
[image: image1]

[image: image8.jpg]I3 TEXAS
INSTRUMENTS

[image: image2]

Document License
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com
Contents

11
Overview

12
Revision History

13
References

14
Default test control values

25
Test setup diagrams

25.1
Single EVM internally looped back

25.2
Single EVM externally looped back using a breakout card

25.3
Two EVMs connected using breakout cards

35.4
Single EVM looped back externally using an external SRIO switch

35.5
Two EVMs connected using an external SRIO switch

36
How latency measurements are obtained

46.1
Type11 latency method: (Round-trip cycles)

46.2
NWRITE latency method: (Round-trip cycles)

46.3
NREAD latency method: (End to end cycles)

47
Latency statistics display explanation

47.1
Latency header breakdown

58
Throughput statistics display explanation

58.1
Throughput header breakdown

69
Modifying and compiling the code for the different SRIO connection scenarios

79.1
Setting up C-I-C connection mode (core to core, internal loopback)

79.2
Setting up C-E-C connection mode (core to core, external loopback)

79.3
Setting up C-S-C connection mode (core to core, with a SRIO switch)

89.4
Setting up B-E-B connection mode (board to board, external interface)

89.5
Setting up B-S-B connection mode (board to board, with a SRIO switch)

910
Running the example code

910.1
Running the example code for core to core scenarios

1010.2
Running the example code for board to board scenarios

1011
Automating runs using the loadti that comes with Code Composer

1111.1
Copy two enhanced java script files to your CCS loadti directory

1111.2
Command line usage for loadti in order to run the example code

1211.3
Workaround for argv/argc in SYS/BIOS

1212
Sample console output

1513
Extrapolating other statistics from the displayed output as explained with spreadsheet formulae

1513.1
Getting the processor loading value from the statistics

1513.2
Getting the max data rate value from the statistics

1513.3
Getting the data throughput rate with overhead from the statistics

1513.4
Getting the bandwidth utilization value from the statistics

1 Overview

The SRIO benchmarking example code is created to allow customers to run benchmarks on their own TI EVMs with code that utilizes the SRIO LLD APIs. The benchmarking example code allows the user to run core to core in loopback mode (internal or external) on a single EVM, or board to board using the external interface between two EVMs. This document’s purpose is to explain how measurements are obtained and how to configure the example code for different test scenarios. SRIO physical connectivity or external SRIO switch configuration is beyond the scope of this document.
2 Revision History

	Revision
	Details

	1.0
	Initial Version

	1.1
	Added test setup diagrams and corrected some wording mistakes.

	1.2
	Updated SRIO user’s guide link and directory references for example code.

3 References
[1] Serial RapidIO (SRIO) for Keystone Devices User's Guide (Literature Number: SPRUGW1A, http://www.ti.com/lit/ug/sprugw1a/sprugw1a.pdf)
4 Default test control values

The default #defines that control the example code application are located in the benchmarking.h file that is located in the “..\packages\ti\drv\srio\test\tput_benchmarking” directory of the PDK install. The default test control values are located in the section with the heading “Test control default vaules. (User changeable values)”. The benchmarking.h file contains descriptions of the various control values.

5 Test setup diagrams

These are high level test setup diagrams to illustrate the different test scenarios supported by the example code.

5.1 Single EVM internally looped back

[image: image3.emf]TI C66xx EVM

(RX & TX)

SRIO is internally looped back

so no external SRIO

connections are necessary

5.2 Single EVM externally looped back using a breakout card

[image: image4.emf]TI C66xx EVM

(RX & TX)

AMC to SMA breakout card

SMA Lane 8 = SRIO port 0

SMA Lane 9 = SRIO port 1

SMA Lane 10 = SRIO port 2

SMA Lane 11 = SRIO port 3

EVM's AMC connector is

plugged into the breakout

card's AMC connector

The breakout card's SMA

connections are looped back for

each of the SRIO ports

5.3 Two EVMs connected using breakout cards

[image: image5.emf]TI C66xx EVM 1

(RX)

TI C66xx EVM 2

(TX)

AMC to SMA breakout card

 :

SMA Lane 8 = SRIO port 0

SMA Lane 9 = SRIO port 1

SMA Lane 10 = SRIO port 2

SMA Lane 11 = SRIO port 3

AMC to SMA breakout card

Lane 8 = SRIO port 0

Lane 9 = SRIO port 1

Lane 10 = SRIO port 2

Lane 11 = SRIO port 3

EVM's AMC connector is

plugged into the breakout

card's AMC connector

EVM's AMC connector is

plugged into the breakout

card's AMC connector

The SRIO SMA connections are

cross connected between the

two breakout cards to allow for

board to board SRIO transfers:

