Interrupts (Swi)

� Tasks (Tsk)

� Semaphores (Sem)

Outline

� Semaphores (Sem)

Hwi Scheduling

Hwi
Hardware Interrupts

Swi

Software Interrupts

Tsk

Tasks

� Hwi priorities set by hardware

� Fixed number, preemption optional

� Up to 32 priority levels

� Any number possible, all preemptive

� Up to 32 priority levels

� Any number possible, all preemptive

Hard
R/T

Tasks

Idle

Background

� Any number possible, all preemptive

� Continuous loop

� Non-realtime in nature

Soft
R/T

� Idle events run in sequence when no Hwi are posted.

� Hwi is ISR with automatic vector table generation + context save/restore.

� Any Hwi preempts Idle, Hwi may preempt other Hwi if desired.

Foreground / Background Scheduling

main()

{
init

while(1)

nonRT
}

main()
{

init
BIOS_start()

}

S
c

h
e

d
u

le
r

Idle
nonRT
+ instrumentation

� Idle events run in sequence when no Hwi are posted.

� Hwi is ISR with automatic vector table generation + context save/restore.

� Any Hwi preempts Idle, Hwi may preempt other Hwi if desired.

ISR
get buffer
process
printf()

S
c

h
e

d
u

le
r

Hwi
get buffer
process
LOG_info1()

Which real-time "event" causes the Hwi to execute?

CPU Interrupts from Peripheral (SPI)

“Ready to Read”

CPU

C

O

D

E

C

SPI_INT

RRDY=1

XRBUF12 XRSR

XRBUF11 XRSR

XRDY=1

“Ready to Write”“Ready to Write”

� A peripheral (e.g., SPI on C6678) causes an interrupt to
the CPU to indicate “service required.”

� This “event” will have an ID (datasheet) and can be tied
to a specific CPU interrupt (target specific).

How do we configure SYS/BIOS to respond

to this interrupt and call the appropriate ISR?

Configuring an Hwi: Statically via GUI

1 Use Hwi module (Available Products), insert new Hwi (Outline View)

Example: Tie SPI_INT to the CPU HWI5

NOTE: BIOS objects

can be created via the GUI,

script code, or C code (dynamic).

2 Configure Hwi: Event ID, CPU Int #, ISR vector:

To enable INT at startup, check the boxTo enable INT at startup, check the box

Where do you find the Event Id #?

Hardware Event IDs
� How do you know the names of the interrupt events

and their corresponding event numbers?

Look it up in the datasheet. Source: TMS320C6678 datasheet

� As appropriate, refer to the datasheet for your target platform.

What happens in the ISR ?

Example ISR (SPI)

Example ISR for SPIXEVT_INT interrupt

pInBuf[blkCnt] = SPI->RCV; // READ audio sample from SPI

SPI->XMT = pOutBuf[blkCnt] // WRITE audio sample to SPI

blkCnt+=1; // increment blk counter

isrAudio:

if(blkCnt >= BUFFSIZE)

{

memcpy(pOut, pIn, Len); // Copy pIn to pOut (Algo)

blkCnt = 0; // reset blkCnt for new buf’s

pingPong ^= 1; // PING/PONG buffer boolean

}

Can one interrupt preempt another?

Enabling Preemption of Hwi

Default mask is SELF, which means all other Hwi� Default mask is SELF, which means all other Hwi
activities can pre-empt except for itself.

� Can choose other masking options as required:

ALL: Best choice if ISR is short & fast

NONE: Dangerous; Make sure ISR code is re-entrant.

BITMASK: Allows custom mask

LOWER: Masks any interrupt(s) with lower priority (ARM)

SYS/BIOS Hwi APIs

Hwi_disableInterrupt() Set enable bit = 0

Hwi_enableInterrupt() Set enable bit = 1

Hwi_clearInterrupt() Clear INT flag bit = 0

Hwi_post() Post INT # (in code)

Other useful Hwi APIs:

New in SYS/BIOSNew in SYS/BIOSHwi_post() Post INT # (in code)

Hwi_disable() Global INTs disable

Hwi_enable() Global INTs enable

Hwi_restore() Global INTs restore

New in SYS/BIOS

� Intro to SYS/BIOS

� BIOS Threads

� Hardware Interrupts (Hwi)

