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Vision Library (VLIB) Application Programming Interface

1 About VLIB V2.1 Release
The Vision Library (VLIB) is a collection of computer vision algorithms that have been optimized for Texas
Instruments’ digital media processors. The VLIB Version 2.1 software library was developed for devices
with a C64x or C64x+ processing core. This Application Programming interface (API) supports rapid
integration of VLIB for embedded vision applications.
These incarnations of release version 2.1 are supplied:
» viib.I64p
» vlib_errchk.I64p
+ viib.l64
» vlib_errchk.l64
« viib.lib
e VLIB_lib.mdl
The first two libraries are for C64x+ and the next two libraries are for C64x. vlib.164p and vlib.l164 are
compiled with full file-level optimization enabled and with no debug information. vlib_errchk.l64p and
vlib_errchk.164 versions contain more error checking of input arguments for some of the library functions.
These builds are designed to produce richer error reporting for debug purposes but the added overhead
can slow performance (marginally in most cases).
Self-verifying examples are provided with the library to demonstrate how to use the API. The main test
application works with the latest version of TI's Code Composer Studio, version 3.3. The vlib.lib library is a
bit-exact version of the library for testing in PC (Windows) environments. It was compiled using Microsoft
Visual C++ 6.0. The VLIB_lib.mdl file contains Simulink blocks for development and code generation in the
matlab environment.
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Exponentially-Weighted Running Mean of a Video (16-Bit)

Introduction and Use Cases

A background subtraction algorithm might consist of:
1. Computing a representative statistic of the luma component for each pixel in a video.

2. Labeling deviations from this statistic as foreground. One such statistic is the exponentially-weighted
(EW) running mean.

Specification

Function

Updates the exponential running mean of the luma component of a video. If the foreground mask bit is
set, indicating there is obstruction by a foreground object, the running mean will not be updated.

Inputs

short *runni ngMean EW running mean buffer to be updated (SQ8.7)

char *newLuma Most recent luma buffer (UQ8.0)

unsi gned int *mask32packed Foreground mask buffer (32-bit packed)
short wei ght Weight of the newest luma (SQO0.15)

unsi gned int pi xel Count Number of pixels to process (UQ32.0)

Output

int Returns VLIB Error Status

Method

In the implementation shown in Equation 1, the exponential running mean is updated for those pixels
where the foreground mask is zero:

updatedMean = (1 — weight) x previousMean + weight x newestData 1)

APls

int VLI B updat eEVRMeanS16(
short * restrict runni ngMean,
const char * restrict newLum,
const unsigned int * restrict mask32packed,
const short weight,
const unsigned int pixel Count);

The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.7 representation.

int VLIB_initManWthLunaS16(
short * restrict runni ngMean,
const char * restrict |unaFrane,
const unsigned int pixel Count);

Requirements
* 1/O buffers are assumed to be double-word aligned in memory.
* pixelCount must be a multiple of 8.
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2.3

23.1

2.3.2

24

2.5

Comments

Adaptation Through Running Statistics

Over the course of a day, the illumination of an outdoor scene changes drastically. A background model
needs to adapt to such effects and only report changes inherent to the scene, as opposed to its
appearance. One practical approach is to compute the running (moving) statistics of the scene over a
period of observation.

Foreground Objects

Based on inference or a priori knowledge, one could classify certain pixels of a video frame as foreground
object (or outlier) and exclude them from the averaging operation. This mechanism would keep foreground
object pixels from influencing the running mean of the background.

Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRMeanS16 1.0 cycles/pixel
VLIB_initMeanWithLumaS16 0.4 cycles/pixel

References

1. Chapter 15: Moving Average Filters in Digital Signal Processing: A Practical Guide for Engineers and
Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.

2. "Moving object recognition using and adaptive background memory" in Time-Varying Image

Processing and Moving Object Recognition, K.P. Karmann and A. von Brandt, Elsevier Science
Publishers B.V., 1990.
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3.24

3.2.5

3.2.6

Exponentially-Weighted Running Mean of a Video (32-Bit)

Introduction and Use Cases

A background subtraction algorithm commonly consists of:
1. Computing a representative statistic of the luma component for each pixel in a video.

2. Labeling deviations from this statistic as foreground. One such statistic is the exponentially-weighted
(EW) running mean.

Specification

Function

Updates the exponential running mean of the luma component of a video. If the foreground mask bit is set
for a pixel, indicating there is obstruction by a foreground object, the running mean will not be updated for
that pixel.

Inputs

i nt *runni ngMean EW running mean buffer to be updated (SQ8.23)

char *newLuma Most recent luma buffer (UQ8.0)

unsi gned int *mask32packed Foreground mask buffer (32-bit packed)
i nt wei ght Weight of the newest luma (SQO0.31)

unsi gned int pi xel Count Number of pixels to process (UQ32.0)

Output

i nt Returns VLIB Error Status

Method

In the implementation shown in Equation 2, the exponential running mean is updated for those pixels
where the foreground mask is zero:

updatedMean = (1-weight) x previousMean + weight x newestData 2)

APls

int VLI B updat eEVRMeanS32(
int * restrict runni ngMean,
const char * restrict newLumm,
const unsigned int * restrict mask32packed,
const int weight,
const unsigned int pixel Count);

The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.23 representation.

int VLIB_initManWthLunaS32(
int * restrict runni ngMean,
const char * restrict |umaFrane,
const unsigned int pixel Count);

Requirements
» 1/O buffers are assumed to be double-word aligned in memory.
e pixelCount must be a multiple of 4.
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3.3

3.3.1

3.3.2

3.4

3.5

Comments

Adaptation Through Running Statistics

Over the course of a day, the illumination of an outdoor scene changes drastically. A background model
needs to adapt to such effects and only report changes inherent to the scene, as opposed to its
appearance. One practical approach is to compute the running (moving) statistics of the scene over a
period of observation.

Foreground Objects

Based on inference or a priori knowledge, one could classify certain pixels of a video frame as foreground
object (or outlier) and exclude them from the averaging operation. This mechanism would keep foreground
object pixels from influencing the running mean of the background.

Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRMeanS32 2.0 cycles/pixel
VLIB_initMeanWithLumaS32 0.8 cycles/pixel

References

1. Chapter 15: Moving Average Filters in Digital Signal Processing: A Practical Guide for Engineers and
Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.

2. "Moving object recognition using and adaptive background memory" in Time-Varying Image

Processing and Moving Object Recognition, K.P. Karmann and A. von Brandt, Elsevier Science
Publishers B.V., 1990.
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4 Exponentially-Weighted Running Variance of a Video (16-Bit)

4.1 Introduction and Use Cases

A background subtraction algorithm might consist of:
1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground.

The exponentially-weighted (EW) running variance of a pixel can be used in deciding whether an
observed deviation is statistically significant.

4.2 Specification
421 Function
Updates the exponential running variance of the luma component of a video. If the foreground mask bit is

set, indicating there is obstruction by a foreground object, the running variance will not be updated.

4.2.2 Inputs

short *runni ngVar EW running variance to be updated (SQ12.3)
short *runni ngMean EW running mean buffer (SQ8.7)

char *newLuma Most recent luma buffer (UQ8.0)

unsi gned int *mask32packed Foreground mask buffer (32-bit packed)
short wei ght Weight of the newest luma (SQO0.15)

unsi gned int pi xel Count Number of pixels to process (UQ32.0)

4.2.3 Output

i nt Returns VLIB Error Status

4.2.4 Method

In the implementation shown in Equation 3, the exponential running variance is updated for those pixels
where the foreground mask is zero:

updatedVar = (1 — weight) x previousVar + weight x (newestData — previousMean)® 3)
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4.2.5 APIs
int VLI B updat eEVRVari anceS16(
short * restrict runningVar,
const short * restrict runningMean,
const char * restrict newLumng,
const unsigned int * restrict mask32packed,
const short weight,
const unsigned int pixel Count);
The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ12.3 format already.
int VLIB_initVarWthConst S16(
short * restrict runningVar,
const short const Var,
const unsigned int pixel Count);
42.6 Requirements
* 1/O buffers are assumed to be double-word aligned in memory.
» pixelCount must be a multiple of 8.
4.3 Performance Benchmarks
On-chip memory performance of the kernels has been measured as.
VLIB_updateEWRVarianceS16 1.3 cycles/pixel
VLIB_initVarWithConstS16 0.1 cycles/pixel
16 Vision Library (VLIB) Application Programming Interface SPRUGO0C—November 2009
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5 Exponentially-Weighted Running Variance of a Video (32-Bit)
5.1 Introduction and Use Cases
A background subtraction algorithm might consist of:
1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. The exponentially-weighted (EW) running
variance of a pixel can be used in deciding whether an observed deviation is statistically significant.
5.2 Specification
521 Function
Updates the exponential running variance of the luma component of a video. If the foreground mask bit is
set, indicating there is obstruction by a foreground object, the running variance will not be updated.
522 Inputs
i nt *runni ngVar EW running variance to be updated (SQ16.15)
i nt *runni ngMean EW running mean buffer (SQ8.23)
char *newLuma Most recent luma buffer (UQ8.0)
unsi gned int *mask32packed Foreground mask buffer (32-bit packed)
int wei ght Weight of the newest luma (SQO0.31)
unsi gned int pi xel Count Number of pixels to process (UQ32.0)
5.2.3 Output
int Returns VLIB Error Status
5.2.4 Method
In the implementation shown in Equation 4, the exponential running variance is updated for those pixels
where the foreground mask is zero:
updatedVar = (1 — weight) x previousVar + weight x (newestData — previousMean)? (4)
5.2.5 APIs
int VLI B_updat eEWRVari anceS32(
int * restrict runningVar,
const int * restrict runni ngMean,
const char * restrict newLuns,
const unsigned int * restrict mask32packed,
const int weight,
const unsigned int pixel Count);
The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ16.15 format already.
int VLIB_initVarWthConst S32(
int * restrict runningVar,
const int constVar,
const unsigned int pixel Count);
5.2.6 Requirements
« 1/O buffers are assumed to be double-word aligned in memory.
e pixelCount must be a multiple of 4.
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5.3 Performance Benchmarks

On-chip memory performance of the kernels has been measured as.

VLIB_updateEWRVarianceS32 2.3 cycles/pixel
VLIB_initVarWithConstS32 0.3 cycles/pixel
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6 Uniformly-Weighted Running Mean of a Video (16-Bit)
6.1 Introduction and Use Cases
A background subtraction algorithm might consist of:
1. Computing a representative statistic of the luma component for each pixel in a video.
2. Labeling deviations from this statistic as foreground. One such statistic is the uniformly-weighted (UW)
running mean (a.k.a., moving average).
Special requirements:
For averaging, a video buffer of N luma frames need to be stored in memory. The user is expected to
maintain this buffer and pass the appropriate frame pointers to the function.
6.2 Specification
6.2.1 Function
Updates the (uniformly-weighted) running mean of the luma component of a video. If the foreground mask
bit of either the newest or the oldest video frame is set, indicating there is obstruction by a foreground
object, the running mean will not be updated.
6.2.2 Inputs
short *updat edMean Updated running mean buffer (SQ8.7)
short *previ ousMean Previous running mean buffer (SQ8.7)
char *newest Dat a Most recent luma buffer (UQ8.0)
unsi gned int *ol dest Dat a Oldest luma buffer (UQ8.0)
unsi gned int *newest Mask32packed Newest mask buffer (32-bit packed)
unsi gned int *ol dest Mask32packed Oldest mask buffer (32-bit packed)
unsi gned int pi xel Count Number of pixels to in the luma buffer (UQ32.0)
unsi gned char f rameCount Number of frames in video buffer (UQ8.0)
6.2.3 Output
int Returns VLIB Error Status
6.2.4 Method
In the implementation shown in Equation 5, the running mean is updated for those pixels where the
foreground mask of the oldest and newest frames are zero:
updatedMean = previousMean + (newestData — oldestData) + (frameCount — 1) (5)
SPRUGO00C-November 2009 Vision Library (VLIB) Application Programming Interface 19
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6.2.5 APIs
int VLI B _updat eUMRMeanS16(
short * restrict updatedMean,
const short * restrict previousMean,
const char * restrict newestData,
const char * restrict ol destData,
const unsigned int * restrict newest Mask32packed,
const unsigned int * restrict ol dest Mask32packed,
const unsigned int pixel Count,
const unsigned char franeCount);
The following function can be used to initialize a running mean buffer with luma values. In this process, all
UQ8.0 luma values are converted into SQ8.7 representation.
int VLIB_initManWthLunaS16(
short * restrict runni ngMean,
const char * restrict |umaFrane,
const unsigned int pixel Count);
6.2.6 Requirements
* 1/O buffers are assumed to be double-word aligned in memory.
» pixelCount must be a multiple of 8.
6.3 Performance Benchmarks
On-chip memory performance has been measured as 1.0 cycles/pixel.
6.4 References
1. Chapter 15: Moving Average Filters, in Digital Signal Processing: A Practical Guide for Engineers and
Scientists, Steven W. Smith, 2002, ISBN 0-7506-7444.
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7 Uniformly-Weighted Running Variance of a Video (16-Bit)

7.1 Introduction and Use Cases

A background subtraction algorithm might consist of:

1. Computing a representative statistic of the luma component for each pixel in a video.

2. Labeling deviations from this statistic as foreground. The uniformly-weighted running variance of a

pixel can be used in deciding whether an observed deviation is statistically significant.