5.4 Single EVM looped back externally using an external SRIO switch

[image: image6.emf]TI C66xx EVM

(RX & TX)

External SRIO switch

with SRIO IDs manually set:

Consumer (RX side) ID = 0xBE

Producer (TX side) ID = 0xDE

EVM's AMC connector is

plugged into the SRIO

switch's AMC connector

The external SRIO switch will

need to be manually configured

with the Consumer and Producer

SRIO IDs in order to allow

communication across it

5.5 Two EVMs connected using an external SRIO switch

[image: image7.emf]TI C66xx EVM 1

 (RX)

External SRIO switch

with SRIO IDs manually set:

Consumer (RX side) ID = 0xBE

Producer (TX side) ID = 0xDE

EVM's AMC connector is

plugged into the SRIO

switch's AMC connector

TI C66xx EVM 2

(TX)

EVM's AMC connector is

plugged into the SRIO

switch's AMC connector

The external SRIO switch will

need to be manually configured

with the Consumer and Producer

SRIO IDs in order to allow

communication across it

6 How latency measurements are obtained
For type11 and NWRITE, round-trip cycles are taken and divided by 2. For NREAD the native end-to-end cycles are measured. All measurements are taken from TX side to have the same reference clock used for timestamps. For type11 measurements, the transmit packets are prefabricated and ready to go to eliminate turnaround time. For DIO NWRITE and NREAD, all packet memory bytes are preset before the operation is started. Please note that this example code measures latency from the SRIO LLD API perspective. The example code measures LLD and hardware latency together.
6.1 Type11 latency method: (Round-trip cycles)
· Take start timestamp
· Call sRIO LLD’s Srio_sockSend() API (Push to TX queue)
· Call sRIO LLD's Srio_rxCompletionIsr() (Pop RX descriptor if a packet has been received & process the received buffer descriptor)
· Call sRIO LLD's Srio_sockRecv() API (Copy data from the RX buffer)
· Tale end timestamp

· Compute: End to End cycles = (End timestamp - Start timestamp) / 2
6.2 NWRITE latency method: (Round-trip cycles)

· Take start timestamp

· Call sRIO LLD's Srio_sockSend() API (Write to LSU registers for memory write over SRIO link)
· Poll memory address of end byte to detect when entire return packet is received.
· Take end timestamp

· Compute: End to End cycles = (End timestamp - Start timestamp) / 2
6.3 NREAD latency method: (End to end cycles)

· Take start timestamp

· Call sRIO LLD's Srio_sockSend() API (Write to LSU registers for memory read over SRIO link)
· Poll memory address of end byte to detect when entire packet is received.
· Take end timestamp

· Compute: End to End cycles = End timestamp - Start timestamp
7 Latency statistics display explanation

The following is a breakdown of the output provided for latency measurements.

7.1 Latency header breakdown

· Core (Core that the .out files is being run on)

· Lanes (The number of lanes configured for the port tested also known as port width)
· Speed (The baud rate in gigabits for which each lane is set)
· Conn (The type of SRIO connection used)
· C-I-C is core to core on the same EVM using internal loopback
· C-E-C is core to core on the same EVM using external loopback
· C-S-C is core to core on the same EVM using a external SRIO switch
· B-E-B is board to board using two separate EVMs using external loopback
· B-S-B is board to board using two separate EVMs using an External SRIO switch
· MsgType (The type of SRIO operation used)
· Type-11 is for a SRIO type-11 operation.
· DIO_NW is for a SRIO directIO NWRITE operation.
· Type-2_NR is for a SRIO directIO NREAD operation
· PktSize (The size in bytes of the packet being transfered)
· NumPkts (The total number of packets sent/received during the measurement)

· MnLCycs (Minimum end to end cycles measured during latency measurement)

· AgLCycs (Average end to end cycles measured during latency measurement)

· MxLCycs (Maximum end to end cycles measured during latency measurement)

8 Throughput statistics display explanation

The following is a breakdown of the output provided for throughput measurements.

8.1 Throughput header breakdown

· Core (Core that the .out files is being run on)

· Lanes (The number of lanes configured for the port tested also known as port width)
· Speed (The baud rate in gigabits for which each lane is set)
· Conn (The type of SRIO connection used)
· C-I-C is core to core on the same EVM using internal loopback
· C-E-C is core to core on the same EVM using external loopback
· C-S-C is core to core on the same EVM using an external SRIO switch
· B-E-B is board to board using two separate EVMs using external loopback
· B-S-B is board to board using two separate EVMs using an external SRIO switch
· MsgType (The type of SRIO operation used)
· Type-11 is for a SRIO type-11 operation.
· DIO_NW is for a SRIO directIO NWRITE operation.
· Type-2_NR is for a SRIO directIO NREAD operation
· OHBytes (The overhead in bytes for the operation)

· PktSize (The size in bytes of the packet being transfered)

· Pacing (The delay cycles added to keep the RX side from getting overruns)
· Thruput (The raw no overhead added throughput in megabits for the packet size)

· PktsSec. (The average number of packets per second measured)

· NumPkts (The total number of packets sent or received during the measurement)

· PktLoss (Always “No” since the test is designed to measure without packet loss.)

