
Vision Library (VLIB) Application Programming
Interface

Reference Guide

Literature Number: SPRUG00C

November 2009

2 SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

1 About VLIB V2.1 Release ... 10
2 Exponentially-Weighted Running Mean of a Video (16-Bit) ... 11

2.1 Introduction and Use Cases .. 11

2.2 Specification .. 11

2.3 Comments .. 12

2.4 Performance Benchmarks .. 12

2.5 References .. 12

3 Exponentially-Weighted Running Mean of a Video (32-Bit) ... 13
3.1 Introduction and Use Cases .. 13

3.2 Specification .. 13

3.3 Comments .. 14

3.4 Performance Benchmarks .. 14

3.5 References .. 14

4 Exponentially-Weighted Running Variance of a Video (16-Bit) ... 15
4.1 Introduction and Use Cases .. 15

4.2 Specification .. 15

4.3 Performance Benchmarks .. 16

5 Exponentially-Weighted Running Variance of a Video (32-Bit) ... 17
5.1 Introduction and Use Cases .. 17

5.2 Specification .. 17

5.3 Performance Benchmarks .. 18

6 Uniformly-Weighted Running Mean of a Video (16-Bit) ... 19
6.1 Introduction and Use Cases .. 19

6.2 Specification .. 19

6.3 Performance Benchmarks .. 20

6.4 References .. 20

7 Uniformly-Weighted Running Variance of a Video (16-Bit) .. 21
7.1 Introduction and Use Cases .. 21

7.2 Specification .. 21

7.3 Performance Benchmarks .. 22

8 Statistical Background Subtraction (16-Bit) .. 23
8.1 Introduction and Use Cases .. 23

8.2 Specification .. 23

8.3 Performance Benchmarks .. 24

9 Statistical Background Subtraction (32-Bit) .. 25
9.1 Introduction and Use Cases .. 25

9.2 Specification .. 25

9.3 Performance Benchmarks .. 26

10 Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit) 27
10.1 Introduction and Use Cases .. 27

10.2 Specification .. 27

10.3 Performance Benchmarks .. 28

3SPRUG00C–November 2009 Table of Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

10.4 References .. 28

11 Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit) 29
11.1 Introduction and Use Cases .. 29

11.2 Specification .. 29

11.3 Performance Benchmarks .. 30

11.4 References .. 30

12 8-Bit Image Extraction From 16-Bit Background Models ... 31
12.1 Introduction and Use Cases .. 31

12.2 Specification .. 31

12.3 Requirements ... 31

12.4 Performance Benchmarks .. 31

13 32-Bit Packing and Unpacking of Binary Mask Images ... 32
13.1 Introduction and Use Cases .. 32

13.2 Specification .. 32

13.3 Requirements ... 32

13.4 Performance Benchmarks .. 32

14 Dilation ... 33
14.1 Introduction and Use Cases .. 33

14.2 Specification .. 33

14.3 Performance Benchmarks .. 34

14.4 Notes .. 34

14.5 References .. 35

15 Erosion .. 36
15.1 Introduction and Use Cases .. 36

15.2 Specification .. 36

15.3 Performance Benchmarks .. 37

15.4 Notes .. 37

15.5 References .. 37

16 Connected Components Labeling .. 38
16.1 Introduction and Use Cases .. 38

16.2 Specification .. 38

16.3 Performance Benchmarks .. 40

16.4 References .. 40

17 Canny Edge Detection .. 41
17.1 Introduction and Use Cases .. 41

17.2 Method .. 41

17.3 Performance Benchmarks .. 41

17.4 References .. 41

18 Image Smoothing (for Canny Edge Detection) ... 42
18.1 Introduction and Use Cases .. 42

18.2 Specification .. 42

18.3 References .. 42

19 2D Gradient Filtering (for Canny Edge Detection) .. 43
19.1 Introduction and Use Cases .. 43

19.2 Specification .. 43

19.3 Assumptions .. 44

19.4 Performance Benchmarks .. 44

4 Contents SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

19.5 References .. 44

20 Non-Maximum Suppression (for Canny Edge Detection) .. 45
20.1 Introduction and Use Cases .. 45

20.2 Specification .. 45

20.3 Assumptions .. 46

20.4 Performance Benchmarks .. 46

20.5 References .. 46

21 Hysteresis Thresholding (for Canny Edge Detection) ... 47
21.1 Introduction and Use Cases .. 47

21.2 Specification .. 47

21.3 Assumptions .. 48

21.4 Performance Benchmarks .. 48

21.5 References .. 48

22 Image Pyramid (8-Bit) ... 49
22.1 Introduction and Use Cases .. 49

22.2 Specification .. 49

22.3 Performance Benchmarks .. 49

22.4 References .. 49

23 Image Pyramid (16-Bit) ... 50
23.1 Introduction and Use Cases .. 50

23.2 Specification .. 50

23.3 Performance Benchmarks .. 50

23.4 References .. 50

24 Gaussian 5x5 Pyramid Kernel (8-Bit) .. 51
24.1 Introduction and Use Cases .. 51

24.2 Specification .. 51

24.3 Performance Benchmarks .. 52

24.4 References .. 52

25 Gaussian 5x5 Pyramid Kernel (16-Bit) .. 53
25.1 Introduction and Use Cases .. 53

25.2 Specification .. 53

25.3 Performance Benchmarks .. 53

25.4 References .. 54

26 Gradient 5x5 Pyramid Kernel (8-Bit) ... 55
26.1 Introduction and Use Cases .. 55

26.2 Specification .. 55

26.3 Performance Benchmarks .. 56

26.4 References .. 56

27 Recursive IIR Filter: Horizontal, First-Order .. 57
27.1 Introduction and Use Cases .. 57

27.2 Specification .. 57

27.3 Performance Benchmarks .. 58

27.4 Notes .. 58

27.5 References .. 58

28 Recursive IIR Filter: Horizontal, First-Order (16 Bit) ... 59
28.1 Introduction and Use Cases .. 59

28.2 Specification .. 59

5SPRUG00C–November 2009 Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

28.3 Performance Benchmarks .. 60

28.4 Notes .. 60

28.5 References .. 60

29 Recursive IIR Filter: Vertical, First-Order .. 61
29.1 Introduction and Use Cases .. 61

29.2 Specification .. 61

29.3 Performance Benchmarks .. 62

29.4 Notes .. 62

29.5 References .. 62

30 Recursive IIR Filter: Vertical, First-Order (16-Bit) ... 63
30.1 Introduction and Use Cases .. 63

30.2 Specification .. 63

30.3 Performance Benchmarks .. 64

30.4 Notes .. 64

30.5 References .. 64

31 Integral Image (8-Bit) .. 65
31.1 Introduction and Use Cases .. 65

31.2 Specification .. 65

31.3 Performance Benchmarks .. 66

31.4 References .. 66

32 Integral Image (16-Bit) .. 67
32.1 Introduction and Use Cases .. 67

32.2 Specification .. 67

32.3 Performance Benchmarks .. 68

32.4 References .. 68

33 Hough Transform for Lines ... 69
33.1 Introduction and Use Cases .. 69

33.2 Specification .. 69

33.3 Performance Benchmarks .. 70

33.4 Notes .. 70

34 Harris Corner Score ... 71
34.1 Introduction and Use Cases .. 71

34.2 Specification .. 71

34.3 Performance Benchmarks .. 72

34.4 Notes .. 72

34.5 References .. 72

35 Non-Maximal Suppression .. 73
35.1 Introduction and Use Cases .. 73

35.2 Specification .. 73

35.3 Performance Benchmarks .. 74

36 Lucas-Kanade Feature Tracking (Sparse Optical Flow) .. 75
36.1 Introduction and Use Cases .. 75

36.2 Specification .. 75

36.3 Performance Benchmarks .. 76

36.4 Notes .. 76

36.5 References .. 76

37 Normal Flow (16-Bit) .. 77
37.1 Introduction and Use Cases .. 77

6 Contents SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

37.2 Specification .. 77

37.3 Performance Benchmarks .. 78

38 Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit) 79
38.1 Introduction and Use Cases .. 79

38.2 Specification .. 79

38.3 Performance Benchmarks .. 80

39 Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit) 81
39.1 Introduction and Use Cases .. 81

39.2 Specification .. 81

39.3 Performance Benchmarks .. 82

40 Nelder-Mead Simplex (16-Bit) .. 83
40.1 Introduction and Use Cases .. 83

40.2 Specification .. 83

40.3 Performance Benchmarks .. 84

41 Nelder-Mead Simplex for 3D Coordinate Space (16-Bit) .. 85
41.1 Introduction and Use Cases .. 85

41.2 Specification .. 85

41.3 Performance Benchmarks .. 86

42 Legendre Moments Computation (16-Bit) ... 87
42.1 Introduction and Use Cases .. 87

42.2 Specification .. 87

42.3 Performance Benchmarks .. 88

43 Initialization for Histogram Computation for Integer Scalars (8-Bit) ... 89
43.1 Introduction and Use Cases .. 89

43.2 Specification .. 89

43.3 Performance Benchmarks .. 89

44 Histogram Computation for Integer Scalars (8-Bit) .. 90
44.1 Introduction and Use Cases .. 90

44.2 Specification .. 90

44.3 Performance Benchmarks .. 91

45 Weighted Histogram Computation for Integer Scalars (8-Bit) .. 92
45.1 Introduction and Use Cases .. 92

45.2 Specification .. 92

45.3 Performance Benchmarks .. 93

46 Initialization for Histogram Computation for Integer Scalars (16-Bit) .. 94
46.1 Introduction and Use Cases .. 94

46.2 Specification .. 94

46.3 Performance Benchmarkss ... 94

47 Histogram Computation for Integer Scalars (16-Bit) ... 95
47.1 Introduction and Use Cases .. 95

47.2 Specification .. 95

47.3 Performance Benchmarks .. 95

48 Weighted Histogram Computation for Integer Scalars (16-Bit) .. 96
48.1 Introduction and Use Cases .. 96

48.2 Specification .. 96

48.3 Performance Benchmarks .. 97

49 Histogram Computation for Multi-Dimensional Vectors (16-Bit) ... 98

7SPRUG00C–November 2009 Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

49.1 Introduction and Use Cases .. 98

49.2 Specification .. 98

49.3 Performance Benchmarks .. 99

50 Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit) 100
50.1 Introduction and Use Cases .. 100

50.2 Specification ... 100

50.3 Performance Benchmarks ... 101

51 Bhattacharya Distance (32-Bit) .. 102
51.1 Introduction and Use Cases .. 102

51.2 Specification ... 102

51.3 Performance Benchmarks ... 102

52 L1 Distance (City Block Distance) (16-bit) ... 103
52.1 Introduction and Use Cases .. 103

52.2 Specification ... 103

52.3 Performance Benchmarks ... 103

53 Luminance Extraction From YUV422 .. 104
53.1 Introduction and Use Cases .. 104

53.2 Specification ... 104

53.3 Performance Benchmarks ... 104

54 Conversion From 8-Bit YUV422 Interleaved to YUV422 Planar ... 105
54.1 Introduction and Use Cases .. 105

54.2 Specification ... 105

54.3 Performance Benchmarks ... 105

54.4 References .. 105

55 Conversion From 8-bit YUV422 Interleaved to YUV420 Planar ... 106
55.1 Introduction and Use Cases .. 106

55.2 Specification ... 106

55.3 Performance Benchmarks ... 106

55.4 References .. 106

56 Conversion From 8-bit YUV422 Interleaved to HSL Planar .. 107
56.1 Introduction and Use Cases .. 107

56.2 Specification ... 107

56.3 Performance Benchmarks ... 108

56.4 References .. 108

57 Conversion From 8-bit YUV422 Interleaved to LAB Planar .. 109
57.1 Introduction and Use Cases .. 109

57.2 Specification ... 109

57.3 Performance Benchmarks ... 110

57.4 References .. 110

58 Conversion From 8-bit YUV422 Interleaved to RGB Planar .. 111
58.1 Introduction and Use Cases .. 111

58.2 Specification ... 111

58.3 Performance Benchmarks ... 112

58.4 References .. 112

59 LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar 113
59.1 Introduction and Use Cases .. 113

59.2 Specification ... 113

8 Contents SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com

59.3 Performance Benchmarks ... 115

59.4 References .. 115

60 Conversion From 8-Bit YUV422 Semiplanar to YUV422 Planar .. 116
60.1 Introduction and Use Cases .. 116

60.2 Specification ... 116

60.3 Performance Benchmarks ... 116

60.4 References .. 116

61 Conversion From 8-Bit YUV422 Planar to YUV422 Interleaved ... 117
61.1 Introduction and Use Cases .. 117

61.2 Specification ... 117

61.3 Performance Benchmarks ... 117

61.4 References .. 117

62 SAD Based Disparity Computation (8-Bit) ... 118
62.1 Introduction and Use Cases .. 118

62.2 Specification ... 118

62.3 Performance Benchmarks ... 119

62.4 References .. 119

63 SAD Based Disparity Computation (16-Bit) ... 120
63.1 Introduction and Use Cases .. 120

63.2 Specification ... 120

63.3 Performance Benchmarks ... 121

63.4 References .. 121

9SPRUG00C–November 2009 Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Reference Guide
SPRUG00C–November 2009

Vision Library (VLIB) Application Programming Interface

1 About VLIB V2.1 Release

The Vision Library (VLIB) is a collection of computer vision algorithms that have been optimized for Texas
Instruments’ digital media processors. The VLIB Version 2.1 software library was developed for devices
with a C64x or C64x+ processing core. This Application Programming interface (API) supports rapid
integration of VLIB for embedded vision applications.

These incarnations of release version 2.1 are supplied:
• vlib.l64p
• vlib_errchk.l64p
• vlib.l64
• vlib_errchk.l64
• vlib.lib
• VLIB_lib.mdl

The first two libraries are for C64x+ and the next two libraries are for C64x. vlib.l64p and vlib.l64 are
compiled with full file-level optimization enabled and with no debug information. vlib_errchk.l64p and
vlib_errchk.l64 versions contain more error checking of input arguments for some of the library functions.
These builds are designed to produce richer error reporting for debug purposes but the added overhead
can slow performance (marginally in most cases).

Self-verifying examples are provided with the library to demonstrate how to use the API. The main test
application works with the latest version of TI’s Code Composer Studio, version 3.3. The vlib.lib library is a
bit-exact version of the library for testing in PC (Windows) environments. It was compiled using Microsoft
Visual C++ 6.0. The VLIB_lib.mdl file contains Simulink blocks for development and code generation in the
matlab environment.

10 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Exponentially-Weighted Running Mean of a Video (16-Bit)

2 Exponentially-Weighted Running Mean of a Video (16-Bit)

2.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. One such statistic is the exponentially-weighted

(EW) running mean.

2.2 Specification

2.2.1 Function

Updates the exponential running mean of the luma component of a video. If the foreground mask bit is
set, indicating there is obstruction by a foreground object, the running mean will not be updated.

2.2.2 Inputs

EW running mean buffer to be updated (SQ8.7)short *runningMean

Most recent luma buffer (UQ8.0)char *newLuma

Foreground mask buffer (32-bit packed)unsigned int *mask32packed

Weight of the newest luma (SQ0.15)short weight

Number of pixels to process (UQ32.0)unsigned int pixelCount

2.2.3 Output

Returns VLIB Error Statusint

2.2.4 Method

In the implementation shown in Equation 1, the exponential running mean is updated for those pixels
where the foreground mask is zero:

updatedMean = (1 – weight) × previousMean + weight × newestData (1)

2.2.5 APIs
int VLIB_updateEWRMeanS16(

short * restrict runningMean,
const char * restrict newLuma,
const unsigned int * restrict mask32packed,
const short weight,
const unsigned int pixelCount);

The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.7 representation.
int VLIB_initMeanWithLumaS16(

short * restrict runningMean,
const char * restrict lumaFrame,
const unsigned int pixelCount);

2.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 8.

11SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Exponentially-Weighted Running Mean of a Video (16-Bit) www.ti.com

2.3 Comments

2.3.1 Adaptation Through Running Statistics

Over the course of a day, the illumination of an outdoor scene changes drastically. A background model
needs to adapt to such effects and only report changes inherent to the scene, as opposed to its
appearance. One practical approach is to compute the running (moving) statistics of the scene over a
period of observation.

2.3.2 Foreground Objects

Based on inference or a priori knowledge, one could classify certain pixels of a video frame as foreground
object (or outlier) and exclude them from the averaging operation. This mechanism would keep foreground
object pixels from influencing the running mean of the background.

2.4 Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRMeanS16 1.0 cycles/pixel
VLIB_initMeanWithLumaS16 0.4 cycles/pixel

2.5 References
1. Chapter 15: Moving Average Filters in Digital Signal Processing: A Practical Guide for Engineers and

Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.
2. "Moving object recognition using and adaptive background memory" in Time-Varying Image

Processing and Moving Object Recognition, K.P. Karmann and A. von Brandt, Elsevier Science
Publishers B.V., 1990.

12 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Exponentially-Weighted Running Mean of a Video (32-Bit)

3 Exponentially-Weighted Running Mean of a Video (32-Bit)

3.1 Introduction and Use Cases

A background subtraction algorithm commonly consists of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. One such statistic is the exponentially-weighted

(EW) running mean.

3.2 Specification

3.2.1 Function

Updates the exponential running mean of the luma component of a video. If the foreground mask bit is set
for a pixel, indicating there is obstruction by a foreground object, the running mean will not be updated for
that pixel.

3.2.2 Inputs

EW running mean buffer to be updated (SQ8.23)int *runningMean

Most recent luma buffer (UQ8.0)char *newLuma

Foreground mask buffer (32-bit packed)unsigned int *mask32packed

Weight of the newest luma (SQ0.31)int weight

Number of pixels to process (UQ32.0)unsigned int pixelCount

3.2.3 Output

Returns VLIB Error Statusint

3.2.4 Method

In the implementation shown in Equation 2, the exponential running mean is updated for those pixels
where the foreground mask is zero:

updatedMean = (1-weight) × previousMean + weight × newestData (2)

3.2.5 APIs
int VLIB_updateEWRMeanS32(

int * restrict runningMean,
const char * restrict newLuma,
const unsigned int * restrict mask32packed,
const int weight,
const unsigned int pixelCount);

The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.23 representation.
int VLIB_initMeanWithLumaS32(

int * restrict runningMean,
const char * restrict lumaFrame,
const unsigned int pixelCount);

3.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 4.

13SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Exponentially-Weighted Running Mean of a Video (32-Bit) www.ti.com

3.3 Comments

3.3.1 Adaptation Through Running Statistics

Over the course of a day, the illumination of an outdoor scene changes drastically. A background model
needs to adapt to such effects and only report changes inherent to the scene, as opposed to its
appearance. One practical approach is to compute the running (moving) statistics of the scene over a
period of observation.

3.3.2 Foreground Objects

Based on inference or a priori knowledge, one could classify certain pixels of a video frame as foreground
object (or outlier) and exclude them from the averaging operation. This mechanism would keep foreground
object pixels from influencing the running mean of the background.

3.4 Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRMeanS32 2.0 cycles/pixel
VLIB_initMeanWithLumaS32 0.8 cycles/pixel

3.5 References
1. Chapter 15: Moving Average Filters in Digital Signal Processing: A Practical Guide for Engineers and

Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.
2. "Moving object recognition using and adaptive background memory" in Time-Varying Image

Processing and Moving Object Recognition, K.P. Karmann and A. von Brandt, Elsevier Science
Publishers B.V., 1990.

14 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Exponentially-Weighted Running Variance of a Video (16-Bit)

4 Exponentially-Weighted Running Variance of a Video (16-Bit)

4.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground.

The exponentially-weighted (EW) running variance of a pixel can be used in deciding whether an
observed deviation is statistically significant.

4.2 Specification

4.2.1 Function

Updates the exponential running variance of the luma component of a video. If the foreground mask bit is
set, indicating there is obstruction by a foreground object, the running variance will not be updated.

4.2.2 Inputs

EW running variance to be updated (SQ12.3)short *runningVar

EW running mean buffer (SQ8.7)short *runningMean

Most recent luma buffer (UQ8.0)char *newLuma

Foreground mask buffer (32-bit packed)unsigned int *mask32packed

Weight of the newest luma (SQ0.15)short weight

Number of pixels to process (UQ32.0)unsigned int pixelCount

4.2.3 Output

Returns VLIB Error Statusint

4.2.4 Method

In the implementation shown in Equation 3, the exponential running variance is updated for those pixels
where the foreground mask is zero:

updatedVar = (1 – weight) × previousVar + weight × (newestData – previousMean)2 (3)

15SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Exponentially-Weighted Running Variance of a Video (16-Bit) www.ti.com

4.2.5 APIs
int VLIB_updateEWRVarianceS16(

short * restrict runningVar,
const short * restrict runningMean,
const char * restrict newLuma,
const unsigned int * restrict mask32packed,
const short weight,
const unsigned int pixelCount);

The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ12.3 format already.
int VLIB_initVarWithConstS16(

short * restrict runningVar,
const short constVar,
const unsigned int pixelCount);

4.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 8.

4.3 Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRVarianceS16 1.3 cycles/pixel
VLIB_initVarWithConstS16 0.1 cycles/pixel

16 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Exponentially-Weighted Running Variance of a Video (32-Bit)

5 Exponentially-Weighted Running Variance of a Video (32-Bit)

5.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. The exponentially-weighted (EW) running

variance of a pixel can be used in deciding whether an observed deviation is statistically significant.

5.2 Specification

5.2.1 Function

Updates the exponential running variance of the luma component of a video. If the foreground mask bit is
set, indicating there is obstruction by a foreground object, the running variance will not be updated.