7.2 Specification

7.2.1 Function

Updates the (uniformly-weighted) running variance of the luma component of a video. If the foreground
mask bit of either the newest or the oldest video frame is set, indicating there is obstruction by a
foreground object, the running variance will not be updated.

7.2.2 Inputs

short

short

short

short

char

unsi gned int
unsi gned int
unsi gned int
unsi gned char

7.2.3 Output
i nt

7.2.4 Method

*updat edVar

*updat edMean

*previ ousMean

*previ ousVar

*newest Dat a

*newest Mask32packed
*ol dest Mask32packed
pi xel Count

f rameCount

Returns VLIB Error Status

Updated running variance buffer
Updated running mean buffer
Previous running mean buffer
Previous running variance buffer
Most recent luma buffer

Newest foreground mask

Oldest foreground mask

Number of pixels to process
Number of frames in video buffer

(SQ12.3)
(SQ8.7)
(SQ8.7)
(SQ12.3)
(SQ8.0)

(32-bit packed)
(32-bit packed)
(UQ32.0)
(UQ8.0)

In the implementation shown in Equation 6, the running variance is updated for those pixels where the
foreground mask of the oldest and newest frames are zero:

updatedVar = 1 + (frameCount—1) x (frameCountxpreviousVar + (newestData—updatedMean) x

(newestData—previousMean))

(6)
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7.2.5 APIs
int VLI B updat eUMRVari anceS16(
short * restrict updatedVar,
const short * restrict previousVar,
const short * restrict updatedMean,
const short * restrict previousMean,
const char * restrict newestData,
const unsigned int * restrict newestMask32packed,
const unsigned int * restrict ol dest Mask32packed,
const unsigned int pixel Count,
const unsigned char franmeCount);
The following function can be used to initialize a running variance buffer with a constant variance value.
The latter is expected to be in SQ12.3 format already.
int VLIB_initVarWthConst S16(
short * restrict runningVar,
const short constVar,
const unsigned int pixel Count);
7.2.6 Requirements
« 1/O buffers are assumed to be double-word aligned in memory.
e pixelCount must be a multiple of 8.
7.3 Performance Benchmarks
On-chip memory performance has been measured as 2.0 cycles/pixel.
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8 Statistical Background Subtraction (16-Bit)
8.1 Introduction and Use Cases
In background subtraction, thresholding can be used to decide whether a pixel's observed value deviates
too far from its model (that is, the average of its past values). Assuming each pixel’s variance has been
modeled, one might threshold a deviation image with a (scaled) variance image.
8.2 Specification
8.2.1 Function
This function implements a statistical background segmentation algorithm
8.2.2 Inputs
unsi gned int *mask32packed Binary mask to be computed (32-bit packed)
char *newLuma Most recent luma buffer (UQ8.0)
short *runni ngMean EW running mean buffer (SQ8.7)
short *runni ngVar EW running variance buffer (SQ12.3)
short t hreshol dd obal Global threshold value (SQ12.3)
short t hreshol dFact or Multiplicative factor for threshold (SQ4.11)
unsi gned int pi xel Count Number of pixels to process (UQ32.0)
8.2.3 Output
int Returns VLIB Error Status
8.2.4 Method
For each pixel, the running mean and variance statistics are assumed to be known. The routine makes
comparisons between three scalar values for each pixel:
1. The squared distance between the most recent luma measurement and the running mean determined
by Equation 7:
(newLuma — runningMean)? ©)
2. The thresholdGlobal
3. thresholdFactor x runningVar
For a pixel to be classified as foreground, (1) needs to be greater than both (2) and (3). When these
conditions are satisfied, the observation is deemed to stem from a foreground object (and not from the
modeled background), and the corresponding mask pixel value is set to 1.
The comparison with (2) plays the role of assuming a minimum variance for the pixel values, as in camera
noise, etc. A sequence of luma observations might be very consistent, driving the running variance to
small values. In such cases, camera noise could cause a pixel to pass the foreground threshold. By
setting a reasonably high camera noise value (which is a “squared” scalar), one can filter out the camera
noise.
Note that the thresholdFactor is also in squared form: if you would like measurements which are 2
standard deviations away from the mean to be classified as foreground, the thresholdFactor should be set
to 2x2=4. This variable is represented as SQ4.11 (sign bit, 4 integer bits, 11 fractional bits). In hex-format,
it 4(dec) would read 0x2000.
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8.2.5

8.2.6

APIs

int VLIB_subtractBackgroundS16(
unsigned int * restrict mask32packed,

const
const
const
const
const
const

Requirements

char * restrict newLuns,
short * restrict runni ngMean,
short * restrict runningVar,
short threshol dd obal ,

short threshol dFactor,

unsi gned int Pixel Count);

* 1/O buffers are assumed to be double-word aligned in memory.
» pixelCount must be a multiple of 8.

8.3 Performance Benchmarks

On-chip memory performance has been measured as 1.1 cycles/pixel.
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9 Statistical Background Subtraction (32-Bit)
9.1 Introduction and Use Cases
In background subtraction, thresholding can be used to decide whether a pixel's observed value deviates
too far from its model (that is, the average of its past values). Assuming each pixel's variance has been
modeled, one might threshold a deviation image with a (scaled) variance image.
9.2 Specification
9.2.1 Function
This function implements a statistical background segmentation algorithm.
9.2.2 Inputs
unsi gned int *mask32packed Binary mask to be computed (32-bit packed)
char *newLuma Most recent luma buffer (UQ8.0)
int *runni ngMean EW running mean buffer (SQ8.23)
i nt *runni ngVar EW running variance buffer (SQ16.15)
i nt t hreshol dd obal Global threshold value (SQ16.15)
i nt t hreshol dFact or Multiplicative factor for threshold (SQ4.27)
unsi gned int pi xel Count Number of pixels to process (UQ32.0)
9.2.3 Output
int Returns VLIB Error Status
9.2.4 Method
For each pixel, the running mean and variance statistics are assumed to be known. The routine makes
comparisons between three scalar values for each pixel:
1. The squared distance between the most recent luma measurement and the running mean as shown in
Equation 8:
(newLuma — runningMean)? (8)
2. The thresholdGlobal
3. The thresholdFactor x runningVar
For a pixel to be classified as foreground, (1) needs to be greater than both (2) and (3). When these
conditions are satisfied, the observation is deemed to stem from a foreground object (and not from the
modeled background), and the corresponding mask pixel value is set to 1.
The comparison with (2) plays the role of assuming a minimum variance for the pixel values, as in camera
noise, etc. A sequence of luma observations might be very consistent, driving the running variance to
small values. In such cases, camera noise could cause a pixel to pass the foreground threshold. By
setting a reasonably high camera noise value (which is a “squared” scalar), one can filter out the camera
noise.
The thresholdFactor is also in squared form: if you would like measurements which are two standard
deviations away from the mean to be classified as foreground, the thresholdFactor should be set to
2x2=4. This variable is represented as SQ4.27 (sign bit, 4 integer bits, 27 fractional bits). In hex-format, it
4(dec) would read 0x20000000.
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9.2.5 APIs

int VLIB_subtractBackgroundS32(
unsigned int * restrict mask32packed,
const char * restrict newLums,
const int * restrict runni ngMean,
const int * restrict runningVar,
const int threshol dd obal,
const int threshol dFactor,
const unsigned int Pixel Count);

9.2.6 Requirements
* 1/O buffers are assumed to be double-word aligned in memory.
» pixelCount must be a multiple of 4.

9.3 Performance Benchmarks

On-chip memory performance has been measured as 2.3 cycles/pixel.

26 Vision Library (VLIB) Application Programming Interface SPRUGO0C—November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS

INSTRUMENTS

www.ti.com

Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit)

10 Mixture of Gaussians Background Modeling for Grayscale Video (16-Bit)

10.1 Introduction and Use Cases

In order to reliably obtain foreground blobs in complex, dynamic environments, it is often desirable to have
an adaptive multi-modal background model. The Mixture of Gaussians background modeling and
subtraction is a popular technique that provides such capabilities.

10.2 Specification

10.2.1 Function

Maintain a Gaussian mixture model (GMM) for each pixel in a video frame, and return a packed binary
mask corresponding to the computed foreground regions for the input frame. This function assumes that
the input stream contains a single channel (such as, luminance), and uses a maximum of 3 Gaussian

components to model the pixel intensity variations.

10.2.2 Inputs

char *inputlm Input image buffer

unsi gned short *currentWs Buffer for current weights

unsi gned short  *current Means Buffer for current means

unsi gned short *currentVars Buffer for current variances

char *conpl ndex Buffer for indices indicating which mode a pixel belongs to
char *int Buf f er Buffer for internal use

unsi gned int *f gMask Computed binary foreground mask
i nt i mageSi ze Pixel count of input image buffer
unsi gned short updateRatel Update rate for weights

unsi gned short updat eRat e2 Update rate for heights

unsi gned short ndThreshol d Mahalanobis distance threshold
unsi gned short bsThreshol d Background subtraction threshold
unsigned short initial W Initial weight for new component
unsigned short initial Var Initial variance for new component

10.2.2.1 Notes and Special Requirements
» If the input image contains N pixels, the input buffers should have the following sizes:

currentWts: 3.N data elements
currentMeans: 3.N data elements
CurrentVars: 3.N data elements
compindex: N data elements
intBuffer: N data elements
fgMask: N/32 data elements

« All buffers should be initialized to 0 before invoking the function for the first time.
* 1/O buffers are assumed to be double-word aligned in memory.

(UQB.0)
(SQO.15)
(SQ8.7)
(SQ12.3)
(UQB.0)
(UQB.0)
(UQB.0)
(SQ32.0)
(SQO.15)
(SQO.15)
(SQ4.11)
(SQO0.15)
(SQO.15)
(SQ12.3)
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10.2.3  Output

i nt Returns VLIB Error Status

10.2.4 APIs

int VLI B_m xtureOf Gaussi ansS16(
const char* restrict inputlm
short* restrict currentWs,
short* restrict currentMeans,
short* restrict currentVars,
char* restrict conplndex,
char* restrict intBuffer,
unsigned int* restrict fgMask,
const int inmageSize,
const short updateRatel,
const short updateRate2,
const short nmdThreshol d,
const short bsThreshol d,
const short initial W,
const short initialVar);

10.3 Performance Benchmarks

On-chip memory performance has been measured as 31.30 cycles/pixel.

10.4 References

1. Adaptive background mixture models for real-time tracking, C. Stauffer and W. Grimson, Computer
Vision and Pattern Recognition, 1999.
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11  Mixture of Gaussians Background Modeling for Grayscale Video (32-Bit)

11.1 Introduction and Use Cases

In order to reliably obtain foreground blobs in complex, dynamic environments, it is often desirable to have
an adaptive multi-modal background model. The Mixture of Gaussians background modeling and
subtraction is a popular technique that provides such capabilities.

11.2 Specification

11.2.1 Function

Maintain a Gaussian mixture model (GMM) for each pixel in a video frame, and return a packed binary
mask corresponding to the computed foreground regions for the input frame. This function assumes that
the input stream contains a single channel (such as, luminance), and uses a maximum of 3 Gaussian
components to model the pixel intensity variations.

11.2.2 Inputs

char *inputlm Input image buffer (UQ8.0)
unsi gned short *currentWs Buffer for current weights (SQO0.15)
unsi gned int *current Means Buffer for current means (SQ8.23)
unsi gned int *currentVars Buffer for current variances (SQ16.15)
char *conpl ndex Buffer for indices indicating which mode a pixel belongs to (UQ8.0)
char *intBuf fer Buffer for internal use (UQ8.0)
unsi gned int *f gmask Computed binary foreground mask (UQ8.0)

i nt i mageSi ze Pixel count of input image buffer (5Q32.0)
unsi gned short updateRatel Update rate for weights (SQO0.15)
unsi gned int updat eRat e2 Update rate for heights (SQ0.31)
unsi gned int nmdThr eshol d Mahalanobis distance threshold (SQ4.27)
unsi gned short bsThreshol d Background subtraction threshold (SQO0.15)
unsigned short initial W Initial weight for new component (SQO0.15)
unsi gned int initial Var Initial variance for new component (SQ16.15)

11.2.3 Notes and Special Requirements

« If the input image contains N pixels, the input buffers should have the following sizes:
— currentWts: 3.N data elements
— currentMeans: 3.N data elements
— CurrentVars: 3.N data elements
— complndex: N data elements
— intBuffer: N data elements
— fdMask: N/32 data elements

» All buffers should be initialized to O before invoking the function for the first time.

» 1/O buffers are assumed to be double-word aligned in memory.
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11.2.4 Output

i nt Returns VLIB Error Status

11.25 APIs

int VLI B_m xtureOf Gaussi ansS32(
const char* restrict inputlm
short* restrict currentWs,
int* restrict currentMeans,
int* restrict currentVars,
char* restrict conplndex,
char* restrict intBuffer,
unsigned int* restrict fgMask,
const int inmageSize,
const short updateRatel,
const int updateRate2,
const int ndThreshol d,
const short bsThreshol d,
const short initial W,
const int initialVar);

11.3 Performance Benchmarks

On-chip memory performance has been measured as 39.13 cycles/pixel.