� Software Interrupts (Swi)

� Tasks (Tsk)

� Semaphores (Sem)

Outline

� Semaphores (Sem)

Swi Scheduling

Hwi

Hardware Interrupts

Swi

Software Interrupts

Tsk

Tasks

� Hwi priorities set by hardware

� Fixed number, preemption optional

� Up to 32 priority levels

� Any number possible, all preemptive

� Up to 32 priority levels

� Any number possible, all preemptive

Hard
R/T

Tasks

Idle

Background

� Any number possible, all preemptive

� Continuous loop

� Non-realtime in nature

Soft
R/T

� SYS/BIOS provides for Hwi and Swi management.

� SYS/BIOS allows the Hwi to post a Swi to the ready queue.

Hardware and Software Interrupt System

Hwi

� Fast response to INTs

Swi

� Latency in response time

Execution flow for flexible real-time systems:

INT ! Hard R/T Process Post Swi Cleanup, RET

Continue Processing ...
SWI

Ready

Hwi

*buf++ = *XBUF;

isrAudio:

Swi

� Fast response to INTs

� Min context switching

� High priority for CPU

� Limited # of Hwi possible

� Latency in response time

� Context switch

� Selectable priority levels

� Scheduler manages
execution

� SYS/BIOS provides for Hwi and Swi management.

� SYS/BIOS allows the Hwi to post a Swi to the ready queue.

*buf++ = *XBUF;

cnt++;

if (cnt >= BLKSZ) {

Swi_post(swiFir);

count = 0;

pingPong ^= 1;

}

Hwi

swi_a (p1)

swi_b (p2)

Scheduling Rules

Highest Priority Swi_post(swi_b)

Idle

Lowest Priority

Running

Ready

Legend

� Swi_post(mySwi) : Unconditionally post a software interrupt (in the ready state).

� If a higher priority thread becomes ready, the running thread is preempted.

� Swi priorities range from 1 to 32.

� Automatic context switch (uses system stack)

time

What if more than one Swi process is set to the same priority?

Hwi

swi_a (p1)

swi_b (p1)

Scheduling Rules

Swi_post(swi_b) Highest Priority

Idle Running

Ready

Legend

� Processes of same priority are scheduled first-in first-out (FIFO).

� Having threads at the SAME priority offers certain advantages,

such as resource sharing (without conflicts).

time
Lowest Priority

Configuring a Swi: Statically via GUI

1 Use Swi module (Available Products), insert new Hwi (Outline View)

Example: Tie isrAudio() fxn to Swi; Use priority 1

NOTE: BIOS objects

can be created via the GUI,

script code, or C code (dynamic).

2 Configure Swi – Object name, function, priority:

SYS/BIOS Swi APIs

Swi_inc() Post, increment count

Swi_dec() Decrement count, post if 0

Swi_or() Post, OR bit (signature)

Swi_andn() ANDn bit, post if all posted

Other useful Swi APIs:

Swi_getPri() Get any Swi Priority

Swi_enable Global Swi enable

Swi_disable() Global Swi disable

Swi_restore() Global Swi restore

� Intro to SYS/BIOS

� BIOS Threads

� Hardware Interrupts (Hwi)

� Software Interrupts (Swi)

� Tasks (Tsk)

� Semaphores (Sem)

Outline

� Semaphores (Sem)

Task Scheduling

Hwi

Hardware Interrupts

Swi

Software Interrupts

Tsk

Tasks

� Hwi priorities set by hardware

� Fixed number, preemption optional

� Up to 32 priority levels

� Any number possible, all preemptive

� Up to 32 priority levels

� Any number possible, all preemptive

Hard
R/T

Tasks

Idle

Background

� All Tasks are preempted by all Swi and Hwi.

� All Swi are preempted by all Hwi.

� Preemption amongst Hwi is determined by user.

� In absence of Hwi, Swi, and Tsk, Idle functions run in loop.

� Any number possible, all preemptive

� Continuous loop

� Non-realtime in nature

Soft
R/T

Task Code Topology – Pending
Void taskFunction(…)
{

/* Prolog */

while (‘condition’){

Semaphore_pend()

/* Process */

� Initialization (runs once only)

� Processing loop – (optional:
cond)

� Wait for resources to be
available/* Process */

}

/* Epilog */

}

available

� Perform desired algo work...

