
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Thu, 12 Aug 2010 15:31:41 CST

PA SDK version 100713

1

ASP Development Kit

DA8xx ASP Development Kit Overview

Introduction
Audio Stream Processing Development Kit (ASPDK) is a guide for Customers and Third parties to do
porting/optimization/integration of Audio Stream Processing Algorithms to Performance Audio Framework (PA/F)
operating on DA8xx family of devices. This development kit intends to help in adding ASP algorithms to PA/F and
it consolidates all necessary information like example code, utilities and documentation in one place. This package is
intended to be used together with PA/F SDK for DA8xx device. All subsequent documentation here assumes that
user has already downloaded the PA/F SDK for DA8xx device. Please refer to Getting Started Guide for getting
enviroment set up with DA8x hardware and CCSv4. ASPDK talks about only software updates and requirements for
custom ASP development to work within PA/F.

Overview of the content of package and chapters in this document
Example ASPs: ASPs demonstating usage of common PA modules and settings

Equalizer example: Demonstrates the usage of Filter Library (FIL).
Virtualizer example: Demonstrates the usage of FFT.
Surrounds eample: Deonstrates the usage of some Common PA library functions (CPL).
FIL example ASPs

pag.exe: This is a utility to generate PA/F layer and ASP wrapper code(main.c)
example_asp.bsp: This is a text based configuration file to be used with pag.exe
Given below is brief description of some important documentation provided in this package.

ASP Prgramming Interface
The PA/F ASP Algorithm components are based on the TI XDAIS Algorithm Standard. The PA/F Algorithms
extend the standard XDAIS Algorithm interface, in a standard, fully–compliant way, to provide the required
functionality for digital audio processing. Description of ASP programming interface is available in section → ASP
Programming Interface .

PA/M Interface
The Performance Audio Messaging Interface serves as the channel for communication with the ASP Algorithm. The
PA system utilizes the PA/M protocol for communication between different parts of the system. The communication
is achieved by means of word-based units, where each word is a 16-bit unsigned integer of the form 0xhhhh, and is
called an alpha code word. Description of alpha codes and how to write them is avaialble in section → Alpha Codes.

http://processors.wiki.ti.com/index.php?title=Overview_of_DA8xx_SDK_Getting_Started_Guide

DA8xx ASP Development Kit Overview 2

ASP Porting Guide
After the readers acquire an idea of PA/F, ASP interfaces, it's expected that user can proceed to port or integrate the
custom algorithm into the PA/F on DA8xx by following a step-by-step → ASP Porting Guide.

PA/F Integration tips
This chapter gives some important tips related to integration of custom ASP algorithm in PA/F. Please refer → this
chapter along with following the → ASP porting Guide

PA FIL Library API
PA FIL library aims at providing a library of functions for programmers to implement mips efficient floating point
audio filters for TMS320DAxx family of devices. This document describes the FIL library API's. This is avaiable as
pdf document pa/doc/pa-asp-fil.pdf

Creating New ASP Algorithms using FIL
This appliation report shows how to create ASP algorithms using PA FIL library. The FIL audio examples given in
this document were created by copying/modifying FIL example ASPs available in this package. The documents is
available as pdf document pa/doc/pa-fil-fe.pdf

PA HD Channels Extension
The PA Framework has been originally built to accommodate a maximum of 16 audio channels with 8 channels (7.1)
being typically used. This document decsribes PA/F updates to allow processing of the new channel types (possibly
upto 32 channels) defined by various new audio formats. The document is available as pdf document
pa/doc/paf-hd.pdf

DA8xx ASP Programming Interface 3

DA8xx ASP Programming Interface

Introduction
This page descibes the PA/F Programming Interface for ASP algorithms.

Performance Audio Framework (PA/F) Overview
The Performance Audio Framework contains all the components needed to form a complete digital audio processing
solution. The major components of an example audio stream, as implemented using the PA/F, are shown in Figure
1-1. PA/F is described in detail in PA User's Guide.This section briefly describes the ASP component in PA/F.

Decode Component
This component is responsible for decoding the incoming audio stream which could be encoded as PCM, Dolby
Digital, DTS etc.

Encode Component
The PA/F requires Decode and Encode Components, even if there is no “decoding” or “encoding” taking place. In
other words, if the incoming bit stream is not encoded, there is no need for a decoding function, but there must still
be a Decode Component in the system, a “PCM Decoder”. The same is true of the Encode Component. Usually, it
will be a “PCM Encoder”, which really isn’t encoding to a compressed bit-stream format but must still be present.

http://processors.wiki.ti.com/index.php?title=File:Paf_asp2.png
http://processors.wiki.ti.com/index.php?title=File:Paf_asp2.png

DA8xx ASP Programming Interface 4

ASP Component
This component corresponds roughly to what might be called "post processing" in other systems that are designed
for audio decoding only. In PA/F, there can be more than one ASP component in a processing chain. The most
common manner in which customer-specific code is inserted into the PA/F is by creating one or more of these ASP
Components.
ASP algorithms may be classified depending on the kind of processing they perform. For example, the custom
surround (SUR) algorithm example in this package is a surround processing ASP algorithm. It is important to
remember that
• All surround processing ASPs are grouped together in the ASP chain.
• Custom surround processing ASPs, such as SUR are first.
• Standard surround processing ASPs, such as PL2x, come next.
This grouping of ASP algorithms is shown in Figure 1-2 (Arrangement of ASP Algorithms in the ASP Chain). When
an ASP algorithm is able to convert an input audio stream into the desired output audio stream, it should prevent the
operation of other ASP Algorithms as appropriate. For example, within the group of surround processing ASPs, only
one of them may process the audio data. To preclude the operation of other surround processing ASPs further down
the chain, the recommended method is to set the channel configuration accordingly to prevent surround processing
by ASPs further down the chain. Even though one may be tempted to obtain a similar result by actually disabling
some of the other ASP Algorithms using alpha codes (described later), this method is discouraged.

http://processors.wiki.ti.com/index.php?title=File:Paf_asp1.png

DA8xx ASP Programming Interface 5

Programming Interface
The PA/F Algorithms extend the standard XDAIS Algorithm interface, in a standard, fully–compliant way, to
provide the required functionality for digital audio processing as shown in Figure 1-3.

The ASP Programming Interface is established with implementation of certain functions that operate on the control
and audio data and also allow for incorporation of the ASP algorithm into the Framework. These functions are:
• ALG_VEN_apply()

Processes a frame of audio data. This function also updates the control data needed to manage the processing chain.
This should be implemented in ALG_VEN_iALG.c.
• ALG_VEN_reset()

Initialises the control data associated with the ASP algorithm. This should be implemented in ALG_VEN_iALG.c.
• ALG_VEN_control()

Enables the Framework to “connect” the alpha code messaging mechanism to the ASP Algorithm. This function is
typically implemented in the file ALG_VEN_ialg.c.