11.4 References

1. Adaptive background mixture models for real-time tracking, C. Stauffer and W. Grimson, Computer
Vision and Pattern Recognition, 1999.
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12  8-Bit Image Extraction From 16-Bit Background Models

12.1 Introduction and Use Cases

While a background model can contain fractional bits, you might be interested in processing or displaying
only the integer portion of it. The following function is designed to help developers extract the 8 (unsigned)
integer bits of a 16-bit (signed) background model. It can be applied to both running mean and variance
images to extract the most significant 8 bits.

12.2 Specification

12.2.1 Inputs

short * BGrodel Background model (SQa.b)
unsi gned char *BA mage Extracted background image buffer (UQ8.0)
unsi gned int Pi xel Count Number of pixels to process (UQ32.0)

12.2.2 Outputs

int Returns VLIB Error Status

12.2.3 Method

This kernel extracts the 8-bit (unsigned) most significant integer portion of a 16-bit (signed) background
model.

12.2.4 APIs

int VLIB_ extract 8bitBackgroundS16(
const short * restrict BGrodel,
unsi gned char * restrict BG mage,
const unsigned int pixel Count);

12.3 Requirements

» The buffers BGmodel and BGimage need to be double-word aligned in memory.
* The pixelCount must be a multiple of 8.

12.4 Performance Benchmarks

On-chip memory performance has been measured as 0.26 cycles/pixel.
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13  32-Bit Packing and Unpacking of Binary Mask Images

13.1 Introduction and Use Cases
The background modeling and subtraction APIs of VLIB commonly operate on 32-bit packed binary mask
images. The following functions are designed to help developers pack and unpack such masks efficiently.

13.2 Specification

13.2.1 Inputs

unsi gned int *mask32packed 32-bit packed binary mask buffer (UQ32.0)
unsi gned char *maskl mage Unpacked binary mask image buffer (UQ8.0)
unsi gned int pi xel Count Number of pixels to process (UQ32.0)

13.2.2  Output

i nt Returns VLIB Error Status

13.2.3 Method
These kernels convert binary images between the 32-bit packed and 8-bit unpacked formats.

13.2.4 APlIs

int VLI B packMask32(
const unsigned char * restrict maskl nage,
unsigned int * restrict mask32packed,
const unsigned int pixel Count);

int VLI B unpackMask32(
const unsigned int * restrict mask32packed,

unsi gned char * restrict maskl nage,
const unsigned int pixel Count);

13.3 Requirements
» The buffer maskimage need to be double-word aligned in memory.
* The pixelCount must be a multiple of 8.

13.4 Performance Benchmarks
On-chip memory performance for VLIB_packMask32 has been measured as 0.26 cycles/pixel.
On-chip memory performance for VLIB_unpackMask32 has been measured as 0.38 cycles/pixel.
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14 Dilation

14.1 Introduction and Use Cases
Dilation, along with erosion, is an elementary morphological operation [ 1 ].

14.2 Specification
14.2.1 Function
By itself, dilation expands binary objects in an image and is commonly used to connect neighboring

objects before the connected components analysis. In conjunction with erosion, it is used to build other
morphological operations, such as opening and closing.

14.2.2 Inputs

const unsigned char *in_data Input binary image (32-bit packed)
unsi gned char *out _data Output binary image (32-bit packed)
const char *mask 3x3 filter mask®

i nt col s Number of pixels to process (in pixels)

i nt pitch Pitch of input image (in pixels)

@ Used in only one of the available versions of dilation.

14.2.3 Method

These functions use bit-packed binary images; that is, each pixel is represented by a bit. The results are
calculated using the definition in Equation 9:

Dilation: out(u,v) = OR OR (in(u+i,v+j) AND mask(N-i,N-j)) 9)
In Equation 9, the logical summation OR is done over i=0,1,2 and j=0,1,2.

There are several important limitations to be aware of:
» 1/O buffers are assumed to be double-word aligned and not aliased.
» The inputs col s and pi t ch must be multiples of 64.

» The bit-packed input and output are ordered the same way as pixels in the image. This is different from
IMGLIB requirement for bit-reversed binary pixels within 32-bit words.

» If the data is a region of interest within a larger image, then pitch < col s.

» Border pixels will not contain valid data, in particular, the first and last row, as well as two rightmost
columns of the output do not contain valid data.
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14.2.4 APIs

14.3

14.4

int VLIB dilate_bin_square(
const unsigned char *restrict in_data,
unsi gned char *restrict out_data,
int cols
int pitch);

int VLIB dilate_bin_cross(
const unsigned char *restrict in_data,
unsi gned char *restrict out_data,
int cols
int pitch);

int VLIB_ dilate_bin_mask(
const unsigned char *restrict in_data,
unsi gned char *restrict out_data,
const char *restrict nask,
int cols
int pitch);

Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.27, 0.27, and 0.39 cycles per pixel,
for square, cross, and mask versions of dilation, respectively.

Notes

Repeated application of dilation (resp. erosion) with a 3x3 structuring element can often be used to
achieve dilations (resp. erosions) with larger structuring elements, depending on the shape and size of the
large structuring element. In general, this can be achieved for odd structuring element sizes (5x5, 7x7,
9x9, ...), and only if the structuring element is decomposable. In practice, repeated application of dilations
(resp. erosions) with a 3x3 cross and/or a 3x3 square can be used as a substitute for dilation (resp.
erosion) with commonly used large structuring elements.

If the large structuring element is decomposable or can be approximated by one that is decomposable, it
is advantageous to use this approach to reduce processing time and memory consumption.

By combining these two 3x3 structuring elements a variety of larger structuring elements can be achieved:

S3 = (3x3 square)

and

010
G =111 (3x3 cross)
010
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For example, an 11x11 structuring element that reasonably approximates a circle can be achieved by this
combination (here we denote dilation by a “+” and erosion by a “-"):
KI1 = S3 + S3 + C3 + C3 + C3 =

00011111000
00111111100
01111111110
11111111111
11111111111
11111111111
11111111111
11111111111
01111111110
00111111100
00011111000

Similarly, if an 11x11 square is needed, this decomposition should be used:
S11 = S3 + S3 + S3 + S3 + S3

If an 11x11 diamond is desired, this decomposition is needed:
DI1 = C3 + C3 + C3 + C3 + C3

Based on these decompositions and associativity and distributivity of dilation (resp. erosion), the larger
dilation (resp. erosion) with K11 as an example, is implemented as follows:

A + K11 =A+ (S3+8S3+C+C3+ XA
= ((((A+8S3) +8S3) +C3) +C3) +C3
And
A - K11 A- (S3+8S3+C3+C+ (3

((((A-83) - 83) -&® - ® -Q

14.5 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007.
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15 Erosion

15.1 Introduction and Use Cases
Erosion, along with dilation, is an elementary morphological operation [ 1 ].

15.2 Specification

15.2.1 Function

By itself, erosion shrinks binary objects in an image and is commonly used to remove noise before further
analysis. In conjunction with dilation, it is used to build other morphological operations, such as opening
and closing. VLIB_erode_bin_singlePixel erodes isolated pixels (ON pixels that do not have any ON
neighbors).

15.2.2 Inputs

const unsigned char *in_data Input binary image (32-bit packed)
unsi gned char *out _data Output binary image (32-bit packed)
const char *mask 3x3 filter mask®

i nt cols Number of pixels to process (in pixels)

i nt pitch Pitch of input image (in pixels)

@ Used in only one of the available versions of erosion.

15.2.3 Method

These functions use bit-packed binary images; that is, each pixel is represented by a bit. The results are
calculated using the definitions in Equation 10:

Erosion: out(u,v) = AND AND (in(u+i,v+j) AND mask(N-i,N-j)) (10)
In Equation 10, the logical product AND is done over i=0,1,2 and j=0,1,2.

There are several important limitations to be aware of:
» 1/O buffers are assumed to be double-word aligned and not aliased.
» The inputs col s and pi t ch must be multiples of 64.

» The bit-packed input and output are ordered the same way as pixels in the image. This is different from
IMGLIB requirement for bit-reversed binary pixels within 32-bit words.

e If the data is a region of interest within a larger image, then pitch < col s

» Border pixels will not contain valid data, in particular, the first and last row, as well as two rightmost
columns of the output do not contain valid data.
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15.2.4 APIs

voi d VLI B_erode_bi n_squar e(

const unsigned char *restrict in_data,
unsi gned char *restrict out_data,

int cols

int pitch);

voi d VLI B _erode_bi n_cross(

const unsigned char *restrict in_data,
unsi gned char *restrict out_data,

int cols

int pitch);

voi d VLI B_erode_bi n_mask(

const unsigned char *restrict in_data,
unsi gned char *restrict out_data,
const char *restrict nask,

int cols

int pitch);

voi d VLI B_erode_bi n_si ngl ePi xel (

const unsigned char *restrict in_data,
unsi gned char *restrict out_data,

int cols,

int pitch);

15.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.29, 0.29, 0.41, and 0.2 cycles per
pixel, for square, cross, mask, and isolated pixel versions of erosion, respectively.

15.4 Notes

See Section 14.4 in the discussion on dilation regarding repeated application of a 3x3 erosion (resp.

dilation) as a substitute for erosion (resp. dilation) with larger structuring elements.

15.5 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007.
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16

16.1

16.2

16.2.1

16.2.2

Connected Components Labeling

Introduction and Use Cases

Segmentation algorithms are often used to separate an image into salient (foreground) and non-salient
(background) pixels; for example, VLIB_subtractBackgroundS16. These methods typically produce a
binary image that identifies each pixel as belonging either to the foreground or background. The
connected components labeling algorithm examines the binary image, groups foreground pixels that have
other foreground pixels as 4- or 8-connected neighbors, and labels discrete groupings as components.
Once accomplished, component properties can be measured and used to extract foreground information.

Specification

Function

The primary function for grouping and labeling foreground components or blobs in a binary image is
VLIB_createConnectedComponentsList. After the handle is created and initialized by way of
VLIB_initConnectedComponentsList, a 32-bit packed binary image should be supplied as input to the
function such that each bit corresponds to a pixel location. For example, the most significant bit in the first
32-bit word represents the top-left corner of the binary image. By passing the handle to support functions,
such as VLIB_GetCCFeatures, properties about the foreground regions in the image can be extracted.

The support function VLIB_createCCMap8Bit produces an 8-bit 2D map that labels every pixel in the
image with its corresponding blob ID. Pixels associated with the background are all given ID = 0. Other
support functions that extract blob information from the list are: VLIB_GetNumCCs and GetCCFeatures.
The former returns the number of connected components in the list, while the latter reveals features of the
component as defined by the follow structure:
typedef struct {
int area;
int xsum
int ysum
int xmn;
int ymn;
int xmax;
int ymax;
int seedx;
int seedy;
} VLIB_CC

The pixel defined by a component’s centroid is not guaranteed to be a member of the component. Thus, a
guaranteed point in the connected component namely (seedx, seedy) is provided.

Additional features will be added to the structure as required. More support functions are also planned for
future releases.

Inputs

VLI B_CCHandl e * handl e A pointer to the list handle, which is a private structure
representing the labeled connected components in the binary
image.

unsi gned short inputw dth Width of input image (in pixels)
unsi gned short inputhei ght Height of input image (in pixels)
i nt *i nput | mage Input binary image mask(32-bit packed) (SQ32.0)
voi d *pBuf f er Pointer to large scratch buffer

int byt esBuf f er Number of bytes of scratch buffer (SQ32.0)
i nt m nBl obAr ea Minimum Pixel Area of each Blob (SQ32.0)

i nt connect ed8Fl ag  Set to O for 4 connected (no diagonal neighbors connected) or  (SQ32.0)
to 1 for 8 connected (all 8 pixel neighbors)
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16.2.3 Output
i nt Returns VLIB Error Status
16.2.4 Implementation Notes

16.2.5

The amount of memory used by VLIB_createConnectedComponentsList depends on the binary image. To
provide a buffer with sufficient size to accommodate any binary image, use the support function
VLIB_calcConnectedComponentsMaxBufferSize to estimate the upper bound. The function returns the
maximum required bytes to support the pathological arrangement of foreground pixels in the input image,
which is generally very large.

When the binary image is preprocessed by morphological operations like erode or dilate that remove
isolated pixels and small blobs, the actual upper bound needed is much smaller than the calculated
maximum bytes, generally by a factor of 2 to 4, but perhaps even more. Because the amount suggested
will generally require an external memory buffer to store the list of connected components, enabling the
cache is highly recommended.

If the buffer is statically allocated only once, the initialization function VLIB_InitConnectedComponentsList
only needs to be called once prior to calling VLIB_createConnectedComponentsList. However, if the
allocated memory buffer address changes, that is dynamically allocated within an application, it must be
called before each call to VLIB_createConnectedComponentsList. These functions are not re-entrant.