· AgPCycs (The average total number of cycles each packet took to transmit or receive)

· AgLCycs (Average cycles the LLD took to complete)

· AgICycs (Average number of idle cycles per packet transaction)

· AgOCycs (Average number of cycles that were not LLD or idle cycles)

· Seconds (The duration in seconds for measuring the packets throughput)

9 Modifying and compiling the code for the different SRIO connection scenarios
The benchmarking example code allows the user to run core to core on the same EVM or to run board to board using two separate EVMs. There are settings which allow the output to indicate which mode the test is being run in as well. The default settings are contained in the benchmarking.h file. The current defaults are for core to core on the same EVM using internal loopback, the lanes are set for 5.0Gbaud and the port is configured for 4X (all four lanes are used for the port). Each connection mode shown below can be set for different lane rates and port widths.
9.1 Setting up C-I-C connection mode (core to core, internal loopback)
· This mode is for core to core transfers on the same EVM using internal loopback. In this mode only one version of the .out file is needed. The .out file will be run on core 0 (the consumer) and core 1 (the producer).
· No modifications to the original version of the benchmarking.h file are needed to use this mode.
· The .out file should be loaded on core 0 and core 1 and run simultaneously to start benchmark measurements.
9.2 Setting up C-E-C connection mode (core to core, external loopback)
· This mode is for core to core transfers on the same EVM using external loopback. In this mode only one version of the .out file is needed. The .out file will be run on core 0 (the consumer) and core 1 (the producer). It is assumed that the board is properly looped back over the external interface via a SMA break-out board.
· Modify the benchmarking.h file in the following way:

· Change the USE_LOOPBACK_MODE define from “TRUE” to “FALSE”
· Recompile the project.
· The .out file should be loaded on core 0 and core 1 and run simultaneously to start benchmark measurements.
9.3 Setting up C-S-C connection mode (core to core, with a SRIO switch)
· This mode is for core to core transfers on the same EVM looping back through an external SRIO switch. In this mode only one version of the .out file is needed. The .out file will be run on core 0 (the consumer) and core 1 (the producer). It is assumed that the board is properly connected to the external SRIO switch and that the external SRIO switch is properly configured with the SRIO IDs, port width and lane rate. The consumer side uses 0xBE for the SRIO ID and the producer side uses 0xDE for the SRIO ID.
· Modify the benchmarking.h file in the following way:

· Change the “IS_OVER_EXTERNAL_SRIO_SWITCH” define from “FALSE to “TRUE”, this will automatically set loopback mode to off and have the output show that the test was run using an external SRIO switch.
· Recompile the project.
· The .out file should be loaded on core 0 and core 1 and run simultaneously to start benchmark measurements.

9.4 Setting up B-E-B connection mode (board to board, external interface)
· This mode is for board to board transfers using two separate EVMs. In this mode two different versions of the .out file are needed. The consumer .out file will be run on core 0 of the first EVM and the producer .out file will be run on core 1 of the second EVM. It is assumed that the boards are properly connected over their external interfaces via SMA break-out boards.
· Modify the benchmarking.h file in the following way for the consumer .out file:

· Change the “IS_BOARD_TO_BOARD” define from “FALSE to “TRUE”, this will automatically set loopback mode to off and have the output show that the test was run board to board.
· Recompile the project.
· Save the compiled consumer .out file to a separate directory.
· Modify the benchmarking.h file in the following way for the producer .out file:

· Change the “IS_BOARD_TO_BOARD” define from “FALSE to “TRUE”, this will automatically set loopback mode to off and have the output show that the test was run board to board.
· Change the “CORE_TO_INITIALIZE_SRIO” define from “CONSUMER_CORE” to “PRODUCER_CORE”. This will allow the srio initialization routine to be executed for the producer EVM.
· Recompile the project.
· Load and run the consumer .out file from the saved directory on core 0 of the first EVM. This will be the receive side for the SRIO transfer. The consumer .out file must be loaded and run before the producer .out file is run.