Description of ALG_VEN_apply()

What parameters are passed to it?
The _apply() function for all ASP Algorithms must have the below interface:

Int ALG_VENDOR_apply(IALG_Handle handle, PAF_AudioFrame *pAudioFrame)

Where:
IALG_Handle handle -> ASP Algorithm handle
PAF_AudioFrame *pAudioFrame -> Pointer to the AudioFrame data structure

http://processors.wiki.ti.com/index.php?title=File:Asp_api.png

DA8xx ASP Programming Interface 6

The ASP algorithm handle contains the pointer to the algorithm status structure. The status structure of the ASP
algorithm provides the interface to the user (e.g., a microcontroller). The status structure works like a
memory-mapped register bank. The user can read/write to this structure to pass control information to the ASP
Algorithm or to read status information back from the ASP algorithm.
The AudioFrame data structure contains the audio data that needs to be processed and control and status information
that the ASP algorithms should refer to understand how the processing needs to be applied. If the ASP algorithm
modifies the audio samples within the AudioFrame data structure, it may be required to modify some of the control
information in the AudioFrame data structure. This enables other downstream ASP algorithms to understand the
contents of the AudioFrame data structure. For example, a surround processing ASP algorithm, if it generates more
audio channels than existed in the audio stream, may need to modify the ChannelConfigurationStream
quantity within the AudioFrame data structure.
The AudioFrame data structure is defined in the file T:\pa\f\include\paftyp.h as:

typedef struct PAF_AudioFrame {

 PAF_AudioFunctions *fxns;

 XDAS_Int8 mode;

 XDAS_Int8 sampleDecode;

 XDAS_Int8 sampleRate;

 XDAS_Int8 unused[3];

 XDAS_Int16 sampleCount; /* valid N */

 PAF_AudioFrameData data; /* data[M][N] */

 PAF_ChannelConfiguration channelConfigurationRequest;

 PAF_ChannelConfiguration channelConfigurationStream;

 /* valid M*/

 PAF_ChannelConfigurationMaskTable

 *pChannelConfigurationMaskTable;

 PAF_SampleProcess sampleProcess[PAF_SAMPLEPROCESS_N];

 struct PAF_AudioFrame *root;

} PAF_AudioFrame;

The audio data is stored in AudioFrameData (indicated in italics in above structure) is defined below.

// PAF_AudioFrameData is a fixed structure which defines the

// possible data-carrying capacity of the audio frame.

typedef struct PAF_AudioFrameData {

 XDAS_Int16 nChannels; /* max M */

 XDAS_Int16 nSamples; /* max N */

 PAF_AudioData **sample; /* sample[M][N] */

 PAF_AudioSize *samsiz; /* samsiz[M] */

} PAF_AudioFrameData;

The audio data is stored in the AudioFrameData as non-interleaved PCM. That is, the data for the M channels are
stored sequentially, one channel after the other. The data for any individual channel is referenced via a pointer such
that sample[M] is a pointer to a vector of PCM data for channel M. paf-hd.doc shows in detail the
correspondence between the channels and the elements in this array of pointers to the sample data. A custom ASP
algorithm may process the available data present on any of these channels. The information extracted from
AudioFrame by the _apply() function includes:
• The number of samples in each channel
• Available channels in the stream

DA8xx ASP Programming Interface 7

• The audio data from available chaanels
• Audio sample-size (described in Audio sample-size)
This is achieved by appropriately de-referencing the pointer *pAudioFrame:

sampleCount = pAudioFrame->sampleCount;

 // Number of samples in the audio frame (in each channel)

left = pAudioFrame->data.sample[PAF_LEFT];

 // pointer to left channel audio sample buffer

rght = pAudioFrame->data.sample[PAF_RGHT];

 // pointer to right channel audio sample buffer

cntr = pAudioFrame->data.sample[PAF_CNTR];

 // pointer to center channel audio sample buffer

.

.

.

samsiz = pAudioFrame->data.samsiz; // Audio size

Finally after processing the audio data, the audio sample-size, channel configuration and other fields are updated
accordingly. Please see What steps are required to properly implement an Apply Function?

When is it called?
The PA Framework calls the _apply() function for each ASP algorithm in the ASP chain. The ASP algorithms are
called after the decoding operation. The generated audio data after all the ASP _apply() functions have completed
the processing is passed to the encoder.

What is it supposed to do?
The ALG_VEN_apply() function is invoked by the PA/F to pass status, control, and audio data to the ASP algorithm.
The algorithm uses the status information to understand the processing that needs to be applied. Most of the ASP
algorithms use the status information to understand how they should modify the audio data. But ASP algorithms can
be developed that may use the status information to perform certain other actions and not necessarily modify the
audio data, but such occurrences are rare and not discussed here.
One of the first checks that an ASP algorithm does is to decide whether or not to process the incoming signal. This
test is performed in the ALG_VEN_apply() function and consists of checking one or more of the following:
• mode control register: whether the mode is enabled or not!
• channel configuration: whether it's allowed/required to operate or not!
• other register(s) as appropriate
After processing, the algorithm must ensure that both the channel configuration and the audio size are updated
accordingly.

http://processors.wiki.ti.com/index.php?title=DA8xx_PA/F_Integration_tips%23Audio_sample-size

DA8xx ASP Programming Interface 8

What steps are required to properly implement an Apply Function?
The following are the important steps that need to be followed by all ASP Algorithms.
• Proper usage of the mode control register.

The first element of the algorithm's status structure must be mode. The mode variable is used to enable or disable
the processing of the algorithm. The algorithm must check the mode variable as one of the first steps in the _apply()
function. If the mode is disabled, the algorithm should not modify the audio samples or any quantities in the
AudioFrame structure.
• Proper testing of the sample rate.

If the processing within the ASP algorithm is dependent on the sample rate of the audio stream, the algorithm must
read and react to the current sample rate from the AudioFrame. If the current sample rate is different than the
previous sample rate, the algorithm may have to make a configuration change or reset certain processing states. The
algorithm may choose to have a separate function to perform this test and sample-rate dependent operation. Such a
function can be called by the _apply() function as well as the _reset() function, if necessary.
• Check for and react to the Audio Stream’s Channel Configuration information.

The ASP algorithms must check the channelConfigurationStream register within the AudioFrame to
understand the audio channels that are presented to it.
• Proper setting of the Audio sample-size register (samsiz).

The Audio sample-size is an indication of the magnitude of the audio sample data on each channel. The sasiz
variable is used by the ASP algorithm to indicate the magnitude of the audio data on each channel after the
processing is completed. Details on samsiz usage is available in Audio sample-size
• Updation of sample-process register (PAFProcess).

The sample-process register contains a multi-byte bit mask of values of the form (1<<PAF_PROCESS_X) that
indicates the algorithms that have operated on the AudioFrame data. It is a read/write quantity, and it is the
responsibility of an algorithm to update this register if appropriate. Please refer to
T:/pa/f/include/pafsp.h to understand how the various bits of this register are defined. Custom ASP
algorithms may also use this register to inform whether the ASP operated or not.
• Proper setting of sample-rate.

The ASP algorithms that change the sample rate must update the sampleRate information in the AudioFrame. If
the algorithm performs downsampling or upsampling, then the sampleCount variable will also need to be
modified.
• Proper setting of Channel Configuration register (channelConfigurationStream).

If the ASP algorithm processing changes the channel configuration, the information must be updated in the
channelConfigurationStream register within the AudioFrame structure. For example, Surround Processing
ASP algorithms must check the input channel configuration by checking channelConfigurationStream
towards the begining of the processing. It also must check the requested channel configuration by checking the
channelConfigurationRequest register in the AudioFrame structure to determine if surround processing is
required. If the processing is required and performed, the algorithm must modify the
channelConfigurationStream variable to indicate the resulting channel configuration of the stream.

http://processors.wiki.ti.com/index.php?title=DA8xx_PA/F_Integration_tips%23Audio_sample-size

DA8xx ASP Programming Interface 9

Description of ALG_VEN_reset()

What parameters are passed to it?
The _reset() function for all ASP algorithms must have the below interface:

Int ALG_VENDOR_reset(IALG_Handle handle, PAF_AudioFrame *pAudioFrame)

Where:
IALG_Handle handle -> ASP Algorithm handle
PAF_AudioFrame *pAudioFrame -> Pointer to the AudioFrame structure.

When is it called?
The ALG_VEN_reset() function is called before the decode processing is started. If the decode processing is stopped
and restarted (e.g., when there is change in the input bitstream or the alpha code writeDECCommandRestart is
issued) the ALG_VEN_reset() function of all the ASP algorithms in the ASP chain is called before the decode
processing restarts.