5.2.2 Inputs

EW running variance to be updated (SQ16.15)int *runningVar

EW running mean buffer (SQ8.23)int *runningMean

Most recent luma buffer (UQ8.0)char *newLuma

Foreground mask buffer (32-bit packed)unsigned int *mask32packed

Weight of the newest luma (SQ0.31)int weight

Number of pixels to process (UQ32.0)unsigned int pixelCount

5.2.3 Output

Returns VLIB Error Statusint

5.2.4 Method

In the implementation shown in Equation 4, the exponential running variance is updated for those pixels
where the foreground mask is zero:

updatedVar = (1 – weight) × previousVar + weight × (newestData – previousMean)2 (4)

5.2.5 APIs
int VLIB_updateEWRVarianceS32(

int * restrict runningVar,
const int * restrict runningMean,
const char * restrict newLuma,
const unsigned int * restrict mask32packed,
const int weight,
const unsigned int pixelCount);

The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ16.15 format already.
int VLIB_initVarWithConstS32(

int * restrict runningVar,
const int constVar,
const unsigned int pixelCount);

5.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 4.

17SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Exponentially-Weighted Running Variance of a Video (32-Bit) www.ti.com

5.3 Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRVarianceS32 2.3 cycles/pixel
VLIB_initVarWithConstS32 0.3 cycles/pixel

18 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Uniformly-Weighted Running Mean of a Video (16-Bit)

6 Uniformly-Weighted Running Mean of a Video (16-Bit)

6.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. One such statistic is the uniformly-weighted (UW)

running mean (a.k.a., moving average).

Special requirements:

For averaging, a video buffer of N luma frames need to be stored in memory. The user is expected to
maintain this buffer and pass the appropriate frame pointers to the function.

6.2 Specification

6.2.1 Function

Updates the (uniformly-weighted) running mean of the luma component of a video. If the foreground mask
bit of either the newest or the oldest video frame is set, indicating there is obstruction by a foreground
object, the running mean will not be updated.

6.2.2 Inputs

Updated running mean buffer (SQ8.7)short *updatedMean

Previous running mean buffer (SQ8.7)short *previousMean

Most recent luma buffer (UQ8.0)char *newestData

Oldest luma buffer (UQ8.0)unsigned int *oldestData

Newest mask buffer (32-bit packed)unsigned int *newestMask32packed

Oldest mask buffer (32-bit packed)unsigned int *oldestMask32packed

Number of pixels to in the luma buffer (UQ32.0)unsigned int pixelCount

Number of frames in video buffer (UQ8.0)unsigned char frameCount

6.2.3 Output

Returns VLIB Error Statusint

6.2.4 Method

In the implementation shown in Equation 5, the running mean is updated for those pixels where the
foreground mask of the oldest and newest frames are zero:

updatedMean = previousMean + (newestData – oldestData) ÷ (frameCount – 1) (5)

19SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Uniformly-Weighted Running Mean of a Video (16-Bit) www.ti.com

6.2.5 APIs
int VLIB_updateUWRMeanS16(

short * restrict updatedMean,
const short * restrict previousMean,
const char * restrict newestData,
const char * restrict oldestData,
const unsigned int * restrict newestMask32packed,
const unsigned int * restrict oldestMask32packed,
const unsigned int pixelCount,
const unsigned char frameCount);

The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.7 representation.
int VLIB_initMeanWithLumaS16(

short * restrict runningMean,
const char * restrict lumaFrame,
const unsigned int pixelCount);

6.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 8.

6.3 Performance Benchmarks

On-chip memory performance has been measured as 1.0 cycles/pixel.

6.4 References
1. Chapter 15: Moving Average Filters, in Digital Signal Processing: A Practical Guide for Engineers and

Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.

20 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Uniformly-Weighted Running Variance of a Video (16-Bit)

7 Uniformly-Weighted Running Variance of a Video (16-Bit)

7.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. The uniformly-weighted running variance of a

pixel can be used in deciding whether an observed deviation is statistically significant.

7.2 Specification

7.2.1 Function

Updates the (uniformly-weighted) running variance of the luma component of a video. If the foreground
mask bit of either the newest or the oldest video frame is set, indicating there is obstruction by a
foreground object, the running variance will not be updated.

7.2.2 Inputs

Updated running variance buffer (SQ12.3)short *updatedVar

Updated running mean buffer (SQ8.7)short *updatedMean

Previous running mean buffer (SQ8.7)short *previousMean

Previous running variance buffer (SQ12.3)short *previousVar

Most recent luma buffer (SQ8.0)char *newestData

Newest foreground mask (32-bit packed)unsigned int *newestMask32packed

Oldest foreground mask (32-bit packed)unsigned int *oldestMask32packed

Number of pixels to process (UQ32.0)unsigned int pixelCount

Number of frames in video buffer (UQ8.0)unsigned char frameCount

7.2.3 Output

Returns VLIB Error Statusint

7.2.4 Method

In the implementation shown in Equation 6, the running variance is updated for those pixels where the
foreground mask of the oldest and newest frames are zero:

updatedVar = 1 ÷ (frameCount–1) × (frameCount×previousVar + (newestData–updatedMean) ×
(newestData–previousMean)) (6)

21SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Uniformly-Weighted Running Variance of a Video (16-Bit) www.ti.com

7.2.5 APIs
int VLIB_updateUWRVarianceS16(

short * restrict updatedVar,
const short * restrict previousVar,
const short * restrict updatedMean,
const short * restrict previousMean,
const char * restrict newestData,
const unsigned int * restrict newestMask32packed,
const unsigned int * restrict oldestMask32packed,
const unsigned int pixelCount,
const unsigned char frameCount);

The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ12.3 format already.
int VLIB_initVarWithConstS16(

short * restrict runningVar,
const short constVar,
const unsigned int pixelCount);

7.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 8.

7.3 Performance Benchmarks

On-chip memory performance has been measured as 2.0 cycles/pixel.

22 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Statistical Background Subtraction (16-Bit)

8 Statistical Background Subtraction (16-Bit)

8.1 Introduction and Use Cases

In background subtraction, thresholding can be used to decide whether a pixel’s observed value deviates
too far from its model (that is, the average of its past values). Assuming each pixel’s variance has been
modeled, one might threshold a deviation image with a (scaled) variance image.

8.2 Specification

8.2.1 Function

This function implements a statistical background segmentation algorithm

8.2.2 Inputs

Binary mask to be computed (32-bit packed)unsigned int *mask32packed

Most recent luma buffer (UQ8.0)char *newLuma

EW running mean buffer (SQ8.7)short *runningMean

EW running variance buffer (SQ12.3)short *runningVar

Global threshold value (SQ12.3)short thresholdGlobal

Multiplicative factor for threshold (SQ4.11)short thresholdFactor

Number of pixels to process (UQ32.0)unsigned int pixelCount

8.2.3 Output

Returns VLIB Error Statusint

8.2.4 Method

For each pixel, the running mean and variance statistics are assumed to be known. The routine makes
comparisons between three scalar values for each pixel:

1. The squared distance between the most recent luma measurement and the running mean determined
by Equation 7:

(newLuma – runningMean)2 (7)

2. The thresholdGlobal
3. thresholdFactor × runningVar

For a pixel to be classified as foreground, (1) needs to be greater than both (2) and (3). When these
conditions are satisfied, the observation is deemed to stem from a foreground object (and not from the
modeled background), and the corresponding mask pixel value is set to 1.

The comparison with (2) plays the role of assuming a minimum variance for the pixel values, as in camera
noise, etc. A sequence of luma observations might be very consistent, driving the running variance to
small values. In such cases, camera noise could cause a pixel to pass the foreground threshold. By
setting a reasonably high camera noise value (which is a “squared” scalar), one can filter out the camera
noise.

Note that the thresholdFactor is also in squared form: if you would like measurements which are 2
standard deviations away from the mean to be classified as foreground, the thresholdFactor should be set
to 2×2=4. This variable is represented as SQ4.11 (sign bit, 4 integer bits, 11 fractional bits). In hex-format,
it 4(dec) would read 0x2000.

23SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Statistical Background Subtraction (16-Bit) www.ti.com

8.2.5 APIs
int VLIB_subtractBackgroundS16(

unsigned int * restrict mask32packed,
const char * restrict newLuma,
const short * restrict runningMean,
const short * restrict runningVar,
const short thresholdGlobal,
const short thresholdFactor,
const unsigned int PixelCount);

8.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 8.

8.3 Performance Benchmarks

On-chip memory performance has been measured as 1.1 cycles/pixel.

24 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Statistical Background Subtraction (32-Bit)

9 Statistical Background Subtraction (32-Bit)

9.1 Introduction and Use Cases

In background subtraction, thresholding can be used to decide whether a pixel's observed value deviates
too far from its model (that is, the average of its past values). Assuming each pixel's variance has been
modeled, one might threshold a deviation image with a (scaled) variance image.

9.2 Specification

9.2.1 Function

This function implements a statistical background segmentation algorithm.

9.2.2 Inputs

Binary mask to be computed (32-bit packed)unsigned int *mask32packed

Most recent luma buffer (UQ8.0)char *newLuma

EW running mean buffer (SQ8.23)int *runningMean

EW running variance buffer (SQ16.15)int *runningVar

Global threshold value (SQ16.15)int thresholdGlobal

Multiplicative factor for threshold (SQ4.27)int thresholdFactor

Number of pixels to process (UQ32.0)unsigned int pixelCount

9.2.3 Output

Returns VLIB Error Statusint

9.2.4 Method

For each pixel, the running mean and variance statistics are assumed to be known. The routine makes
comparisons between three scalar values for each pixel:

1. The squared distance between the most recent luma measurement and the running mean as shown in
Equation 8:

(newLuma – runningMean)2 (8)

2. The thresholdGlobal
3. The thresholdFactor × runningVar

For a pixel to be classified as foreground, (1) needs to be greater than both (2) and (3). When these
conditions are satisfied, the observation is deemed to stem from a foreground object (and not from the
modeled background), and the corresponding mask pixel value is set to 1.

The comparison with (2) plays the role of assuming a minimum variance for the pixel values, as in camera
noise, etc. A sequence of luma observations might be very consistent, driving the running variance to
small values. In such cases, camera noise could cause a pixel to pass the foreground threshold. By
setting a reasonably high camera noise value (which is a “squared” scalar), one can filter out the camera
noise.

The thresholdFactor is also in squared form: if you would like measurements which are two standard
deviations away from the mean to be classified as foreground, the thresholdFactor should be set to
2×2=4. This variable is represented as SQ4.27 (sign bit, 4 integer bits, 27 fractional bits). In hex-format, it
4(dec) would read 0x20000000.

25SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Statistical Background Subtraction (32-Bit) www.ti.com

9.2.5 APIs
int VLIB_subtractBackgroundS32(

unsigned int * restrict mask32packed,
const char * restrict newLuma,
const int * restrict runningMean,
const int * restrict runningVar,
const int thresholdGlobal,
const int thresholdFactor,
const unsigned int PixelCount);

9.2.6 Requirements
• I/O buffers are assumed to be double-word aligned in memory.
• pixelCount must be a multiple of 4.

9.3 Performance Benchmarks

On-chip memory performance has been measured as 2.3 cycles/pixel.

26 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit)

10 Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit)

10.1 Introduction and Use Cases

In order to reliably obtain foreground blobs in complex, dynamic environments, it is often desirable to have
an adaptive multi-modal background model. The Mixture of Gaussians background modeling and
subtraction is a popular technique that provides such capabilities.

10.2 Specification

10.2.1 Function

Maintain a Gaussian mixture model (GMM) for each pixel in a video frame, and return a packed binary
mask corresponding to the computed foreground regions for the input frame. This function assumes that
the input stream contains a single channel (such as, luminance), and uses a maximum of 3 Gaussian
components to model the pixel intensity variations.

10.2.2 Inputs

Input image buffer (UQ8.0)char *inputIm

Buffer for current weights (SQ0.15)unsigned short *currentWts

Buffer for current means (SQ8.7)unsigned short *currentMeans

Buffer for current variances (SQ12.3)unsigned short *currentVars

Buffer for indices indicating which mode a pixel belongs to (UQ8.0)char *compIndex

Buffer for internal use (UQ8.0)char *intBuffer

Computed binary foreground mask (UQ8.0)unsigned int *fgMask

Pixel count of input image buffer (SQ32.0)int imageSize

Update rate for weights (SQ0.15)unsigned short updateRate1

Update rate for heights (SQ0.15)unsigned short updateRate2

Mahalanobis distance threshold (SQ4.11)unsigned short mdThreshold

Background subtraction threshold (SQ0.15)unsigned short bsThreshold

Initial weight for new component (SQ0.15)unsigned short initialWt

Initial variance for new component (SQ12.3)unsigned short initialVar

10.2.2.1 Notes and Special Requirements
• If the input image contains N pixels, the input buffers should have the following sizes:

– currentWts: 3.N data elements
– currentMeans: 3.N data elements
– CurrentVars: 3.N data elements
– compIndex: N data elements
– intBuffer: N data elements
– fgMask: N/32 data elements

• All buffers should be initialized to 0 before invoking the function for the first time.
• I/O buffers are assumed to be double-word aligned in memory.

27SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit) www.ti.com

10.2.3 Output

Returns VLIB Error Statusint

10.2.4 APIs
int VLIB_mixtureOfGaussiansS16(

const char* restrict inputIm,
short* restrict currentWts,
short* restrict currentMeans,
short* restrict currentVars,
char* restrict compIndex,
char* restrict intBuffer,
unsigned int* restrict fgMask,
const int imageSize,
const short updateRate1,
const short updateRate2,
const short mdThreshold,
const short bsThreshold,
const short initialWt,
const short initialVar);

10.3 Performance Benchmarks

On-chip memory performance has been measured as 31.30 cycles/pixel.

10.4 References
1. Adaptive background mixture models for real-time tracking, C. Stauffer and W. Grimson, Computer

Vision and Pattern Recognition, 1999.

28 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit)

11 Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit)

11.1 Introduction and Use Cases

In order to reliably obtain foreground blobs in complex, dynamic environments, it is often desirable to have
an adaptive multi-modal background model. The Mixture of Gaussians background modeling and
subtraction is a popular technique that provides such capabilities.

11.2 Specification

11.2.1 Function

Maintain a Gaussian mixture model (GMM) for each pixel in a video frame, and return a packed binary
mask corresponding to the computed foreground regions for the input frame. This function assumes that
the input stream contains a single channel (such as, luminance), and uses a maximum of 3 Gaussian
components to model the pixel intensity variations.

11.2.2 Inputs

Input image buffer (UQ8.0)char *inputIm

Buffer for current weights (SQ0.15)unsigned short *currentWts

Buffer for current means (SQ8.23)unsigned int *currentMeans

Buffer for current variances (SQ16.15)unsigned int *currentVars

Buffer for indices indicating which mode a pixel belongs to (UQ8.0)char *compIndex

Buffer for internal use (UQ8.0)char *intBuffer

Computed binary foreground mask (UQ8.0)unsigned int *fgmask

Pixel count of input image buffer (SQ32.0)int imageSize

Update rate for weights (SQ0.15)unsigned short updateRate1

Update rate for heights (SQ0.31)unsigned int updateRate2

Mahalanobis distance threshold (SQ4.27)unsigned int mdThreshold

Background subtraction threshold (SQ0.15)unsigned short bsThreshold

Initial weight for new component (SQ0.15)unsigned short initialWt

Initial variance for new component (SQ16.15)unsigned int initialVar

11.2.3 Notes and Special Requirements
• If the input image contains N pixels, the input buffers should have the following sizes:

– currentWts: 3.N data elements
– currentMeans: 3.N data elements
– CurrentVars: 3.N data elements
– compIndex: N data elements
– intBuffer: N data elements
– fdMask: N/32 data elements

• All buffers should be initialized to 0 before invoking the function for the first time.
• I/O buffers are assumed to be double-word aligned in memory.

29SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit) www.ti.com

11.2.4 Output

Returns VLIB Error Statusint

11.2.5 APIs
int VLIB_mixtureOfGaussiansS32(

const char* restrict inputIm,
short* restrict currentWts,
int* restrict currentMeans,
int* restrict currentVars,
char* restrict compIndex,
char* restrict intBuffer,
unsigned int* restrict fgMask,
const int imageSize,
const short updateRate1,
const int updateRate2,
const int mdThreshold,
const short bsThreshold,
const short initialWt,
const int initialVar);

11.3 Performance Benchmarks

On-chip memory performance has been measured as 39.13 cycles/pixel.

11.4 References
1. Adaptive background mixture models for real-time tracking, C. Stauffer and W. Grimson, Computer

Vision and Pattern Recognition, 1999.

30 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com 8-Bit Image Extraction From 16-Bit Background Models

12 8-Bit Image Extraction From 16-Bit Background Models

12.1 Introduction and Use Cases

While a background model can contain fractional bits, you might be interested in processing or displaying
only the integer portion of it. The following function is designed to help developers extract the 8 (unsigned)
integer bits of a 16-bit (signed) background model. It can be applied to both running mean and variance
images to extract the most significant 8 bits.

12.2 Specification

12.2.1 Inputs

Background model (SQa.b)short *BGmodel

Extracted background image buffer (UQ8.0)unsigned char *BGimage

Number of pixels to process (UQ32.0)unsigned int PixelCount

12.2.2 Outputs

Returns VLIB Error Statusint

12.2.3 Method

This kernel extracts the 8-bit (unsigned) most significant integer portion of a 16-bit (signed) background
model.

12.2.4 APIs
int VLIB_extract8bitBackgroundS16(

const short * restrict BGmodel,
unsigned char * restrict BGimage,
const unsigned int pixelCount);

12.3 Requirements
• The buffers BGmodel and BGimage need to be double-word aligned in memory.
• The pixelCount must be a multiple of 8.

12.4 Performance Benchmarks

On-chip memory performance has been measured as 0.26 cycles/pixel.

31SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

32-Bit Packing and Unpacking of Binary Mask Images www.ti.com

13 32-Bit Packing and Unpacking of Binary Mask Images

13.1 Introduction and Use Cases

The background modeling and subtraction APIs of VLIB commonly operate on 32-bit packed binary mask
images. The following functions are designed to help developers pack and unpack such masks efficiently.

13.2 Specification

13.2.1 Inputs

32-bit packed binary mask buffer (UQ32.0)unsigned int *mask32packed

Unpacked binary mask image buffer (UQ8.0)unsigned char *maskImage

Number of pixels to process (UQ32.0)unsigned int pixelCount

13.2.2 Output

Returns VLIB Error Statusint

13.2.3 Method

These kernels convert binary images between the 32-bit packed and 8-bit unpacked formats.

13.2.4 APIs
int VLIB_packMask32(

const unsigned char * restrict maskImage,
unsigned int * restrict mask32packed,
const unsigned int pixelCount);

int VLIB_unpackMask32(
const unsigned int * restrict mask32packed,
unsigned char * restrict maskImage,
const unsigned int pixelCount);

13.3 Requirements
• The buffer maskImage need to be double-word aligned in memory.
• The pixelCount must be a multiple of 8.

13.4 Performance Benchmarks

On-chip memory performance for VLIB_packMask32 has been measured as 0.26 cycles/pixel.

On-chip memory performance for VLIB_unpackMask32 has been measured as 0.38 cycles/pixel.

32 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Dilation

14 Dilation

14.1 Introduction and Use Cases

Dilation, along with erosion, is an elementary morphological operation [1].

14.2 Specification

14.2.1 Function

By itself, dilation expands binary objects in an image and is commonly used to connect neighboring
objects before the connected components analysis. In conjunction with erosion, it is used to build other
morphological operations, such as opening and closing.

14.2.2 Inputs

Input binary image (32-bit packed)const unsigned char *in_data

Output binary image (32-bit packed)unsigned char *out_data

3x3 filter mask (1)const char *mask

Number of pixels to process (in pixels)int cols

Pitch of input image (in pixels)int pitch

(1) Used in only one of the available versions of dilation.

14.2.3 Method

These functions use bit-packed binary images; that is, each pixel is represented by a bit. The results are
calculated using the definition in Equation 9:

Dilation: out(u,v) = OR OR (in(u+i,v+j) AND mask(N-i,N-j)) (9)

In Equation 9, the logical summation OR is done over i=0,1,2 and j=0,1,2.

There are several important limitations to be aware of:
• I/O buffers are assumed to be double-word aligned and not aliased.
• The inputs cols and pitch must be multiples of 64.
• The bit-packed input and output are ordered the same way as pixels in the image. This is different from

IMGLIB requirement for bit-reversed binary pixels within 32-bit words.
• If the data is a region of interest within a larger image, then pitch < cols.

• Border pixels will not contain valid data, in particular, the first and last row, as well as two rightmost
columns of the output do not contain valid data.

33SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Dilation www.ti.com

14.2.4 APIs
int VLIB_dilate_bin_square(

const unsigned char *restrict in_data,
unsigned char *restrict out_data,
int cols
int pitch);

int VLIB_dilate_bin_cross(
const unsigned char *restrict in_data,
unsigned char *restrict out_data,
int cols
int pitch);

int VLIB_dilate_bin_mask(
const unsigned char *restrict in_data,
unsigned char *restrict out_data,
const char *restrict mask,
int cols
int pitch);

14.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.27, 0.27, and 0.39 cycles per pixel,
for square, cross, and mask versions of dilation, respectively.

14.4 Notes

Repeated application of dilation (resp. erosion) with a 3x3 structuring element can often be used to
achieve dilations (resp. erosions) with larger structuring elements, depending on the shape and size of the
large structuring element. In general, this can be achieved for odd structuring element sizes (5x5, 7x7,
9x9, …), and only if the structuring element is decomposable. In practice, repeated application of dilations
(resp. erosions) with a 3x3 cross and/or a 3x3 square can be used as a substitute for dilation (resp.
erosion) with commonly used large structuring elements.

If the large structuring element is decomposable or can be approximated by one that is decomposable, it
is advantageous to use this approach to reduce processing time and memory consumption.