· Load and run the producer .out file on core 1 on the second EVM. This will be the transmit side for the SRIO transfer. This should start the transfer.
9.5 Setting up B-S-B connection mode (board to board, with a SRIO switch)
· This mode is for board to board transfers using two separate EVMs over an external SRIO Switch. In this mode two different versions of the .out file are needed. The consumer .out file will be run on core 0 of the first EVM and the producer .out file will be run on core 1 of the second EVM. It is assumed that the boards are properly connected to the external SRIO switch and that the external SRIO switch is properly configured with the SRIO IDs, port width and lane rate. The consumer side uses 0xBE for the SRIO ID and the producer side uses 0xDE for the SRIO ID.
· Modify the benchmarking.h file in the following way for the consumer .out file:

· Change the “IS_BOARD_TO_BOARD” define from “FALSE to “TRUE”, this will automatically set loopback mode to off and have the output show that the test was run board to board.
· Change the “IS_OVER_EXTERNAL_SRIO_SWITCH” define from “FALSE to “TRUE”, for this scenario this define is used purely to have the output show that the test was run using an external SRIO switch.
· Recompile the project.
· Save the compiled consumer .out file to a separate directory.
· Modify the benchmarking.h file in the following way for the producer .out file:

· Change the “IS_BOARD_TO_BOARD” define from “FALSE to “TRUE”, this will automatically set loopback mode to off and have the output show that the test was run board to board.
· Change the “IS_OVER_ EXTERNAL_SRIO_SWITCH” define from “FALSE to “TRUE”, for this scenario this define is used purely used to have the output show that the test was run using an external SRIO switch.
· Change the “CORE_TO_INITIALIZE_SRIO” define from “CONSUMER_CORE” to “PRODUCER_CORE”. This will allow the srio initialization routine to be executed for the producer EVM.
· Recompile the project
· Load and run the consumer .out file from the saved directory on core 0 of the first EVM. This will be the receive side for the SRIO transfer. The consumer .out file must be loaded and run before the producer .out file is run.

· On the second EVM connect cores 0 and core 1. Load and run the producer .out file only on core 1 on the second EVM. This will be the transmit side for the SRIO transfer. This should start the transfer. Note: Core 0 is connected in this scenario to have the global default setup function of the GEL file run, since it only runs for core 0.
10 Running the example code
This section explains how to load and run the example code.
10.1 Running the example code for core to core scenarios
This test mode requires a single EVM.
· Power cycle the EVM to start fresh before running the throughput and latency measurements.

· Bring up CCS and connect to the platform.

· On the single EVM load the compiled .out file on both cores 0 and 1. Please see section 7 for creating the proper .out file.
· Select both cores 0 and 1 and run them simultaneously.

· Progress messages should start displaying. It will take approximately 60 minutes for all tests to complete.
10.2 Running the example code for board to board scenarios
This test mode requires two EVMS. Two breakout boards or an external SRIO switch can be used for SRIO link connectivity. It is assumed that the physical connections on the breakout boards are correctly made. It is assumed if an external SRIO switch is used that it is correctly configured with SRIO IDs, port width, and lane rate. Please see section 7 for the SRIO IDs used.
· Power cycle EVMs to start fresh before running the throughput and latency measurements.

· Bring up CCS and connect to the receive side platform (consumer).

· Bring up another CCS instance and connect to the transmit side platform (producer).
· On the receive side platform load the consumer .out file on core 0. Please see section 7 for creating the consumer .out file.
· On the producer side platform connect both core 0 and core 1, but only load the producer .out file on core 1. Note: Core 0 is connected in this scenario to have the global default setup function of the GEL file run, since it only runs for core 0. Please see section 7 for creating the producer .out file.
· On the receiver side platform run the consumer .out file on core 0. The consumer needs to be running before starting the producer.
· On the producer side platform run the producer .out file on core 1. The consumer needs to be running before starting the producer.

· Progress messages should start displaying. It will take approximately 60 minutes for all tests to complete.
11 Automating runs using the loadti that comes with Code Composer

This section will show how to automate running the application using the “loadti” example for the DSS server that comes with Code Composer Studio. Loadti is located under the “ccsv5\ccs_base_x.x.x.xxxxx\scripting\examples\loadti” directory for CCS version 5 and located under the “ccsv4\scripting\examples\loadti” directory for CCS version 4.
11.1 Copy two enhanced java script files to your CCS loadti directory

· Copy the java script files located in the “..packages\ti\drv\srio\test\tput_benchmarking\enhanced_loadti_files” directory of your PDK install to the loadti directory of your CCS install. Please see above for location of loadti under the CCS install directory.

· Please see the Readme.txt file in the “enhanced_loadti_files” directory for more information.