What is it supposed to do?
The ALG_VEN_reset() function is invoked by the PA/F to pass status and control data to the ASP chain. The
algorithms should use the control data to understand the initialization required to be done before the _apply()
function is called. For example, based on the sample-rate information in the AudioFrame structure, different
coefficients may need to be loaded for the filters. Also, clearing of state variables used in the ASP algorithm
processing may need to be performed.
The complexity of having a separate function that processes control data without sample data might seem high, but
has certain advantages. The main benefit of having this separate function is realized by being able to perform
MIPS-intensive processing outside of the normal timing constraints that are imposed when sample data is being
processed. For example, large delay buffers can be cleared or certain other computations may be performed as part of
the ALG_VEN_reset() function. If performed in the ALG_VEN_apply() function, such operations would negatively
impact the performance of the real-time processing on the audio data.
The ASP algorithms are passed control and status information as part of ALG_VEN_reset() function invocation. The
ASP algorithms may modify some of the control and status information. This provides a method by which ASP can
pass back information to the framework.

Description of ALG_VEN_control()
The ALG_VEN_control function allows the framework to connect the Alpha Code messaging mechanism to the
algorithm. The control function must always provide an algorithm-specific ALG_GETSTATUSADDRESS1
command that returns the address of the status register inside the Algorithm. This function has common functionality
across all ASPs and is implemented in COM_TII_control function in com_asp.lib library available in SDK.
Individual ASPs can use this function by defining:

#define ALG_VEN_control COM_TII_control

DA8xx Alpha Codes 10

DA8xx Alpha Codes

Introduction
The PA system utilizes the PA messaging (PA/M) protocol for communication between different parts of the system.
The communication is achieved by means of word-based units, where each word is a 16-bit unsigned integer of the
form 0xhhhh, and is called an alpha code word. A single operation, such as writing a value to a specific register,
usually involves sequence of two or more of these words. An alpha code word sequence, also referred to simply as
alpha code, is represented symbolically by assigning a name that clearly describes the operation performed by the
sequence.
This chapter introduces the basics of selecting alpha code symbol names and creating the corresponding alpha code
words for an ASP. It is only meant to serve as an introduction and utilizes the Equalizer ASP (EQU) as an example.

Status structure
Each ASP is required to have a status structure that contains the elements that can be read or modified while it is
running. The general form of this status structure is:

typedef volatile struct ALG_Status {

 Int size; /* This value must always be here, and must be

 set to the

 total size of this structure in 8-bit

bytes, as the

 sizeof() operator would do. */

 /* Implementation-specific structure elements. */

} ALG_Status;

where ALG is a 2- or 3-character name that you give to your algorithm. Such a status structure conceptually serves
as a memory-mapped register bank. The operation of the ASP depends on the contents of each of these registers.
While the ASP is running, the PA/M protocol accesses these registers using alpha code sequences.
Example: Status structure for Equalizer example ASP
The source files of Equalizer (EQU) example are provided in the folder t:\pa\asp\aspdk\equ. The status
structure is given in the file iequ.h and is reproduced below:

/*

* ======== IEQU_Status ========

* This Status structure defines the parameters that can be changed or

read

* during real-time operation of the algorithm. This structure is

actually

* instantiated and initialized in iequ.c.

*/

typedef struct IEQU_Status {

 Int size; /* This value must always be here, and must be

 set to the

 total size of this structure in 8-bit

bytes, as the

 sizeof() operator would do. */

DA8xx Alpha Codes 11

 XDAS_Int8 mode;

 XDAS_Int8 reset;

 XDAS_Int16 unused;

 XDAS_Int8 bandGain[10];

} IEQU_Status;

Communication with the EQU algorithm involves reading from or writing to the mode, reset and bandGain
registers. Each of these are control registers as their values can be altered with write operations. The read and write
operations are accomplished by means of alpha codes.

Alpha Code Symbol Names and Alpha Code Sequences
The status structure described in the previous section contains the elements that will be accessed by PA/M. You need
to specify the alpha code symbol names and the corresponding alpha code sequences that will be used by this
communication mechanism. The entire process consists of five steps:
1. Select a 2 or 3 character name for your ASP algorithm.
2. Define a status structure for your ASP.
3. Select alpha code symbol names.
4. Determine the alpha code sequence corresponding to each of the alpha code symbol names.
5. Create a header file containing definitions that map each of the alpha code symbol names.

Step1 :Select ASP name
Select a 2 or 3 character name for your ASP algorithm. This name must be unique to your ASP. To determine the
names that already exist as part of the SDK that you are using, see the master alpha code symbol file, for example:
P:\alpha\pa_i14_evmda830_io_a.hdM. This header file contains a number of #include statements,
each corresponding to a unique header file for an ASP that already exists as part of the SDK. The names of the files
being included will provide a good indication of the algorithm names already in use.

Step2 :Define a Status Structure for the ASP
The status structure contains the elements to be accessed while communicating with the ASP. In addition to defining
the status structure, make a note of the size(in bytes) of each element in the status structure and from this
information, calculate the corresponding offset (in bytes). These values are needed when selecting the alpha code
type (explained later in this chapter) and determining the code words assigned to each alpha code symbol name.
Example: Size and Offset of elements in Status Structure
For the EQU, the status structure is IEQU_Status and the specific elements to be accessed are mode, reset
and bandgain. The size and offsets of these elements are shown in Table1 (Size and Offset of Elements in the
IEQU_Status Structure). The offset of any element is given by the cumulative sum of the size of all the elements
preceding it.
Table 1 Size and Offset of elements in the IEQU_Status structure

DA8xx Alpha Codes 12

Element Register
size(bits)

Register size(bytes) Offset(bytes)

Size 32 4 0

Mode 8 1 4

Reset 8 1 5

Unused 16 2 6

bandGain[10] 80 10 8

Step3: Select Alpha Code Symbol Names
A standard nomenclature has been developed for selecting the names of the alpha code symbols. All alpha code
symbol names must adhere to one of the following seven forms:
1. readALGRegisterName
2. writeALGRegisterName
3. writeALGRegisterNameValue
4. writeALGRegisterName(N)
5. wroteALGRegisterName
6. wroteALGRegisterNameValue

where the constructs like ALG, RegisterName, and Value should be replaced with the algorithm name (e.g. EQU), the
name of an element of the ALG_Status structure and an appropriate value respectively. Alpha code symbol names
that begin with the word wrote serve as responses to read operations. For these read operations, write symbol names
do not exist. The next step describes how to determine the bit patterns that correspond to the alpha code word
sequences to be assigned to the alpha code symbol names selected in this step.
Example: Alpha Code Symbol Names
For the EQU ASP, the ALG name is EQU, and the RegisterName is mode, reset and bandGain. Accordingly,
the following alpha code symbol names have been chosen:
1. readEQUMode - to read the value in the mode register
2. writeEQUModeDisable - to write the value 0 in the mode register
3. writeEQUModeEnable - to write the value 1 in the mode register
4. readEQUSpare - to read the value in the spare (unused) register.
5. writeEQUSpare(N)- to write the value N in the spare register
6. writeEQUBandGain(N0,N1,N2,N3,N4,N5,N6,N7,N8,N9)- to write the values No, N1 etc in each
bandGain register respectively.