By combining these two 3x3 structuring elements a variety of larger structuring elements can be achieved:
1 1 1

S3 = 1 1 1 (3x3 square)
1 1 1

and
0 1 0

C3 = 1 1 1 (3x3 cross)
0 1 0

34 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Dilation

For example, an 11x11 structuring element that reasonably approximates a circle can be achieved by this
combination (here we denote dilation by a “+” and erosion by a “–”):

K11 = S3 + S3 + C3 + C3 + C3 =

0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0 0

Similarly, if an 11x11 square is needed, this decomposition should be used:
S11 = S3 + S3 + S3 + S3 + S3

If an 11x11 diamond is desired, this decomposition is needed:
D11 = C3 + C3 + C3 + C3 + C3

Based on these decompositions and associativity and distributivity of dilation (resp. erosion), the larger
dilation (resp. erosion) with K11 as an example, is implemented as follows:

A + K11 = A + (S3 + S3 + C3 + C3 + C3)
= ((((A + S3) + S3) + C3) + C3) + C3

And
A - K11 = A - (S3 + S3 + C3 + C3 + C3)

= ((((A - S3) - S3) - C3) - C3) - C3

14.5 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007.

35SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Erosion www.ti.com

15 Erosion

15.1 Introduction and Use Cases

Erosion, along with dilation, is an elementary morphological operation [1].

15.2 Specification

15.2.1 Function

By itself, erosion shrinks binary objects in an image and is commonly used to remove noise before further
analysis. In conjunction with dilation, it is used to build other morphological operations, such as opening
and closing. VLIB_erode_bin_singlePixel erodes isolated pixels (ON pixels that do not have any ON
neighbors).

15.2.2 Inputs

Input binary image (32-bit packed)const unsigned char *in_data

Output binary image (32-bit packed)unsigned char *out_data

3x3 filter mask (1)const char *mask

Number of pixels to process (in pixels)int cols

Pitch of input image (in pixels)int pitch

(1) Used in only one of the available versions of erosion.

15.2.3 Method

These functions use bit-packed binary images; that is, each pixel is represented by a bit. The results are
calculated using the definitions in Equation 10:

Erosion: out(u,v) = AND AND (in(u+i,v+j) AND mask(N-i,N-j)) (10)

In Equation 10, the logical product AND is done over i=0,1,2 and j=0,1,2.

There are several important limitations to be aware of:
• I/O buffers are assumed to be double-word aligned and not aliased.
• The inputs cols and pitch must be multiples of 64.
• The bit-packed input and output are ordered the same way as pixels in the image. This is different from

IMGLIB requirement for bit-reversed binary pixels within 32-bit words.
• If the data is a region of interest within a larger image, then pitch < cols

• Border pixels will not contain valid data, in particular, the first and last row, as well as two rightmost
columns of the output do not contain valid data.

36 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Erosion

15.2.4 APIs
void VLIB_erode_bin_square(

const unsigned char *restrict in_data,
unsigned char *restrict out_data,
int cols
int pitch);

void VLIB_erode_bin_cross(
const unsigned char *restrict in_data,
unsigned char *restrict out_data,
int cols
int pitch);

void VLIB_erode_bin_mask(
const unsigned char *restrict in_data,
unsigned char *restrict out_data,
const char *restrict mask,
int cols
int pitch);

void VLIB_erode_bin_singlePixel(
const unsigned char *restrict in_data,
unsigned char *restrict out_data,
int cols,
int pitch);

15.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.29, 0.29, 0.41, and 0.2 cycles per
pixel, for square, cross, mask, and isolated pixel versions of erosion, respectively.

15.4 Notes

See Section 14.4 in the discussion on dilation regarding repeated application of a 3x3 erosion (resp.
dilation) as a substitute for erosion (resp. dilation) with larger structuring elements.

15.5 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007.

37SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Connected Components Labeling www.ti.com

16 Connected Components Labeling

16.1 Introduction and Use Cases

Segmentation algorithms are often used to separate an image into salient (foreground) and non-salient
(background) pixels; for example, VLIB_subtractBackgroundS16. These methods typically produce a
binary image that identifies each pixel as belonging either to the foreground or background. The
connected components labeling algorithm examines the binary image, groups foreground pixels that have
other foreground pixels as 4- or 8-connected neighbors, and labels discrete groupings as components.
Once accomplished, component properties can be measured and used to extract foreground information.

16.2 Specification

16.2.1 Function

The primary function for grouping and labeling foreground components or blobs in a binary image is
VLIB_createConnectedComponentsList. After the handle is created and initialized by way of
VLIB_initConnectedComponentsList, a 32-bit packed binary image should be supplied as input to the
function such that each bit corresponds to a pixel location. For example, the most significant bit in the first
32-bit word represents the top-left corner of the binary image. By passing the handle to support functions,
such as VLIB_GetCCFeatures, properties about the foreground regions in the image can be extracted.

The support function VLIB_createCCMap8Bit produces an 8-bit 2D map that labels every pixel in the
image with its corresponding blob ID. Pixels associated with the background are all given ID = 0. Other
support functions that extract blob information from the list are: VLIB_GetNumCCs and GetCCFeatures.
The former returns the number of connected components in the list, while the latter reveals features of the
component as defined by the follow structure:

typedef struct {
int area;
int xsum;
int ysum;
int xmin;
int ymin;
int xmax;
int ymax;
int seedx;
int seedy;

} VLIB_CC;

The pixel defined by a component’s centroid is not guaranteed to be a member of the component. Thus, a
guaranteed point in the connected component namely (seedx, seedy) is provided.

Additional features will be added to the structure as required. More support functions are also planned for
future releases.

16.2.2 Inputs

A pointer to the list handle, which is a private structureVLIB_CCHandle * handle
representing the labeled connected components in the binary
image.

Width of input image (in pixels)unsigned short inputwidth

Height of input image (in pixels)unsigned short inputheight

Input binary image mask(32-bit packed) (SQ32.0)int *inputImage

Pointer to large scratch buffervoid *pBuffer

Number of bytes of scratch buffer (SQ32.0)int bytesBuffer

Minimum Pixel Area of each Blob (SQ32.0)int minBlobArea

Set to 0 for 4 connected (no diagonal neighbors connected) or (SQ32.0)int connected8Flag
to 1 for 8 connected (all 8 pixel neighbors)

38 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Connected Components Labeling

16.2.3 Output

Returns VLIB Error Statusint

16.2.4 Implementation Notes

The amount of memory used by VLIB_createConnectedComponentsList depends on the binary image. To
provide a buffer with sufficient size to accommodate any binary image, use the support function
VLIB_calcConnectedComponentsMaxBufferSize to estimate the upper bound. The function returns the
maximum required bytes to support the pathological arrangement of foreground pixels in the input image,
which is generally very large.

When the binary image is preprocessed by morphological operations like erode or dilate that remove
isolated pixels and small blobs, the actual upper bound needed is much smaller than the calculated
maximum bytes, generally by a factor of 2 to 4, but perhaps even more. Because the amount suggested
will generally require an external memory buffer to store the list of connected components, enabling the
cache is highly recommended.

If the buffer is statically allocated only once, the initialization function VLIB_InitConnectedComponentsList
only needs to be called once prior to calling VLIB_createConnectedComponentsList. However, if the
allocated memory buffer address changes, that is dynamically allocated within an application, it must be
called before each call to VLIB_createConnectedComponentsList. These functions are not re-entrant.

16.2.5 APIs
int VLIB_calcConnectedComponentsMaxBufferSize(

unsigned short imgWidth,
unsigned short imgHeight,
int minBlobArea,
int *maxBytesRequired);

int VLIB_initConnectedComponentsList(
VLIB_CCHandle * handle,
void * pBuffer,
int bytesBuffer);

int VLIB_createConnectedComponentsList(
VLIB_CCHandle * handle,
unsigned short width,
unsigned short rowsInImg,
int * p32BitPackedFGMask,
int minBlobArea,
int connected8Flag);

int VLIB_getNumCCs(
VLIB_CCHandle * handle,
int * numCCs);

int VLIB_getCCFeatures(
VLIB_CCHandle * handle,
VLIB_CC * cc,
short listIndex);

int VLIB_createCCMap8Bit(
VLIB_CCHandle * restrict handle,
unsigned char * restrict pOutMap,
const unsigned short outCols,
const unsigned short outRows);

When allocating memory for the handle to connected components, be sure to use
VLIB_getSizeOfCCHandle(), which returns the size in bytes. For example,
Int sizeOfCCHandle = VLIB_GetSizeOfCCHandle();
VLIB_CCHandle * handle = (VLIB_CCHandle *)
MEM_alloc(DDR2HEAP,sizeOfCCHandle,8);

39SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Connected Components Labeling www.ti.com

16.3 Performance Benchmarks

VLIB_createConnectedComponentsList() and VLIB_createCCMap8Bit() are the only computation intensive
APIs for connected components; the others simply make calls to internal structures. DSP performance is
correlated with the relative size and number of connected components extracted from the 32-bit packed
binary foreground mask. That is, larger and more numerous components will consume more DSP cycles
and memory than smaller and fewer components.

Allocating buffers with memory sufficient to handle the worst case scenario given image resolution and
size of components is recommended. This can be computed using
VLIB_calcConnectedComponentsMaxBufferSize. VLIB_createConnectedComponentsList() performance
ranges from 1.1 cycles per input pixel to 5.2 cycles/pixel; likewise, VLIB_createCCMap8Bit() ranges from
3.0 to 8.0 cycles/pixel. The algorithm is frame based and highly image dependent. The above
performance estimates are average estimates for real use cases and worst case measurements may be
much higher.

16.4 References
1. Robot Vision, Horn, MIT Press, 1986, pp. 69-71.

40 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Canny Edge Detection

17 Canny Edge Detection

17.1 Introduction and Use Cases

Relative to many other edge detection methods, like Sobel and Robert's Cross, the Canny edge detector
is generally regarded as the edge detector of choice because it provides robust edge detection and
linking, even in noisy images.

17.2 Method

Canny edge detection produces clean, thin edges using these steps (algorithms):
• Gaussian image smoothing
• 2D gradient filtering
• Non-maximum suppression
• Hysteresis thresholding

VLIB provides these four optimized kernels so that integrators can quickly develop a Canny edge detector
that is optimized for a specific platform and application[1]. A full description of the VLIB APIs for these
kernels follows in Section 18 through Section 21. For a simple implementation using these component
VLIB functions, please refer to the example code provided with this release
(VLIB_testCannyEdgeDetector.c).

17.3 Performance Benchmarks

The overall DSP performance of Canny edge detection using VLIB kernels is largely dependent on the
framework that feeds image data from one function to another. Integrators are encouraged to leverage
fast L1D/L2D memory to improve the performance of VLIB kernels. Using sophisticated methods for data
trafficking, including the EDMA3, multiple buffers, etc., is also necessary to achieve optimal performance.
With the exception of Hysteresis thresholding, which generally requires a frame-based implementation, the
other fundamental kernels in Canny can be implemented using efficient block-based frameworks.

As general guidance for framework design, the performance of a Canny edge detector using VLIB kernels
is roughly 30 cycles per input pixel, depending on image content, image size, filter dimensions, and
applied threshold levels; such as using 7x7 Gaussian filter, VGA resolution, thresholds that produce edge
pixels in 5 – 10% of the input pixels, and at least 32kB on-chip memory.

17.4 References
1. A Computational Approach to Edge Detection by Canny, J., IEEE Trans. Pattern Analysis and Machine

intelligence, 8:679-714, 1986.

41SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Image Smoothing (for Canny Edge Detection) www.ti.com

18 Image Smoothing (for Canny Edge Detection)

18.1 Introduction and Use Cases

The first step in Canny edge detection attempts to smooth the image to remove noise and generate more
reliable gradients. This 2D filter convolves a 7×7 kernel with 8-bit coefficients over 8-bit image (luma)
pixels. This function can be used for Gaussian filtering when kernels approximate Gaussian coefficients.
Note: This step can be implemented using convolution functions in IMGLIB2 such as
IMG_conv_7x7_i8_c8s, IMG_conv_3x3_i8_c8s, etc. Refer to the IMGLIB2[1] documentation for APIs,
assumptions, and benchmarks.

18.2 Specification

18.2.1 Function

Convolves input image with a smoothing kernel. Typically zero mean Gaussian.

18.2.2 Inputs

Pointer to input (luma image)char *pInImg

Pointer to output (smoothed luma image)char *pOutImg

Number of pixels to processint numPixels2Process

Width of imageshort imgWidth

Pointer to 7x7 coefficient maskint8 p8bitMask

Number of bit-wise right shifts to apply to mask coefficientsshort shiftmask

18.2.3 Output

Returns VLIB Error Statusint

18.2.4 Method

To provide flexibility, a large 7×7 convolution filter that accepts user-specified filter coefficients is
supported. Coefficients for a smaller Gaussian filter can also be used by padding the coefficients with
zeros. When using this function for Canny edge detection, keep in mind that subsequent components
expect a 7×7 smoothing filter to be used so applying smaller filters, such as IMG_conv_3x3_i8_c8s, will
require careful adjustments to image/data pointers.

The convolution kernel accepts seven rows with imgWidth pixels for every row of imgWidth output pixels
using the input mask of 7×7. This convolution operation performs a point by point multiplication of the 7×7
mask with the input image. The 49 multiplications are summed together to produce a 32-bit convolution
intermediate sum. The user-defined shiftMask value is used to right-shift this convolution sum down to the
byte range. The result, which is range limited between 0 to 255, is store in an output array pOutImg. The
coefficients are provided as 8-bit signed values. The input image pixels are provided as 8-bit unsigned
pixels and the output pixels will be in 8-bit unsigned.

18.3 References
1. http://focus.ti.com/docs/toolsw/folders/print/sprc264.html

42 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/http://focus.ti.com/docs/toolsw/folders/print/sprc264.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com 2D Gradient Filtering (for Canny Edge Detection)

19 2D Gradient Filtering (for Canny Edge Detection)

19.1 Introduction and Use Cases

For each pixel in the image, the 2nd step in Canny edge detection extracts the horizontal and vertical 1st
order gradients along with an approximation of the gradient magnitude. Gradients are 2D vectors which
point in the direction of the greatest rate of change, in this case, in intensity [1].

19.2 Specification

19.2.1 Function

Extracts the 2D gradient vector coordinates as well as magnitude.

19.2.2 Inputs

Pointer to input (smoothed luma image)char *pInBlk

Pointer to output horizontal gradientshort *pBufGradX

Pointer to output vertical gradientshort *pBufGradY

Pointer to output gradient magnitudeshort *pBufMag

Width of imageunsigned short width

Height of imageunsigned short height

19.2.3 Output

Returns VLIB Error Statusint

19.2.4 Method

The first order 3×3 gradient filter calculates the first derivative in both the horizontal and vertical directions,
Gx and Gy, respectively. So for the image pixel I(x,y), we calculate the gradients as shown in Equation 11
and Equation 12:

Gx = I(x+1,y) - I(x-1,y) (11)

Gy = I(x,y+1) - I(x,y-1) (12)

The gradient magnitude is approximated as shown in Equation 13:

Gmag = (|Gx| + |Gy|) (13)

Gx, Gy and Gmag are all signed, 16-bit values.

43SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

2D Gradient Filtering (for Canny Edge Detection) www.ti.com

19.2.5 APIs
int VLIB_xyGradientsAndMagnitude(

unsigned char * restrict pInBlk,
short * restrict pBufGradX,
short * restrict pBufGradY,
short * restrict pBufMag,
unsigned short width,
unsigned short height);

19.3 Assumptions

The 7×7 Gaussian filtering creates a 3-pixel border around the image that contains invalid data. In the
interest of performance, the gradient filter processes these border pixels, but later stages will discount
them appropriately. Additionally, calculating the 2D gradients vectors will require a 1-pixel border. So the
gradient and magnitude outputs will have a 4-pixel border of invalid data. The gradient filter has no
memory boundary alignment requirements.

19.4 Performance Benchmarks

DSP performance of this kernel running in L1/L2 memory is 0.8 cycles per input pixel.

19.5 References
1. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for

Reference and Review by Korn, Theresa M. & Korn, Granino Arthur; New York: Dover Publications,
pp. 157-160.

44 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Non-Maximum Suppression (for Canny Edge Detection)

20 Non-Maximum Suppression (for Canny Edge Detection)

20.1 Introduction and Use Cases

As the third stage in Canny Edge Detection, non-maximum suppression identifies potential edge pixels. It
suppresses all pixels whose edge strength is not a local maximum along the gradient direction [1].

20.2 Specification

20.2.1 Function

Creates an 8-bit edge map labeling each pixel location as a non-Edge (0) or possible-edge (127).

20.2.2 Inputs

Pointer to input (gradient magnitude)short *pInMag

Pointer to input horizontal gradientshort *pBufGradX

Pointer to input horizontal gradientshort *pBufGradY

Pointer to output gradient magnitudechar *pOutBlk

Number of columns in imageunsigned short width

Pitch of the input dataunsigned short pitch

Number of rows in imageunsigned short height

20.2.3 Output

Returns VLIB Error Statusint

20.2.4 Method

VLIB_nonMaximumSuppressionCanny creates an 8-bit edge map that labels each pixel either as a
non-edge (0) or a possible-edge (127). For each pixel location, the gradient direction is established. Two
virtual points, say at a and b lying along the gradient direction on either side of the current location c are
interpolated using the gradient magnitudes from surrounding neighbors. Locations that achieve a local
maximum are regarded as possible edges, such as, Gmag(c) > Gmag(a) AND Gmag(c) >= Gmag(b);
otherwise, these points are declared non-edges.

45SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Non-Maximum Suppression (for Canny Edge Detection) www.ti.com

20.2.5 APIs
int VLIB_nonMaximumSuppressionCanny(

short * restrict pInMag,
short * restrict pInGradX,
short * restrict pInGradY,
unsigned char * restrict pOutBlk,
unsigned short width,
unsigned short pitch,
unsigned short height);

20.3 Assumptions

VLIB_nonMaximumSuppressionCanny uses a 3×3 kernel and operates on rows instead of pixels. The
function accepts 3 rows of input (Gx, Gy and Gmag) for every single row of the edge map that is
calculated. This function introduces another 1-pixel border of invalid data around the center-portion of the
edge map. Before feeding the edge map into the next stage of Canny edge detection (Hysteresis
Thresholding), the 5-pixel border of invalid data should be set as non-edges. However, the 5-pixel border
at the top and bottom of the edge map should be handled manually. The input pointers should be the top
left corner of the image where the processing starts. Take care in adjusting the pointers according to the
filter used for convolution.

20.4 Performance Benchmarks

DSP performance of this kernel running in L1/L2 memory is 8.7 cycles per input pixel.

20.5 References
1. A Computational Approach to Edge Detection by Canny, J.; IEEE Trans. Pattern Analysis and Machine

intelligence, 8:679-714, 1986.

46 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Hysteresis Thresholding (for Canny Edge Detection)

21 Hysteresis Thresholding (for Canny Edge Detection)

21.1 Introduction and Use Cases

Hysteresis thresholding is the final stage within Canny edge detection [1]. With an edge map containing
possible edges, hysteresis thresholding identifies and follows edges. Using both High and Low thresholds,
it is able to maintain edge continuity by linking stronger edge segments that are connected to weaker
segments. This stage is split into two functions VLIB_doublethresholding (block based) and
VLIB_edgeRelaxation(Non block based).

21.2 Specification

21.2.1 Function

21.2.2 Inputs

Pointer to input (gradient magnitude)short *pInMag

Pointer to edge (modified in place)char *edgeMap

Pointer to a buffer which holds locations of strong edgesunsigned int strongEdgeListPtr

Number of columns in imageunsigned short width

Pitch of the input imageunsigned short pitch

Number of rows in imageunsigned short height

Lower thresholdunsigned short loThresh

Higher thresholdunsigned short hiThresh

Relative offset of beginning of a block(when used inunsigned int block_offset
block-based mode)

21.2.3 Output

Returns VLIB Error Statusint

21.2.4 Method

VLIB_doublethresholding accepts an edge map, with each location labeled with values of either 0
(non-edge) or 127 (possible-edge). It searches for locations where the magnitude is at or above the high
threshold. VLIB_edgeRelaxation grows the edge segments by following a path of connected edges with
magnitude values at or above the low threshold. Values in the edge map are modified from possible-edge
(127) to edge (255) for line segments. The size of the strongEdgeListPtr is content dependent, but at its
largest, should be large enough to store 32-bit representation for each edge pixel in the entire image.

47SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Hysteresis Thresholding (for Canny Edge Detection) www.ti.com

21.2.5 APIs
int VLIB_doublethresholding(

signed short * restrict pInMag,
unsigned char *edgeMap,
unsigned int * restrict strongEdgeListPtr,
int * numStrongEdges,
unsigned short width,
unsigned short pitch,
unsigned short height,
unsigned char loThresh,
unsigned char hiThresh,
unsigned int block_offset);

int VLIB_edgeRelaxation(
unsigned char *edgeMap,
unsigned int * restrict strongEdgeListPtr,
int * numStrongEdges,
unsigned short width);

21.3 Assumptions

If an edge map is desired that only consists of non-edges (0) and edges (255), it will be necessary to
remove the remaining possible-edges (127) after VLIB_edgeRelaxation completes. Edge linking is image
content dependent. VLIB_edgeRelaxation is generally frame-based, so it can be difficult to partition this
function into sub-image blocks, especially for large images. Use caution when locating the
strongEdgeListPtr buffer in fast memory areas (L1D/L2D).

21.4 Performance Benchmarks

DSP performance of VLIB_doublethresholding kernel running in DDR2 memory is 3 cycles per input pixel.

The VLIB_edgeRelaxation kernel is frame-based and image dependent. Usually for natural images, DSP
performance is less than 3 cycles per input pixel.

21.5 References
1. A Computational Approach to Edge Detection by Canny, J.; IEEE Trans. Pattern Analysis and Machine

intelligence, 8:679-714, 1986.

48 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Image Pyramid (8-Bit)

22 Image Pyramid (8-Bit)

22.1 Introduction and Use Cases

Image pyramid is a data structure consisting of the original image at level 0, 2×2 sub-sampled image at
Level 1, further 2×2 sub-sampled image at Level 2, and further 2×2 sub-sampled image at Level 3. It is
commonly used in detection and tracking applications to reduce the amount of processing [1].