11.2 Command line usage for loadti in order to run the example code

· Call “C:\Program Files\Texas Instruments\ccsv5\ccs_base_5.0.3.00028\scripting\examples\loadti\loadti" -gtl "C:/workspace/evmc6678l.gel" -gftr "Global_Default_Setup()" -ar -t 3900000 -ctr 2 -c "c:\workspace\C6678_v5_28_mezzanine_no_gel.ccxml" "C:\Program Files\Texas Instruments\pdk_C6678_1_0_0_18\packages\ti\drv\MyexampleProjects\SRIO_TputBenchmarkingTestProject\Debug\SRIO_TputBenchmarkingTestProject.out" 1X 1.250GBaud 60seconds >> throughput.txt"

· Note: Always power cycle EVM before each run to start fresh.
· Call is used since Loadti is a batch file. Call is necessary for the batch file to continue on to the next line in the batch file.
· “C:\Program Files\Texas Instruments\ccsv5\ccs_base_5.0.3.00028\scripting\examples\loadti\loadti" is the command to start loadti.

· -gtl "C:/workspace/evmc6678l.gel" is the loadti option to load the GEL file. This option is not needed if the .ccxml file was created to automatically load the GEL file.
· -gftr "Global_Default_Setup()" is the loadti option to load the default setup from the GEL file.
· –ar is the loadti option to do a system reset on the EVM.
· -t 3900000 is the loadti option specifying a timeout, in this case after 65 minutes. This is used to give the application enough time to allow all the tests for this run to complete.
· -ctr 2 is the loadti option specifying the number of core the .out file will be loaded on, in this case two cores.
· -c "c:\workspace\C6678_v5_28_mezzanine_no_gel.ccxml" is the loadti option specifying the .ccxml file for the EVM being used. The .ccxml file should be created so that the GEL file (e.g. evmc6678l.gel or evmc6670l.gel) is automatically loaded. This can be done by clicking on the “Advanced” tab just after creating the .ccxml file.
· "C:\Program Files\Texas Instruments\pdk_C6678_1_0_0_18\packages\ti\drv\MyexampleProjects\SRIO_TputBenchmarkingTestProject\Debug\SRIO_TputBenchmarkingTestProject.out" is the loadti option specifying the .out file that you want to load and run.
· 1X 1.250Gbaud 60seconds are the arguments that loadti will pass to the .out file. The options must be in the order shown. 1X is for a one lane port width (range: 1X, 2X or 4X). 1.250Gbaud is the rate at which the lanes will be set (range: 1.250Gbaud, 2.50Gbaud, 3.125Gbaud or 5.0Gbaud). 60seconds if for the amount of time in seconds to test each packet size.
· >> throughput.txt is a command line option used to append the console output to a file. Please note that when piping the output to a file you will not see the display. You can periodically do “type througput.txt” to see what has happened so far. You can use WordPad to view the througput.txt file. WordPad can also be used to resave the file so that it is readable with Notepad as well.
· More information on loadti can be found at the following URL: http://processors.wiki.ti.com/index.php/Loadti
11.3 Workaround for argv/argc in SYS/BIOS
· The error message: “SEVERE: ___c_args__ not defined. Use "--args=n" when linking target executable to allocate n bytes for arguments.” when running the command line shown above is an indication that SYS/BIOS is not supporting argument passing. The workaround for this is to download SYS/BIOS package version 6.32.01.38 and recompile the project with this version of SYS/BIOS selected. This is only recommended as a temporary solution to get your automation started.
12 Sample console output
The console output shown below is from an actual example code run. The sections highlighted in blue below are tab delimited output that can be copied from the CCS console window to a spreadsheet. The column headers were set to bold to easily locate them.
Setting core 0 test parameters to:

 One 4X port

 5.0Gbaud lane rate

 30 seconds test time per packet size

Setting core 1 test parameters to:

 One 4X port

 5.0Gbaud lane rate

 30 seconds test time per packet size

*********** PRODUCER ***********

WARNING: Please ensure that the CONSUMER is executing before running the PRODUCER!!

Debug(Core 1): Waiting for SRIO to be initialized.

*********** CONSUMER ***********

WARNING: Please ensure that the CONSUMER is executing before running the PRODUCER!!

Debug: Waiting for module reset...

Debug: Waiting for module local reset...

Debug: Waiting for SRIO ports to be operational...

Debug: SRIO port 0 is operational.

Debug: Lanes status shows lanes formed as one 4x port

Debug: AppConfig Tx Queue: 0x2a0 Flow Id: 0

Debug: SRIO Driver Instance 0x@008608c0 has been created

Debug: Running test in polled mode.

Debug: SRIO Driver handle 0x8608c0.