APIs

nt VLI B _cal cConnect edConponent sMaxBuf f er Si ze(
unsi gned short ingWdth,
unsi gned short ingHei ght,
i nt m nBl obAr ea,
int *maxByt esRequired);

int VLIB_initConnectedConponentsLi st (
VLI B_CCHandl e * handl e,
void * pBuffer,
int bytesBuffer);

int VLI B_creat eConnect edConponent sLi st (
VLI B_CCHandl e * handl e,
unsi gned short w dth,
unsi gned short rowslnlng,
int * p32BitPackedFGVask,
int mnBl obArea,
int connected8Fl ag);

int VLI B_get NumCCs(
VLI B_CCHandl e * handl e,
int * nunCCs);

int VLI B_get CCFeat ures(
VLI B_CCHandl e * handl e,
VLIB_CC * cc,
short 1istlndex);

int VLIB createCCVap8Bit (
VLI B_CCHandl e * restrict handl e,
unsi gned char * restrict pQutMap,
const unsigned short outCol s,
const unsigned short out Rows);

When allocating memory for the handle to connected components, be sure to use
VLIB_getSizeOfCCHandle(), which returns the size in bytes. For example,
Int sizeO'CCHandl e = VLIB_GetSi zeOr CCHandl e();

VLI B_CCHandl e * handl e = (VLI B_CCHandl e *)
MEM al | oc( DDR2HEAP, si zeOf CCHandl e, 8) ;
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16.3 Performance Benchmarks

VLIB_createConnectedComponentsList() and VLIB_createCCMap8Bit() are the only computation intensive
APIs for connected components; the others simply make calls to internal structures. DSP performance is
correlated with the relative size and number of connected components extracted from the 32-bit packed
binary foreground mask. That is, larger and more numerous components will consume more DSP cycles
and memory than smaller and fewer components.

Allocating buffers with memory sufficient to handle the worst case scenario given image resolution and
size of components is recommended. This can be computed using
VLIB_calcConnectedComponentsMaxBufferSize. VLIB_createConnectedComponentsList() performance
ranges from 1.1 cycles per input pixel to 5.2 cycles/pixel; likewise, VLIB_createCCMap8Bit() ranges from
3.0 to 8.0 cycles/pixel. The algorithm is frame based and highly image dependent. The above
performance estimates are average estimates for real use cases and worst case measurements may be
much higher.

16.4 References

1. Robot Vision, Horn, MIT Press, 1986, pp. 69-71.
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17.1

17.2

17.3

17.4

Canny Edge Detection

Introduction and Use Cases

Relative to many other edge detection methods, like Sobel and Robert's Cross, the Canny edge detector
is generally regarded as the edge detector of choice because it provides robust edge detection and
linking, even in noisy images.

Method

Canny edge detection produces clean, thin edges using these steps (algorithms):
» Gaussian image smoothing

« 2D gradient filtering

e Non-maximum suppression

» Hysteresis thresholding

VLIB provides these four optimized kernels so that integrators can quickly develop a Canny edge detector
that is optimized for a specific platform and application[ 1 ]. A full description of the VLIB APIs for these
kernels follows in Section 18 through Section 21. For a simple implementation using these component
VLIB functions, please refer to the example code provided with this release
(VLIB_testCannyEdgeDetector.c).

Performance Benchmarks

The overall DSP performance of Canny edge detection using VLIB kernels is largely dependent on the
framework that feeds image data from one function to another. Integrators are encouraged to leverage
fast L1D/L2D memory to improve the performance of VLIB kernels. Using sophisticated methods for data
trafficking, including the EDMAS3, multiple buffers, etc., is also necessary to achieve optimal performance.
With the exception of Hysteresis thresholding, which generally requires a frame-based implementation, the
other fundamental kernels in Canny can be implemented using efficient block-based frameworks.

As general guidance for framework design, the performance of a Canny edge detector using VLIB kernels
is roughly 30 cycles per input pixel, depending on image content, image size, filter dimensions, and
applied threshold levels; such as using 7x7 Gaussian filter, VGA resolution, thresholds that produce edge
pixels in 5 — 10% of the input pixels, and at least 32kB on-chip memory.

References

1. A Computational Approach to Edge Detection by Canny, J., IEEE Trans. Pattern Analysis and Machine
intelligence, 8:679-714, 1986.
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18 Image Smoothing (for Canny Edge Detection)

18.1 Introduction and Use Cases

The first step in Canny edge detection attempts to smooth the image to remove noise and generate more
reliable gradients. This 2D filter convolves a 7x7 kernel with 8-bit coefficients over 8-bit image (luma)
pixels. This function can be used for Gaussian filtering when kernels approximate Gaussian coefficients.
Note: This step can be implemented using convolution functions in IMGLIB2 such as
IMG_conv_7x7_i8 c8s, IMG_conv_3x3_i8_c8s, etc. Refer to the IMGLIB2[ 1 ] documentation for APIs,
assumptions, and benchmarks.

18.2 Specification

18.2.1 Function

Convolves input image with a smoothing kernel. Typically zero mean Gaussian.

18.2.2 Inputs

char *pl nl ny Pointer to input (luma image)

char *pQut | ny Pointer to output (smoothed luma image)

i nt nunPi xel s2Pr ocess Number of pixels to process

short i MgW dt h Width of image

int8 p8bi t Mask Pointer to 7x7 coefficient mask

short shi ft mask Number of bit-wise right shifts to apply to mask coefficients

18.2.3 Output

int Returns VLIB Error Status

18.2.4 Method

To provide flexibility, a large 7x7 convolution filter that accepts user-specified filter coefficients is
supported. Coefficients for a smaller Gaussian filter can also be used by padding the coefficients with
zeros. When using this function for Canny edge detection, keep in mind that subsequent components
expect a 7x7 smoothing filter to be used so applying smaller filters, such as IMG_conv_3x3_i8_c8s, will
require careful adjustments to image/data pointers.

The convolution kernel accepts seven rows with imgWidth pixels for every row of imgWidth output pixels
using the input mask of 7x7. This convolution operation performs a point by point multiplication of the 7x7
mask with the input image. The 49 multiplications are summed together to produce a 32-bit convolution
intermediate sum. The user-defined shiftMask value is used to right-shift this convolution sum down to the
byte range. The result, which is range limited between 0 to 255, is store in an output array pOutimg. The
coefficients are provided as 8-bit signed values. The input image pixels are provided as 8-bit unsigned
pixels and the output pixels will be in 8-bit unsigned.

18.3 References
1. http://focus.ti.com/docs/toolsw/folders/print/sprc264.htmi
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19 2D Gradient Filtering (for Canny Edge Detection)

19.1 Introduction and Use Cases

For each pixel in the image, the 2nd step in Canny edge detection extracts the horizontal and vertical 1st
order gradients along with an approximation of the gradient magnitude. Gradients are 2D vectors which
point in the direction of the greatest rate of change, in this case, in intensity [ 1 ].

19.2 Specification

19.2.1  Function
Extracts the 2D gradient vector coordinates as well as magnitude.

19.2.2 Inputs

char *pl nBI k Pointer to input (smoothed luma image)
short *pBuf Gr adX Pointer to output horizontal gradient
short *pBuf GradY Pointer to output vertical gradient
short *pBuf Mag Pointer to output gradient magnitude
unsigned short wdth Width of image

unsi gned short hei ght Height of image

19.2.3 Output

i nt Returns VLIB Error Status

19.2.4 Method

The first order 3x3 gradient filter calculates the first derivative in both the horizontal and vertical directions,
Gx and Gy, respectively. So for the image pixel I(x,y), we calculate the gradients as shown in Equation 11
and Equation 12:

Gx = I(x+1,y) - I(x-1,y) (12)

Gy = I(x,y+1) - I(x,y-1) (12)
The gradient magnitude is approximated as shown in Equation 13:

Gmag = (|Gx]| + |Gy]) (13)

Gx, Gy and Gmag are all signed, 16-bit values.
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19.25 APIs

int VLI B xyG adi ent sAndMagni t ude(
unsi gned char * restrict plnBlKk,
short * restrict pBuf G adX,
short * restrict pBuf G ady,
short * restrict pBufMag,
unsi gned short w dth,
unsi gned short height);

19.3 Assumptions

The 7x7 Gaussian filtering creates a 3-pixel border around the image that contains invalid data. In the
interest of performance, the gradient filter processes these border pixels, but later stages will discount
them appropriately. Additionally, calculating the 2D gradients vectors will require a 1-pixel border. So the
gradient and magnitude outputs will have a 4-pixel border of invalid data. The gradient filter has no
memory boundary alignment requirements.

19.4 Performance Benchmarks

DSP performance of this kernel running in L1/L2 memory is 0.8 cycles per input pixel.

19.5 References

1. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for
Reference and Review by Korn, Theresa M. & Korn, Granino Arthur; New York: Dover Publications,
pp. 157-160.
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20 Non-Maximum Suppression (for Canny Edge Detection)

20.1 Introduction and Use Cases

As the third stage in Canny Edge Detection, non-maximum suppression identifies potential edge pixels. It

suppresses all pixels whose edge strength is not a local maximum along the gradient direction [ 1 ].
20.2 Specification

20.2.1 Function
Creates an 8-hit edge map labeling each pixel location as a non-Edge (0) or possible-edge (127).

20.2.2 Inputs

short *pl nMag Pointer to input (gradient magnitude)
short *pBuf Gr adX Pointer to input horizontal gradient
short *pBuf GradY Pointer to input horizontal gradient
char *pQut Bl k Pointer to output gradient magnitude
unsi gned short wi dt h Number of columns in image

unsi gned short pitch Pitch of the input data

unsi gned short hei ght Number of rows in image

20.2.3 Output

i nt Returns VLIB Error Status

20.2.4 Method

VLIB_nonMaximumSuppressionCanny creates an 8-bit edge map that labels each pixel either as a
non-edge (0) or a possible-edge (127). For each pixel location, the gradient direction is established. Two
virtual points, say at a and b lying along the gradient direction on either side of the current location c are
interpolated using the gradient magnitudes from surrounding neighbors. Locations that achieve a local
maximum are regarded as possible edges, such as, Gmag(c) > Gmag(a) AND Gmag(c) >= Gmag(b);
otherwise, these points are declared non-edges.
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20.25 APIs

int VLI B_nonMaxi munSuppr essi onCanny (
short * restrict plnMag,
short * restrict plnG adX,
short * restrict plnG ady,
unsi gned char * restrict pQutBlKk,
unsi gned short w dth,
unsi gned short pitch,
unsi gned short height);

20.3 Assumptions

VLIB_nonMaximumSuppressionCanny uses a 3x3 kernel and operates on rows instead of pixels. The
function accepts 3 rows of input (Gx, Gy and Gmag) for every single row of the edge map that is
calculated. This function introduces another 1-pixel border of invalid data around the center-portion of the
edge map. Before feeding the edge map into the next stage of Canny edge detection (Hysteresis
Thresholding), the 5-pixel border of invalid data should be set as non-edges. However, the 5-pixel border
at the top and bottom of the edge map should be handled manually. The input pointers should be the top

left corner of the image where the processing starts. Take care in adjusting the pointers according to the
filter used for convolution.

20.4 Performance Benchmarks

DSP performance of this kernel running in L1/L2 memory is 8.7 cycles per input pixel.

20.5 References

1. A Computational Approach to Edge Detection by Canny, J.; IEEE Trans. Pattern Analysis and Machine
intelligence, 8:679-714, 1986.
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21  Hysteresis Thresholding (for Canny Edge Detection)

21.1 Introduction and Use Cases

Hysteresis thresholding is the final stage within Canny edge detection [ 1 ]. With an edge map containing
possible edges, hysteresis thresholding identifies and follows edges. Using both High and Low thresholds,
it is able to maintain edge continuity by linking stronger edge segments that are connected to weaker
segments. This stage is split into two functions VLIB_doublethresholding (block based) and
VLIB_edgeRelaxation(Non block based).

21.2 Specification

21.2.1 Function

21.2.2 Inputs

short *pl nVag Pointer to input (gradient magnitude)

char *edgeMap Pointer to edge (modified in place)

unsi gned int st rongEdgeLi st Ptr Pointer to a buffer which holds locations of strong edges
unsi gned short wdth Number of columns in image

unsi gned short pitch Pitch of the input image

unsi gned short height Number of rows in image

unsi gned short | oThresh Lower threshold

unsi gned short  hi Thresh Higher threshold

unsi gned int bl ock_of f set Relative offset of beginning of a block(when used in

block-based mode)

21.2.3 Output

int Returns VLIB Error Status

21.2.4 Method

VLIB_doublethresholding accepts an edge map, with each location labeled with values of either 0
(non-edge) or 127 (possible-edge). It searches for locations where the magnitude is at or above the high
threshold. VLIB_edgeRelaxation grows the edge segments by following a path of connected edges with
magnitude values at or above the low threshold. Values in the edge map are modified from possible-edge
(127) to edge (255) for line segments. The size of the strongEdgeListPtr is content dependent, but at its
largest, should be large enough to store 32-bit representation for each edge pixel in the entire image.
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21.25

21.3

APIs

int VLI B_doubl et hreshol di ng(
signed short * restrict plnMag

unsi gned
unsi gned

char *edgeMap
int * restrict strongEdgeListPtr

int * nunStrongEdges

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short width,
short pitch

short height,
char | oThresh
char hi Thresh

int block_offset)

int VLI B _edgeRel axati on(

unsi gned
unsi gned

char *edgeMap
int * restrict strongEdgelListPtr

int * nunStrongEdges

unsi gned

Assumptions

short width);

If an edge map is desired that only consists of non-edges (0) and edges (255), it will be necessary to
remove the remaining possible-edges (127) after VLIB_edgeRelaxation completes. Edge linking is image
content dependent. VLIB_edgeRelaxation is generally frame-based, so it can be difficult to partition this
function into sub-image blocks, especially for large images. Use caution when locating the
strongEdgelListPtr buffer in fast memory areas (L1D/L2D).