22.2 Specification

22.2.1 Function

Calculates Levels 1, 2, and 3 of an image pyramid for an 8-bit input image. The antialiasing filter used at
each step is a 2×2 averaging.

22.2.2 Inputs

8-bit input image (UQ8.0)char *pIn

Width of input image (in pixels)unsigned short inCols

Height of input image (in pixels)unsigned short inRows

8-bit output data (UQ8.0)char *pOut

22.2.3 Output

Returns VLIB Error Statusint

22.2.4 Method

inCols must be a multiple of 8, while pIn and pOut must be 64-bit aligned.

• pIn is a pointer to an (inCols × inRows) array of unsigned char data.
• pOut is a pointer to an (inCols × inRows) × 21 ÷ 64 array of unsigned char data.

22.2.5 APIs
int VLIB_imagePyramid8(

char * restrict pIn,
unsigned short inCols,
unsigned short inRows,
unsigned int * restrict pOut);

22.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.97 cycles per output value.

22.4 References
1. http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

49SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Image Pyramid (16-Bit) www.ti.com

23 Image Pyramid (16-Bit)

23.1 Introduction and Use Cases

Image pyramid is a data structure consisting of the original image at level 0, 2×2 sub-sampled image at
Level 1, further 2×2 sub-sampled image at Level 2, and further 2×2 sub-sampled image at Level 3. It is
commonly used in detection and tracking applications to reduce the amount of processing [1].

23.2 Specification

23.2.1 Function

Calculates Levels 1, 2, and 3 of an image pyramid for an 16-bit input image. The antialiasing filter used at
each step is a 2×2 averaging.

23.2.2 Inputs

16-bit input image (UQ16.0)unsigned short *pIn

Width of input image (in pixels)unsigned short inCols

Height of input image (in pixels)unsigned short inRows

16-bit output data (UQ16.0)unsigned short *pOut

23.2.3 Output

Returns VLIB Error Statusint

23.2.4 Method

inCols must be a multiple of 8, while pIn and pOut must be 64-bit aligned.

• pIn is a pointer to an (inCols × inRows) array of unsigned char data.
• pOut is a pointer to an (inCols × inRows) × 21 ÷ 64 array of unsigned short data.

23.2.5 APIs
int VLIB_imagePyramid16(

unsigned short * restrict pIn,
unsigned short inCols,
unsigned short inRows,
unsigned short * restrict pOut);

23.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 2.4 cycles/output value.

23.4 References
1. http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

50 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Gaussian 5x5 Pyramid Kernel (8-Bit)

24 Gaussian 5x5 Pyramid Kernel (8-Bit)

24.1 Introduction and Use Cases

Gaussian image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
image at Level 1, further 2x2 subsampled image at Level 2, etc. It is commonly used in detection and
tracking applications to reduce the amount of processing [1].

24.2 Specification

24.2.1 Function

This function can be used to calculate the next level of a pyramid. Given a pointer to a rectangular region
of interest described by W (input data width), P (input data pitch), and H (input data height), this kernel
returns (W-4)/2 x (H-3)/2 values. For example, if H=5, it will calculate a single row of results. The
antialiasing filter used at each step is a binomial approximation to the 5x5 Gaussian filter given by:

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6 / 256
4 16 24 16 4
1 4 6 4 1

24.2.2 Inputs

5 x width input array (UQ8.0)char *restrict pIn

5 x (width-4) temporary array (UQ16.0)unsigned int *restrict pB

cols = W-4; must be divisible by 8 (UQ16.0)unsigned short cols

Pitch of the input data (UQ16.0)unsigned short pitch

rows = H; height of the input data; must be >4 (UQ16.0)unsigned short rows

1 x (width-4)/2 output (UQ8.0)char *restrict pOut

24.2.3 Output

Returns VLIB Error Statusint

24.2.4 Method

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pIn,
pB, and pOut must be 64-bit aligned.

24.2.5 APIs
int VLIB_gauss5x5PyramidKernel_8(

unsigned char *restrict pIn,
unsigned short *restrict pB,
unsigned short cols,
unsigned short pitch,
unsigned short rows,
unsigned char *restrict pOut);

51SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Gaussian 5x5 Pyramid Kernel (8-Bit) www.ti.com

24.3 Performance Benchmarks

The compute-only performance with all buffers in L1 is 4.9 cycles per output value.

24.4 References
1. http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

52 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Gaussian 5x5 Pyramid Kernel (16-Bit)

25 Gaussian 5x5 Pyramid Kernel (16-Bit)

25.1 Introduction and Use Cases

Gaussian image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
image at Level 1, further 2x2 subsampled image at Level 2, etc. It is commonly used in detection and
tracking applications to reduce the amount of processing [1].

25.2 Specification

25.2.1 Function

This function can be used to calculate the next level of a pyramid. Given a pointer to a rectangular region
of interest described by W (input data width), P (input data pitch), and H (input data height), this kernel
returns (W-4)/2 x (H-3)/2 values. For example, if H=5, it will calculate a single row of results. The
antialiasing filter used at each step is a binomial approximation to the 5x5 Gaussian filter given by the
following:

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6 / 256
4 16 24 16 4
1 4 6 4 1

25.2.2 Inputs

5 x width input array (UQ16.0)unsigned short *restrict pIn

5 x (width-4) temporary array (UQ32.0)unsigned int *restrict pB

cols = W-4; must be divisible by 8 (UQ16.0)unsigned short cols

Pitch of the input data (UQ16.0)unsigned short pitch

rows = H; height of the input data; must be >4 (UQ16.0)unsigned short rows

1 x (width-4)/2 output (UQ16.0)unsigned short *restrict pOut

25.2.3 Output

Returns VLIB Error Statusint

25.2.4 Method

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pIn,
pB, and pOut must be 64-bit aligned.

25.2.5 APIs
int VLIB_gauss5x5PyramidKernel_16(

unsigned short *restrict pIn,
unsigned int *restrict pB,
unsigned short cols,
unsigned short pitch,
unsigned short rows,
unsigned short *restrict pOut);

25.3 Performance Benchmarks

The compute-only performance with all buffers in L1 is 5.8 cycles per output value.

53SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Gaussian 5x5 Pyramid Kernel (16-Bit) www.ti.com

25.4 References
1. http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

54 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Gradient 5x5 Pyramid Kernel (8-Bit)

26 Gradient 5x5 Pyramid Kernel (8-Bit)

26.1 Introduction and Use Cases

Gradient image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
gradient images at Level 1, further 2x2 subsampled gradient images at Level 2, etc. It is commonly used
in detection and tracking, as well as in image fusion applications, in order to reduce the amount of
processing [1].

26.2 Specification

26.2.1 Function

The two functions for gradient pyramid are used for horizontal and vertical gradient filtering, respectively.
These functions can be used to calculate the next level of a pyramid. Given a pointer to a rectangular
region of interest described by W (input data width), P (input data pitch), and H (input data height), each of
these kernels returns (W-4)/2 x (H-3)/2 values. For example, if H=5, each will calculate a single row of
results. The filters used at each step are:

-1 -2 0 2 1
-4 -8 0 8 4

H5 = -6 -12 0 12 6 (horizontal)
-4 -8 0 8 4
-1 -2 0 2 1

-1 -4 -6 -4 -1
-2 -8 -12 -8 -2

V5 = 0 0 0 0 0 (vertical)
2 8 12 8 2
1 4 6 4 1

After the filtering step, the intermediate results are rounded and scaled to values 0-255 (the output value
of 128 indicates no gradient) as shown in Equation 14 and Equation 15:

Gh = ((conv2(A,H5) + 64) >> 7) + 128; (14)

Gv = ((conv2(A,V5) + 64) >> 7) + 128; (15)

26.2.2 Inputs

5 x width input array (UQ8.0)char *restrict pIn

5 x (width-4) temporary array (UQ16.0)unsigned short *restrict pB

cols = W-4; must be divisible by 8 (UQ16.0)unsigned short cols

Pitch of the input data (UQ16.0)unsigned short pitch

rows = H; height of the input data; must be >4 (UQ16.0)unsigned short rows

1 x (width-4)/2 output (UQ8.0)char *restrict pOut

26.2.3 Output

Returns VLIB Error Statusint

26.2.4 Method

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pIn,
pB, and pOut must be 64-bit aligned.

55SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Gradient 5x5 Pyramid Kernel (8-Bit) www.ti.com

26.2.5 APIs
int VLIB_gradientH5x5PyramidKernel_8(

unsigned char *restrict pIn,
unsigned short *restrict pB,
unsigned short cols,
unsigned short pitch,
unsigned short rows,
unsigned char *restrict pOut);

int VLIB_gradientV5x5PyramidKernel_8(
unsigned char *restrict pIn,
unsigned short *restrict pB,
unsigned short cols,
unsigned short pitch,
unsigned short rows,
unsigned char *restrict pOut);

26.3 Performance Benchmarks

The compute-only performance in L1 is:

Horizontal 7.3 cycles per output value
Vertical 9.7 cycles per output value

26.4 References
1. "Enhanced image capture through fusion" from Proceedings of 4th International Conference on

Computer Visionby Burt, P.J. and Kolczynski, R.J., 1993.

56 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Recursive IIR Filter: Horizontal, First-Order

27 Recursive IIR Filter: Horizontal, First-Order

27.1 Introduction and Use Cases

A variety of image processing algorithms can be implemented through recursive IIR filters, including
smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

27.2 Specification

27.2.1 Function

This function implements the 1st order horizontal IIR filter.

27.2.2 Inputs

Filter output image (UQ8.0)char *out

Input luma image (UQ8.0)char *in

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Filter coefficient (SQ15.0)short weight

Array of left-boundary values (UQ8.0)char *boundaryLeft

Array of right-boundary values (UQ8.0)char *boundaryRight

Scratch buffer (UQ8.0)char *buffer

27.2.3 Output

Returns VLIB Error Statusint

27.2.4 Method

For each pixel, computes using Equation 16:

output(x,y) =0.5× (output_LR(x,y) + output_RL(x,y)) (16)

In Equation 16, output_LR is the causal filter component, processing pixels from left to right, and
output_RL is the anti-causal component, processing pixels right to left. These are defined as in
Equation 17 and Equation 18:

output_LR(x,y) = weight × input(x,y) + (1-weight) × output_LR(x-1, y) (17)

output_RL(x,y) = weight × input(x,y) + (1-weight) ×output_RL(x+1, y) (18)

While the intermediate IIR results are computed at 16-bit precision, the output is cast to 8-bits. The left-
and right-boundary values can be passed via array pointers boundaryLeft and boundaryRight. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.

57SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Recursive IIR Filter: Horizontal, First-Order www.ti.com

27.2.5 APIs
int VLIB_recursiveFilterHoriz1stOrder(

char *out,
const char *in,
const int width,
const int height,
const short weight,
const char *boundaryLeft,
const char *boundaryRight,
char *buffer);

27.3 Performance Benchmarks

On-chip memory performance has been measured as 3.9 cycles/pixel.

27.4 Notes
• The scratch buffer must be at least 4×width bytes.
• The image width and height needs to be a multiple of 4.
• The input and output image buffers need to be double-word aligned.

27.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990

58 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Recursive IIR Filter: Horizontal, First-Order (16 Bit)

28 Recursive IIR Filter: Horizontal, First-Order (16 Bit)

28.1 Introduction and Use Cases

A variety of image processing algorithms can be implemented through recursive IIR filters, including
smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

28.2 Specification

28.2.1 Function

This function implements the (signed) 16-bit 1st order horizontal IIR filter.

28.2.2 Inputs

Filter output image (SQa.b)short *out

Input luma image (SQa.b)short *in

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Filter coefficient (SQ15.0)short weight

Array of left-boundary values (SQa.b)short *boundaryLeft

Array of right-boundary values (SQa.b)short *boundaryRight

Scratch buffer (SQa.b)short *buffer

28.2.3 Output

Returns VLIB Error Statusint

28.2.4 Method

For each pixel, computes using Equation 19:

output(x,y) =0.5× (output_LR(x,y) + output_RL(x,y)) (19)

In Equation 19, output_LR is the causal filter component, processing pixels from left to right, and
output_RL is the anti-causal component, processing pixels right to left. These are defined as in
Equation 20 and Equation 21:

output_LR(x,y) = weight × input(x,y) + (1-weight) × output_LR(x-1, y) (20)

output_RL(x,y) = weight × input(x,y) + (1-weight) ×output_RL(x+1, y) (21)

Just like the input and output, the intermediate IIR results are computed at 16-bit precision. The left- and
right-boundary values can be passed via array pointers boundaryLeft and boundaryRight. If these pointers
are NULL, boundary image pixel values will be used as initial conditions.

59SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Recursive IIR Filter: Horizontal, First-Order (16 Bit) www.ti.com

28.2.5 APIs
int VLIB_recursiveFilterHoriz1stOrderS16(

short *out,
const short *in,
const int width,
const int height,
const short weight,
const short *boundaryLeft,
const short *boundaryRight,
short *buffer);

28.3 Performance Benchmarks

On-chip memory performance has been measured as 3.7 cycles/pixel.

28.4 Notes
• The scratch buffer must be at least 8×width bytes.
• The image width and height need to be a multiple of 4.
• The input and output image buffers need to be double-word aligned.

28.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990

60 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Recursive IIR Filter: Vertical, First-Order

29 Recursive IIR Filter: Vertical, First-Order

29.1 Introduction and Use Cases

A variety of image processing algorithms can be implemented through recursive IIR filters, including
smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

29.2 Specification

29.2.1 Function

This function implements the 1st order vertical IIR filter.

29.2.2 Inputs

Filter output image (UQ8.0)char *out

Input luma image (UQ8.0)char *in

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Filter coefficient (SQ15.0)short weight

Array of top-boundary values (UQ8.0)char *boundaryTop

Array of bottom-boundary values (UQ8.0)char *boundaryBottom

Scratch buffer (UQ8.0)char *buffer

29.2.3 Output

Returns VLIB Error Statusint

29.2.4 Method

For each pixel, computes using Equation 22:

output(x,y) =0.5× (output_TB(x,y) + output_BT(x,y)) (22)

In Equation 22, output_TB is the causal filter component, processing pixels from top to bottom, and
output_BT is the anti-causal component, processing pixels bottom to top. These are defined as in
Equation 23 and Equation 24:

output_TB(x,y) = weight × input(x,y) + (1-weight) × output_TB(x, y-1) (23)

output_BT(x,y) = weight × input(x,y) + (1-weight) × output_BT(x, y+1) (24)

While the intermediate IIR results are computed at 16-bit precision, the output is cast to 8-bits. The top-
and bottom-boundary values can be passed via array pointers boundaryTop and boundaryBottom. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.

61SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Recursive IIR Filter: Vertical, First-Order www.ti.com

29.2.5 APIs
int VLIB_recursiveFilterVert1stOrder(

char *out,
const char *in,
const int width,
const int height,
const short weight,
const char *boundaryTop,
const char *boundaryBottom,
char *buffer);

29.3 Performance Benchmarks

On-chip memory performance has been measured as 2.9 cycles/pixel.

29.4 Notes
• The scratch buffer must be at least 4×height bytes.
• The image width and height needs to be a multiple of 4.
• The input and output image buffers need to be double-word aligned.

29.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990

62 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Recursive IIR Filter: Vertical, First-Order (16-Bit)

30 Recursive IIR Filter: Vertical, First-Order (16-Bit)

30.1 Introduction and Use Cases

A variety of image processing algorithms can be implemented through recursive IIR filters, including
smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

30.2 Specification

30.2.1 Function

This function implements the (signed) 16-bit 1st order vertical IIR filter.

30.2.2 Inputs

Filter output image (SQa.b)short *out

Input luma image (SQa.b)short *in

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Filter coefficient (SQ15.0)short weight

Array of top-boundary values (SQa.b)short *boundaryTop

Array of bottom-boundary values (SQa.b)short *boundaryBottom

Scratch buffer (SQa.b)short *buffer

30.2.3 Output

Returns VLIB Error Statusint

30.2.4 Method

For each pixel, computes using Equation 25:

output(x,y) =0.5× (output_TB(x,y) + output_BT(x,y)) (25)

In Equation 25, output_TB is the causal filter component, processing pixels from top to bottom, and
output_BT is the anti-causal component, processing pixels bottom to top. These are defined as in
Equation 26 and Equation 27:

output_TB(x,y) = weight × input(x,y) + (1-weight) × output_TB(x, y-1) (26)

output_BT(x,y) = weight × input(x,y) + (1-weight) × output_BT(x, y+1) (27)

Just like the input and output, the intermediate IIR results are computed at 16-bit precision. The top- and
bottom-boundary values can be passed via array pointers boundaryTop and boundaryBottom. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.

63SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Recursive IIR Filter: Vertical, First-Order (16-Bit) www.ti.com

30.2.5 APIs
int VLIB_recursiveFilterVert1stOrderS16(

short *out,
const short *in,
const int width,
const int height,
const short weight,
const short *boundaryTop,
const short *boundaryBottom,
short *buffer);

30.3 Performance Benchmarks

On-chip memory performance has been measured as 2.6 cycles/pixel.

30.4 Notes
• The scratch buffer must be at least 8×height bytes.
• The image width and height need to be a multiple of 4.
• The input and output image buffers need to be double-word aligned.

30.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990

64 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Integral Image (8-Bit)

31 Integral Image (8-Bit)

31.1 Introduction and Use Cases

Object classification may be done by calculating image features (such as moments and/or wavelets) on a
region of interest and feeding them to a classifier (such as k-NN or SVM). Integral image is an important
step in calculation of a common type of image features, over-complete Haar wavelets [2]. Integral image
values may be used as features themselves.

31.2 Specification

31.2.1 Function

Calculates the Integral image of an 8-bit image.

31.2.2 Inputs

8-bit input image (UQ8.0)char *pIn

Width of input image (in pixels)unsigned short inCols

Height of input image (in pixels)unsigned short inRows

32-bit carry-over buffer (UQ32.0)unsigned int *pLastLine

32-bit output data (UQ32.0)unsigned int *pOut

31.2.3 Output

Returns VLIB Error Statusint

31.2.4 Method

The arguments pIn, pOut, and pLastLine must be 64-bit aligned. For the fixed-width version the width is
assumed to be 640 pixels.

• pIn is a pointer to an (inCols × inRows) array of unsigned char data.
• pLastLine is a pointer to an (inCols × 1) array of unsigned int data.
• pOut is a pointer to an (inCols × inRows) array of unsigned int data.

31.2.5 APIs
int VLIB_integralImage8(

char * restrict pIn,
unsigned short inCols,
unsigned short inRows,
unsigned int * restrict pLastLine,
unsigned int * restrict pOut);

65SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Integral Image (8-Bit) www.ti.com

31.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 2.3 cycles/pixel.

31.4 References
1. Rapid Object Detection Using a Boosted Cascade of Simple Features by Viola, P.; Jones, M.

TR2004-043 May 2004 http://www.merl.com/reports/docs/TR2004-043.pdf
2. Integral Image Optimizations for Embedded Vision Applications by B.Kisacanin, Proc. IEEE Southwest

Symposium on Image Analysis and interpretation, 2008;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315.

66 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.merl.com/reports/docs/TR2004-043.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Integral Image (16-Bit)

32 Integral Image (16-Bit)

32.1 Introduction and Use Cases

Object classification may be done by calculating image features (such as moments and/or wavelets) on a
region of interest and feeding them to a classifier (such as k-NN or SVM). Integral image is an important
step in calculation of a common type of image features, over-complete Haar wavelets [2]. Integral image
values may be used as features themselves.

32.2 Specification

32.2.1 Function

Calculates the Integral image of a 16-bit image.

32.2.2 Inputs

16-bit input image (UQ16.0)unsigned short *pIn

Width of input image (in pixels)unsigned short inCols

Height of input image (in pixels)unsigned short inRows

32-bit carry-over buffer (UQ32.0)unsigned int *pLastLine

32-bit output data (UQ32.0)unsigned int *pOut

32.2.3 Output

Returns VLIB Error Statusint

32.2.4 Method

The arguments pIn, pOut, and pLastLine must be 64-bit aligned. For the fixed-width version the width is
assumed to be 640 pixels.

• pIn is a pointer to an (inCols × inRows) array of unsigned short data.
• pLastLine is a pointer to an (inCols × 1) array of unsigned int data.
• pOut is a pointer to an (inCols × inRows) array of unsigned int data.

32.2.5 APIs
int VLIB_integralImage16(

unsigned short * restrict pIn,
unsigned short inCols,
unsigned short inRows,
unsigned int * restrict pLastLine,
unsigned int * restrict pOut);

67SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Integral Image (16-Bit) www.ti.com

32.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 2.7 cycles/pixel.

32.4 References
1. Rapid Object Detection Using a Boosted Cascade of Simple Features by Viola, P.; Jones, M.

TR2004-043 May 2004 http://www.merl.com/reports/docs/TR2004-043.pdf
2. Integral Image Optimizations for Embedded Vision Applications by B.Kisacanin, Proc. IEEE Southwest

Symposium on Image Analysis and interpretation, 2008;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315.

68 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.merl.com/reports/docs/TR2004-043.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Hough Transform for Lines

33 Hough Transform for Lines

33.1 Introduction and Use Cases

Hough transform for lines is commonly used after edge detection to determine the most dominant lines in
the edge image.

33.2 Specification

33.2.1 Function

Calculates the Hough space values from the list of edge points.