Step 4: Assign Alpha commnads to the Alpha Code Symbol Names.
Communication using alpha codes is achieved by means of word-based units where each word is a 16-bit unsigned
integer of the form 0xhhhh. The alpha codes corresponding to a multi-word sequence are transmitted (or received)
with the least-significant word first. This is an important point to keep in mind when assigning the 16-bit code words
to the alpha code symbol names.
Example: Alpha Code Word Sequences for EQU Example
The alpha code word sequences for the EQU example are defined in the file:
t:\pa\asp\aspdk\equ\equ_a.h as

#define readEQUMode 0xf200+CUS_BETA_EQU,0x0400

#define writeEQUModeDisable 0xfa00+CUS_BETA_EQU,0x0400

DA8xx Alpha Codes 13

#define writeEQUModeEnable 0xfa00+CUS_BETA_EQU,0x0401

#define readEQUReset 0xf200+CUS_BETA_EQU,0x0500

#define writeEQUResetDisable 0xfa00+CUS_BETA_EQU,0x0500

#define writeEQUResetEnable 0xfa00+CUS_BETA_EQU,0x0501

#define readEQUSpare 0xf300+CUS_BETA_EQU,0x0600

#define writeEQUSpare(N)

0xfb00+CUS_BETA_EQU,0x0600+((N)&0xff)

#define readEQUStatus 0xf508,0x0000+CUS_BETA_EQU

#define readEQUControl readEQUStatus

#define readEQUBandGain 0xf600+CUS_BETA_EQU,0x080a

#define writeEQUBandGain(N0,N1,N2,N3,N4,N5,N6,N7,N8,N9) \

0xfe00+CUS_BETA_EQU,0x080a,TWOUP(N0,N1),TWOUP(N2,N3),TWOUP(N4,N5),TWOUP(N6,N7),TWOUP(N8,N9)

Consider the definition for readEQUMode: #define readEQUMode 0xf200+CUS_BETA_EQU,

0x0400. The sequence corresponding to the symbol name readEQUMode consists of two words; 0xf200 and
0x0400. The first word transmitted (received) is the least-significant word, 0xf200+CUS_BETA_EQU. This is then
followed by 0x0400.
An alpha code sequence may consist of two or more words. The operation to be performed by the sequence is
determined by bit patterns for each of the words that make up the sequence. The description of the bit fields of the
least-significant word is common to all sequences. These bit fields are shown in Figure 1 (Bit Fields in the
Least-Significant Word of an Alpha Code Word Sequence) and described in Table 2 (Description of Bit Fields in the
Least-Significant Word of an Alpha Code Word Sequence).

• The Legacy field, bits 14 and 15, should be set to 11b.
• The Series field, bits 12 and 13, should be set to 11b.

http://processors.wiki.ti.com/index.php?title=File:Alpha_word2.PNG
http://processors.wiki.ti.com/index.php?title=File:Alpha_word2.PNG

DA8xx Alpha Codes 14

• The R/W (Read / Write) field, bit 11, is quite straight forward. Set this field to 0 for a read operation, and 1 for a
write operation.

• The Type field, bits 8 to 10, determines the alpha code type. In this section we will focus on four types which are
types 2, 3, 5 and 6.

Type 2 (b10:b8 = 010) Alpha Code
The Table 4(Description of Type 2 Alpha Codes) shows the number of words required in the alpha code sequence
and also the description for each of these words for Type 2 alpha codes. A Type 2 alpha code has bits 10:8 of word 0
set to 010b which indicates the length (=2) of this alpha code.
Table 4 Description of Type 2 Alpha Codes

Type Word Byte Description

2 0 MSB As shown in Figure 1 and Table 2

- - LSB Beta Unit Number as defined in cusbeta.h

- 1 MSB Offset of register to be read or written

- - LSB Data for write operation,unused for read operation

For all types of alpha codes, the 8 bits in the MSB of word 0 always correspond to the Legacy, Series, Read/Write
and Type fields as shown in Figure 1 and Table 2. For a Type 2 alpha code, the LSB of word 0 corresponds to the
Beta Unit number. The Beta Unit number is a unique identifier for an ASP. For example, the Beta unit number for
the EQU ASP is 0x00, and is defined in the file cusbeta.h as follows:

#define CUS_BETA_EQU 0x00

The file cusbeta.h should be modified accordingly to specify the Beta unit number that you want to assign to your
ASP. Type 2 alpha codes are used to read from or write to 8-bit registers. The offset of the register to be accessed
corresponds to the MSB of word 1. For a write operation, the 8-bit data value is given in the the LSB of word 1.
Example: EQU example - readEQUMode
The alpha code symbol name readEQUMode is used to read the contents of the 8-bit mode register. It falls into
the category of a Type 2 alpha code and requires a total of two words. Thus word 0 of the alpha code sequence for
readEQUMode is equal to 0xf200 and is shown in Figure 1 (Word 0 of the Alpha Code Word Sequence for
readEQUMode).
The MSB corresponds to the Legacy, Series, Read/Write and Type fields, whereas the LSB(=00h) is the Beta unit
number as defined in the file cusbeta.h. The word 1 of the alpha code is equal to 0x0400 and is shown in Figure
2(Word 1 of the Alpha Code Word sequence for readEQUMode). The MSB(=04) is the offset of the mode register
as obtained from Table 1. Since the LSB is not used for a read operation, it is assigned the value 0x00.

DA8xx Alpha Codes 15

Type 3 (b10:b8 = 011) Alpha Code
The Table 5 (Description of Type 3 Alpha Codes) shows the number of words required in the alpha code sequence
and also the description for each of these words for Type 3 alpha codes. A Type 3 alpha code has bits 10:8 of word 0
set to 011b which indicates the length (=3) of this alpha code.
Table 5 Description of Type 3 Alpha Codes

Type Word Byte Description

3 0 MSB As shown in Figure 1 and Table 2

- - LSB Beta Unit Number as defined in cusbeta.h

- 1 All Offset of register to be read or written

- 2 All Data for write operation,unused for read operation

Similar to Type 2 alpha codes, the LSB of word 0 for Type 3 alpha codes also corresponds to the Beta unit number.
The offset of the register to be accessed corresponds to word 1. Type 3 alpha codes are used to read from or write to,
16-bit registers. The 16-bit data is specified as word 2 for a write operation. The word 2 is not used for a read
operation.
Example: EQU Example- writeEQUSpare
The alpha code writeEQUSpare is used to write to the 16-bit unused register. It falls into the category of a
Type 3 alpha code and requires a total of 3 words. As specified in Table 2 (Description of Bit Fields in the
Least-Significant Word of an Alpha Code Word Sequence), word 0 of the alpha code word sequence for
writeEQUSpare is equal to 0xfb00 and is shown in Figure 4. The MSB corresponds to the Legacy, Series,
Read/Write, and Type fields, whereas the LSB is the Beta unit number.

http://processors.wiki.ti.com/index.php?title=File:Alpha3.PNG

DA8xx Alpha Codes 16

The word 1 of the alpha code contains the offset address, and is equal to 0x0006. The offset address was calculated
in Table 1. The word 2 of the alpha code is the 16-bit data to be written. Thus word 2 is equal to 0xhhhh where
0xhhhh corresponds to the hexadecimal representation of the data.

Type 5 (b10:b8 = 101) Alpha Code
The Table 6(Description of Type 5 Alpha Codes) shows the number of words required in the alpha code sequence
and also the description for each of these words for Type 5 alpha codes. A Type 5 alpha code has bits 10:8 of word 0
set to 101b. The length of a Type 5 alpha code could be anywhere from 2 to N words.
Table 6 Description of Type 5 Alpha Codes

Type Word Byte Description

5 0 MSB As shown in Figure 1 and Table 2

- - LSB Extended alpha code filed

- 1-N All Various

For a Type 5 alpha code, the LSB of word 0 does not contain the Beta unit number. Instead, it indicates a sub-type.
A listing of all possible extended alpha code sub-types is given in Table 12 of the Performance Audio Messaging
Application Protocol Application Report. In this section, the discussion is limited to sub-type 8.
Example 6: EQU Example - readEQUStatus
The alpha code word corresponding to readEQUStatus is of Type 5-8. This command is used to read the
contents of the entire IEQU_Status structure. The MSB of word 0 of the alpha code is as specified in Table
2(Description of Bit Fields in the Least-Significant Word of an Alpha Code Word Sequence). The LSB of word 0
specifies the sub-type, i.e. 8. Thus word 0 is equal to 0xf508 and is shown in Figure 5 (Word 0 of the Alpha Code
Word Sequence for readEQUStatus).

http://processors.wiki.ti.com/index.php?title=File:Alpha4.png

DA8xx Alpha Codes 17

The word 1 of the alpha code is the Beta unit number and is equal to 0x0000. This particular alpha code word
sequence of Type 5-8 requires a total of two words.