21.4 Performance Benchmarks
DSP performance of VLIB_doublethresholding kernel running in DDR2 memory is 3 cycles per input pixel.
The VLIB_edgeRelaxation kernel is frame-based and image dependent. Usually for natural images, DSP
performance is less than 3 cycles per input pixel.

21.5 References
1. A Computational Approach to Edge Detection by Canny, J.; IEEE Trans. Pattern Analysis and Machine

intelligence, 8:679-714, 1986.
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22  Image Pyramid (8-Bit)

22.1 Introduction and Use Cases

Image pyramid is a data structure consisting of the original image at level 0, 2x2 sub-sampled image at
Level 1, further 2x2 sub-sampled image at Level 2, and further 2x2 sub-sampled image at Level 3. It is

commonly used in detection and tracking applications to reduce the amount of processing [ 1 ].
22.2 Specification

22.2.1 Function

Calculates Levels 1, 2, and 3 of an image pyramid for an 8-bit input image. The antialiasing filter used at

each step is a 2x2 averaging.

22.2.2 Inputs

char *pln 8-bit input image (VQ8.0)
unsi gned short inCols Width of input image (in pixels)
unsi gned short inRows Height of input image (in pixels)
char *pQut 8-bit output data (UQ8.0)

22.2.3 Output

int Returns VLIB Error Status

22.2.4 Method

inCols must be a multiple of 8, while pIln and pOut must be 64-bit aligned.
* plnis a pointer to an (inCols x inRows) array of unsigned char data.
* pOut is a pointer to an (inCols x inRows) x 21 + 64 array of unsigned char data.

2225 APIs

int VLIB_i nagePyram d8(
char * restrict pln,
unsi gned short inCols,
unsi gned short i nRows,
unsigned int * restrict pQut);

22.3 Performance Benchmarks
The performance with all input and output data in on-chip memory is 0.97 cycles per output value.

22.4 References
1. http://web.mit.edu/persci/people/adelson/pub pdfs/RCA84.pdf
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23  Image Pyramid (16-Bit)

23.1 Introduction and Use Cases

Image pyramid is a data structure consisting of the original image at level 0, 2x2 sub-sampled image at
Level 1, further 2x2 sub-sampled image at Level 2, and further 2x2 sub-sampled image at Level 3. It is
commonly used in detection and tracking applications to reduce the amount of processing [ 1 ].

23.2 Specification
23.2.1 Function

Calculates Levels 1, 2, and 3 of an image pyramid for an 16-bit input image. The antialiasing filter used at
each step is a 2x2 averaging.

23.2.2 Inputs
unsi gned short *pln 16-bit input image (UQ16.0)
unsi gned short inCols Width of input image (in pixels)
unsi gned short inRows Height of input image (in pixels)
unsi gned short  *pQut 16-bit output data (UQ16.0)

23.2.3 Output

int Returns VLIB Error Status

23.2.4 Method

inCols must be a multiple of 8, while pIln and pOut must be 64-bit aligned.
* plnis a pointer to an (inCols x inRows) array of unsigned char data.
» pOutis a pointer to an (inCols x inRows) x 21 + 64 array of unsigned short data.

23.25 APIs

int VLIB_i magePyram d16(
unsi gned short * restrict pln,
unsi gned short inCols,
unsi gned short i nRows,
unsi gned short * restrict pQut);

23.3 Performance Benchmarks
The performance with all input and output data in on-chip memory is 2.4 cycles/output value.

23.4 References
1. http://web.mit.edu/persci/people/adelson/pub pdfs/RCA84.pdf
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24

24.1

Gaussian 5x5 Pyramid Kernel (8-Bit)

Introduction and Use Cases

Gaussian image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
image at Level 1, further 2x2 subsampled image at Level 2, etc. It is commonly used in detection and

tracking applications to reduce the amount of processing [ 1 ].

24.2 Specification

2421

24.2.2

24.2.3

2424

2425

Function

This function can be used to calculate the next level of a pyramid. Given a pointer to a rectangular region

of interest described by W (input data width), P (input data pitch), and H (input data height), this kernel

returns (W-4)/2 x (H-3)/2 values. For example, if H=5, it will calculate a single row of results. The
antialiasing filter used at each step is a binomial approximation to the 5x5 Gaussian filter given by:

PO

Inputs

char
unsi gned
unsi gned
unsi gned
unsi gned
char

Output

i nt

Method

4 6 4
16 24 16
24 36 24
16 24 16

4 6 4

*restrict
int *restrict
short cols
short pitch
short r ows

*restrict

/256

[l 2N

pin
pB

pQut

Returns VLIB Error Status

5 x width input array

5 x (width-4) temporary array

cols = W-4; must be divisible by 8

Pitch of the input data

rows = H; height of the input data; must be >4
1 x (width-4)/2 output

(UQB.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQB.0)

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pin,
pB, and pOut must be 64-bit aligned.

APls

int VLI B_gauss5x5Pyram dKer nel _8(

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
short
short
short
short
char

*restrict pln,
*restrict pB
col s,

pitch,

rows,
*restrict pQut)

SPRUGO00C—-November 2009
Submit Documentation Feedback

Vision Library (VLIB) Application Programming Interface

Copyright © 2009, Texas Instruments Incorporated

51


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS
INSTRUMENTS

Gaussian 5x5 Pyramid Kernel (8-Bit) www.ti.com

24.3 Performance Benchmarks
The compute-only performance with all buffers in L1 is 4.9 cycles per output value.

24.4 References
1. http://web.mit.edu/persci/people/adelson/pub pdfs/RCA84.pdf
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25  Gaussian 5x5 Pyramid Kernel (16-Bit)

25.1 Introduction and Use Cases

Gaussian image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
image at Level 1, further 2x2 subsampled image at Level 2, etc. It is commonly used in detection and
tracking applications to reduce the amount of processing [ 1 ].

25.2 Specification

25.2.1 Function

This function can be used to calculate the next level of a pyramid. Given a pointer to a rectangular region
of interest described by W (input data width), P (input data pitch), and H (input data height), this kernel
returns (W-4)/2 x (H-3)/2 values. For example, if H=5, it will calculate a single row of results. The
antialiasing filter used at each step is a binomial approximation to the 5x5 Gaussian filter given by the

following:
1 4 6 4 1
4 16 24 16 4
6 24 36 24 6 / 256
4 16 24 16 4
1 4 6 4 1
25.2.2 Inputs
unsi gned short *restrict pln 5 x width input array (UQ16.0)
unsi gned int *restrict pB 5 x (width-4) temporary array (UQ32.0)
unsi gned short cols cols = W-4; must be divisible by 8 (UQ16.0)
unsi gned short pitch Pitch of the input data (UQ16.0)
unsi gned short rows rows = H; height of the input data; must be >4 (UQ16.0)
unsigned short *restrict pQut 1 x (width-4)/2 output (UQ16.0)
25.2.3 Output
i nt Returns VLIB Error Status

25.2.4 Method

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pin,
pB, and pOut must be 64-bit aligned.

2525 APIs

int VLI B_gauss5x5Pyram dKernel _16(
unsi gned short *restrict pln,
unsi gned i nt *restrict pB,
unsi gned short cols,
unsi gned short pitch,
unsi gned short rows,
unsi gned short *restrict pQut);

25.3 Performance Benchmarks
The compute-only performance with all buffers in L1 is 5.8 cycles per output value.
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25.4 References
1. http://web.mit.edu/persci/people/adelson/pub pdfs/RCA84.pdf
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26  Gradient 5x5 Pyramid Kernel (8-Bit)

26.1 Introduction and Use Cases

Gradient image pyramid is a data structure consisting of the original image at level 0, 2x2 subsampled
gradient images at Level 1, further 2x2 subsampled gradient images at Level 2, etc. It is commonly used
in detection and tracking, as well as in image fusion applications, in order to reduce the amount of
processing [ 1 ].

26.2 Specification

26.2.1 Function

The two functions for gradient pyramid are used for horizontal and vertical gradient filtering, respectively.
These functions can be used to calculate the next level of a pyramid. Given a pointer to a rectangular
region of interest described by W (input data width), P (input data pitch), and H (input data height), each of
these kernels returns (W-4)/2 x (H-3)/2 values. For example, if H=5, each will calculate a single row of
results. The filters used at each step are:

-1 -2 0 2 1
-4 -8 0 8 4
H5 = -6 -12 0 12 6 (hori zontal)
-4 -8 0 8 4
-1 -2 0 2 1
-1 -4 -6 -4 -1
-2 -8 -12 -8 -2
V5 = 0 0 0 0 0 (vertical)
2 8 12 8
1 4 6 4 1

After the filtering step, the intermediate results are rounded and scaled to values 0-255 (the output value
of 128 indicates no gradient) as shown in Equation 14 and Equation 15:

Gh = ((conv2(A,H5) + 64) >> 7) + 128; "
Gv = ((conv2(A,V5) + 64) >> 7) + 128; .

26.2.2 Inputs

char *restrict pln 5 x width input array (UQ8.0)
unsi gned short *restrict pB 5 x (width-4) temporary array (UQ16.0)
unsi gned short cols cols = W-4; must be divisible by 8 (UQ16.0)
unsi gned short pitch Pitch of the input data (UQ16.0)
unsi gned short rows rows = H; height of the input data; must be >4 (UQ16.0)
char *restrict pQut 1 x (width-4)/2 output (UQ8.0)

26.2.3 Output

int Returns VLIB Error Status

26.2.4 Method

The value of cols = W-4 must be a multiple of 8, rows = H (height of the input data) must be > 4; while pin,
pB, and pOut must be 64-bit aligned.
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26.2.5

26.3

26.4

APIs

int VLI B_gradi ent H5x5Pyr am dKer nel _8(

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
short
short
short
short
char

*restrict pln,
*restrict pB
col s,

pitch,

rows,
*restrict pQut)

int VLI B_gradi ent V5x5Pyr am dKer nel _8(

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
short
short
short
short
char

*restrict pln,
*restrict pB
col s,

pitch,

rows,
*restrict pQut)

Performance Benchmarks

The compute-only performance in L1 is:

Horizontal
Vertical

References

7.3 cycles per output value
9.7 cycles per output value

1. "Enhanced image capture through fusion" from Proceedings of 4th International Conference on

Computer Visionby Burt, P.J. and Kolczynski, R.J., 1993.
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27 Recursive IR Filter: Horizontal, First-Order
27.1 Introduction and Use Cases
A variety of image processing algorithms can be implemented through recursive IIR filters, including

smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

27.2 Specification

27.2.1  Function
This function implements the 1st order horizontal IIR filter.

27.2.2 Inputs

char *out Filter output image (UQ8.0)
char *in Input luma image (UQ8.0)
int wi dt h Image width (SQ31.0)
i nt hei ght Image height (SQ31.0)
short wei ght Filter coefficient (SQ15.0)
char *boundar ylLef t Array of left-boundary values (VQ8.0)
char *boundar yRi ght Array of right-boundary values (UQ8.0)
char *buf f er Scratch buffer (UQ8.0)

27.2.3 Output

i nt Returns VLIB Error Status

27.2.4 Method
For each pixel, computes using Equation 16:
output(x,y) =0.5x (output_LR(X,y) + output_RL(X,y)) (16)

In Equation 16, output_LR is the causal filter component, processing pixels from left to right, and
output_RL is the anti-causal component, processing pixels right to left. These are defined as in
Equation 17 and Equation 18:
output_LR(x,y) = weight x input(x,y) + (1-weight) x output_LR(x-1, y) a7
output_RL(x,y) = weight x input(x,y) + (1-weight) xoutput_RL(x+1, y) (18)
While the intermediate IIR results are computed at 16-bit precision, the output is cast to 8-bits. The left-

and right-boundary values can be passed via array pointers boundaryLeft and boundaryRight. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.
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2725 APIs

int VLIB recursiveFilterHorizlstOrder(
char *out,
const char *in,
const int wdth,
const int height,
const short weight,
const char *boundarylLeft,
const char *boundaryRi ght,
char *buffer);

27.3 Performance Benchmarks
On-chip memory performance has been measured as 3.9 cycles/pixel.

27.4 Notes
e The scratch buffer must be at least 4xwidth bytes.
« The image width and height needs to be a multiple of 4.
» The input and output image buffers need to be double-word aligned.