Debug: AppConfig Tx Queue: 0x2a1 Flow Id: 1

Debug: SRIO Driver Instance 0x@008607d0 has been created

Debug: Running test in polled mode.

Debug: SRIO Driver handle 0x8607d0.

Latency: (DIO_NW, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
PktSize
NumPkts
MnLCycs
AgLCycs
MxLCycs

1
4
5.000
C-I-C
DIO_NW
4
100
695
695
736

1
4
5.000
C-I-C
DIO_NW
8
100
695
695
706

1
4
5.000
C-I-C
DIO_NW
16
100
695
697
711

1
4
5.000
C-I-C
DIO_NW
32
100
737
740
755

1
4
5.000
C-I-C
DIO_NW
64
100
785
799
811

1
4
5.000
C-I-C
DIO_NW
128
100
920
922
935

1
4
5.000
C-I-C
DIO_NW
256
100
1158
1161
1175

1
4
5.000
C-I-C
DIO_NW
512
100
1325
1325
1339

1
4
5.000
C-I-C
DIO_NW
1024
100
1623
1625
1640

1
4
5.000
C-I-C
DIO_NW
2048
100
2225
2235
2240

1
4
5.000
C-I-C
DIO_NW
4096
100
3454
3455
3456

1
4
5.000
C-I-C
DIO_NW
8192
100
5885
5885
5899

Throughput: (RX side, DIO_NW, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
OHBytes
PktSize
Pacing
Thruput
PktsSec.
NumPkts
PktLoss
AgPCycs
AgLCycs
AgICycs
AgOCycs
Seconds

0
4
5.000
C-I-C
DIO_NW
16
4
0
78.43
2450980.50
73600000
No
408
42
337
29
30.03

0
4
5.000
C-I-C
DIO_NW
16
8
0
156.86
2450980.50
73600000
No
408
42
336
30
30.03

0
4
5.000
C-I-C
DIO_NW
16
16
0
313.73
2450980.50
73600000
No
408
42
336
30
30.03

0
4
5.000
C-I-C
DIO_NW
16
32
0
627.45
2450980.50
73600000
No
408
42
336
30
30.03

0
4
5.000
C-I-C
DIO_NW
16
64
0
1254.90
2450980.50
73600000
No
408
42
336
30
30.03

0
4
5.000
C-I-C
DIO_NW
16
128
0
2509.80
2450980.50
73600000
No
408
42
336
30
30.03

0
4
5.000
C-I-C
DIO_NW
16
256
0
5019.61
2450980.50
73600000
No
408
42
337
29
30.03

0
4
5.000
C-I-C
DIO_NW
16
512
0
10039.22
2450980.50
73600000
No
408
42
337
29
30.03

0
4
5.000
C-I-C
DIO_NW
16
1024
0
12941.55
1579778.88
47400000
No
633
42
561
30
30.00

0
4
5.000
C-I-C
DIO_NW
16
2048
0
13159.84
803212.88
24200000
No
1245
42
1173
30
30.13

0
4
5.000
C-I-C
DIO_NW
16
4096
0
13271.77
405022.28
12200000
No
2469
42
2397
30
30.12

0
4
5.000
C-I-C
DIO_NW
16
8192
0
13282.53
202675.31
6200000
No
4934
42
4863
29
30.60

Throughput: (TX side, DIO_NW, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
OHBytes
PktSize
Pacing
Thruput
PktsSec.
NumPkts
PktLoss
AgPCycs
AgLCycs
AgICycs
AgOCycs
Seconds

1
4
5.000
C-I-C
DIO_NW
16
4
0
78.43
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
8
0
156.86
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
16
0
313.73
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
32
0
627.45
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
64
0
1254.90
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
128
0
2509.80
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
256
0
5019.61
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
512
0
10039.22
2450980.50
73600000
No
408
326
25
57
30.03

1
4
5.000
C-I-C
DIO_NW
16
1024
171
12941.55
1579778.88
47400000
No
633
326
248
59
30.00

1
4
5.000
C-I-C
DIO_NW
16
2048
784
13159.84
803212.88
24200000
No
1245
326
861
58
30.13

1
4
5.000
C-I-C
DIO_NW
16
4096
2009
13271.77
405022.28
12200000
No
2469
326
2085
58
30.12

1
4
5.000
C-I-C
DIO_NW
16
8192
4475
13279.84
202634.25
6200000
No
4935
326
4551
58
30.60

Latency: (DIO_NR, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
PktSize
NumPkts
MnLCycs
AgLCycs
MxLCycs