Type 6 (b10:b8 = 110) Alpha Code
The Table 7(Description of Type 6 Alpha Codes) shows the number of words required in the alpha code sequence,
and also the description for each of these words, for Type 6 alpha codes. A Type 6 alpha code has bits 10:8 of word
0 set to 101b. The length of a Type 6 alpha code could be anywhere from 2 to N words. Table 7 Description of
Type 6 Alpha Codes

Type Word Byte Description

6 0 MSB As shown in Figure 1 and Table 2

- - LSB Beta Unit Number as defined in cusbeta.h

- 1 All Offset of register to be read or written

- 2 All Offset for how many variables to be read/written

- 2-N various value to be wriiten, unused for read

Data is read from the Beta Unit at the base address indicated by the 8-bit beta field and the 8-bit offset in bytes
given by the gamma field. The number of bytes read is given by the 8-bit kappa field. It may also be referred
to as a variable-length read. The return value is an alpha code type 6 write with the appropriate length and
data. The length of an alpha code type 6 read is 2 words.
Data is written to the Beta Unit at the base address indicated by the 8-bit beta field and the 8-bit offset in bytes
given by the gamma field. The number of bytes written is given by the 8-bit kappa field. It may also be
referred to as a variable-length write. The length of an alpha code type 6 write is 2+(k+1)/2 words. The return
value is null.

http://processors.wiki.ti.com/index.php?title=File:Alpha5.png

DA8xx Alpha Codes 18

Step 5: Create a header file alg_a.h
The final step required is to create a header file alg_a.h and place it in the folder T:\pa\asp\alg\alpha\
where alg is the name for your algorithm. The header file contains definitions that map each of the alpha code
symbol names from step-3 with the corresponding alpha code sequence from step-4. The header file will contain one
or more definitions of the form

#define readALGRegisterName 0xhhhh …
#define writeALGRegisterName 0xhhhh …
#define writeALGRegisterNameValue 0xhhhh …
#define writeALGRegisterName(N) 0xhhhh …
#define wroteALGRegisterName 0xhhhh …
#define wroteALGRegisterNameValue 0xhhhh …

where
• 0xhhhh specifies the binary values, represented as a 16-bit word, assigned to the alpha code symbol name. The

symbol names were determined in step 3, and the corresponding 16-bit values were calculated in step 4.
• the ellipses, …, specify that more than one 16-bit word may be assigned to the alpha code symbol name. This is

usually the case.
For eg: the alpha header file for equ example has these defined as described in Example 5 like:

#define readEQUMode 0xf200+CUS_BETA_EQU,0x0400

#define writeEQUModeDisable 0xfa00+CUS_BETA_EQU,0x0400

...

DA8xx ASP Porting Guide

Introduction
The term Audio Stream Processing (ASP or also popularly known as post-processing) operates on the audio data
following decoding and preceding encoding in Performance Audio Framework. The audio stream processing is
implemented via a collection of individual XDAIS algorithms, each with a common, standardized interface. This
document provides a guidance to the ASP developer as how custom algorithm can be integrated into PA/F. This
chapter also describes common settings and recommendations for using an ASP within PA framework. Some
familiarity with the XDAIS standard is assumed. Also, it's assumed that the developer has already gone through the
chapter that describes the ASP interface to PA/F.

DA8xx ASP Porting Guide 19

Integrating ASP into PA/F
It's assumed that the reader already have installed PA/F SDK for DA8xx device and gone through the Getting Started
Guide, set-up the build environment and DA8xx EVM.

Step1: Create work area
• Unzip firmware deliverable from PA/F SDK to an empty folder preserving the path information.
• Unzip ASP Development Kit deliverable to the same folder preserving the path information, letting it overwrite

existing files, if any.
• Map the folder as T: drive such that the newly created pa folder falls in the root of T: drive.

Step2: Generate PA/F layer using pag.exe
• Move to aspdk folder

$ cd t:/pa/asp/aspdk

• Modify example_asp.bsp for the ASP name, vendor name and any other relevant information.
• Run pag utility

$./pag.exe -g asp example_asp.bsp

This will create a folder asp with:
• all necessary PA/F interface files
• example ASP wrapper that can be used with VC build and CCS unit testing
• Move asp folder to folder for your custom asp development and do file rearaangement. Below example shows
sur as the custom asp name and folder.

$ mv asp ../sur

$ cd ../sur

$ mkdir alpha

$ cp sur_a.h alpha/

$ cp main.c ../

Step3: Customize PA/F layer code
• Customize asp_ven_ialg.c file for any additional memory allocation/intialisation. Note that all memory

allocations have to happen in asp_ven_alloc() function through memTabs. The library should not have
any inside malloc/free calls. This is required to make library re-entrant.

• Customize asp_ven_iasp.c for the custom asp with calls to other functions implementing the functionality
and other necessary settings of the custom algorithm.

Step4: Create and build CCSv4 project
• This can be done in CCSv4 GUI or through command line. Please see CCSv4 help for first option. Command line

way to create/build project is explained here.
• Following commands creates project sur in directory t:/pa/asp/sur in CCSv4 workspace
c:/workspace_asp. When no configuration is specified; this creates Debug and Release configurations with
Release configuration set to optimised options -o3 and no-Debug. Please add any additional options/include files
during project creation. The script createproject.sh in the package also includes these commands.
Running this script will generate and build the CCSv4 project. In order to include any additional options please

http://processors.wiki.ti.com/index.php?title=Overview_of_DA8xx_SDK_Getting_Started_Guide
http://processors.wiki.ti.com/index.php?title=Overview_of_DA8xx_SDK_Getting_Started_Guide

DA8xx ASP Porting Guide 20

update the script.
More information on command line way to create/build project is available in [1]

$ cp ../aspdk/createproject.sh .

$./createproject.sh

or

$ CCS4_DIR="C:/Program Files/Texas Instruments/ccsv4"

$ C6000_CG_ROOT="C:/Program Files/Texas

Instruments/ccsv4/tools/compiler/c6000"

$ BIOS_CG_ROOT="C:/Program Files/Texas Instruments/bios_6_21_00_13"

$ XDC_CG_ROOT="C:/Program Files/Texas Instruments/xdctools_3_16_02_32"

$ XDAIS_CG_ROOT="C:/Program Files/Texas Instruments/xdais"

$ PROJ_PATH="t:/pa/asp/aspdk/sur"

$ PROJ_NAME=sur

$ rm -rvf T:/pa/asp/aspdk/sur/{.[cps]*,Release}

c:/workspace_asp/.metadata

$ "${CCS4_DIR}"/eclipse/jre/bin/java -jar

"${CCS4_DIR}"/eclipse/startup.jar -data c:/workspace_asp \

$ -application com.ti.ccstudio.apps.projectCreate \

$ -ccs.name "${PROJ_NAME}" \

$ -ccs.location "${PROJ_PATH}" \

$ -ccs.device com.ti.ccstudio.deviceModel.C6000.GenericC674xDevice \

$ -ccs.kind com.ti.ccstudio.managedbuild.core.ProjectKind_StaticLibrary

 \

$ -ccs.endianness little \

$ -ccs.artifactName "${PROJ_NAME}" \

$ -ccs.artifactExtension lib \

$ -ccs.cgtVersion 6.1.13 \

$ -ccs.setBuildOption \

$ -ccs.outputFormat coff \

$ -ccs.rts rts6740.lib \

$ -ccs.setCompilerOptions "-mv6740 --symdebug:none -o3" @configurations

 Release \

$ -ccs.setCompilerOptions "-mv6740 -g -o0" @configurations Debug \

$ -ccs.setCompilerOptions "-I t:/pa/f/include -I T:/pa/dec/com -I

t:/pa/f/alpha -I t:/pa/f/s3 -I t:/pa/asp/com -I t:/pa/asp/std -I

t:/pa/sio/acp1 -I ${PROJ_PATH} -I ${PROJ_PATH}/alpha -I

${BIOS_CG_ROOT}/packages/ti/bios/include -I ${BIOS_CG_ROOT}/packages -I

 ${XDC_CG_ROOT}/packages -I ${C6000_CG_ROOT}/include -I

${XDAIS_CG_ROOT}/include -I ${XDAIS_CG_ROOT}/src/api -I

T:/pa/asp/fil/alg -I T:/pa/asp/fil/src"

$ -ccs.overwrite keep

• Build the project using below command. This builds the library in Release configuration.