27.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990
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28 Recursive IR Filter: Horizontal, First-Order (16 Bit)
28.1 Introduction and Use Cases
A variety of image processing algorithms can be implemented through recursive IIR filters, including

smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

28.2 Specification

28.2.1 Function
This function implements the (signed) 16-bit 1st order horizontal IR filter.

28.2.2 Inputs

short *out Filter output image (SQa.b)
short *in Input luma image (SQa.b)
int wi dt h Image width (SQ31.0)
i nt hei ght Image height (SQ31.0)
short wei ght Filter coefficient (SQ15.0)
short *boundar ylLef t Array of left-boundary values (SQa.b)
short *boundar yRi ght Array of right-boundary values (SQa.b)
short *buf f er Scratch buffer (SQa.b)

28.2.3 Output

i nt Returns VLIB Error Status

28.2.4 Method
For each pixel, computes using Equation 19:
output(x,y) =0.5x (output_LR(X,y) + output_RL(X,y)) (29)

In Equation 19, output_LR is the causal filter component, processing pixels from left to right, and
output_RL is the anti-causal component, processing pixels right to left. These are defined as in
Equation 20 and Equation 21:
output_LR(x,y) = weight x input(x,y) + (1-weight) x output_LR(x-1, y) (20)
output_RL(x,y) = weight x input(x,y) + (1-weight) xoutput_RL(x+1, y) (21)
Just like the input and output, the intermediate IIR results are computed at 16-bit precision. The left- and

right-boundary values can be passed via array pointers boundaryLeft and boundaryRight. If these pointers
are NULL, boundary image pixel values will be used as initial conditions.
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28.25 APIs

int VLIB recursiveFilterHorizlstO der S16(
short *out,
const short *in,
const int wdth,
const int height,
const short weight,
const short *boundarylLeft,
const short *boundaryRi ght,
short *buffer);

28.3 Performance Benchmarks
On-chip memory performance has been measured as 3.7 cycles/pixel.

28.4 Notes
e The scratch buffer must be at least 8xwidth bytes.
e The image width and height need to be a multiple of 4.
» The input and output image buffers need to be double-word aligned.

28.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990
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29 Recursive IR Filter: Vertical, First-Order
29.1 Introduction and Use Cases
A variety of image processing algorithms can be implemented through recursive IIR filters, including

smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)
filters for their computational efficiency.

29.2 Specification

29.2.1 Function
This function implements the 1st order vertical IIR filter.

29.2.2 Inputs

char *out Filter output image (UQ8.0)
char *in Input luma image (UQ8.0)
int wi dt h Image width (SQ31.0)
i nt hei ght Image height (SQ31.0)
short wei ght Filter coefficient (SQ15.0)
char *boundar yTop Array of top-boundary values (VQ8.0)
char *boundar yBot t om Array of bottom-boundary values (UQ8.0)
char *buf f er Scratch buffer (UQ8.0)

29.2.3 Output

i nt Returns VLIB Error Status

29.2.4 Method
For each pixel, computes using Equation 22:
output(x,y) =0.5x (output_TB(X,y) + output_BT(X,y)) (22)

In Equation 22, output_TB is the causal filter component, processing pixels from top to bottom, and
output_BT is the anti-causal component, processing pixels bottom to top. These are defined as in
Equation 23 and Equation 24:
output_TB(x,y) = weight x input(x,y) + (1-weight) x output_TB(X, y-1) (23)
output_BT(x,y) = weight x input(x,y) + (1-weight) x output_BT(x, y+1) (24)
While the intermediate IR results are computed at 16-bit precision, the output is cast to 8-bits. The top-

and bottom-boundary values can be passed via array pointers boundaryTop and boundaryBottom. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.
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29.25 APIs

int VLIB recursiveFilterVert1stOrder (
char *out,
const char *in,
const int wdth,
const int height,
const short weight,
const char *boundaryTop,
const char *boundaryBottom
char *buffer);

29.3 Performance Benchmarks
On-chip memory performance has been measured as 2.9 cycles/pixel.

29.4 Notes
e The scratch buffer must be at least 4xheight bytes.
« The image width and height needs to be a multiple of 4.
» The input and output image buffers need to be double-word aligned.

29.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990
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30 Recursive IR Filter: Vertical, First-Order (16-Bit)

30.1 Introduction and Use Cases

A variety of image processing algorithms can be implemented through recursive IIR filters, including

smoothing and gradient/edge computations. These methods can be preferred over FIR (convolutional)

filters for their computational efficiency.
30.2 Specification

30.2.1 Function
This function implements the (signed) 16-bit 1st order vertical IIR filter.

30.2.2 Inputs
short *out Filter output image
short *in Input luma image
int wi dt h Image width
i nt hei ght Image height
short wei ght Filter coefficient
short *boundar yTop Array of top-boundary values
short *boundar yBot t om Array of bottom-boundary values
short *buf f er Scratch buffer

30.2.3 Output
i nt Returns VLIB Error Status
30.2.4 Method

For each pixel, computes using Equation 25:
output(x,y) =0.5x (output_TB(X,y) + output_BT(X,y))

(SQa.b)
(SQa.b)
(SQ31.0)
(SQ31.0)
(SQ15.0)
(SQa.b)
(SQa.b)
(SQa.b)

In Equation 25, output_TB is the causal filter component, processing pixels from top to bottom, and
output_BT is the anti-causal component, processing pixels bottom to top. These are defined as in

Equation 26 and Equation 27:
output_TB(x,y) = weight x input(x,y) + (1-weight) x output_TB(X, y-1)
output_BT(x,y) = weight x input(x,y) + (1-weight) x output_BT(x, y+1)

(25)

(26)
27)

Just like the input and output, the intermediate IIR results are computed at 16-bit precision. The top- and

bottom-boundary values can be passed via array pointers boundaryTop and boundaryBottom. If these
pointers are NULL, boundary image pixel values will be used as initial conditions.
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30.25 APIs
int VLIB recursiveFilterVert1stO der S16(
short *out,
const short *in,
const int wdth,
const int height,
const short weight,
const short *boundaryTop,
const short *boundaryBottom
short *buffer);
30.3 Performance Benchmarks
On-chip memory performance has been measured as 2.6 cycles/pixel.
30.4 Notes
e The scratch buffer must be at least 8xheight bytes.
e The image width and height need to be a multiple of 4.
» The input and output image buffers need to be double-word aligned.
30.5 References
1. Fast Algorithms for Low-Level Vision by R. Deriche, PAMI (12), 1, 1990
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31 Integral Image (8-Bit)

31.1 Introduction and Use Cases

Object classification may be done by calculating image features (such as moments and/or wavelets) on a

region of interest and feeding them to a classifier (such as k-NN or SVM). Integral image is an important

step in calculation of a common type of image features, over-complete Haar wavelets [ 2 ]. Integral image
values may be used as features themselves.

31.2 Specification

31.2.1

Function

Calculates the Integral image of an 8-bit image.

31.2.2

31.2.3

31.24

Inputs

char

unsi gned
unsi gned
unsi gned
unsi gned

Output

int

Method

The arguments pln, pOut, and pLastLine must be 64-bit aligned. For the fixed-width version the width is

*pln 8-bit input image
short inCols Width of input image
short i nRows Height of input image
int *pLast Li ne 32-bit carry-over buffer
int *pQut 32-bit output data

Returns VLIB Error Status

assumed to be 640 pixels.

31.2.5

pln is a pointer to an (inCols x inRows) array of unsigned char data.

pLastLine is a pointer to an (inCols x 1) array of unsigned int data.

pOut is a pointer to an (inCols x inRows) array of unsigned int data.

APls

int VLIB_integral | nage8(

char * restrict pln,

unsi gned short inCols,

unsi gned short i nRows,

unsigned int * restrict plLastLine,
unsigned int * restrict pQut);

(VQ8.0)

(in pixels)
(in pixels)
(UQ32.0)
(UQ32.0)
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31.3 Performance Benchmarks
The performance with all input and output data in on-chip memory is 2.3 cycles/pixel.

31.4 References
1. Rapid Object Detection Using a Boosted Cascade of Simple Features by Viola, P.; Jones, M.
TR2004-043 May 2004 http://www.merl.com/reports/docs/TR2004-043.pdf
2. Integral Image Optimizations for Embedded Vision Applications by B.Kisacanin, Proc. IEEE Southwest
Symposium on Image Analysis and interpretation, 2008;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315.
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32 Integral Image (16-Bit)

32.1 Introduction and Use Cases

Object classification may be done by calculating image features (such as moments and/or wavelets) on a

region of interest and feeding them to a classifier (such as k-NN or SVM). Integral image is an important

step in calculation of a common type of image features, over-complete Haar wavelets [ 2 ]. Integral image
values may be used as features themselves.

32.2 Specification

3221

Function

Calculates the Integral image of a 16-bit image.

32.2.2

32.2.3

32.2.4

Inputs

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

Output

int

Method

The arguments pln, pOut, and pLastLine must be 64-bit aligned. For the fixed-width version the width is

short  *pln

16-bit input image

short inCols Width of input image

short i nRows Height of input image

int *pLast Li ne 32-bit carry-over buffer

int *pQut 32-bit output data
Returns VLIB Error Status

assumed to be 640 pixels.

32.2.5

pln is a pointer to an (inCols x inRows) array of unsigned short data.
pLastLine is a pointer to an (inCols x 1) array of unsigned int data.
pOut is a pointer to an (inCols x inRows) array of unsigned int data.

APls

int VLIB_ integral | nagel6(

unsi gned short
unsi gned short
unsi gned short
unsigned int *
unsi gned int *

* restrict pln,

i nCol s,

i NRows,

restrict pLastLine
restrict pQut)

(UQ16.0)
(in pixels)
(in pixels)
(UQ32.0)
(UQ32.0)
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32.3 Performance Benchmarks
The performance with all input and output data in on-chip memory is 2.7 cycles/pixel.

32.4 References
1. Rapid Object Detection Using a Boosted Cascade of Simple Features by Viola, P.; Jones, M.
TR2004-043 May 2004 http://www.merl.com/reports/docs/TR2004-043.pdf
2. Integral Image Optimizations for Embedded Vision Applications by B.Kisacanin, Proc. IEEE Southwest
Symposium on Image Analysis and interpretation, 2008;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4512315.
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33  Hough Transform for Lines

33.1 Introduction and Use Cases

Hough transform for lines is commonly used after edge detection to determine the most dominant lines in

the edge image.

33.2 Specification

33.2.1 Function
Calculates the Hough space values from the list of edge points.

33.2.2 Inputs

unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
short

short

unsi gned
unsi gned
unsi gned
unsi gned

33.2.3 Output

unsi gned

33.2.4 Method

short

short
short
short
int

short
short

short
short
short
short

short

* pEdgeMaplLi st Points to a list of 2xlistSize values of type unsigned

*  pQut HoughSpace

out Bl kW dt h
out Bl kHei ght
listSize

t het aRange
rhoMaxLengt h
*pSI N

*pCOS

pi ng

pong

pang

peng

short which represent x and y values of edge points
Points to the Hough space
Width of the original image
Height of the original image

Sine lookup tables

Cosine lookup tables

Array of rhoMaxLength elements
Array of rhoMaxLength elements
Array of rhoMaxLength elements
Array of rhoMaxLength elements

maxHoughSpaceVal ue

(UQ16.0)

(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ32.0)
(UQ16.0)
(UQ16.0)
(SQ16.0)
(SQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)

For each edge point (specified by the x and y coordinates) and for each angle theta, rho is calculated by

Equation 28:
rho = x cos(theta) + y sin(theta) (28)
The corresponding value in the Hough space, located at (rho, theta), is incremented.
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33.2.5

APIs

int VLI B_houghLi neFronli st (

unsi gned short * restrict pEdgeMapli st,
unsi gned short * restrict pQutHoughSpace,
unsi gned short out Bl kW dt h,

unsi gned short out Bl kHei ght,

unsigned int |istSize,

unsi gned short thetaRange,

unsi gned short rhoMaxLengt h,

const short *pSIN,

const short *pCOCs,

unsi gned short * restrict ping,

unsi gned short * restrict pong,

unsi gned short * restrict pang,

unsi gned short * restrict peng);

33.3 Performance Benchmarks

33.4

The full benefit of optimized code can be achieved if the data is not partitioned into small buffers and if at
least ping, pong, pang, and peng buffers are in internal memory. The performance of 777 cycles per edge
point (or 39 cycles per pixel, assuming 5% of pixels are edge points) has been achieved, with input and
output data in external memory and ping, pong, pang, and peng buffers in internal memory. The number
of edge points in this measurement was 3840 (5% of 320x240 image), while the size of the Hough Space
in this measurement was 267x267.

Notes

pEdgeMapList points to a list of 2xlistSize values of type unsigned short, which represent x and y
values of edge points: x1,y1,x2,y2,... While it should be located in the fastest memory available, its
role is cache friendly so it can be stored in the external memory.

pOutHoughSpace points to the Hough space, which is a thetaRangexrhoMaxLength array of unsigned
short. While it should be located in the fastest memory available, its role is cache friendly so it can be
stored in the external memory.

outBlkWidth and outBlkHeight represent width and height of the original image

pSIN and pCOS are lookup tables for sine and cosine and can be generated during initialization. While
it should be located in the fastest memory available, it's role is cache friendly so it can be stored in the
external memory.

ping, pong, pang, and peng are arrays of rhoMaxLength elements of type unsigned short. These
arrays should be stored in the fastest available memory.

The function is written so that the list of edge points can be broken into sublists and the function called
on them separately. This is useful if the list needs to be in the fast memory, but is too big to fit there. In
that case, the Hough space should be cleared only before the call on the first sublist.
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34 Harris Corner Score

34.1 Introduction and Use Cases

Various vision algorithms operate by identifying salient image points and processing their neighborhoods.
The Harris Score is a popular measure of saliency. It tends to find corner-like image textures, which are
relatively easy to match between different views or to track in a video sequence.