1
4
5.000
C-I-C
DIO_NR
4
100
924
953
995

1
4
5.000
C-I-C
DIO_NR
8
100
924
953
995

1
4
5.000
C-I-C
DIO_NR
16
100
924
956
995

1
4
5.000
C-I-C
DIO_NR
32
100
924
990
1017

1
4
5.000
C-I-C
DIO_NR
64
100
924
1049
1070

1
4
5.000
C-I-C
DIO_NR
128
100
924
1200
1227

1
4
5.000
C-I-C
DIO_NR
256
100
924
1420
1428

1
4
5.000
C-I-C
DIO_NR
512
100
924
1577
1632

1
4
5.000
C-I-C
DIO_NR
1024
100
924
1902
1920

1
4
5.000
C-I-C
DIO_NR
2048
100
924
2477
2545

1
4
5.000
C-I-C
DIO_NR
4096
100
924
3750
3774

1
4
5.000
C-I-C
DIO_NR
8192
100
924
6595
6597

Throughput: (TX side, DIO_NR, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
OHBytes
PktSize
Pacing
Thruput
PktsSec.
NumPkts
PktLoss
AgPCycs
AgLCycs
AgICycs
AgOCycs
Seconds

1
4
5.000
C-I-C
DIO_NR
28
4
0
46.78
1461988.25
44000000
No
684
339
310
35
30.13

1
4
5.000
C-I-C
DIO_NR
28
8
0
93.57
1461988.25
44000000
No
684
339
310
35
30.13

1
4
5.000
C-I-C
DIO_NR
28
16
0
184.97
1445086.75
43400000
No
692
331
325
36
30.05

1
4
5.000
C-I-C
DIO_NR
28
32
0
351.65
1373626.38
41200000
No
728
336
356
36
30.02

1
4
5.000
C-I-C
DIO_NR
28
64
0
647.28
1264222.50
38000000
No
791
338
416
37
30.07

1
4
5.000
C-I-C
DIO_NR
28
128
0
1122.81
1096491.25
33000000
No
912
338
538
36
30.12

1
4
5.000
C-I-C
DIO_NR
28
256
0
1756.43
857632.94
25800000
No
1166
342
788
36
30.09

1
4
5.000
C-I-C
DIO_NR
28
512
0
3119.57
761614.63
23000000
No
1313
339
939
35
30.22

1
4
5.000
C-I-C
DIO_NR
28
1024
0
5063.04
618047.00
18600000
No
1618
340
1242
36
30.10

1
4
5.000
C-I-C
DIO_NR
28
2048
0
7360.29
449236.31
13600000
No
2226
338
1852
36
30.28

1
4
5.000
C-I-C
DIO_NR
28
4096
0
9359.61
285632.69
8600000
No
3501
337
3128
36
30.11

1
4
5.000
C-I-C
DIO_NR
28
8192
0
10379.47
158378.20
4800000
No
6314
341
5937
36
30.31

Latency: (Type-11, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
PktSize
NumPkts
MnLCycs
AgLCycs
MxLCycs

1
4
5.000
C-I-C
Type-11
16
100
1482
1552
1620

1
4
5.000
C-I-C
Type-11
32
100
1542
1564
1585

1
4
5.000
C-I-C
Type-11
64
100
1621
1648
1672

1
4
5.000
C-I-C
Type-11
128
100
1806
1819
1872

1
4
5.000
C-I-C
Type-11
256
100
2109
2153
2161

1
4
5.000
C-I-C
Type-11
512
100
2170
2232
2277

1
4
5.000
C-I-C
Type-11
1024
100
2422
2498
2589

1
4
5.000
C-I-C
Type-11
2048
100
3114
3188
3223

1
4
5.000
C-I-C
Type-11
4096
100
4534
4587
4675

Throughput: (RX side, Type-11, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
OHBytes
PktSize
Pacing
Thruput
PktsSec.
NumPkts
PktLoss
AgPCycs
AgLCycs
AgICycs
AgOCycs
Seconds

0
4
5.000
C-I-C
Type-11
24
16
0
164.10
1282051.25
38600000
No
780
628
0
152
30.11

0
4
5.000
C-I-C
Type-11
24
32
0
326.53
1275510.25
38600000
No
784
633
0
151
30.28

0
4
5.000
C-I-C
Type-11
24
64
0
652.23
1273885.38
38400000
No
785
634
0
151
30.15

0
4
5.000
C-I-C
Type-11
24
128
0
1304.46
1273885.38
38400000
No
785
634
0
151
30.15

0
4
5.000
C-I-C
Type-11
24
256
0
2635.78
1287001.25
38600000
No
777
626
0
151
29.99

0
4
5.000
C-I-C
Type-11
24
512
0
5211.20
1272264.63
38200000
No
786
635
0
151
30.05