$ "${CCS4_DIR}"/eclipse/jre/bin/java -jar

"${CCS4_DIR}"/eclipse/startup.jar -data c:/workspace_asp -application

com.ti.ccstudio.apps.projectBuild -ccs.projects "${PROJ_NAME}"

http://tiexpressdsp.com/index.php/Projects_-_Command_Line_Build/Create

DA8xx ASP Porting Guide 21

-ccs.configuration Release

Step5: Add Alpha codes
• Customize the alpha header file generated by pag utility (e.g: sur_a.h) for your applcaition.
Details on alpha codes and how to write them is explained in Alpha Codes.

Step6: Adding custom ASP to the ASP chain
• Add paths to the source files for custom ASPs in the final PA project.

• Example: add sur.lib to pa_i14_evmda830 project
• Include custom ASP header files (ASP.h and ASP_VEN.h) in patchs.c .

• Example: add #include sur.h #include sur_tii.h to pa/f/s19/i14/patchs.c
• Add custom ASP in the PA/F ASP chain by including an appropriate PAF_ASP_LINKINIT() macro to

PAF_ASP_LinkInit table in patchs.c.
• Example: add PAF_ASP_LINKINIT (CUS, SUR, TII), macro to aspLinkInitCusI14 table and
aspLinkInitAllI14 table

• Note:Location of custom ASP algorithm in the Customized Audio Stream processing chain is specified by the
location of PAF_ASP_LINKINIT() macro in patchs.c.So add this line depending on the desired location of
your ASP in the ASP chain. For example if location of ASPs are specified like below; then SUR ASP comes
before EQU ASP in the PA/F ASP chain:

const PAF_ASP_LinkInit aspLinkInitCusI14[] =

{

 PAF_ASP_LINKINIT (CUS, SUR, TII),

 PAF_ASP_LINKINIT (CUS, EQU, TII),

 PAF_ASP_LINKNONE,

};

• Note that:
• All surround processing ASPs are grouped together in the ASP chain.
• Custom surround processing ASPs, such as SUR are first.
• Standard surround processing ASPs, such as PL2x, come next.

• Add an include statement for the custom alpha header file to P:\i14_a.h
• Add apropriate alpha code inverse symbol definitions to P:\i14_a.hdm. This enable use of the defined alpha

command directly.
• Example:sur_a.h includes defintions like below:

#define readSURMode 0xf200+CUS_BETA_SUR,0x0400

#define writeSURModeDisable 0xfa00+CUS_BETA_SUR,0x0400

#define writeSURModeEnable 0xfa00+CUS_BETA_SUR,0x0401

 Assuming that CUS_BETA_SUR is defined to 0x00, add below definitions

to i14_a.hdm

#define readSURMode 0xf200,0x0400

#define writeSURModeDisable 0xfa00,0x0400

#define writeSURModeEnable 0xfa00,0x0401

http://processors.wiki.ti.com/index.php?title=DA8xx_Doc:Alpha_Codes

DA8xx ASP Porting Guide 22

Miscellaneous Information

Communicating with other algorithms
Sometimes it may be required to communicate with other algorithms to query status or issue commands. Especially
when there are more than one custom algorithms related to each other.
Following method can be used if such a communication is desired:
• Create an ACP instance.

• Required only once, before any communication is made:

#include <acp.h>

#include <acp_mds.h>

static ACP_Handle acp = NULL;

 ACP_MDS_init ();

 acp = ACP_create (&ACP_MDS_IACP, &ACP_PARAMS);

 if (!acp)

 return;

• To query status, send alpha code and get response.
• This example shows type-2 read:

#include <pafdec_a.h>

 ACP_Unit from[] = {0xc902, readDECSourceProgram};

 ACP_Unit to[5];

 int program = 0;

 if (acp->fxns->sequence (acp, from, to))

 return;

 program = to[2] & 0xFF;

• To issue command, send alpha code
• This example shows type-2 write:

#include <pafenc_a.h>

 ACP_Unit from[] = {0xc902, writeENCCommandMute};

 ACP_Unit to[5];

 if (acp->fxns->sequence (acp, from, to))

 return;

DA8xx ASP Porting Guide 23

References
[1] http:/ / tiexpressdsp. com/ index. php/ Projects_-_Command_Line_Build/ Create

DA8xx PA/ F Integration tips

Audio sample-size
The audio sample-size is an indication of the magnitude of the audio sample data on each channel. The samsiz
variable is used by the ASP Algorithm to indicate the magnitude of the audio data on each channel. For algorithms
like Bass Management, the magnitude of the SUB (subwoofer) channel can exceed 0 dB. The ASP Algorithm must
provides the audio sample-size information so that the audio data samples can be adjusted during the encode process
(conversion from floating-point to fixed-point) to ensure that no clipping of audio data occurs. The unit of the audio
sample-size register is in 0.5 dB step. The audio sample-size information should not be written directly, but
appended to the already present sample-size for each channel. If the audio level generated by ASP Algorithm is
expected to never exceed 0 dB and an external entity (e.g., a microcontroller) adjusts the DSP’s output levels to
ensure that no clipping occurs, then setting the audio sample-size register in the ASP Algorithm is not necessary.

How to set the audio sample-size register?
The *samsiz element of the AudioFrameData structure is a pointer to an array of size M, where M is the
maximum number of channels.

samsiz = pAudioFrame->data.samsiz; // Audio size

Each element of the array is an audio sample-size register that is used to represent the theoretical maximum value
that an audio channel can reach after the ASP has operated on it. The audio sample-size registers represent values in
decibels in units of 0.5 dB. That is, the audio size registers are in Q1 format. For example, the bit pattern 0x0004
represents the value 2 dB.
Example1: In EQU example, max gain applied to all the channels is tracked and samsiz is updated accordingly so
that no attenuation happens in analog domain. For all available channels, the samsiz is set as: For channel i; the
audio size is set as:

samsiz[i] += 2 * 20 *log10 (maxgain);

The multiplication by 2 is because the audio size represetation is in Q1 format; ie, in units of 0.5dB.
Example2: Generating Centre channel from Left and Right channels: Denoting the ith sample on the left, center,
and right channels as left[i], cntr[i],and rght[i] respectively, the center channel is calculated as:

 cntr[i] = ccScale * (left[i] + rght[i]);

where ccScale is a scale factor. Assuming that the ith sample on the left and right channels, left[i] and
rght[i], have the same maximum possible value (size), then the corresponding sample for the center channel
cntr[i], can be twice as large as left[i] (or rght[i]). The value of "twice" is equivalent to 6 dB. The
multiplication of 6 by the value 2, resulting in:

samsiz[PAF_CNTR] = 2*6 + samsiz[PAF_LEFT];

http://tiexpressdsp.com/index.php/Projects_-_Command_Line_Build/Create

DA8xx PA/F Integration tips 24

Recommendation for Memory usage

Placement of buffers in IRAM/L3RAM/SDRAM
DA8xx device DSP internal memory consists of L1P, L1D and L2 cache memory. The internal memory
configuration is:
• L1P memory includes 32KB of RAM. The DSP program memory controller allows to configure part or all of the

L1P RAM as normal program RAM or as cache.
• L1D memory includes 32 KB of RAM. The DSP data memory controller (DMC) allows to configure part of the

L1D RAM as normal data RAM or as cache.
• L2 memory includes 256 KB of RAM. The DSP unified memory controller (UMC) allows to configure part or all

of the L2 RAM as normal RAM or as cache.
• L2 memory also includes 1024 KB of ROM.
This device also offers an on-chip 128-KB shared RAM, apart from the internal memories. This shared RAM is
referred to as L3RAM in PA/F context. Access to L3RAM happens via cache. This device has two external memory
interfaces that provide multiple external memory options accessible by the CPU and master peripherals:

• EMIFA: 16-bit SDRAM with 128-MB address space
• EMIFB: 32-/16-bit SDRAM with up to 256-MB SDRAM address space

See the RAM usage report in SDK for information on the memory usage in each feature set. This should give a feel
of how much of IRAM/L3RAM is free for use by custom ASPs. Since the device has cache based architecture, it is
recommended to make use of L3RAM and SDRAM wherever possible except for performance critical applications.
It is also recommended to set the memTab parameters as configurable via the IAlg_Config structure; so that
placement of buffers can be changed init-time.