� Shutdown (runs once - at most)

� Task can encompass three phases of activity.

� Semaphore can be used to signal resource availability to Task.

� Semaphore_pend()blocks Task until semaphore (flag) is posted.

How is a Task is different from a Swi?.

Comparing Swi and Task

void myTask () {

// Prologue (set Task env)

while(cond){

Semaphore_pend();

*** RUN ***

}

// Epilogue (free env)

_create

Task
void mySwi () {

// set local env

*** RUN ***

}

Swi
_post

“Ready” when POSTED
// Epilogue (free env)

}

• “Ready” when CREATED (BIOS_start or dynamic)

• P-L-E structure handy for resource creation (P)
and deletion (E), initial state preserved

• Can block/suspend on semaphore (flag)

• Context switch speed (~160c)

• Uses its OWN stack to store context

• Usage: Full-featured sys, CPU w/more speed/mem

• “Ready” when POSTED

• Initial state NOT preserved; Must set
each time Swi is run

• CanNOT block (runs to completion)

• Context switch speed (~140c)

• All Swi share system stack w/ Hwi

• Usage: As follow-up to Hwi and/or when
memory size is an absolute premium

Configuring a Task: Statically via the GUI

1 Use Task module (Available Products) , insert new Task (Outline View)

Example: Create firProcessTask, tie to FIR_process(), priority 2

NOTE: BIOS objects

can be created via the GUI,

script code, or C code (dynamic).

2 Configure Task: Object name, function, priority, stack size

fxn *

environ *

priority 6

stack *

name lpf1

C fxn
e.g., bk FIR

inst2

myTsk

Task Object Concepts

Task object:

� Pointer to task function

� Priority: changable

� Pointer to task’s stack

� Stores local variables

� Nested function calls

� makes blocking possible
fxn *

structstruct
myEnv

TSK
stack

structstruct
� makes blocking possible

� Interrupts run on the system

stack

� Pointer to text name of TSK

� Environment: pointer to user

defined structure:

environ *

priority 6

stack *

name lpf2

Task_setenv(Task_self(),&myEnv);

hMyEnv = Task_getenv(&myTsk);

struct
myEnv

TSK
stack

� Intro to SYS/BIOS

� BIOS Threads

� Hardware Interrupts (Hwi)

� Software Interrupts (Swi)

� Tasks (Tsk)

� Semaphores (Sem)

Outline

� Semaphores (Sem)

Count > 0
Decrement

count

pend

true

Semaphore Pend

Semaphore Structure:Semaphore Structure:timeout
expires

false

Block task

yes

no

timeout = 0

Semaphore_pend (Sem, timeout);

Return

TRUE
BIOS_WAIT_FOREVER -1 // wait forever

Zero 0 // don’t wait

value timeout // system ticks

Semaphore Structure:

� Non-negative 16-bit
counter

� Pending queue (FIFO)

Return

FALSE

timeout
expires

SEM
posted

Block task

Task

pending on

sem?

Ready first

waiting task

True

Semaphore Post

Increment count
False

Semaphore Structure:Semaphore Structure:

PostSemaphore_post (Sem);

Return
Task switch will occur if

higher priority task is

made ready.

Semaphore Structure:

� Non-negative count

� Pending queue (FIFO)

Configuring a Semaphore: Statically via GUI

1 Use Semaphore (Available Products), insert new Semaphore (Outline View)

Example: Create spiReady, counting

2 Configure Semaphore: Object name, initial count, type

SYS/BIOS Semaphore/Task APIs

Semaphore_getCount() Get semaphore count

Other useful Semaphore APIs:

Task_sleep() Sleep for N system ticks

Task_yield() Yield to same pri Task

Task_setPri() Set Task priority

Other useful Task APIs:

Task_setPri() Set Task priority

Task_getPri() Get Task priority

Task_get/setEnv() Get/set Task Env

Task_enable() Enable Task Mgr

Task_disable() Disable Task Mgr

Task_restore() Restore Task Mgr

Questions?