0
4
5.000
C-I-C
Type-11
24
1024
0
10422.39
1272264.63
38000000
No
786
635
0
151
29.90

0
4
5.000
C-I-C
Type-11
24
2048
0
11636.36
710227.25
21400000
No
1408
632
624
152
30.13

0
4
5.000
C-I-C
Type-11
24
4096
0
11640.50
355239.78
10800000
No
2815
631
2033
151
30.41

Throughput: (TX side, Type-11, 5.000GBaud, 4X, tab delimited)

Core
Lanes
Speed
Conn
MsgType
OHBytes
PktSize
Pacing
Thruput
PktsSec.
NumPkts
PktLoss
AgPCycs
AgLCycs
AgICycs
AgOCycs
Seconds
1
4
5.000
C-I-C
Type-11
24
16
244
164.10
1282051.25
38600000
No
780
108
607
65
30.11

1
4
5.000
C-I-C
Type-11
24
32
244
326.53
1275510.25
38600000
No
784
108
612
64
30.28

1
4
5.000
C-I-C
Type-11
24
64
246
652.23
1273885.38
38400000
No
785
108
612
65
30.15

1
4
5.000
C-I-C
Type-11
24
128
244
1304.46
1273885.38
38400000
No
785
108
613
64
30.15

1
4
5.000
C-I-C
Type-11
24
256
234
2635.78
1287001.25
38600000
No
777
108
604
65
29.99

1
4
5.000
C-I-C
Type-11
24
512
246
5211.20
1272264.63
38200000
No
786
108
614
64
30.05

1
4
5.000
C-I-C
Type-11
24
1024
244
10422.39
1272264.63
38000000
No
786
108
613
65
29.90

1
4
5.000
C-I-C
Type-11
24
2048
0
11644.63
710732.06
21400000
No
1407
108
1242
57
30.13

1
4
5.000
C-I-C
Type-11
24
4096
0
11640.50
355239.78
10800000
No
2815
108
2650
57
30.41

13 Extrapolating other statistics from the displayed output as explained with spreadsheet formulae
This section show spreadsheet formulas to get processor loading, max data rate for the links lanes and lane speed combination, throughput data rate with overhead included, and bandwidth utilization from the statistics output by this example code. The formulas would be used for each packet size measured. Items shown below in bold denote that this is a column of the statistics shown in bold blue above. The value within the brackets [] can be copied to the spreadsheet.
13.1 Getting the processor loading value from the statistics
· Spreadsheet formula for getting the processor loading percentage: [= 1 - $O5/$M5]
· Cell $O5 is the average idle cycles (AgICycs). Cell $M5 is the average packet cycles (AgPCycs).
13.2 Getting the max data rate value from the statistics

· Spreadsheet formula for getting the max data rate in Mbps: [=$B5 * $C5 * 0.8 * 1000]
· Cell $B5 is the number of lanes (Lanes). Cell $C5 is the lane speed in Mbps (Speed). The .8 value in the equation accounts for the 20% overhead taken by the SRIO 8b/10b hardware encoding/decoding method. The 1000 value is to represent result in Mbps.
13.3 Getting the data throughput rate with overhead from the statistics

· Spreadsheet formula for getting throughput rate in Mbps with packet overhead included: [=(((FLOOR((($G5-1)/256)+1,1) * $F5 * 8) + ($G5 * 8)) * $J5) / 1000000]
· Cell $G5 is the packet size (PktSize). Cell $F5 is packet overhead in bytes (OHBytes). Cell $J5 is the packets per second (PktsSec.). This formula accounts for the fact that the maximum MTU size for SRIO is 256Bytes. This means that the overhead must be applied to every 256Byte segment transmitted. So for a packet with a size of 1024Bytes, the packet will need to be transmitted in four 256Byte segments and each segment will need to have the overhead applied to it.

13.4 Getting the bandwidth utilization value from the statistics
· Spreadsheet formula for getting bandwidth utilization percentage: [= $T5/$S5]
· Cell $T5 is the value derived from the calculation (in section 13.3) to get the throughput with overhead. Cell $S5 is the value derived from the calculation (in section 13.2) to get the max data rate.
Telogy Software

BIOS MCSDK 2.0

SRIO Benchmarking Example Code User’s Guide

Applies to MCSDK release 02.00.06.18 or greater

Publication Date: November 16, 2011

Version 1.2

Texas Instruments, Incorporated�20450 Century Boulevard�Germantown, MD 20874 USA

© Copyright 2011 Texas Instruments, Inc.
All Rights Reserved
ii

iii

_1378651056.vsd

_1378651147.vsd

_1378650832.vsd

_1378650905.vsd

_1378649498.vsd