33.2.2 Inputs

Points to a list of 2xlistSize values of type unsigned (UQ16.0)unsigned short * pEdgeMapList
short which represent x and y values of edge points

Points to the Hough space (UQ16.0)unsigned short * pOutHoughSpace

Width of the original image (UQ16.0)unsigned short outBlkWidth

Height of the original image (UQ16.0)unsigned short outBlkHeight

(UQ32.0)unsigned int listSize

(UQ16.0)unsigned short thetaRange

(UQ16.0)unsigned short rhoMaxLength

Sine lookup tables (SQ16.0)short *pSIN

Cosine lookup tables (SQ16.0)short *pCOS

Array of rhoMaxLength elements (UQ16.0)unsigned short ping

Array of rhoMaxLength elements (UQ16.0)unsigned short pong

Array of rhoMaxLength elements (UQ16.0)unsigned short pang

Array of rhoMaxLength elements (UQ16.0)unsigned short peng

33.2.3 Output

unsigned short maxHoughSpaceValue

33.2.4 Method

For each edge point (specified by the x and y coordinates) and for each angle theta, rho is calculated by
Equation 28:

rho = x cos(theta) + y sin(theta) (28)

The corresponding value in the Hough space, located at (rho, theta), is incremented.

69SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Hough Transform for Lines www.ti.com

33.2.5 APIs
int VLIB_houghLineFromList(

unsigned short * restrict pEdgeMapList,
unsigned short * restrict pOutHoughSpace,
unsigned short outBlkWidth,
unsigned short outBlkHeight,
unsigned int listSize,
unsigned short thetaRange,
unsigned short rhoMaxLength,
const short *pSIN,
const short *pCOS,
unsigned short * restrict ping,
unsigned short * restrict pong,
unsigned short * restrict pang,
unsigned short * restrict peng);

33.3 Performance Benchmarks

The full benefit of optimized code can be achieved if the data is not partitioned into small buffers and if at
least ping, pong, pang, and peng buffers are in internal memory. The performance of 777 cycles per edge
point (or 39 cycles per pixel, assuming 5% of pixels are edge points) has been achieved, with input and
output data in external memory and ping, pong, pang, and peng buffers in internal memory. The number
of edge points in this measurement was 3840 (5% of 320x240 image), while the size of the Hough Space
in this measurement was 267x267.

33.4 Notes
• pEdgeMapList points to a list of 2xlistSize values of type unsigned short, which represent x and y

values of edge points: x1,y1,x2,y2,… While it should be located in the fastest memory available, its
role is cache friendly so it can be stored in the external memory.

• pOutHoughSpace points to the Hough space, which is a thetaRange×rhoMaxLength array of unsigned
short. While it should be located in the fastest memory available, its role is cache friendly so it can be
stored in the external memory.

• outBlkWidth and outBlkHeight represent width and height of the original image
• pSIN and pCOS are lookup tables for sine and cosine and can be generated during initialization. While

it should be located in the fastest memory available, it’s role is cache friendly so it can be stored in the
external memory.

• ping, pong, pang, and peng are arrays of rhoMaxLength elements of type unsigned short. These
arrays should be stored in the fastest available memory.

• The function is written so that the list of edge points can be broken into sublists and the function called
on them separately. This is useful if the list needs to be in the fast memory, but is too big to fit there. In
that case, the Hough space should be cleared only before the call on the first sublist.

70 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Harris Corner Score

34 Harris Corner Score

34.1 Introduction and Use Cases

Various vision algorithms operate by identifying salient image points and processing their neighborhoods.
The Harris Score is a popular measure of saliency. It tends to find corner-like image textures, which are
relatively easy to match between different views or to track in a video sequence.

34.2 Specification

34.2.1 Function

Computes the Harris corner score for each pixel in a luma image. As input, the function takes the
horizontal and vertical gradients of the image. This gives flexibility to the user in selecting the scale for
gradient computations.

34.2.2 Inputs

Horizontal gradient of the input luma image (SQ15.0)short *gradX

Vertical gradient of the input luma image (SQ15.0)short *gradY

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Harris (cornerness) score (SQ5.10)short *HarrisScore

Sensitivity parameter (SQ0.15)short k

Scratch buffer (UQ8.0)char *buffer

34.2.3 Output

Returns VLIB Error Statusint

34.2.4 Method

For each pixel, Equation 29, Equation 30 and Equation 31 together compute the 2×2 gradient covariance
matrix M, where the summations are over 7×7 pixel neighborhoods:

M(1,1) = sum(gradX)2 (29)

M(1,2) = M(2,1) = sum(gradX × gradY) (30)

M(2,2) = sum(gradY)2 (31)

The cornerness score is defined as in Equation 32, where k is a parameter, typically around 0.04. An
approximation of the binary log of this value is stored in the output.

det(M) – k × trace(M)2 (32)

71SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Harris Corner Score www.ti.com

34.2.5 APIs
int VLIB_harrisScore_7x7(

const short * restrict gradX,
const short * restrict gradY,
int width,
int height,
short * restrict harrisscore,
short k,
char * buffer);

34.3 Performance Benchmarks

On-chip memory performance has been measured as 18.7 cycles/pixel.

34.4 Notes
• Garbage may be written in the output margins, which are 3 pixels wide on each side. If the input

gradient also has a margin of 1 pixel, then there is an overall output margin of 4 pixels.
• This method uses a scratch buffer which must be at least 96*width bytes.

34.5 References
1. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/index.html

72 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Non-Maximal Suppression

35 Non-Maximal Suppression

35.1 Introduction and Use Cases

Vision algorithms such as Harris Corner detection produce an intensity map or voting space for which the
local maxima or peaks need to be found.

35.2 Specification

35.2.1 Function

35.2.2 Inputs

Input image (SQ15.0)short *im

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Minimum threshold for peaks (SQ15.0)short thresh

Binary output indicating peaks (UQ8.0)char *out

35.2.3 Output

Returns VLIB Error Statusint

35.2.4 Method

This function compares the value of each input pixel against its neighbors. For an output pixel to be "on"
(numerical value=255), the input pixel value must be both:
• Greater than or equal to its neighbors’ values
• Greater than the minimum threshold

If the above conditions are not met simultaneously, the output will be 0.

73SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Non-Maximal Suppression www.ti.com

35.2.5 APIs

There are three versions this function, defined for neighborhood sizes of 3x3, 5x5, and 7x7 pixels. All
operate on 16-bit signed input data.
int VLIB_nonMaxSuppress_3x3_S16(

const short * restrict im,
int width,
int height,
short thresh,
char * restrict out);

int VLIB_nonMaxSuppress_5x5_S16(
const short * restrict im,
int width,
int height,
short thresh,
char * restrict out);

int VLIB_nonMaxSuppress_7x7_S16(
const short * restrict im,
int width,
int height,
short thresh,
char * restrict out);

35.3 Performance Benchmarks

On-chip memory performance of the kernels has been measured as:

VLIB_nonMaxSuppress_3x3_16s 1.1 cycles/pixel
VLIB_nonMaxSuppress_5x5_16s 1.4 cycles/pixel
VLIB_nonMaxSuppress_7x7_16s 2.2 cycles/pixel

74 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Lucas-Kanade Feature Tracking (Sparse Optical Flow)

36 Lucas-Kanade Feature Tracking (Sparse Optical Flow)

36.1 Introduction and Use Cases

Tracks a set of feature points using the Lucas-Kanade method.

36.2 Specification

36.2.1 Function

The input parameters x and y correspond to pixel locations in the input image im1. Patches of 7x7 pixels
centered around these points are tracked in the next frame.

The pointers outx and outy are expected to contain initial estimates of the feature location in im2. They are
overwritten with the refined values after max_iters iterations. This is so that this function can be used in a
coarse-to-fine strategy with image pyramids. Otherwise, the initial estimates should typically be equal to
the locations in the first image.

36.2.2 Inputs

Input Luma image 1 (UQ8.0)char *im1

Input Luma image 2 (UQ8.0)char *im2

X gradient of im1 (SQ15.0)short *gradX

Y gradient of im1 (SQ15.0)short *gradY

Image width (SQ31.0)int width

Image height (SQ31.0)int height

Number of features (SQ31.0)int nfeatures

X feature coordinates in im1 (SQ11.4)short *x

Y feature coordinates in im1 (SQ11.4)short *y

X feature coordinates in im2 (SQ11.4)short *outx

Y feature coordinates in im2 (SQ11.4)short *outy

Number of iterations (SQ31.0)int iters

Scratch memory (UQ8.0)char *scratch

36.2.3 Output

Returns VLIB Error Statusint

36.2.4 Method

This function considers a 7x7 patch centered about the feature coordinate. Bilinear sampling is used so
that the tracked feature coordinates have sub-pixel accuracy.

The number of iterations is typically between 6 and 10.

75SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Lucas-Kanade Feature Tracking (Sparse Optical Flow) www.ti.com

36.2.5 APIs
int VLIB_trackFeaturesLucasKanade_7x7(

const char * restrict im1,
const char * restrict im2,
const short * restrict gradX,
const short * restrict gradY,
int width,
int height,
int nfeatures,
short * restrict x,
short * restrict y,
short * outx,
short * outy,
int max_iters,
const char * restrict scratch);

36.3 Performance Benchmarks

On-chip memory performance has been measured as:
• 423 cycles per feature for startup
• 120 cycles per iteration per feature

36.4 Notes

The input pointer scratch should be pointing at a memory buffer of 384 bytes, ideally located in on-chip
memory.

36.5 References
1. "An Iterative Image Registration Technique with an Application to Stereo Vision” from Proceedings of

the 7th international Joint Conference on Artificial intelligence (IJCAI '81) by B.D. Lucas and T.
Kanade, April, 1981, pp. 674-679, http://www.ri.cmu.edu/pubs/pub_2548.html.

2. http://www.ri.cmu.edu/projects/project_515.html
3. http://www.ces.clemson.edu/~stb/klt/

76 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ri.cmu.edu/pubs/pub_2548.html
http://www.ri.cmu.edu/projects/project_515.html
http://www.ces.clemson.edu/~stb/klt/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Normal Flow (16-Bit)

37 Normal Flow (16-Bit)

37.1 Introduction and Use Cases

Normal flow computes, for every pixel in the image, motion vectors parallel to the gradient direction at
each pixel. Normal flow vectors, averaged over an image region, can provide useful information regarding
the direction and magnitude of motion.

37.2 Specification

37.2.1 Function

This function takes as input the x and y gradients, the gradient magnitude, and the pixel-wise image
difference and computes the normal flow vectors in the x and y directions.

37.2.2 Inputs

Pointer to array containing image difference values (SQ15.0)short *inDiff

Pointer to array containing gradient magnitude values (SQ15.0)short *Emag

Pointer to array containing x-direction gradient (SQ15.0)short *Ex

Pointer to array containing y-direction gradient (SQ15.0)short *Ey

Pointer to array (Look-Up Table) containing values for integer division. (SQ0.15)short *Lut

Threshold on gradient magnitude (SQ15.0)short T

Number of pixels to process (SQ31.0)char numPixels

Pointer to array to hold computed normal flow vectors (SQ8.7)short *normalFlowX

Pointer to array to hold computed normal flow vectors (SQ8.7)short *normalFlowY

37.2.3 Output
void

37.2.4 Notes
• The LUT (look-up table) array should hold values such that LUT[n] = X, where X is the value 1/n

represented in SQ0.15 format.
• The threshold, T, on gradient magnitude ensures that only those pixels with gradient magnitude greater

than T will be processed. Normal flow values for pixels that do not pass the threshold will be 0.
• Minimum number of pixels allowed is 20 (numPixels >= 20)
• Number of pixels to be processed should be a multiple of 4.
• All arrays are double word aligned.

37.2.5 APIs
void VLIB_normalFlow_16(

short * imDiff,
short * Emag,
short * Ex,
short * Ey,
short * LUT,
short T,
int numPixels,
short * normalFlowU,
short * normalFlowV);

77SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Normal Flow (16-Bit) www.ti.com

37.3 Performance Benchmarks

The performance of the function was measured as 2.65 cycles / pixel.

78 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit)

38 Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit)

38.1 Introduction and Use Cases

The Kalman filter is an efficient recursive method to estimate the state of a process from partial
observations. It is used in a wide variety of vision problems, such as object tracking, background
estimation, etc.

38.2 Specification

38.2.1 Function

The Kalman filter is implemented as two separate functions, one for the time update (or prediction) and
the other for the measurement update (or correction). This implementation assumes a pre-determined
fixed dimension for the observation and state vectors. The observation vector should be of dimension 2×1,
and the state vector should have dimension 4×1.

The state of the Kalman filter is defined using the following structure. The expected bit precision for each
matrix is noted in the comments. The variable sD and mD represent the dimensionality of the state and
measurement vectors and have values of 4 and 2 respectively.

typedef struct VLIB_kalmanFilter_2x4{
short transition[sD*sD]; // SQ15.0, state transition matrix
short errorCov[sD*sD]; // SQ13.2, a priori error covariance matrix
short predictedErrorCov[sD*sD]; // SQ13.2, predicted error cov matrix
short state[sD]; // SQ10.5, state of the process
short predictedState[sD]; // SQ10.5, predicted state of the process
short measurement[mD*sD]; // SQ15.0, measurement matrix
short processNoiseCov[sD*sD]; // SQ13.2, process noise cov matrix
short measurementNoiseCov[mD*mD]; // SQ15.0, measurement noise cov
short kalmanGain[sD*mD]; // SQ0.15, Kalman gain
short temp1[sD*sD];
short temp2[sD*sD];
short temp3[sD*sD];

} VLIB_kalmanFilter_2x4;

38.2.2 Inputs

The inputs to VLIB_kalmanFilter_2x4_Predict (prediction step) are:

Pointer to struct VLIB_kalmanFilter_2x4VLIB_kalmanFilter_2x4 *KF

The inputs to VLIB_kalmanFilter_2x4_Correct (correction step) are:

Pointer to struct VLIB_kalmanFilter_2x4VLIB_kalmanFilter_2x4 *KF

Pointer to array (dimension 2x1) containing measurement (SQ10.5)short *Z

Pointer to array to store the residual error (SQ10.5)short *Res

38.2.3 Output

For VLIB_kalmanFilter_2x4_Predict:

Returns VLIB Error Statusint

For VLIB_kalmanFilter_2x4_Correct:

Returns VLIB Error Statusint

79SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit) www.ti.com

38.2.4 Notes
• All the matrices in the struct VLIB_kalmanFilter_2x4 should be initialized to 0.
• The structure should be word aligned.

38.2.5 APIs
void VLIB_kalmanFilter_2x4_Predict(

VLIB_kalmanFilter_2x4 * KF);

void VLIB_kalmanFilter_2x4_Correct(
VLIB_kalmanFilter_2x4 * KF,
short * restrict Z,
short * restrict Residual);

38.3 Performance Benchmarks

For VLIB_kalmanFilter_2x4_Predict: Performance using on-chip memory was measured as 154
cycles.

For VLIB_kalmanFilter_2x4_Correct: Performance using on-chip memory was measured as 327
cycles.

80 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit)

39 Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit)

39.1 Introduction and Use Cases

The Kalman filter is an efficient recursive method to estimate the state of a process from partial
observations. It is used in a wide variety of vision problems, such as object tracking, background
estimation, etc.

39.2 Specification

39.2.1 Function

The Kalman filter is implemented as two separate functions, one for the time update (or prediction) and
the other for the measurement update (or correction). This implementation assumes a pre-determined
fixed dimension for the observation and state vectors. The observation vector should be of dimension 4×1,
and the state vector should have dimension 6×1.

The state of the Kalman filter is defined using the following structure (the expected bit precision for each
matrix is noted in the comments). The variable sD and mD represent the dimensionality of the state and
measurement vectors and have values of 6 and 4 respectively.

typedef struct VLIB_kalmanFilter{
short transition[sD*sD]; // SQ13.2, state transition matrix
short errorCov[sD*sD]; // SQ13.2, a priori error covariance matrix
short predictedErrorCov[sD*sD]; // SQ13.2, predicted error cov matrix
short state[sD]; // 16-bit, desired Q value, state of the process
short predictedState[sD]; // desired Q value, predicted state
short measurement[mD*sD]; // SQ15.0, measurement matrix
short processNoiseCov[sD*sD]; // SQ13.2, process noise cov matrix
short measurementNoiseCov[mD*mD]; // SQ15.0, measurement noise cov
short kalmanGain[sD*mD]; // SQ0.15, Kalman gain
short temp1[sD*sD];
short temp2[sD*sD];
short temp3[sD*sD];
int tempBuffers[mD*mD*2];
int scaleFactor; // SQ31.0

} VLIB_kalmanFilter_4x6;

39.2.2 Inputs

The inputs to VLIB_kalmanFilter_4x6_Predict (prediction step) are:

Pointer to struct VLIB_kalmanFilter_4x6VLIB_kalmanFilter_4x6 *KF

The inputs to VLIB_kalmanFilter_4x6_Correct (correction step) are:

Pointer to struct VLIB_kalmanFilter_4x6VLIB_kalmanFilter_4x6 *KF

Pointer to array containing measurement (User-defined)short *Z

Pointer to array to store the residual error (User-defined)short *Res

39.2.3 Output

For VLIB_kalmanFilter_4x6_Predict:
void

For VLIB_kalmanFilter_4x6_Correct:
void

81SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit) www.ti.com

39.2.4 Notes
• All the matrices in the struct VLIB_kalmanFilter_4x6 should be initialized to 0.
• The structure should be word aligned.
• The element scaleFactor in the structure VLIB_kalmanFilter_4x6 scales the matrix M = (H*P1*H' + R)

to ensure that its inverse does not overflow 32 bits. The scaling is done by right shifting each element
of M by the quantity assigned to scaleFactor. The computed inverse is then scaled back to ensure the
correct result, based on the identity inv(M) = inv(M/k)/k.

39.2.5 APIs
void VLIB_kalmanFilter_4x6_Predict(

VLIB_kalmanFilter_4x6 * KF);

void VLIB_kalmanFilter_4x6_Correct(
VLIB_kalmanFilter_4x6 * KF,
short * restrict Z,
short * restrict Residual);

39.3 Performance Benchmarks

For VLIB_kalmanFilter_2x4_Predict: Performance using on-chip memory was measured as 374.2
cycles.

For VLIB_kalmanFilter_2x4_Correct: Performance using on-chip memory was measured as 1627.5
cycles.

82 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Nelder-Mead Simplex (16-Bit)

40 Nelder-Mead Simplex (16-Bit)

40.1 Introduction and Use Cases

Optimization techniques are important in several vision algorithms. The Nelder-Mead simplex method is a
common optimization technique used to find the minima of a given cost function.

40.2 Specification

40.2.1 Function

This function accepts as input a pointer to the cost function to be minimized and an N-dimensional
coordinate vector indicating the starting point of the search. The function returns the coordinates of the
found minima and the actual minimum value.

40.2.2 Inputs

Pointer to cost function.int *func

Pointer to array containing starting coordinates User-definedshort *start

Pointer to array containing the size of the initial step to be taken in each User-definedshort *init_step
dimension to form the initial simplex

Dimensionality of the coordinate space (SQ31.0)int N

Value equal to the reciprocal of N (SQ0.15)short N_inv

Maximum number of allowed iterations to find the minima (SQ31.0)int MaxIteration

Stopping criterion corresponding to a threshold on the difference User-definedint EPSILON
between the largest and smallest values in the simplex at any iteration.

Pointer to array of size N+1. For internal use.short *v

Pointer to array of size N+1. For internal use.short *f

Pointer to array of size N. For internal use.short *vr

Pointer to array of size N. For internal use.short *ve

Pointer to array of size N. For internal use.short *vc

Pointer to array of size N. For internal useshort *vm

Pointer to structure containing additional arguments to cost functionvoid *addtlArgs

Pointer to array to hold the coordinates of the found minimashort *minPoint

Pointer to variable to hold the minimum found valueint *minValue

40.2.3 Output
void

40.2.4 Notes
• All arrays should be double word aligned.
• The stooping condition works as follows: If the difference between the largest and smallest values in

the simplex at any iteration is smaller than EPSILON, the function terminates.
• It is assumed that the cost function will have a 32-bit return value, and, as input, it will take 16-bit

representation of the coordinates.

83SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Nelder-Mead Simplex (16-Bit) www.ti.com

40.2.5 APIs
void VLIB_simplex(

int (*func)(short[], void *)
short* restrict start,
short* restrict init_step,
int N,
short N_INV,
int MaxIteration,
int EPSILON,
short* restrict v,
int* restrict f,
short* restrict vr,
short* restrict ve,
short* restrict vc,
short* restrict vm,
void* addtlArgs,
short* restrict minPoint,
int* restrict minValue);

40.3 Performance Benchmarks

The performance of the function was measured as: 75.9 cycles to find the minima of Rosenbrock's
function in 3D. The minimization involved 102 iterations and 177 evaluations of the cost function.

84 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Nelder-Mead Simplex for 3D Coordinate Space (16-Bit)

41 Nelder-Mead Simplex for 3D Coordinate Space (16-Bit)

41.1 Introduction and Use Cases

Optimization techniques are important in several vision algorithms. The Nelder-Mead simplex method is a
common optimization technique used to find the minima of a given cost function.

41.2 Specification

41.2.1 Function

This function accepts as input a pointer to the cost function to be minimized and an 3-dimensional
coordinate vector indicating the starting point of the search. The function returns the coordinates of the
found minima and the actual minimum value.

41.2.2 Inputs

Pointer to cost function.int *func

Pointer to array containing starting coordinates User-definedshort *start

Pointer to array containing the size of the initial step to be taken in each User-definedshort *init_step
dimension to form the initial simplex

Maximum number of allowed iterations to find the minima (SQ31.0)int MaxIteration

Stopping criterion corresponding to a threshold on the difference User-definedint EPSILON
between the largest and smallest values in the simplex at any iteration.