Scratch Memory Usage
ASPs may use some scratch memory whose contents need not be maintained across the decode processing calls.
Hence this memory can be shared among other algorithms active in the system. The PA/F allocates a scratch
memory equal to the maximum scratch requirement of all algorithms present in the chain (This is approx 8K in the
PA SDK, see memory footprint of each featureset for exact information). If scratch requirement of the custom ASP
falls within this maximum; no additional scratch allocation happens for the custom ASP, otherwise the maximum
scratch allocated is as per the custom ASP. Setting memTab attribute to IALG_SCRATCH takes care of this.

Adding more channels (> 8)

How to add more channels in the system?
By default PA SDK has support for 12 channels. See PA Reference Guide for details on the supported channels and
paf-hd.pdf for additional channel definitions. In order to add more channels in the system following changes are
required:
• Allocate frame buffers for additional channels by changing number of channels in
pa/f/s19/I14/params.c

const SmInt PAF_AST_params_numchan_PAi[1] =

{

 12,

};

DA8xx PA/F Integration tips 25

• Modify ipce_i14.c to set the number of output channels

#define IPCE_OUTPUT_NUMCHAN 12

• Modify pa/asp/std/ccm.c to select the channels used
• Add ccm.c to final project.
• Update Channel configuration for additional channels as explained in section Channel Configuration Settings.

How to test 10ch output on DA8xx EVM?
Only 8 channels can be output from the EVM simultaneously. But more than 8 channels can be tested on the DA8xx
EVM using channel mapping alpha commands. See PA Reference Guide for detailed information on channel
mapping alpha commands. EncChannelMapFrom and EncChannelMapTo alpha commands can be used to test all
channels on EVM. These alpha commands route the frame buffer output of any channel to the desired MCASP pins.
For Eg: In order to check height channel output; you can route it to the back channels on the MCASP pins using
below alpha commands:

writeENCChannelMapFrom16(PAF_LEFT,PAF_RGHT,PAF_LSUR,PAF_RSUR,PAF_CNTR,PAF_SUBW,PAF_LBAK,PAF_RBAK,PAF_LHED,PAF_RHED,-3,-3,-3,-3,-3,-3)

writeENCChannelMapTo16(0,4,1,5,2,6,-1,-1,3,7,-1,-1,-1,-1,-1,-1)

Channel Configuration Settings
A Channel Configuration is the manner in which the channels of the AudioFrame are organized:
• The Request Channel Configuration is the form of output audio that an ASP Algorithm should attempt to produce

for system output, typically a read-only but application-variable quantity.
• The Stream Channel Configuration describes the actual form of the AudioFrame data. As such, this is a

read/write, application-variable quantity that describes the form of the AudioFrame data presented to an ASP
Algorithm, which is to be updated by that ASP Algorithm to describe the AudioFrame data that is output.

Channel configuration registers are 32-bit wide and it consists of four, 8-bit fields or parts:
• The satellite part indicates the channel configuration for satellite, that is, non-bass channels. This includes front

channels Left, Right, and Center, as well as rear channels Left and Right Surround and Left and Right Back.
• The subwoofer part indicates the channel configuration for bass channels. This consists of either the LFE channel

(before bass management) or subwoofer channels (after bass management).
• The auxiliary part indicates special information about the encoding of the data in the channels:

• If the satellite part indicates that the channel configuration is two-channel, the auxiliary part gives auxiliary
information about how that two-channel data should be interpreted. This includes stereo, stereo-unknown,
surround-encoded, mono, and dual-mono. Note that only two-channel data uses the auxiliary part in this
manner.

• If the satellite part indicates that the channel configuration is multi-channel with two channel surround, the
auxiliary part gives auxiliary information about how that two channel surround data should be interpreted. This
includes stereo-surround, surround-unknown, back-encoded surround, and mono-surround. Note that only
multi-channel data with two surround channels uses the auxiliary part in this manner.

• extMask part contain 8-bits each sepcifying one or two extended channels, as shown in Table 1. These indicate
the presence of additional channels from the standard 7.2 channels.

Table 1 Extension Mask of Channel Configuration

DA8xx PA/F Integration tips 26

Bit Position Indicated Channels

PAF_CC_EXT_LwRw (0) Lw + Rw

PAF_CC_EXT_LcRc (1) Lc + Rc

PAF_CC_EXT_LhRh (2) Lh + Rh

PAF_CC_EXT_Cvh (3) Cvh

PAF_CC_EXT_Ts (4) Ts

PAF_CC_EXT_LhsRhs (5) Lhs + Rhs

PAF_CC_EXT_LhrRhr (6) Lhr + Rhr

PAF_CC_EXT_Chr (7) Chr

Channel Assignment of these channels are indicated in paf-hd.pdf. Bit positions in “extMask” are enum-erated in
“t:/pa/f/include/pafcc.h”. The extMask for each of the above channel/channel pair is indicated below:

 #define PAF_CC_EXTMASK_LwRw (1u << PAF_CC_EXT_LwRw)

 #define PAF_CC_EXTMASK_LcRc (1u << PAF_CC_EXT_LcRc)

 #define PAF_CC_EXTMASK_LhRh (1u << PAF_CC_EXT_LhRh)

 #define PAF_CC_EXTMASK_Cvh (1u << PAF_CC_EXT_Cvh)

 #define PAF_CC_EXTMASK_Ts (1u << PAF_CC_EXT_Ts)

 #define PAF_CC_EXTMASK_LhsRhs (1u << PAF_CC_EXT_LhsRhs)

 #define PAF_CC_EXTMASK_LhrRhr (1u << PAF_CC_EXT_LhrRhr)

 #define PAF_CC_EXTMASK_Chr (1u << PAF_CC_EXT_Chr)

When an ASP generates any extended channels it is required to set the extMask correspoding to that channel(s)in
PAF_ChannelConfiguration.

Channel Mask
The Channel Configuration Mask Table is a data structure to be used for conversion of channel configuration
information into Channel Masks. It is a read-only, application-constant quantity. The Channel Configuration Mask
Table is typically used via the channelMask member function of the Audio Frame Data Structure. The original
Channel Mask is 16-bits wide and does not represnt all extendec channels. A new 32-bit Channel Mask has been
added for representing the newly added channels.

 typedef XDAS_Int32 PAF_ChannelMask_HD;

There is a one-to-one correspondence between bits in the Channel Mask and channels in Audio Frame. The helper
function “pAudioFrame->fxns->channelMask()” has been changed to return a 32-bit PAF_ChannelMask_HD,
instead of a 16-bit PAF_ChannelMask. This function now takes care of extMask field of
PAF_ChannelCOnfiguration. ASPs can check for the presence of additional channels by making use of function
pAudioFrame->fxns->channelMask().

Sample Process
The Sample Process is a multi-byte bit mask of values of the form (1<<PAF_PROCESS_X) that indicates the
processing algorithms that have operated on the Audio Frame Data. It is a read/write quantity, and it is the
responsibility of an ASP Algorithm to realize this update if appropriate. For example, if the PL Algorithm and BM
Algorithms have operated on the Audio Frame data, the Sample Process value will be
(1<<PAF_PROCESS_PL)|(1<<PAF_PROCESS_BM) if the corresponding symbols exist. Sample Process

DA8xx PA/F Integration tips 27

symbols shall be defined on an as-needed basis, depending upon whether such information is required subsequently
in the audio stream processing chain.