34.2 Specification

34.2.1 Function

Computes the Harris corner score for each pixel in a luma image. As input, the function takes the
horizontal and vertical gradients of the image. This gives flexibility to the user in selecting the scale for
gradient computations.

34.2.2 Inputs

short *gradX Horizontal gradient of the input luma image (SQ15.0)
short *gradY Vertical gradient of the input luma image (SQ15.0)
int wi dt h Image width (SQ31.0)
i nt hei ght Image height (SQ31.0)
short *HarrisScore Harris (cornerness) score (SQ5.10)
short k Sensitivity parameter (SQO0.15)
char *buf fer Scratch buffer (UQ8.0)

34.2.3 Output

int Returns VLIB Error Status

34.2.4 Method

For each pixel, Equation 29, Equation 30 and Equation 31 together compute the 2x2 gradient covariance
matrix M, where the summations are over 7x7 pixel neighborhoods:

M(1,1) = sum(gradX)? (29)
M(1,2) = M(2,1) = sum(gradX x gradY) (30)
M(2,2) = sum(grady)? (31)

The cornerness score is defined as in Equation 32, where k is a parameter, typically around 0.04. An
approximation of the binary log of this value is stored in the output.

det(M) — k x trace(M)? (32)
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34.25 APIs

int VLIB harrisScore_7x7(
const short * restrict gradX
const short * restrict grady,
int wdth,
int height,
short * restrict harrisscore,
short Kk,
char * buffer);

34.3 Performance Benchmarks
On-chip memory performance has been measured as 18.7 cycles/pixel.

34.4 Notes

» Garbage may be written in the output margins, which are 3 pixels wide on each side. If the input
gradient also has a margin of 1 pixel, then there is an overall output margin of 4 pixels.

» This method uses a scratch buffer which must be at least 96*width bytes.

34.5 References
1. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/index.html
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35 Non-Maximal Suppression

35.1 Introduction and Use Cases
Vision algorithms such as Harris Corner detection produce an intensity map or voting space for which the
local maxima or peaks need to be found.

35.2 Specification

35.2.1 Function

35.2.2 Inputs

short *im Input image (SQ15.0)
int wi dt h Image width (SQ31.0)
i nt hei ght Image height (SQ31.0)
short thresh Minimum threshold for peaks (SQ15.0)
char *out Binary output indicating peaks (UQ8.0)

35.2.3 Output

i nt Returns VLIB Error Status

35.2.4 Method

This function compares the value of each input pixel against its neighbors. For an output pixel to be "on"
(numerical value=255), the input pixel value must be both:

» Greater than or equal to its neighbors’ values

» Greater than the minimum threshold

If the above conditions are not met simultaneously, the output will be 0.

SPRUGO00C-November 2009 Vision Library (VLIB) Application Programming Interface 73

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

Non-Maximal Suppression

13 TEXAS
INSTRUMENTS

www.ti.com

35.25 APIs

There are three versions this function, defined for neighborhood sizes of 3x3, 5x5, and 7x7 pixels. All

operate on 16-bit signed input data.

int VLI B_nonMaxSuppress_3x3_S16(
const short * restrict im
int wdth,
int height,
short thresh,
char * restrict out);

int VLI B_nonMaxSuppress_5x5_S16(
const short * restrict im
int width,
int height,
short thresh,
char * restrict out);

int VLI B_nonMaxSuppress_7x7_S16(
const short * restrict im
int wdth,
int height,
short thresh,
char * restrict out);

35.3 Performance Benchmarks

On-chip memory performance of the kernels has been measured as:

VLIB_nonMaxSuppress_3x3_16s 1.1 cycles/pixel
VLIB_nonMaxSuppress_5x5_16s 1.4 cycles/pixel
VLIB_nonMaxSuppress_7x7_16s 2.2 cycles/pixel
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36 Lucas-Kanade Feature Tracking (Sparse Optical Flow)

36.1 Introduction and Use Cases

Tracks a set of feature points using the Lucas-Kanade method.
36.2 Specification

36.2.1 Function

The input parameters x and y correspond to pixel locations in the input image im1. Patches of 7x7 pixels
centered around these points are tracked in the next frame.

The pointers outx and outy are expected to contain initial estimates of the feature location in im2. They are
overwritten with the refined values after max_iters iterations. This is so that this function can be used in a
coarse-to-fine strategy with image pyramids. Otherwise, the initial estimates should typically be equal to
the locations in the first image.

36.2.2 Inputs

char *iml Input Luma image 1 (UQ8.0)

char *inR Input Luma image 2 (UQ8.0)

short *gradX X gradient of im1 (SQ15.0)
short *gradY Y gradient of im1 (SQ15.0)
i nt wi dt h Image width (SQ31.0)
int hei ght Image height (SQ31.0)
i nt nf eat ures Number of features (SQ31.0)
short *X X feature coordinates in im1 (SQ11.4)
short *y Y feature coordinates in im1 (SQ11.4)
short *out x X feature coordinates in im2 (SQ11.4)
short *outy Y feature coordinates in im2 (SQ11.4)
int iters Number of iterations (SQ31.0)
char *scratch Scratch memory (UQ8.0)

36.2.3 Output

int Returns VLIB Error Status

36.2.4 Method

This function considers a 7x7 patch centered about the feature coordinate. Bilinear sampling is used so
that the tracked feature coordinates have sub-pixel accuracy.

The number of iterations is typically between 6 and 10.
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36.2.5 APIs
int VLIB_ trackFeaturesLucasKanade_7x7(
const char * restrict int,
const char * restrict in2,
const short * restrict gradX
const short * restrict grady,
int width,
int height,
int nfeatures,
short * restrict x,
short * restrict vy,
short * outx,
short * outy,
int max_iters,
const char * restrict scratch);
36.3 Performance Benchmarks
On-chip memory performance has been measured as:
» 423 cycles per feature for startup
» 120 cycles per iteration per feature
36.4 Notes
The input pointer scratch should be pointing at a memory buffer of 384 bytes, ideally located in on-chip
memory.

36.5 References

1. "An lterative Image Registration Technigue with an Application to Stereo Vision” from Proceedings of
the 7th international Joint Conference on Atrtificial intelligence (IJCAI '81) by B.D. Lucas and T.
Kanade, April, 1981, pp. 674-679, http://www.ri.cmu.edu/pubs/pub_2548.html.

2. http://www.ri.cmu.edu/projects/project 515.html
3. http://www.ces.clemson.edu/~stb/klt/
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37 Normal Flow (16-Bit)

37.1 Introduction and Use Cases

Normal flow computes, for every pixel in the image, motion vectors parallel to the gradient direction at
each pixel. Normal flow vectors, averaged over an image region, can provide useful information regarding
the direction and magnitude of motion.

37.2 Specification
37.2.1 Function
This function takes as input the x and y gradients, the gradient magnitude, and the pixel-wise image

difference and computes the normal flow vectors in the x and y directions.

37.2.2 Inputs

short *inDiff Pointer to array containing image difference values (SQ15.0)
short * Emag Pointer to array containing gradient magnitude values (SQ15.0)
short * Ex Pointer to array containing x-direction gradient (SQ15.0)
short * By Pointer to array containing y-direction gradient (SQ15.0)
short *Lut Pointer to array (Look-Up Table) containing values for integer division. (SQO0.15)
short T Threshold on gradient magnitude (SQ15.0)
char nunPi xel s Number of pixels to process (SQ31.0)
short *nor mal FI owX Pointer to array to hold computed normal flow vectors (SQ8.7)

short *nor mal Fl owY Pointer to array to hold computed normal flow vectors (SQ8.7)

37.2.3 Output
voi d

37.2.4 Notes

e The LUT (look-up table) array should hold values such that LUT[n] = X, where X is the value 1/n
represented in SQO0.15 format.

» The threshold, T, on gradient magnitude ensures that only those pixels with gradient magnitude greater
than T will be processed. Normal flow values for pixels that do not pass the threshold will be 0.

* Minimum number of pixels allowed is 20 (humPixels >= 20)
« Number of pixels to be processed should be a multiple of 4.
e All arrays are double word aligned.

37.25 APIs

voi d VLI B_nornal Fl ow_16(
short * inDiff,
short Enag,
short Ex,
short Ey,
short LUT,
short T,
int nunPi xel s,
short * nor mal FI owU,
short * normal Fl ow) ;

.

SPRUGO00C-November 2009 Vision Library (VLIB) Application Programming Interface 77
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS

INSTRUMENTS
Normal Flow (16-Bit) www.ti.com
37.3 Performance Benchmarks
The performance of the function was measured as 2.65 cycles / pixel.
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38 Kalman Filter With 2-Dimension Observation and 4-Dimension State Vectors (16-Bit)

38.1 Introduction and Use Cases

The Kalman filter is an efficient recursive method to estimate the state of a process from partial
observations. It is used in a wide variety of vision problems, such as object tracking, background

estimation, etc.

38.2 Specification

38.2.1 Function

The Kalman filter is implemented as two separate functions, one for the time update (or prediction) and
the other for the measurement update (or correction). This implementation assumes a pre-determined
fixed dimension for the observation and state vectors. The observation vector should be of dimension 2x1,
and the state vector should have dimension 4x1.

The state of the Kalman filter is defined using the following structure. The expected bit precision for each
matrix is noted in the comments. The variable sD and mD represent the dimensionality of the state and
measurement vectors and have values of 4 and 2 respectively.

typedef struct VLIB_kal manFilter_2x4{

short
short
short
short
short
short
short
short
short
short
short
short

transition[sD*sD]; // SQL5.0, state transition matrix
errorCov[sD*sD]; // SQL3.2, a priori error covariance matrix
predi ctedErrorCov[sD*sD]; // SQL3.2, predicted error cov matrix
state[sD]; /1 SQLO0.5, state of the process
predictedState[sD]; // SQLO.5, predicted state of the process
measurenment [nD*sD]; // SQL5.0, neasurenent matrix

processNoi seCov[sD*sD]; // SQL3.2, process noise cov matrix
measur ement Noi seCov[ nD*nD]; // SQL5.0, neasurenment noi se cov
kal manGai n[ sD*nD]; // SQ0.15, Kal man gain

tenmpl[ sD*sD];

temp2[ sD*sD];

temp3[sD*sD];

} VLI B_kal manFi | t er _2x4;

38.2.2 Inputs

The inputs to VLIB_kalmanFilter_2x4_Predict (prediction step) are:

VLI B_kal manFi | ter _2x4 *KF Pointer to struct VLIB_kalmanFilter_2x4

The inputs to VLIB_kalmanFilter_2x4 Correct (correction step) are:

VLI B_kal manFi | ter _2x4 *KF Pointer to struct VLIB_kalmanFilter_2x4
short *Z Pointer to array (dimension 2x1) containing measurement (SQ10.5)
short *Res Pointer to array to store the residual error (SQ10.5)

38.2.3 Output

For VLIB_kalmanFilter_2x4_Predict:

int

Returns VLIB Error Status

For VLIB_kalmanFilter_2x4_Correct:

int

Returns VLIB Error Status
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38.2.4 Notes

« All the matrices in the struct VLIB_kalmanFilter_2x4 should be initialized to 0.
e The structure should be word aligned.

38.25 APIs

voi d VLI B_kal manFi | ter _2x4_Predict(
VLI B_kal manFi | ter_2x4 * KF);

voi d VLI B_kal manFi | ter_2x4_Correct (
VLI B_kal manFi | ter_2x4 * KF,
short * restrict Z,
short * restrict Residual);

38.3 Performance Benchmarks

For VLIB_kalmanFilter_2x4 Predict: Performance using on-chip memory was measured as 154
cycles.
For VLIB_kalmanFilter_2x4_Correct: Performance using on-chip memory was measured as 327
cycles.
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39 Kalman Filter With 4-Dimension Observation and 6-Dimension State Vectors (16-Bit)

39.1 Introduction and Use Cases

The Kalman filter is an efficient recursive method to estimate the state of a process from partial
observations. It is used in a wide variety of vision problems, such as object tracking, background

estimation, etc.
39.2 Specification

39.2.1 Function

The Kalman filter is implemented as two separate functions, one for the time update (or prediction) and
the other for the measurement update (or correction). This implementation assumes a pre-determined
fixed dimension for the observation and state vectors. The observation vector should be of dimension 4x1,

and the state vector should have dimension 6x1.