Pointer to array of size N+1. For internal use.short *v

Pointer to array of size N+1. For internal use.short *f

Pointer to array of size N. For internal use.short *vr

Pointer to array of size N. For internal use.short *ve

Pointer to array of size N. For internal use.short *vc

Pointer to array of size N. For internal useshort *vm

Pointer to structure containing additional arguments to cost functionvoid *addtlArgs

Pointer to array to hold the coordinates of the found minimashort *minPoint

Pointer to variable to hold the minimum found valueint *minValue

41.2.3 Output
void

41.2.4 Notes
• All arrays should be double word aligned.
• The stooping condition works as follows: If the difference between the largest and smallest values in

the simplex at any iteration is smaller than EPSILON, the function terminates.
• It is assumed that the cost function will have a 32-bit return value, and, as input, it will take 16-bit

representation of the coordinates.

85SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Nelder-Mead Simplex for 3D Coordinate Space (16-Bit) www.ti.com

41.2.5 APIs
void VLIB_simplex_3D(

int (*func)(short[], void *)
short * restrict start,
short * restrict init_step,
int MaxIteration,
int EPSILON,
short * restrict v,
int * restrict f,
short * restrict vr,
short * restrict ve,
short * restrict vc,
short * restrict vm,
void * addtlArgs,
short * restrict minPoint,
int * restrict minValue);

41.3 Performance Benchmarks

The performance of the function was measured as: 40.2 cycles to find the minima of Rosenbrock’s
function in 3D. The minimization involved 102 iterations and 177 evaluations of the cost function.

86 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Legendre Moments Computation (16-Bit)

42 Legendre Moments Computation (16-Bit)

42.1 Introduction and Use Cases

Legendre Moments are orthogonal moments often used for image analysis.

42.2 Specification

42.2.1 Function

The function returns a square matrix M of dimension (Order+1) where Order is the specified maximum
order of moments required. Entries M(i,j) such that i+j < Order correspond to the required Legendre
moments.

There are two functions related to Legendre Moments computation, VLIB_legendreMoments_Init and
VLIB_legendreMoments. If the image size and the required moment order are fixed,
VLIB_legendreMoments_Init can be called just once to initialize the necessary buffers and constants.

42.2.2 Inputs

The inputs for VLIB_legendreMomentsInit are:

Buffer to hold the computed Legendre polynomial values (UQ0.15)short *LPoly

Required order of moments (SQ31.0)int Order

Image height (SQ31.0)int ImH

Pointer to variable SQ0.15)short *Constant

The inputs for VLIB_legendreMoments are:

Input image patch (UQ0.15)short *Im

Buffer to hold the computed Legendre moments (SQ0.15)short *Lmoments

Buffer returned from call to VLIB_LegendreMoments_Init (SQ0.15)short *LPoly

Required order of moments (SQ31.0)int Order

Image height (SQ31.0)int ImH

Constant value returned by VLIB_LegendreMoments_Init SQ0.15)short Constant

42.2.3 Output

Returns VLIB Error Statusint

87SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Legendre Moments Computation (16-Bit) www.ti.com

42.2.4 Notes
• The pixel intensities should be normalized to be in [0,1].
• The image should be square, image height = image width.
• The largest image supported is 256×256.
• The largest order of moments supported is 40.
• Lmoments should be initialized to 0
• LPoly is independent of the pixel intensities, and is dependent only on the size of the image (ImH) and

the Order of the moment values required
• LPoly must be of dimension (Order+1)×(ImH)
• LMoments must be of dimension (Order+1)×(Order+1)

Example:

1. Initialize LPoly, LMoments to 0 before first call to VLIB_legendreMoments
2. For subsequent calls to VLIB_legendreMoments, reuse the values in the buffer LPoly set by the first

call to VLIB_legendreMoments

42.2.5 APIs
int VLIB_legendreMoments_Init(

short * LPoly,
const char Order,
const char ImH,
short * Constant);

int VLIB_legendreMoments(
const * restrict Im,
short * restrict LMoments,
short * restrict LPoly,
const char Order,
const char ImH,
const short Constant);

42.3 Performance Benchmarks

For a 128x128 image patch and 20th order moments, the performance using on-chip memory has been
measured as in Equation 33:

0.68×(ImH^2)×(Order^2) (33)

88 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Initialization for Histogram Computation for Integer Scalars (8-Bit)

43 Initialization for Histogram Computation for Integer Scalars (8-Bit)

43.1 Introduction and Use Cases

Initializes arrays for histogram computation.

43.2 Specification

43.2.1 Function

Initializes buffer for 1D histogram computation by VLIB_histogram_1D_U8 and
VLIB_weightedHistogram_1D_U8.

43.2.2 Inputs

Array containing the edges of the histogram bins (must (UQ8.0)char *binEdges
be monotonically increasing)

Number of bins (SQ31.0)int numB

Buffer for internal use (UQ8.0)char *internalBuffer

43.2.3 Output

Returns VLIB Error Statusint

43.2.4 Notes
• The values of the bin edges must increase monotonically.
• internalBuffer should be initialized to 0.
• internalBuffer should have a size equal to the length of the range of values that the input quantity can

take.
R = (max – min) + 1, where max and min are the maximum and minimum possible values that the
input quantity can have.

43.2.5 APIs
int VLIB_histogram_1D_Init_U8(

char * restrict binEdges,
const int numBins,
char * restrict histArray);

43.3 Performance Benchmarks

On-chip memory performance of has been measured as in Equation 34, where R is the length of the
range of the quantity to be histogrammed:

8.6 × R cycles (34)

89SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Histogram Computation for Integer Scalars (8-Bit) www.ti.com

44 Histogram Computation for Integer Scalars (8-Bit)

44.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

44.2 Specification

44.2.1 Function

Computes histogram from array of 8-bit integers using user-specified bins.

44.2.2 Inputs

Input array of scalar values (UQ8.0)char *X

Number of elements in X (SQ31.0)int numX

Number of bins (SQ31.0)int numB

Value to accumulate in histogram bins (UQ16.0)unsigned short binWeight

Array for internal use, initialized by VLIB_histogram_1D_Init_U8 (UQ8.0)char *histArray

Array for internal use (UQ16.0)unsigned short *internalH1

Array for internal use (UQ16.0)unsigned short *internalH2

Array for internal use (UQ16.0)unsigned short *internalH3

Array to hold the computed histogram (UQ16.0)unsigned short *H

44.2.3 Output

Returns VLIB Error Statusint

44.2.4 Notes
• The values in binEdges must increase monotonically.
• H[k] will hold the number of elements that satisfy Equation 35:

binEdges[k] <= X[i] < binEdges[k+1] (35)

• The last bin H[end] will hold the number of elements that satisfy Equation 36:

X[i] == binEdges[end] (36)

• histArray should be initialized by calling VLIB_histogram_1D_Init_U8.
• H, internalH1, internalH2, and internalH3 should be of length numB, initialized to 0.
• numX should be a multiple of 4
• numB should be a multiple of 2

90 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Histogram Computation for Integer Scalars (8-Bit)

44.2.5 APIs
int VLIB_histogram_1D_U8(

char* restrict X,
const int numX,
const int numBins,
const unsigned short binWeight,
char* restrict histArray,
unsigned short* restrict internalH1,
unsigned short* restrict internalH2,
unsigned short* restrict internalH3,
unsigned short* restrict H);

44.3 Performance Benchmarks

On-chip memory performance has been measured as Equation 37:

(2.25 × numX) + (1 × numBins) cycles (37)

91SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Weighted Histogram Computation for Integer Scalars (8-Bit) www.ti.com

45 Weighted Histogram Computation for Integer Scalars (8-Bit)

45.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted
histograms permit the user he flexibility to influence the relative importance of different values in the input
data.

45.2 Specification

45.2.1 Function

Computes weighted histogram from array of 8-bit integers using user-specified bins.

45.2.2 Inputs

Input array of scalar values (UQ8.0)char *X

Number of elements in X (SQ31.0)int numX

Number of bins (SQ31.0)int numB

Array of size numX of weight that each element contributes to the (UQ16.0)unsigned short *binWeight
histogram

Array for internal use, initialized by VLIB_histogram_1D_Init_U16 (UQ8.0)char *histArray

Array for internal use (UQ16.0)unsigned short *internalH1

Array for internal use (UQ16.0)unsigned short *internalH2

Array for internal use (UQ16.0)unsigned short *internalH3

Array to hold the computed histogram (UQ16.0)unsigned short *H

45.2.3 Output

Returns VLIB Error Statusint

45.2.4 Notes
• H[k] will hold the number of elements that satisfy Equation 38:

binEdges[k] <= X[i] < binEdges[k+1] (38)

• The last bin H[end] will hold the number of elements that satisfy Equation 39:

X[i] == binEdges[end] (39)

• histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
• internalH1, internalH2, and internalH3 should be of length numB, initialized to 0.
• H should be of length numB, initialized to 0.
• numX should be a multiple of 4.
• numB should be a multiple of 2.

92 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Weighted Histogram Computation for Integer Scalars (8-Bit)

45.2.5 APIs
int VLIB_weightedHistogram_1D_U8(

char* restrict X,
const int numX,
const int numBins,
unsigned short* restrict binWeight,
char* restrict histArray,
unsigned short* restrict H1,
unsigned short* restrict H2,
unsigned short* restrict H3,
unsigned short* restrict H);

45.3 Performance Benchmarks

On-chip memory performance has been measured as in Equation 40:

(2.5 × numX) + (1 × numBins) cycles (40)

93SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Initialization for Histogram Computation for Integer Scalars (16-Bit) www.ti.com

46 Initialization for Histogram Computation for Integer Scalars (16-Bit)

46.1 Introduction and Use Cases

Initializes arrays for histogram computation.

46.2 Specification

46.2.1 Function

Initializes buffer for 1D histogram computation by VLIB_histogram_1D_U16 and
VLIB_weightedHistogram_1D_U16.

46.2.2 Inputs

Array containing the edges of the histogram bins (must (UQ16.0)unsigned short *binEdges
be monotonically increasing)

Number of bins (SQ31.0)int numB

Buffer for internal use (UQ16.0)unsigned short *internalBuffer

46.2.3 Output

Returns VLIB Error Statusint

46.2.4 Notes
• The values of the bin edges must increase monotonically.
• internalBuffer should be initialized to 0.
• internalBuffer should have a size equal to the length of the range of values that the input quantity can

take.
R = (max – min) + 1, where max and min are the maximum and minimum possible values that the
input quantity can have.

46.2.5 APIs
int VLIB_histogram_1D_Init_U16(

unsigned short* restrict binEdges,
const int numBins,
unsigned short* restrict H);

46.3 Performance Benchmarkss

On-chip memory performance of has been measured as in Equation 41, where R is the length of the
range of the quantity to be histogrammed:

8.6 × R cycles (41)

94 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Histogram Computation for Integer Scalars (16-Bit)

47 Histogram Computation for Integer Scalars (16-Bit)

47.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

47.2 Specification

47.2.1 Function

Computes histogram from array of 16-bit integers using user-specified bins.

47.2.2 Inputs

Input array of scalar (UQ16.0)unsigned short *X

Number of elements in X (SQ31.0)int numX

Number of bins (SQ31.0)int numB

Value to accumulate in histogram bins (UQ16.0)unsigned short binWeight

Array for internal use, initialized by VLIB_histogram_1D_Init_U16 (UQ16.0)unsigned short *histArray

Array for internal use (UQ16.0)unsigned short *internalH

Array to hold the computed histogram (UQ16.0)unsigned short *H

47.2.3 Output

Returns VLIB Error Statusint

47.2.4 Notes
• H[k] will hold the number of elements that satisfy Equation 42:

binEdges[k] <= X[i] < binEdges[k+1] (42)

• The last bin H[end] will hold the number of elements that satisfy Equation 43:

X[i] == binEdges[end] (43)

• histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
• internalH should be of length numB, initialized to 0.
• H should be of length numB, initialized to 0.

47.2.5 APIs
int VLIB_histogram_1D_U16(

unsigned short* restrict X,
const int numX,
const int numBins,
const unsigned short binWeight,
unsigned short* restrict histArray,
unsigned short* restrict internalH,
unsigned short* restrict H);

47.3 Performance Benchmarks

On-chip memory performance has been measured as in Equation 44:

(3.6 × numX) + (1 × numBins) cycles (44)

95SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Weighted Histogram Computation for Integer Scalars (16-Bit) www.ti.com

48 Weighted Histogram Computation for Integer Scalars (16-Bit)

48.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted
histograms permit the user he flexibility to influence the relative importance of different values in the input
data.

48.2 Specification

48.2.1 Function

Computes weighted histogram from array of 16-bit integers using user-specified bins.

48.2.2 Inputs

Input array of scalar values (UQ16.0)unsigned short *X

Number of elements in X (SQ31.0)int numX

Number of bins (SQ31.0)int numB

Array of size numX of weight that each element contributes to the (UQ16.0)unsigned short *binWeight
histogram

Array for internal use, initialized by VLIB_histogram_1D_Init_U16 (UQ16.0)unsigned short *histArray

Array for internal use (UQ16.0)unsigned short *internalH

Array to hold the computed histogram (UQ16.0)unsigned short *H

48.2.3 Output

Returns VLIB Error Statusint

48.2.4 Notes
• H[k] will hold the number of elements that satisfy Equation 45:

binEdges[k] <= X[i] < binEdges[k+1] (45)

• The last bin H[end] will hold the number of elements that satisfy Equation 46:

X[i] == binEdges[end] (46)

• histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
• internalH should be of length numB, initialized to 0.
• H should be of length numB, initialized to 0.

96 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Weighted Histogram Computation for Integer Scalars (16-Bit)

48.2.5 APIs
int VLIB_weightedHistogram_1D_U16(

unsigned short* restrict X,
const int numX,
const int numBins,
unsigned short* restrict binWeight,
unsigned short* restrict histArray,
unsigned short* restrict H1,
unsigned short* restrict H);

48.3 Performance Benchmarks

On-chip memory performance has been measured as in Equation 47:

(3.6 × numX) + (1 × numBins) cycles (47)

97SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Histogram Computation for Multi-Dimensional Vectors (16-Bit) www.ti.com

49 Histogram Computation for Multi-Dimensional Vectors (16-Bit)

49.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

49.2 Specification

49.2.1 Function

Histogram computation for 16-bit vector valued variables of multiple dimensions.

49.2.2 Inputs

Array of input values, data arranged in planar form (UQ16.0)unsigned short *X

Number of individual vector elements in X (SQ31.0)int numX

Dimensionality of vectors in X (SQ31.0)int dimX

Value to accumulate in histogram bins (UQ16.0)unsigned short binWeight

Array of size dimX, each element specifies the number of bins required in (UQ16.0)unsigned short *numBins
that dimension

Array of size dimX, each element containing the normalization factor for (UQ0.16)unsigned short *normVals
that dimension

Buffer of size numX, for internal use (initialized to 0) (UQ16.0)unsigned short *internal1

Buffer of size equal to total number of bins, for internal use (initialized to 0) (UQ16.0)unsigned short *internal2

Array of size equal to total number of bins to hold computed histogram (UQ16.0)unsigned short *H
(initialized to 0)

49.2.3 Output

Returns VLIB Error Statusint

49.2.4 Notes
• The vectors in X should be arranged in planar form (see Example below).
• H should be initialized to 0.
• internal1 and internal2 should be initialized to 0.
• The normalization factor normVals[k] for each dimension k should be set as in Equation 48, where M is

the maximum value in dimension k, and d is any non-zero value:

normVals[k] = 1 ÷ (M+d), (48)

• All arrays are double-word aligned.

98 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Histogram Computation for Multi-Dimensional Vectors (16-Bit)

Example:
Assume a 3-dimensional quantity:
F = [9 2 3;

5 3 5;
8 1 3;
4 2 3;
7 1 1];

Where the maximum possible value in each dimension is as follows:
Dim 1 = 10
Dim 2 = 4
Dim 3 = 5

The required output is a histogram with 3×5×2 bins:
Dim 1 = 3 bins
Dim 2 = 5 bins
Dim 3 = 2 bins

The following is the form of the input:
X = [9 5 8 4 7 2 3 1 2 1 3 5 3 3 1];
numX = 5;
dimX = 3;
binWeight = 1 (or 1/5 for a normalized histogram)
numBins = [3 5 2];
normVals = [1/11 1/5 1/6] * 65536;
internal1 = array of 0s of size 5
internal2 = array of 0s of size 30
H = array of 0s of size 30

49.2.5 APIs
int VLIB_histogram_nD_U16(

unsigned short* restrict X,
const int numX,
const int dimX,
const unsigned short binWeight,
unsigned short* restrict numBins,
unsigned short* restrict normVals,
unsigned short* restrict internal1,
unsigned short* restrict internal2,
unsigned short* restrict H);

49.3 Performance Benchmarks

On-chip memory performance was measured as in Equation 49:

((1.25 * numX * dimX) + (3.5 * numX) + (total number of bins)) cycles (49)

99SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit) www.ti.com

50 Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit)

50.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted
histograms permit the user he flexibility to influence the relative importance of different values in the input
data.

50.2 Specification

50.2.1 Function

Computes a weighted multi-dimensional histogram for 16-bit vector valued variables.

50.2.2 Inputs

Array of input values, data arranged in planar form (UQ16.0)unsigned short *X

Number of individual vector elements in X (SQ31.0)int numX

Dimensionality of vectors in X (SQ31.0)int dimX

Array of size numX of weight that each element contributes to the (UQ16.0)unsigned short *binWeight
histogram

Array of size dimX, each element specifies the number of bins required (UQ16.0)unsigned short *normVals
in that dimensions

Buffer of size numX, for internal use (initialized to 0) (UQ16.0)unsigned short *internal1

Buffer of size equal to total number of bins, for internal use (initialized to (UQ16.0)unsigned short *internal2
0)

Array of size equal to total number of bins to hold computed histogram (UQ16.0)unsigned short *H
(initialized to 0)

50.2.3 Output

Returns VLIB Error Statusint

50.2.4 Notes
• The vectors in X should be arranged in planar form (see Example below)
• H should be initialized to 0
• internal1 and internal2 should be initialized to 0
• The normalization factor normVals[k] for each dimension k should be set as in Equation 50, where M is

the maximum value in dimension k, and d > 0:

normVals[k] = 1/(M+d) (50)

• All arrays are double-word aligned

Example:
Assume a 3-dimensional quantity:
F = [9 2 3;

5 3 5;
8 1 3;
4 2 3;
7 1 1];

Where the maximum possible value in each dimension is as follows:
Dim 1 = 10
Dim 2 = 4
Dim 3 = 5

100 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit)

The required output is a histogram with 3×5×2 bins:
Dim 1 = 3 bins
Dim 2 = 5 bins
Dim 3 = 2 bins

The following is the form of the input:
X = [9 5 8 4 7 2 3 1 2 1 3 5 3 3 1];
numX = 5;
dimX = 3;
binWeight = array of 1/5 of size 5
numBins = [3 5 2];
normVals = [1/11 1/5 1/6] * 65536;
internal1 = array of 0s of size 5
internal2 = array of 0s of size 30
H = array of 0s of size 30

50.2.5 APIs
int VLIB_weightedHistogram_nD_U16(

unsigned short* restrict X,
const int numX,
const int dimX,
unsigned short* binWeight,
unsigned short* restrict numBins,
unsigned short* restrict normVals,
unsigned short* restrict internal1,
unsigned short* restrict internal2,
unsigned short* restrict H);

50.3 Performance Benchmarks

On-chip memory performance has been measured as in Equation 51:

((1.25 × numX × dimX) + (3.5 × numX) + (total number of bins)) cycles (51)

101SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

1/ 2

1- () ()
1

N
p i q i

i

æ ö
´ç ÷åç ÷

=è ø

Bhattacharya Distance (32-Bit) www.ti.com

51 Bhattacharya Distance (32-Bit)

51.1 Introduction and Use Cases

Bhattacharya distance is a popular measure of the similarity between two discrete probability distribution
functions.

51.2 Specification

51.2.1 Function

This function accepts as input two arrays, p and q, of size N containing the discrete probability
distributions. It returns the Bhattacharya distance, B, between p and q as a 32-bit unsigned integer as
defined in Equation 52:

(52)

51.2.2 Inputs

Pointer to array containing first probability distribution (UQ16.0)unsigned short *X

Pointer to array containing second probability distribution (UQ16.0)unsigned short *Y

Number of elements in the probability distributions (SQ31.0)int N

Pointer to variable to store the computed Bhattacharya Distance (SQ32.0)unsigned int *D

51.2.3 Output
void

51.2.4 Notes
• All arrays should be double-word aligned.
• Bhattacharya distance is defined on probability distribution functions. This implies that the elements in

X and Y should sum to 1, respectively.
• There should be a minimum of four elements in X and Y.

51.2.5 APIs
void VLIB_bhattacharyaDistance_U32(

unsigned short * restrict X,
unsigned short * restrict Y,
int N,
unsigned int * D);

51.3 Performance Benchmarks

The performance of the function was measured as: 45.7 × N cycles, where N is the number of elements in
the input probability distribution functions.

102 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

L1D = ()()[]å
=

--
N

i

ii qp
1

15 ,12min

www.ti.com L1 Distance (City Block Distance) (16-bit)

52 L1 Distance (City Block Distance) (16-bit)

52.1 Introduction and Use Cases

L1 Distance, also called city block distance, is a measure of the distance between two vectors.

52.2 Specification

52.2.1 Function

This function accepts as input two vectors, p and q, of size N. It returns the L1 distance, L1D, between p
and q as a 32-bit unsigned integer as in Equation 53.

(53)

52.2.2 Inputs

Pointer to array containing first vector (SQ15.0)short restrict *X

Pointer to array containing second vector (SQ15.0)short restrict *Y

Number of elements in each vector (SQ32.0)int N

Pointer to variable to store the computed L1 Distance (Q32.0)unsigned int *L1D

52.2.3 Output
void

52.2.4 Notes
• All arrays should be double-word aligned.
• There should be a minimum of four elements in X and Y.
• If the absolute difference between two corresponding vector elements is greater than 2^15-1, then that

particular value is saturated to 2^15-1.

52.2.5 APIs
void VLIB_L1DistanceS16(

short* restrict X,
short* restrict Y,
int N,
unsigned int* L1D)

52.3 Performance Benchmarks

The performance of the function was measured as: 0.54 × N cycles, where N is the number of elements in
the input vectors.

103SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Luminance Extraction From YUV422 www.ti.com

53 Luminance Extraction From YUV422

53.1 Introduction and Use Cases

When the image data is stored in the YUV422 format but the processing needs to be done on its
luminance component only, it is often desirable to extract the Y component and store it in a separate
buffer. This is particularly useful when data needs to be contiguous.

53.2 Specification

53.2.1 Function

Extracts the luminance data from the YUV422 image.

53.2.2 Inputs

Input YUV422 image (UQ8.0)char *inputImage

Width of input image (in pixels)unsigned short inputWidth

Pitch of input image (in pixels)unsigned short inputPitch

Height of input image (in pixels)unsigned short inputHeight

Luma-only output image (UQ8.0)char *outputImage

53.2.3 Output

Returns VLIB Error Statusint

53.2.4 Method

If the input data is in YUV422, then in order to obtain a luminance only buffer, every other byte is
extracted and copied to the buffer pointed to by outputImage.

53.2.5 APIs
int VLIB_extractLumaFromUYUV(

char* restrict inputImage,
unsigned short inputWidth,
unsigned short inputPitch,
unsigned short inputHeight,
char* restrict outputImage);

53.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.29 cycles/outputs.

104 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Conversion From 8-Bit YUV422 Interleaved to YUV422 Planar

54 Conversion From 8-Bit YUV422 Interleaved to YUV422 Planar

54.1 Introduction and Use Cases

YUV422 is a common imaging data format [1]. If the YUV color channels are interleaved, as is often the
case, this function is usually beneficial for improving the performance of vision applications, as it
separates the three color channels into separate buffers, color planes. This is helpful because data
transfers between external and internal memory are faster for contiguous data.

54.2 Specification

54.2.1 Function

Deinterleaves color channels of an interleaved YUV422 data block.

54.2.2 Inputs

Interleaved luma/chroma (UQ8.0)const unsigned char *yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Luma plane (8-bit) (in pixels)unsigned char *restrict y

Cr chroma plane (8-bit) (UQ8.0)unsigned char *restrict cr

Cb chroma plane (8-bit) (UQ8.0)unsigned char *restrict cb

54.2.3 Output

Returns VLIB Error Statusint

54.2.4 Method

Given pixels in the interleaved format, this function separates the three channels into separate buffers.
The width must be a multiple of 8, while input and output buffers must be 64-bit aligned.

54.2.5 APIs
int VLIB_convertUYVYint_to_YUVpl(

const unsigned char *yc,
int width,
int pitch,
int height,
unsigned char *restrict y,
unsigned char *restrict cr,
unsigned char *restrict cb);

54.3 Performance Benchmarks

The compute-only performance is 0.4 cycles/pixel.

54.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

105SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Conversion From 8-bit YUV422 Interleaved to YUV420 Planar www.ti.com

55 Conversion From 8-bit YUV422 Interleaved to YUV420 Planar

55.1 Introduction and Use Cases

YUV420 is a common imaging data format [1]. It offers more compressed chroma data and thus a
reduced bandwidth over YUV422. If the YUV422 color channels are interleaved, as is often the case, this
function is usually beneficial for improving the performance of vision applications, as it separates the three
color channels into separate buffers, color planes. This is helpful because data transfers between external
and internal memory are faster for contiguous data.

55.2 Specification

55.2.1 Function

Deinterleaves color channels of an interleaved YUV422 data block and creates YUV420 planar format.

55.2.2 Inputs

Interleaved luma/chroma (UQ8.0)const unsigned char *yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Luma plane (8-bit) (in pixels)unsigned char *restrict y

Cr chroma plane (8-bit) (UQ8.0)unsigned char *restrict cr

Cb chroma plane (8-bit) (UQ8.0)unsigned char *restrict cb

55.2.3 Output

Returns VLIB Error Statusint

55.2.4 Method

Given pixels in the YUV422 interleaved format, this function separates the three channels into separate
buffers, and vertically subsamples the chroma information by a factor of 2. To prevent aliasing in the
chroma data, the values extracted from YUV422 are averaged. The width must be a multiple of 8, the
height must be a multiple of 2, while input and output buffers must be 64-bit aligned.

55.2.5 APIs
int VLIB_convertUYVYint_to_YUV420pl(

const unsigned char *yc,
int width,
int pitch,
int height,
unsigned char *restrict y,
unsigned char *restrict cr,
unsigned char *restrict cb);

55.3 Performance Benchmarks

The compute-only performance is 0.41 cycles/pixel.

55.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

106 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Conversion From 8-bit YUV422 Interleaved to HSL Planar

56 Conversion From 8-bit YUV422 Interleaved to HSL Planar

56.1 Introduction and Use Cases

HSL (Hue Saturation Lightness), also known as HSI (Hue Saturation Intensity), or HSB (Hue Saturation
Brightness) is a popular color space for image representation, especially in computer graphics and other
applications where color perception needs to be modeled better than with RGB [1]. If the input data is in
the interleaved YUV422 color format, this function transforms the data into the HSL format and separates
the three color channels into separate buffers, color planes.

56.2 Specification

56.2.1 Function

Calculates HSL representation of pixels represented in interleaved YUV422 format.

56.2.2 Inputs

Interleaved luma/chroma (UQ8.0)const unsigned char *yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Matrix coefficients (SQ16.0)const short coeff[5]

Division table (UQ16.0)const unsigned short div_table[510]

Pointer to H plane (8-bit) (UQ8.0)unsigned char *restrict H

Pointer to S plane (8-bit) (UQ8.0)unsigned char *restrict S

Pointer to L plane (8-bit) (UQ8.0)unsigned char *restrict L

The matrix coefficients specified by the array coeff are typically as shown in Equation 54 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 }; (54)

Alternatively, as shown in Equation 55for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -0x0C8A, -0x1A04, 0x408D }; (55)

The division table is used to provide an LUT to replace integer divisions by multiplications with
corresponding inverses, shifted left by 15.

56.2.3 Output

Returns VLIB Error Statusint

56.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the HSL format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.

107SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Conversion From 8-bit YUV422 Interleaved to HSL Planar www.ti.com

56.2.5 APIs
int VLIB_convertUYVYint_to_HSLpl(

const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
const unsigned short div_table[510],
unsigned short *restrict H,
unsigned char *restrict S,
unsigned char *restrict L);

56.3 Performance Benchmarks

The compute-only performance is 113 cycles/pixel.

56.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

108 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Conversion From 8-bit YUV422 Interleaved to LAB Planar

57 Conversion From 8-bit YUV422 Interleaved to LAB Planar

57.1 Introduction and Use Cases

Lab color space is an important color-opponent color space. It is derived from the CIE XYZ color space
through a non-linear compression, which assures perceptual uniformity [1]. If the input data is in the
interleaved YUV422 color format, this function transforms the data into the LAB format and separates the
three color channels into separate buffers, color planes.

57.2 Specification

57.2.1 Function

Calculates LAB representation of pixels represented in interleaved YUV422 format.

57.2.2 Inputs

Interleaved luma/chroma (UQ8.0)const unsigned char *yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

YUV to sRGB matrix coefficients (SQ16.0)const short coeff[5]

D65 = {0.950456, 1.0, 1.088754}; (float)float whitePoint[3]

Pointer to L plane (8-bit) (float)float *restrict L

Pointer to A plane (8-bit) (float)float *restrict a

Pointer to B plane (8-bit) (float)float *restrict b

The matrix coefficients specified by the array coeff are typically as shown in Equation 56 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 }; (56)

Alternatively, as shown in Equation 57, for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -0x0C8A, -0x1A04, 0x408D }; (57)

The white point specification is used in the normalization step of the intermediate XYZ color space. A
common value is a D65 value given by Equation 58:

float whitePoint[3] = {0.950456, 1.0, 1.088754}; (58)

57.2.3 Output

Returns VLIB Error Statusint

57.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the LAB format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.

109SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Conversion From 8-bit YUV422 Interleaved to LAB Planar www.ti.com

57.2.5 APIs
int VLIB_convertUYVYint_to_LABpl(

const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
float whitePoint[3],
float *restrict L,
float *restrict a,
float *restrict b);

57.3 Performance Benchmarks

The compute-only performance is 75000 cycles/pixel.

57.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

110 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Conversion From 8-bit YUV422 Interleaved to RGB Planar

58 Conversion From 8-bit YUV422 Interleaved to RGB Planar

58.1 Introduction and Use Cases

Some vision applications require the data to be in the RGB format [1]. If the input data is in the
interleaved YUV422 color format, this function transforms the data into the sRGB format and separates
the three color channels into separate buffers, color planes. Planarization is helpful because data transfers
between external and internal memory are faster for contiguous data.

58.2 Specification

58.2.1 Function

Calculates sRGB representation of pixels given in interleaved YUV422 format.

58.2.2 Inputs

Interleaved luma/chroma (UQ8.0)const unsigned char *yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Matrix coefficients (SQ16.0)const short coeff[5]

Pointer to R plane (8-bit) (UQ8.0)unsigned char *restrict r

Pointer to G plane (8-bit) (UQ8.0)unsigned char *restrict g

Pointer to B plane (8-bit) (UQ8.0)unsigned char *restrict b

The matrix coefficients specified by the array coeff are typically as shown in Equation 59 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 }; (59)

Alternatively, as shown in Equation 60, for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -0x0C8A, -0x1A04, 0x408D }; (60)

58.2.3 Output

Returns VLIB Error Statusint

58.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the sRGB format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.

111SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Conversion From 8-bit YUV422 Interleaved to RGB Planar www.ti.com

58.2.5 APIs
int VLIB_convertUYVYint_to_RGBpl(

const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
unsigned char *restrict r,
unsigned char *restrict g,
unsigned char *restrict b);

58.3 Performance Benchmarks

The compute-only performance is 2 cycles/pixel.

58.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

112 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar

59 LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar

59.1 Introduction and Use Cases

This function is a fast approximation to the function VLIB_convertUYVYint_to_LABpl. Lab color space is
an important color-opponent color space. It is derived from the CIE XYZ color space through a non-linear
compression, which assures perceptual uniformity []. If the input data is in the interleaved YUV422 color
format, this function transforms the data into the LAB format and separates the three color channels into
separate buffers, color planes.

59.2 Specification

59.2.1 Function

Calculates LAB representation of pixels represented in interleaved YUV422 format.

59.2.2 Inputs

Interleaved luma/chroma (UQ8.0)unsigned char *restrict yc

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Defines the LUT sparsity: 1/2^(3d)int d

Pointer to the Lab LUT (UQ16.0)unsigned short *restrict
LabLUT

Pointer to L plane (UQ16.0)unsigned short *restrict l

Pointer to L plane (UQ16.0)unsigned short *restrict a

Pointer to L plane (UQ16.0)unsigned short *restrict b

The calculated values are stored as 16-bit values. The approximate relationship to the floating-point
values calculated by the VLIB function VLIB_convertUYVYint_to_LABpl is as follows:

L = (unsigned short)(439.832×L_f + 3518.66 + 0.5);
a = (unsigned short)(232.394×a_f + 29513.99 + 0.5);
b = (unsigned short)(221.402×b_f + 29225.07 + 0.5);

The conversion back to the floating pt. representation is given by:
L_f = (L - 3518.66)/439.832;
a_f = (a - 29513.99)/232.394;
b_f = (b - 29225.07)/221.402;

Parameter d defines the sparsity of the LUT – each of three dimensions of the LUT is subsampled by a
factor of 2d. The associated memory / accuracy trade-off is given in Table 1.

Table 1. LUT Associated Memory/Accuracy Tradeoff

0 < L < 65536 0 < a < 65536 0 < b < 65536

Param Decimation Memory for Mean abs Mean abs Mean absMax abs err Max abs err Max abs errd Factor LUT err err err

0 1 97 MB 0 0 0 0 0 0

1 2×2×2 12 MB 0.43 15 0.98 55 0.7 28

2 4×4× 1.6 MB 1.72 46 4.23 169 2.97 99

3 8×8×8 120 KB 7.51 165 16.6 521 12.1 283

4 16×16×16 29 KB 30.7 597 61.3 1705 46.9 699

113SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar www.ti.com

The pointer LabLUT points to the LUT, which can be generated using the initialization function
VLIB_initUYVYint_to_LABpl_LUT. The initialization function takes the following arguments:

Decimation factor (in pixels)const int d

YUV to sRGB Matrix coefficient (SQ16.0)const short coeff[5]

D65 = {0.950456, 1.0, 1.088754}; (float)const float whitePoint[3]

Interleaved Lab values (UQ16.0)unsigned short *lab

Parameter d, as before, determines the level of sparsity of the LUT.

The matrix coefficients specified by the array coeff are typically as shown in Equation 61 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 } (61)

Alternatively, as shown in Equation 62, for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -0x0C8A, -0x1A04, 0x408D }; (62)

The white point specification is used in the normalization step of the intermediate XYZ color space. A
common value is a D65 value given by Equation 63.

float whitePoint[3] = {0.950456, 1.0, 1.088754}; (63)

59.2.3 Output

Returns VLIB Error Statusint

59.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the LAB format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.

59.2.5 APIs
int VLIB_convertUYVYint_to_LABpl_LUT(

unsigned char * restrict yc, /* Interleaved luma/chroma */
int width, /* width (number of luma pixels) */
int pitch,
int height,
int d, /* Decimation factor */
unsigned short * restrict LabExt, /* pointer to the Lab LUT */
unsigned short * restrict L,
unsigned short * restrict a,
unsigned short * restrict b);

int VLIB_initUYVYint_to_LABpl_LUT(
const int d, /* Decimation factor */
const short coeff[5], /* YUV to sRGB Matrix coefficients */
const float whitePoint[3], /* D65 = {0.950456, 1.0, 1.088754}; */
unsigned short *Lab); /* Interleaved Lab values

114 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar

59.3 Performance Benchmarks

The compute-only performance depends on which memory is used for the LUT:

Memory Performance

DDR2 82 cycles/pixel

L2D 39 cycles/pixel

L1D 33 cycles/pixel

The reported performance is for d = 4 (16x16x16 decimation factor) and it may be different for other
values.

59.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

115SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Conversion From 8-Bit YUV422 Semiplanar to YUV422 Planar www.ti.com

60 Conversion From 8-Bit YUV422 Semiplanar to YUV422 Planar

60.1 Introduction and Use Cases

YUV422 is a common imaging data format [1]. If the YUV is in the semiplanar format (luma is planar but
chroma channels are interleaved), as is sometimes the case, this function may be useful to interleave the
chroma channels.

60.2 Specification

60.2.1 Function

Deinterleaves chroma channels of a semiplanar YUV422 data block.

60.2.2 Inputs

Interleaved chroma (UQ8.0)const unsigned char *crb

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Cr chroma plane (8-bit) (UQ8.0)unsigned char *restrict cr

Cb chroma plane (8-bit) (UQ8.0)unsigned char *restrict cb

60.2.3 Output

Returns VLIB Error Statusint

60.2.4 Method

Given pixels in the semiplanar format, this function separates the chroma channels into separate buffers.
The width must be a multiple of 8, while input and output buffers must be 64-bit aligned.

60.2.5 APIs
int VLIB_ConvertUYVYsemipl_to_YUVpl(

const unsigned char * crcb, /* Interleaved chroma */
int width, /* width (number of luma pixels) */
int pitch, /* pitch (number of luma pixels) */
int height, /* height (number of luma pixels)*/
unsigned char *restrict cr, /* Cr chroma plane (8-bit) */
unsigned char *restrict cb); /* Cb chroma plane (8-bit) */

60.3 Performance Benchmarks

The compute-only performance is 0.26 cycles/pixel.

60.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

116 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com Conversion From 8-Bit YUV422 Planar to YUV422 Interleaved

61 Conversion From 8-Bit YUV422 Planar to YUV422 Interleaved

61.1 Introduction and Use Cases

YUV422 is a common imaging data format [1]. If the information stored in the planar YUV format needs
to be displayed it often needs to be interleaved first. This functions efficiently interleaves the YUV color
channels.

61.2 Specification

61.2.1 Function

Interleaves YUV channels of a planar YUV422 data block.

61.2.2 Inputs

The luma plane (UQ8.0)const unsigned char *restrict y

The Cr plane (UQ8.0)const unsigned char *restrict cr

The Cb plane (UQ8.0)const unsigned char *restrict cb

Width of input image (number of luma pixels) (in pixels)int width

Pitch of input image (number of luma pixels) (in pixels)int pitch

Height of input image(number of luma pixels) (in pixels)int height

Interleaved data (UQ8.0)unsigned char *restrict vc

61.2.3 Output

Returns VLIB Error Statusint

61.2.4 Method

Given data in the planar format, this function interleaves the data to the YUV422 format. The width must
be a multiple of 8, while input and output buffers must be 64-bit aligned.

61.2.5 APIs
int VLIB_ConvertUYVYpl_to_YUVint(

const unsigned char *restrict y, /* Luma plane (8-bit) */
const unsigned char *restrict cr, /* Cr chroma plane (8-bit) */
const unsigned char *restrict cb, /* Cb chroma plane (8-bit) */
int width,
int pitch,
int height,
unsigned char *restrict yc); /* Interleaved luma/chroma */

61.3 Performance Benchmarks

The compute-only performance is 0.7 cycles/pixel.

61.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

117SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

SAD Based Disparity Computation (8-Bit) www.ti.com

62 SAD Based Disparity Computation (8-Bit)

62.1 Introduction and Use Cases

Disparity gives a measure of depth information from stereo images. Here we provide an algorithm to
compute disparity from rectified stereo images using Sum of absolute difference (SAD) based block
matching.

62.2 Specification

62.2.1 Function

VLIB_disparity_SAD8 calculates the disparity at each position in a row of an 8-bit image. This function is
optimized reusing the previous calculations. For the first row calculations cannot be reused; thus,
VLIB_disparity_SAD_firstRow8 should be used to calculate the disparities in the first row.

62.2.2 Inputs

Both the APIs VLIB_disparity_SAD8 and VLIB_disparity_SAD_firstRow8 use the same set of inputs
except the input pScratch which only the second API uses.

Pointer to left image (UQ8.0)const unsigned char * pLeft

Pointer to right image (UQ8.0)const unsigned char * pRight

Cost corresponding to current displacement (UQ16.0)unsigned short * pCost

Minimum cost across all displacements (UQ16.0)unsigned short * pMinCost

Scratch Memory of size width (UQ8.0)unsigned char * restrict pScratch

Displacement having the minimum cost (SQ8.0)char * pDisparity

Current displacement (in pixels)int displacement

Width of the input images (in pixels)int width

Pitch of the input images (in pixels)int pitch

Size of the block used for computing SAD (in pixels)int windowSize

62.2.3 Output

Returns VLIB Error Statusint

62.2.4 Method

Two images, the left and right images (8-bit), are used as inputs to the algorithm. These images are
assumed to be rectified so that the disparity search is only along the row. The parameter pCost buffer is
used to hold the SAD cost function for all pixels in a row and for all permissible values of horizontal
displacements. VLIB_disparity_SAD8 computes the cost measure for a row and for a specified
displacment. This function has to be looped over the range of disparity and then through all the rows. The
function also updates the pMinCost buffer and stores the displacement which corresponds to the
mininmum cost in pDisparity buffer. This is the simplest method for disparity calcuation. But the API gives
out the cost measure at each pixel and each disparity which can be used for more complicated algorithms
like dynamic programming,etc.

VLIB_disparity_SAD8 uses the pCost buffer corresponding to the previous row for calculations of the
current row. Care has to be taken that pCost buffer is not cleared or reused for some other purpose. For
the first row, we cannot reuse the calculations. Thus a separate API VLIB_disparity_SAD_firstRow8 is
provided. It uses a scratch buffer pScratch of size width for internal calcuations. This is required only for
the first row disparity computation and can be freed after that. The buffers pCost, pMinCost, pDisparity
have to be padded up with eight extra locations as illustrated in VLIB_testDisparity8 using ARRAY_PAD
macro.

118 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com SAD Based Disparity Computation (8-Bit)

62.2.5 APIs
int VLIB_disparity_SAD_firstRow8(

const unsigned char *restrict pLeft,
const unsigned char *restrict pRight,
unsigned short *restrict pCost,
unsigned short *restrict pMinCost,
char *restrict pDisparity,
int displacement,
int width,
int pitch,
int windowSize);

int VLIB_disparity_SAD8(
const unsigned char *restrict pLeft,
const unsigned char *restrict pRight,
unsigned short *restrict pCost,
unsigned short *restrict pMinCost,
unsigned char *restrict pScratch,
char *restrict pDisparity,
int displacement,
int width,
int pitch,
int windowSize);

62.3 Performance Benchmarks

On-chip memory performance has been measured as:

VLIB_disparity_SAD_firstRow8 9.1 cycles/pixel
VLIB_disparity_SAD8 2.6 cycles/pixel

62.4 References
1. Computer Vision, pages 371-409, by Linda G. Shapiro and George C. Stockman, Prentice-Hall, 2001

119SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

SAD Based Disparity Computation (16-Bit) www.ti.com

63 SAD Based Disparity Computation (16-Bit)

63.1 Introduction and Use Cases

Disparity gives a measure of depth information from stereo images. Here we provide an algorithm to
compute disparity from rectified stereo images using Sum of absolute difference (SAD) based block
matching.

63.2 Specification

63.2.1 Function

VLIB_disparity_SAD16 calculates the disparity at each position in a row of an 16-bit image. This function
is optimized reusing the previous calculations. For the first row calculations can’t be reused, thus
VLIB_disparity_SAD_firstRow16 should be used to calculate the disparities in the first row.

63.2.2 Inputs

Both the APIs VLIB_disparity_SAD16 and VLIB_disparity_SAD_firstRow16 use the same set of inputs
except the input pScratch which only the second API uses.