How to measure peak mips?
Peak mips refers to the worst mips taken in block processing for a frame. PA/F works on block of samples (256) and
there could be situations where there is high variation in mips across various calls. If there is high difference between
mips for processing different blocks; there could be peak mips problems. You could see the worst case mips
associted with your ASP by measuring mips across each apply call after cache-flush operation. The ASP wrapper
code in the package shows how to measure mips under worst case conditions.If there is a very significance
difference in mips across different blocks; this could lead to real-time issues when run with PA. So algorithm has to
take care of averaging out mips across all the calls for a frame. If this is not possible; this may have to be solved at
framwork level by managing output buffers. Please contact PA support if there exists such a situation.

Article Sources and Contributors 28

Article Sources and Contributors
DA8xx ASP Development Kit Overview Source: http://processors.wiki.ti.com/index.php?oldid=36527 Contributors: A0393170, JoeCap, Meenae

DA8xx ASP Programming Interface Source: http://processors.wiki.ti.com/index.php?oldid=37063 Contributors: A0393170, JoeCap, Meenae

DA8xx Alpha Codes Source: http://processors.wiki.ti.com/index.php?oldid=35232 Contributors: A0393170, JoeCap, Meenae

DA8xx ASP Porting Guide Source: http://processors.wiki.ti.com/index.php?oldid=37062 Contributors: A0393170, JoeCap, Meenae, UrmilParikh

DA8xx PA/ F Integration tips Source: http://processors.wiki.ti.com/index.php?oldid=35931 Contributors: A0393170, JoeCap, Meenae

Image Sources, Licenses and Contributors 29

Image Sources, Licenses and Contributors
Image:Paf_asp2.png Source: http://processors.wiki.ti.com/index.php?title=File:Paf_asp2.png License: unknown Contributors: JoeCap
Image:Paf_asp1.png Source: http://processors.wiki.ti.com/index.php?title=File:Paf_asp1.png License: unknown Contributors: JoeCap
Image:asp_api.png Source: http://processors.wiki.ti.com/index.php?title=File:Asp_api.png License: unknown Contributors: JoeCap
Image:Alpha_word2.PNG Source: http://processors.wiki.ti.com/index.php?title=File:Alpha_word2.PNG License: unknown Contributors: JoeCap
Image:Alpha3.PNG Source: http://processors.wiki.ti.com/index.php?title=File:Alpha3.PNG License: unknown Contributors: JoeCap
Image:Alpha4.png Source: http://processors.wiki.ti.com/index.php?title=File:Alpha4.png License: unknown Contributors: JoeCap
Image:Alpha5.png Source: http://processors.wiki.ti.com/index.php?title=File:Alpha5.png License: unknown Contributors: JoeCap

License 30

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE
A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
License
1. Definitions
1. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or

phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.

2. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below,
which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting
separate and independent works in themselves, which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined below) for the purposes of this License.

3. "Creative Commons Compatible License" means a license that is listed at http:/ / creativecommons. org/ compatiblelicenses that has been approved by Creative Commons as being essentially equivalent to this License,
including, at a minimum, because that license: (i) contains terms that have the same purpose, meaning and effect as the License Elements of this License; and, (ii) explicitly permits the relicensing of adaptations of works made
available under that license under this License or a Creative Commons jurisdiction license with the same License Elements as this License.

4. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.
5. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in the title of this License: Attribution, ShareAlike.
6. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.
7. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a

performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the
producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

8. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression
including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

9. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

10. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to
make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to the public by any means or process and the
communication to the public of the performances of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.

11. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected
performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights
Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other
applicable laws.
3. License Grant
Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:
1. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;
2. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original

Work. For example, a translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been modified.";
3. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,
4. to Distribute and Publicly Perform Adaptations.
5. For the avoidance of doubt:

1. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right
to collect such royalties for any exercise by You of the rights granted under this License;

2. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect
such royalties for any exercise by You of the rights granted under this License; and,

3. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via
that society, from any exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.
4. Restrictions
The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:
1. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or

Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License.
This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable,
remove from the Adaptation any credit as required by Section 4(c), as requested.

2. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i) this License; (ii) a later version of this License with the same License Elements as this License; (iii) a Creative Commons jurisdiction license
(either this or a later license version) that contains the same License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you license the Adaptation under one of the
licenses mentioned in (iv), you must comply with the terms of that license. If you license the Adaptation under the terms of any of the licenses mentioned in (i), (ii) or (iii) (the "Applicable License"), you must comply with the
terms of the Applicable License generally and the following provisions: (I) You must include a copy of, or the URI for, the Applicable License with every copy of each Adaptation You Distribute or Publicly Perform; (II) You
may not offer or impose any terms on the Adaptation that restrict the terms of the Applicable License or the ability of the recipient of the Adaptation to exercise the rights granted to that recipient under the terms of the Applicable
License; (III) You must keep intact all notices that refer to the Applicable License and to the disclaimer of warranties with every copy of the Work as included in the Adaptation You Distribute or Publicly Perform; (IV) when
You Distribute or Publicly Perform the Adaptation, You may not impose any effective technological measures on the Adaptation that restrict the ability of a recipient of the Adaptation from You to exercise the rights granted to
that recipient under the terms of the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collection, but this does not require the Collection apart from the Adaptation itself to be made subject to
the terms of the Applicable License.

3. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the
medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute,
publishing entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent with
Ssection 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The
credit required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of
the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the
Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

4. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections,
You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in
which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this
License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
6. Limitation on Liability
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
7. Termination
1. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License,

however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.
2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different

license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
1. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
2. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.
3. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this

agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
4. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.
5. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not

be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.
6. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979),

the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.

http://creativecommons.org/compatiblelicenses

	ASP Development Kit
	DA8xx ASP Development Kit Overview
	ASP Prgramming Interface
	PA/M Interface
	ASP Porting Guide
	PA/F Integration tips
	PA FIL Library API
	Creating New ASP Algorithms using FIL
	PA HD Channels Extension

	DA8xx ASP Programming Interface
	Decode Component
	Encode Component
	ASP Component
	Description of ALG_VEN_apply()
	What parameters are passed to it?
	When is it called?
	What is it supposed to do?
	What steps are required to properly implement an Apply Function?

	Description of ALG_VEN_reset()
	What parameters are passed to it?
	When is it called?
	What is it supposed to do?

	Description of ALG_VEN_control()

	DA8xx Alpha Codes
	Step1 :Select ASP name
	Step2 :Define a Status Structure for the ASP
	Step3: Select Alpha Code Symbol Names
	Step 4: Assign Alpha commnads to the Alpha Code Symbol Names.
	 Type 2 (b10:b8 = 010) Alpha Code
	 Type 3 (b10:b8 = 011) Alpha Code
	 Type 5 (b10:b8 = 101) Alpha Code
	 Type 6 (b10:b8 = 110) Alpha Code

	Step 5: Create a header file alg_a.h

	DA8xx ASP Porting Guide
	Step1: Create work area
	Step2: Generate PA/F layer using pag.exe
	Step3: Customize PA/F layer code
	Step4: Create and build CCSv4 project
	Step5: Add Alpha codes
	Step6: Adding custom ASP to the ASP chain
	Miscellaneous Information
	Communicating with other algorithms

	DA8xx PA/F Integration tips
	How to set the audio sample-size register?
	Placement of buffers in IRAM/L3RAM/SDRAM
	Scratch Memory Usage
	How to add more channels in the system?
	How to test 10ch output on DA8xx EVM?
	Channel Mask

	License
	1. Definitions
	2. Fair Dealing Rights
	3. License Grant
	4. Restrictions
	5. Representations, Warranties and Disclaimer
	6. Limitation on Liability
	7. Termination
	8. Miscellaneous