Pointer to left image (UQ16.0)const unsigned short * pLeft

Pointer to right image (UQ16.0)const unsigned short * pRight

Cost corresponding to current displacement (UQ16.0)unsigned short * pCost

Minimum cost across all displacements (UQ16.0)unsigned short * pMinCost

Scratch Memory of size width (UQ8.0)unsigned char * restrict pScratch

Displacement having the minimum cost (SQ8.0)char * pDisparity

Current displacement (in pixels)int displacement

Width of the input images (in pixels)int width

Pitch of the input images (in pixels)int pitch

Size of the block used for computing SAD (in pixels)int windowSize

63.2.3 Output

Returns VLIB Error Statusint

63.2.4 Method

Two images, the left and right images (16-bit), are used as inputs to the algorithm. These images are
assumed to be rectified so that the disparity search is only along the row. pCost buffer is used to hold the
SAD cost function for all pixels in a row and for all permissible values of horizontal displacements.
VLIB_disparity_SAD16 computes the cost measure for a row and for a specified displacment. This
function has to be looped over the range of disparity and then through all the rows. The function also
updates the pMinCost buffer and stores the displacement which corresponds to the mininmum cost in
pDisparity buffer. This is the simplest method for disparity calcuation. But the API gives out the cost
measure at each pixel and each disparity which can be used for more complicated algorithms like dynamic
programming,etc.

VLIB_disparity_SAD16 uses the pCost buffer corresponding to the previous row for calculations of the
current row. Care has to be taken that pCost buffer is not cleared or reused for some other purpose. For
the first row, we cannot reuse the calculations. Thus a separate API VLIB_disparity_SAD_firstRow16 is
provided. It uses a scratch buffer pScratch of size width for internal calcuations. This is required only for
the first row disparity computation and can be freed after that. The buffers pCost, pMinCost, pDisparity
have to be padded up with eight extra locations as illustrated in VLIB_testDisparity16 using ARRAY_PAD
macro.

120 Vision Library (VLIB) Application Programming Interface SPRUG00C–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

www.ti.com SAD Based Disparity Computation (16-Bit)

63.2.5 APIs
int VLIB_disparity_SAD_firstRow16(

const unsigned short *restrict pLeft,
const unsigned short *restrict pRight,
unsigned short *restrict pCost,
unsigned short *restrict pMinCost,
unsigned char *restrict pScratch,
char *restrict pDisparity,
int displacement,
int width,
int pitch,
int windowSize);

int VLIB_disparity_SAD16(
const unsigned short *restrict pLeft,
const unsigned short *restrict pRight,
unsigned short *restrict pCost,
unsigned short *restrict pMinCost,
char *restrict pDisparity,
int displacement,
int width,
int pitch,
int windowSize);

63.3 Performance Benchmarks

On-chip memory performance has been measured as:

VLIB_disparity_SAD_firstRow16 13.6 cycles/pixel
VLIB_disparity_SAD16 3.7 cycles/pixel

63.4 References
1. Computer Vision, pages 371-409, by Linda G. Shapiro and George C. Stockman, Prentice-Hall, 2001

121SPRUG00C–November 2009 Vision Library (VLIB) Application Programming Interface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Vision Library (VLIB) Application Programming Interface
	Table of Contents
	1 About VLIB V2.1 Release
	2 Exponentially-Weighted Running Mean of a Video (16-Bit)
	2.1 Introduction and Use Cases
	2.2 Specification
	2.2.1 Function
	2.2.2 Inputs
	2.2.3 Output
	2.2.4 Method
	2.2.5 APIs
	2.2.6 Requirements

	2.3 Comments
	2.3.1 Adaptation Through Running Statistics
	2.3.2 Foreground Objects

	2.4 Performance Benchmarks
	2.5 References

	3 Exponentially-Weighted Running Mean of a Video (32-Bit)
	3.1 Introduction and Use Cases
	3.2 Specification
	3.2.1 Function
	3.2.2 Inputs
	3.2.3 Output
	3.2.4 Method
	3.2.5 APIs
	3.2.6 Requirements

	3.3 Comments
	3.3.1 Adaptation Through Running Statistics
	3.3.2 Foreground Objects

	3.4 Performance Benchmarks
	3.5 References

	4 Exponentially-Weighted Running Variance of a Video (16-Bit)
	4.1 Introduction and Use Cases
	4.2 Specification
	4.2.1 Function
	4.2.2 Inputs
	4.2.3 Output
	4.2.4 Method
	4.2.5 APIs
	4.2.6 Requirements

	4.3 Performance Benchmarks

	5 Exponentially-Weighted Running Variance of a Video (32-Bit)
	5.1 Introduction and Use Cases
	5.2 Specification
	5.2.1 Function
	5.2.2 Inputs
	5.2.3 Output
	5.2.4 Method
	5.2.5 APIs
	5.2.6 Requirements

	5.3 Performance Benchmarks

	6 Uniformly-Weighted Running Mean of a Video (16-Bit)
	6.1 Introduction and Use Cases
	6.2 Specification
	6.2.1 Function
	6.2.2 Inputs
	6.2.3 Output
	6.2.4 Method
	6.2.5 APIs
	6.2.6 Requirements

	6.3 Performance Benchmarks
	6.4 References

	7 Uniformly-Weighted Running Variance of a Video (16-Bit)
	7.1 Introduction and Use Cases
	7.2 Specification
	7.2.1 Function
	7.2.2 Inputs
	7.2.3 Output
	7.2.4 Method
	7.2.5 APIs
	7.2.6 Requirements

	7.3 Performance Benchmarks

	8 Statistical Background Subtraction (16-Bit)
	8.1 Introduction and Use Cases
	8.2 Specification
	8.2.1 Function
	8.2.2 Inputs
	8.2.3 Output
	8.2.4 Method
	8.2.5 APIs
	8.2.6 Requirements

	8.3 Performance Benchmarks

	9 Statistical Background Subtraction (32-Bit)
	9.1 Introduction and Use Cases
	9.2 Specification
	9.2.1 Function
	9.2.2 Inputs
	9.2.3 Output
	9.2.4 Method
	9.2.5 APIs
	9.2.6 Requirements

	9.3 Performance Benchmarks

	10 Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit)
	10.1 Introduction and Use Cases
	10.2 Specification
	10.2.1 Function
	10.2.2 Inputs
	10.2.2.1 Notes and Special Requirements

	10.2.3 Output
	10.2.4 APIs

	10.3 Performance Benchmarks
	10.4 References

	11 Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit)
	11.1 Introduction and Use Cases
	11.2 Specification
	11.2.1 Function
	11.2.2 Inputs
	11.2.3 Notes and Special Requirements
	11.2.4 Output
	11.2.5 APIs

	11.3 Performance Benchmarks
	11.4 References

	12 8-Bit Image Extraction From 16-Bit Background Models
	12.1 Introduction and Use Cases
	12.2 Specification
	12.2.1 Inputs
	12.2.2 Outputs
	12.2.3 Method
	12.2.4 APIs

	12.3 Requirements
	12.4 Performance Benchmarks

	13 32-Bit Packing and Unpacking of Binary Mask Images
	13.1 Introduction and Use Cases
	13.2 Specification
	13.2.1 Inputs
	13.2.2 Output
	13.2.3 Method
	13.2.4 APIs

	13.3 Requirements
	13.4 Performance Benchmarks

	14 Dilation
	14.1 Introduction and Use Cases
	14.2 Specification
	14.2.1 Function
	14.2.2 Inputs
	14.2.3 Method
	14.2.4 APIs

	14.3 Performance Benchmarks
	14.4 Notes
	14.5 References

	15 Erosion
	15.1 Introduction and Use Cases
	15.2 Specification
	15.2.1 Function
	15.2.2 Inputs
	15.2.3 Method
	15.2.4 APIs

	15.3 Performance Benchmarks
	15.4 Notes
	15.5 References

	16 Connected Components Labeling
	16.1 Introduction and Use Cases
	16.2 Specification
	16.2.1 Function
	16.2.2 Inputs
	16.2.3 Output
	16.2.4 Implementation Notes
	16.2.5 APIs

	16.3 Performance Benchmarks
	16.4 References

	17 Canny Edge Detection
	17.1 Introduction and Use Cases
	17.2 Method
	17.3 Performance Benchmarks
	17.4 References

	18 Image Smoothing (for Canny Edge Detection)
	18.1 Introduction and Use Cases
	18.2 Specification
	18.2.1 Function
	18.2.2 Inputs
	18.2.3 Output
	18.2.4 Method

	18.3 References

	19 2D Gradient Filtering (for Canny Edge Detection)
	19.1 Introduction and Use Cases
	19.2 Specification
	19.2.1 Function
	19.2.2 Inputs
	19.2.3 Output
	19.2.4 Method
	19.2.5 APIs

	19.3 Assumptions
	19.4 Performance Benchmarks
	19.5 References

	20 Non-Maximum Suppression (for Canny Edge Detection)
	20.1 Introduction and Use Cases
	20.2 Specification
	20.2.1 Function
	20.2.2 Inputs
	20.2.3 Output
	20.2.4 Method
	20.2.5 APIs

	20.3 Assumptions
	20.4 Performance Benchmarks
	20.5 References

	21 Hysteresis Thresholding (for Canny Edge Detection)
	21.1 Introduction and Use Cases
	21.2 Specification
	21.2.1 Function
	21.2.2 Inputs
	21.2.3 Output
	21.2.4 Method
	21.2.5 APIs

	21.3 Assumptions
	21.4 Performance Benchmarks
	21.5 References

	22 Image Pyramid (8-Bit)
	22.1 Introduction and Use Cases
	22.2 Specification
	22.2.1 Function
	22.2.2 Inputs
	22.2.3 Output
	22.2.4 Method
	22.2.5 APIs

	22.3 Performance Benchmarks
	22.4 References

	23 Image Pyramid (16-Bit)
	23.1 Introduction and Use Cases
	23.2 Specification
	23.2.1 Function
	23.2.2 Inputs
	23.2.3 Output
	23.2.4 Method
	23.2.5 APIs

	23.3 Performance Benchmarks
	23.4 References

	24 Gaussian 5x5 Pyramid Kernel (8-Bit)
	24.1 Introduction and Use Cases
	24.2 Specification
	24.2.1 Function
	24.2.2 Inputs
	24.2.3 Output
	24.2.4 Method
	24.2.5 APIs

	24.3 Performance Benchmarks
	24.4 References

	25 Gaussian 5x5 Pyramid Kernel (16-Bit)
	25.1 Introduction and Use Cases
	25.2 Specification
	25.2.1 Function
	25.2.2 Inputs
	25.2.3 Output
	25.2.4 Method
	25.2.5 APIs

	25.3 Performance Benchmarks
	25.4 References

	26 Gradient 5x5 Pyramid Kernel (8-Bit)
	26.1 Introduction and Use Cases
	26.2 Specification
	26.2.1 Function
	26.2.2 Inputs
	26.2.3 Output
	26.2.4 Method
	26.2.5 APIs

	26.3 Performance Benchmarks
	26.4 References

	27 Recursive IIR Filter: Horizontal, First-Order
	27.1 Introduction and Use Cases
	27.2 Specification
	27.2.1 Function
	27.2.2 Inputs
	27.2.3 Output
	27.2.4 Method
	27.2.5 APIs

	27.3 Performance Benchmarks
	27.4 Notes
	27.5 References

	28 Recursive IIR Filter: Horizontal, First-Order (16 Bit)
	28.1 Introduction and Use Cases
	28.2 Specification
	28.2.1 Function
	28.2.2 Inputs
	28.2.3 Output
	28.2.4 Method
	28.2.5 APIs

	28.3 Performance Benchmarks
	28.4 Notes
	28.5 References

	29 Recursive IIR Filter: Vertical, First-Order
	29.1 Introduction and Use Cases
	29.2 Specification
	29.2.1 Function
	29.2.2 Inputs
	29.2.3 Output
	29.2.4 Method
	29.2.5 APIs

	29.3 Performance Benchmarks
	29.4 Notes
	29.5 References

	30 Recursive IIR Filter: Vertical, First-Order (16-Bit)
	30.1 Introduction and Use Cases
	30.2 Specification
	30.2.1 Function
	30.2.2 Inputs
	30.2.3 Output
	30.2.4 Method
	30.2.5 APIs

	30.3 Performance Benchmarks
	30.4 Notes
	30.5 References

	31 Integral Image (8-Bit)
	31.1 Introduction and Use Cases
	31.2 Specification
	31.2.1 Function
	31.2.2 Inputs
	31.2.3 Output
	31.2.4 Method
	31.2.5 APIs

	31.3 Performance Benchmarks
	31.4 References

	32 Integral Image (16-Bit)
	32.1 Introduction and Use Cases
	32.2 Specification
	32.2.1 Function
	32.2.2 Inputs
	32.2.3 Output
	32.2.4 Method
	32.2.5 APIs

	32.3 Performance Benchmarks
	32.4 References

	33 Hough Transform for Lines
	33.1 Introduction and Use Cases
	33.2 Specification
	33.2.1 Function
	33.2.2 Inputs
	33.2.3 Output
	33.2.4 Method
	33.2.5 APIs

	33.3 Performance Benchmarks
	33.4 Notes

	34 Harris Corner Score
	34.1 Introduction and Use Cases
	34.2 Specification
	34.2.1 Function
	34.2.2 Inputs
	34.2.3 Output
	34.2.4 Method
	34.2.5 APIs

	34.3 Performance Benchmarks
	34.4 Notes
	34.5 References

	35 Non-Maximal Suppression
	35.1 Introduction and Use Cases
	35.2 Specification
	35.2.1 Function
	35.2.2 Inputs
	35.2.3 Output
	35.2.4 Method
	35.2.5 APIs

	35.3 Performance Benchmarks

	36 Lucas-Kanade Feature Tracking (Sparse Optical Flow)
	36.1 Introduction and Use Cases
	36.2 Specification
	36.2.1 Function
	36.2.2 Inputs
	36.2.3 Output
	36.2.4 Method
	36.2.5 APIs

	36.3 Performance Benchmarks
	36.4 Notes
	36.5 References

	37 Normal Flow (16-Bit)
	37.1 Introduction and Use Cases
	37.2 Specification
	37.2.1 Function
	37.2.2 Inputs
	37.2.3 Output
	37.2.4 Notes
	37.2.5 APIs

	37.3 Performance Benchmarks

	38 Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit)
	38.1 Introduction and Use Cases
	38.2 Specification
	38.2.1 Function
	38.2.2 Inputs
	38.2.3 Output
	38.2.4 Notes
	38.2.5 APIs

	38.3 Performance Benchmarks

	39 Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit)
	39.1 Introduction and Use Cases
	39.2 Specification
	39.2.1 Function
	39.2.2 Inputs
	39.2.3 Output
	39.2.4 Notes
	39.2.5 APIs

	39.3 Performance Benchmarks

	40 Nelder-Mead Simplex (16-Bit)
	40.1 Introduction and Use Cases
	40.2 Specification
	40.2.1 Function
	40.2.2 Inputs
	40.2.3 Output
	40.2.4 Notes
	40.2.5 APIs

	40.3 Performance Benchmarks

	41 Nelder-Mead Simplex for 3D Coordinate Space (16-Bit)
	41.1 Introduction and Use Cases
	41.2 Specification
	41.2.1 Function
	41.2.2 Inputs
	41.2.3 Output
	41.2.4 Notes
	41.2.5 APIs

	41.3 Performance Benchmarks

	42 Legendre Moments Computation (16-Bit)
	42.1 Introduction and Use Cases
	42.2 Specification
	42.2.1 Function
	42.2.2 Inputs
	42.2.3 Output
	42.2.4 Notes
	42.2.5 APIs

	42.3 Performance Benchmarks

	43 Initialization for Histogram Computation for Integer Scalars (8-Bit)
	43.1 Introduction and Use Cases
	43.2 Specification
	43.2.1 Function
	43.2.2 Inputs
	43.2.3 Output
	43.2.4 Notes
	43.2.5 APIs

	43.3 Performance Benchmarks

	44 Histogram Computation for Integer Scalars (8-Bit)
	44.1 Introduction and Use Cases
	44.2 Specification
	44.2.1 Function
	44.2.2 Inputs
	44.2.3 Output
	44.2.4 Notes
	44.2.5 APIs

	44.3 Performance Benchmarks

	45 Weighted Histogram Computation for Integer Scalars (8-Bit)
	45.1 Introduction and Use Cases
	45.2 Specification
	45.2.1 Function
	45.2.2 Inputs
	45.2.3 Output
	45.2.4 Notes
	45.2.5 APIs

	45.3 Performance Benchmarks

	46 Initialization for Histogram Computation for Integer Scalars (16-Bit)
	46.1 Introduction and Use Cases
	46.2 Specification
	46.2.1 Function
	46.2.2 Inputs
	46.2.3 Output
	46.2.4 Notes
	46.2.5 APIs

	46.3 Performance Benchmarkss

	47 Histogram Computation for Integer Scalars (16-Bit)
	47.1 Introduction and Use Cases
	47.2 Specification
	47.2.1 Function
	47.2.2 Inputs
	47.2.3 Output
	47.2.4 Notes
	47.2.5 APIs

	47.3 Performance Benchmarks

	48 Weighted Histogram Computation for Integer Scalars (16-Bit)
	48.1 Introduction and Use Cases
	48.2 Specification
	48.2.1 Function
	48.2.2 Inputs
	48.2.3 Output
	48.2.4 Notes
	48.2.5 APIs

	48.3 Performance Benchmarks

	49 Histogram Computation for Multi-Dimensional Vectors (16-Bit)
	49.1 Introduction and Use Cases
	49.2 Specification
	49.2.1 Function
	49.2.2 Inputs
	49.2.3 Output
	49.2.4 Notes
	49.2.5 APIs

	49.3 Performance Benchmarks

	50 Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit)
	50.1 Introduction and Use Cases
	50.2 Specification
	50.2.1 Function
	50.2.2 Inputs
	50.2.3 Output
	50.2.4 Notes
	50.2.5 APIs

	50.3 Performance Benchmarks

	51 Bhattacharya Distance (32-Bit)
	51.1 Introduction and Use Cases
	51.2 Specification
	51.2.1 Function
	51.2.2 Inputs
	51.2.3 Output
	51.2.4 Notes
	51.2.5 APIs

	51.3 Performance Benchmarks

	52 L1 Distance (City Block Distance) (16-bit)
	52.1 Introduction and Use Cases
	52.2 Specification
	52.2.1 Function
	52.2.2 Inputs
	52.2.3 Output
	52.2.4 Notes
	52.2.5 APIs

	52.3 Performance Benchmarks

	53 Luminance Extraction From YUV422
	53.1 Introduction and Use Cases
	53.2 Specification
	53.2.1 Function
	53.2.2 Inputs
	53.2.3 Output
	53.2.4 Method
	53.2.5 APIs

	53.3 Performance Benchmarks

	54 Conversion From 8-Bit YUV422 Interleaved to YUV422 Planar
	54.1 Introduction and Use Cases
	54.2 Specification
	54.2.1 Function
	54.2.2 Inputs
	54.2.3 Output
	54.2.4 Method
	54.2.5 APIs

	54.3 Performance Benchmarks
	54.4 References

	55 Conversion From 8-bit YUV422 Interleaved to YUV420 Planar
	55.1 Introduction and Use Cases
	55.2 Specification
	55.2.1 Function
	55.2.2 Inputs
	55.2.3 Output
	55.2.4 Method
	55.2.5 APIs

	55.3 Performance Benchmarks
	55.4 References

	56 Conversion From 8-bit YUV422 Interleaved to HSL Planar
	56.1 Introduction and Use Cases
	56.2 Specification
	56.2.1 Function
	56.2.2 Inputs
	56.2.3 Output
	56.2.4 Method
	56.2.5 APIs

	56.3 Performance Benchmarks
	56.4 References

	57 Conversion From 8-bit YUV422 Interleaved to LAB Planar
	57.1 Introduction and Use Cases
	57.2 Specification
	57.2.1 Function
	57.2.2 Inputs
	57.2.3 Output
	57.2.4 Method
	57.2.5 APIs

	57.3 Performance Benchmarks
	57.4 References

	58 Conversion From 8-bit YUV422 Interleaved to RGB Planar
	58.1 Introduction and Use Cases
	58.2 Specification
	58.2.1 Function
	58.2.2 Inputs
	58.2.3 Output
	58.2.4 Method
	58.2.5 APIs

	58.3 Performance Benchmarks
	58.4 References

	59 LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar
	59.1 Introduction and Use Cases
	59.2 Specification
	59.2.1 Function
	59.2.2 Inputs
	59.2.3 Output
	59.2.4 Method
	59.2.5 APIs

	59.3 Performance Benchmarks
	59.4 References

	60 Conversion From 8-Bit YUV422 Semiplanar to YUV422 Planar
	60.1 Introduction and Use Cases
	60.2 Specification
	60.2.1 Function
	60.2.2 Inputs
	60.2.3 Output
	60.2.4 Method
	60.2.5 APIs

	60.3 Performance Benchmarks
	60.4 References

	61 Conversion From 8-Bit YUV422 Planar to YUV422 Interleaved
	61.1 Introduction and Use Cases
	61.2 Specification
	61.2.1 Function
	61.2.2 Inputs
	61.2.3 Output
	61.2.4 Method
	61.2.5 APIs

	61.3 Performance Benchmarks
	61.4 References

	62 SAD Based Disparity Computation (8-Bit)
	62.1 Introduction and Use Cases
	62.2 Specification
	62.2.1 Function
	62.2.2 Inputs
	62.2.3 Output
	62.2.4 Method
	62.2.5 APIs

	62.3 Performance Benchmarks
	62.4 References

	63 SAD Based Disparity Computation (16-Bit)
	63.1 Introduction and Use Cases
	63.2 Specification
	63.2.1 Function
	63.2.2 Inputs
	63.2.3 Output
	63.2.4 Method
	63.2.5 APIs

	63.3 Performance Benchmarks
	63.4 References