The state of the Kalman filter is defined using the following structure (the expected bit precision for each
matrix is noted in the comments). The variable sD and mD represent the dimensionality of the state and

measurement vectors and have values of 6 and 4 respectively.

typedef struct VLIB_ kal manFilter{
short transition[sD*sD]; // SQLl3.2, state transition matrix

short errorCov[sD*sD]; // SQL3.2, a priori error covariance matrix
short predictedErrorCov[sD*sD]; // SQL3.2, predicted error cov matrix
short state[sD]; /1 16-bit, desired Q value, state of the process
short predictedState[sD]; // desired Q value, predicted state

short measurement[nD*sD]; // SQL5.0, measurenment nmatrix

short processNoi seCov[sD*sD]; // SQL3.2, process noise cov matrix
short measur ement Noi seCov[nD*nD]; // SQL5.0, neasurement noi se cov

short kal manGai n[sD*nD]; // SQ0.15, Kal man gain
short tenpl[sD*sD];
short tenp2[sD*sD;
short tenp3[sD*sD];
int t empBuf f er s[ nD* nD* 2] ;
int scal eFact or; /Il S@B1.0
} VLI B_kal manFi | t er _4x6;

39.2.2 Inputs
The inputs to VLIB_kalmanFilter_4x6_Predict (prediction step) are:

VLI B_kal manFi | ter _4x6 *KF Pointer to struct VLIB_kalmanFilter_4x6

The inputs to VLIB_kalmanFilter_4x6_Correct (correction step) are:

VLI B_kal manFi | ter _4x6 *KF Pointer to struct VLIB_kalmanFilter_4x6
short *Z Pointer to array containing measurement
short *Res Pointer to array to store the residual error

39.2.3 Output
For VLIB_kalmanFilter_4x6_Predict:
voi d

For VLIB_kalmanFilter_4x6_Correct;
voi d

(User-defined)
(User-defined)
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39.2.4 Notes

» All the matrices in the struct VLIB_kalmanFilter_4x6 should be initialized to 0.
» The structure should be word aligned.
* The element scaleFactor in the structure VLIB_kalmanFilter_4x6 scales the matrix M = (H*P1*H' + R)

to ensure that its inverse does not overflow 32 bits. The scaling is done by right shifting each element

of M by the quantity assigned to scaleFactor. The computed inverse is then scaled back to ensure the
correct result, based on the identity inv(M) = inv(M/k)/k.

39.25 APIs

voi d VLI B kal manFi | ter_4x6_Predi ct (
VLI B_kal manFi |l ter _4x6 * KF);

void VLI B_kal manFi | ter_4x6_Correct (
VLI B_kal manFi | ter_4x6 * KF,
short * restrict Z,
short * restrict Residual);

39.3 Performance Benchmarks

For VLIB_kalmanFilter_2x4_Predict: Performance using on-chip memory was measured as 374.2
cycles.
For VLIB_kalmanFilter_2x4 Correct: Performance using on-chip memory was measured as 1627.5
cycles.
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40 Nelder-Mead Simplex (16-Bit)

40.1

Introduction and Use Cases

Optimization techniques are important in several vision algorithms. The Nelder-Mead simplex method is a
common optimization technique used to find the minima of a given cost function.

40.2

40.2.1

Function

Specification

This function accepts as input a pointer to the cost function to be minimized and an N-dimensional
coordinate vector indicating the starting point of the search. The function returns the coordinates of the
found minima and the actual minimum value.

40.2.2

i nt
short
short

int
short
int
int

short
short
short
short
short
short
voi d
short
int

40.2.3

voi d

40.2.4

Inputs

Output

Notes

*func
*start
*init_step

N

N_i nv

Max| teration
EPSI LON

*v

*f

*vr

*ve

*ve

*vm

*addt| Args
*m nPoi nt

*m nVal ue

Pointer to cost function.
Pointer to array containing starting coordinates

Pointer to array containing the size of the initial step to be taken in each
dimension to form the initial simplex

Dimensionality of the coordinate space
Value equal to the reciprocal of N
Maximum number of allowed iterations to find the minima

Stopping criterion corresponding to a threshold on the difference
between the largest and smallest values in the simplex at any iteration.

Pointer to array of size N+1. For internal use.

Pointer to array of size N+1. For internal use.

Pointer to array of size N. For internal use.

Pointer to array of size N. For internal use.

Pointer to array of size N. For internal use.

Pointer to array of size N. For internal use

Pointer to structure containing additional arguments to cost function
Pointer to array to hold the coordinates of the found minima
Pointer to variable to hold the minimum found value

» All arrays should be double word aligned.

» The stooping condition works as follows: If the difference between the largest and smallest values in

the simplex at any iteration is smaller than EPSILON, the function terminates.

» Itis assumed that the cost function will have a 32-bit return value, and, as input, it will take 16-bit
representation of the coordinates.

User-defined
User-defined

(SQ31.0)
(5Q0.15)
(5Q31.0)
User-defined
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40.2.5 APIs
voi d VLI B_si npl ex(

int (*func)(short[], void *)

short* restrict start,
short* restrict init_step,
int N

short N_I NV,

int Maxlteration,

int EPSILON,

short* restrict v,

int* restrict f,

short* restrict vr,
short* restrict ve,
short* restrict vc,
short* restrict vm

voi d* addt! Args,

short* restrict mnPoint,
int* restrict mnValue);

40.3 Performance Benchmarks

The performance of the function was measured as: 75.9 cycles to find the minima of Rosenbrock's
function in 3D. The minimization involved 102 iterations and 177 evaluations of the cost function.

84

Vision Library (VLIB) Application Programming Interface

Copyright © 2009, Texas Instruments Incorporated

SPRUGO00C-November 2009
Submit Documentation Feedback


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS
INSTRUMENTS

www.ti.com Nelder-Mead Simplex for 3D Coordinate Space (16-Bit)

41  Nelder-Mead Simplex for 3D Coordinate Space (16-Bit)

41.1 Introduction and Use Cases

Optimization techniques are important in several vision algorithms. The Nelder-Mead simplex method is a

common optimization technique used to find the minima of a given cost function.
41.2 Specification

41.2.1 Function

This function accepts as input a pointer to the cost function to be minimized and an 3-dimensional
coordinate vector indicating the starting point of the search. The function returns the coordinates of the
found minima and the actual minimum value.

41.2.2 Inputs

i nt *func Pointer to cost function.

short *start Pointer to array containing starting coordinates User-defined

short *init_step Pointer to array containing the size of the initial step to be taken in each  User-defined
dimension to form the initial simplex

i nt Max!teration Maximum number of allowed iterations to find the minima (SQ31.0)

i nt EPSI LON Stopping criterion corresponding to a threshold on the difference User-defined
between the largest and smallest values in the simplex at any iteration.

short *v Pointer to array of size N+1. For internal use.

short *f Pointer to array of size N+1. For internal use.

short *vr Pointer to array of size N. For internal use.

short *ve Pointer to array of size N. For internal use.

short *ve Pointer to array of size N. For internal use.

short *vm Pointer to array of size N. For internal use

voi d *addt | Args Pointer to structure containing additional arguments to cost function

short *m nPoi nt Pointer to array to hold the coordinates of the found minima

i nt *m nVal ue Pointer to variable to hold the minimum found value

41.2.3 Output
voi d

41.2.4 Notes

» All arrays should be double word aligned.

» The stooping condition works as follows: If the difference between the largest and smallest values in
the simplex at any iteration is smaller than EPSILON, the function terminates.

» Itis assumed that the cost function will have a 32-bit return value, and, as input, it will take 16-bit
representation of the coordinates.
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41.2.5

APIs

voi d VLI B_si npl ex_3D
int (*func)(short[], void *)

short
short

* restrict start,
* restrict init_step,

int Maxlteration,
int EPSILQON,

short
int *
short
short
short
short

* restrict v,
restrict f,

* restrict vr,
* restrict ve,
* restrict vec,
* restrict vm

voi d * addtl Args,

short

* restrict mnPoint,

int * restrict mnValue);

41.3 Performance Benchmarks

The performance of the function was measured as: 40.2 cycles to find the minima of Rosenbrock’s
function in 3D. The minimization involved 102 iterations and 177 evaluations of the cost function.
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42  Legendre Moments Computation (16-Bit)

42.1 Introduction and Use Cases

Legendre Moments are orthogonal moments often used for image analysis.
42.2 Specification

42.2.1 Function

The function returns a square matrix M of dimension (Order+1) where Order is the specified maximum
order of moments required. Entries M(i,j) such that i+j < Order correspond to the required Legendre
moments.

There are two functions related to Legendre Moments computation, VLIB_legendreMoments_Init and
VLIB_legendreMoments. If the image size and the required moment order are fixed,
VLIB_legendreMoments_Init can be called just once to initialize the necessary buffers and constants.

42.2.2 Inputs
The inputs for VLIB_legendreMomentsinit are:

short *LPol y Buffer to hold the computed Legendre polynomial values (UQO.15)
i nt Or der Required order of moments (SQ31.0)
int I mH Image height (SQ31.0)
short *Const ant Pointer to variable SQO0.15)

The inputs for VLIB_legendreMoments are:

short *I'm Input image patch (UQO0.15)
short *Lnonent s Buffer to hold the computed Legendre moments (SQ0.15)
short *LPol y Buffer returned from call to VLIB_LegendreMoments_nit (SQO0.15)
int O der Required order of moments (SQ31.0)
int I mH Image height (SQ31.0)
short Const ant Constant value returned by VLIB_LegendreMoments_Init SQO0.15)

42.2.3 Output

int Returns VLIB Error Status
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42.2.4 Notes

» The pixel intensities should be normalized to be in [0,1].

» The image should be square, image height = image width.
» The largest image supported is 256x256.

» The largest order of moments supported is 40.

* Lmoments should be initialized to O

» LPoly is independent of the pixel intensities, and is dependent only on the size of the image (ImH) and
the Order of the moment values required

* LPoly must be of dimension (Order+1)x(ImH)
* LMoments must be of dimension (Order+1)x(Order+1)

42.2.5

42.3

Example:

1. Initialize LPoly, LMoments to 0 before first call to VLIB_legendreMoments

2. For subsequent calls to VLIB_legendreMoments, reuse the values in the buffer LPoly set by the first
call to VLIB_legendreMoments

APls

int VLIB_| egendreMnents_Init(

short

const char Order,

const

* LPol y,

char 1 nH

short * Constant)

int VLIB_| egendreMoment s(

const
short
short
const
const
const

Performance Benchmarks

* restrict
* restrict
* restrict

char Order,

char 1 nH

I'm
LMorent s,
LPol y,

short Constant)

For a 128x128 image patch and 20th order moments, the performance using on-chip memory has been
measured as in Equation 33:

0.68x%(ImH"2)x(Order~2)

(33)
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43 Initialization for Histogram Computation for Integer Scalars (8-Bit)

43.1 Introduction and Use Cases

Initializes arrays for histogram computation.
43.2 Specification
43.2.1 Function
Initializes buffer for 1D histogram computation by VLIB_histogram_1D U8 and

VLIB_weightedHistogram_1D US.

43.2.2 Inputs

char *bi nEdges Array containing the edges of the histogram bins (must ~ (UQ8.0)
be monotonically increasing)

i nt nunB Number of bins (SQ31.0)

char *internal Buffer Buffer for internal use (UQ8.0)

43.2.3 Output

i nt Returns VLIB Error Status

43.2.4 Notes
» The values of the bin edges must increase monotonically.
 internalBuffer should be initialized to 0.

« internalBuffer should have a size equal to the length of the range of values that the input quantity can
take.

R = (max — min) + 1, where max and min are the maximum and minimum possible values that the
input quantity can have.

43.2.5 APIs

int VLIB_histogram 1D Init_U8(
char * restrict binEdges,
const int nunBins,
char * restrict histArray);

43.3 Performance Benchmarks

On-chip memory performance of has been measured as in Equation 34, where R is the length of the
range of the quantity to be histogrammed:

8.6 x R cycles (34)
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44  Histogram Computation for Integer Scalars (8-Bit)

44.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

44.2 Specification

44.2.1 Function

Computes histogram from array of 8-bit integers using user-specified bins.

44.2.2 Inputs

char

i nt

i nt

unsi gned
char

unsi gned
unsi gned
unsi gned
unsi gned

44.2.3 Output

int

44.2.4 Notes

short

short
short
short
short

*X

nunX

nunB

bi nWei ght
*hi st Array
*internal HL
*internal H2
*internal H3
*H

Input array of scalar values

Number of elements in X

Number of bins

Value to accumulate in histogram bins

Array for internal use, initialized by VLIB_histogram_1D_Init_U8
Array for internal use

Array for internal use

Array for internal use

Array to hold the computed histogram

Returns VLIB Error Status

The values in binEdges must increase monotonically.
H[K] will hold the number of elements that satisfy Equation 35:

binEdges[k] <= X[i] < binEdges[k+1]

X[i] == binEdges[end]
» histArray should be initialized by calling VLIB_histogram_1D_Init_U8.
» H, internalH1, internalH2, and internalH3 should be of length numB, initialized to O.
* numX should be a multiple of 4
* numB should be a multiple of 2

The last bin H[end] will hold the number of elements that satisfy Equation 36:

(UQB.0)

(SQ31.0)
(SQ31.0)
(UQ16.0)
(UQB.0)

(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)

(35)

(36)
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4425 APIs

int VLIB_histogram 1D U3(
char* restrict X
const int nun,
const int nunBins,
const unsi gned short bi nWei ght,
char* restrict histArray,
unsi gned short* restrict internal Hl,
unsi gned short* restrict internal H2,
unsi gned short* restrict internal H3,
unsi gned short* restrict H);

44.3 Performance Benchmarks
On-chip memory performance has been measured as Equation 37:
(2.25 x numX) + (1 x numBins) cycles (37)
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45  Weighted Histogram Computation for Integer Scalars (8-Bit)

45.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted
histograms permit the user he flexibility to influence the relative importance of different values in the input

data.

45.2 Specification

45.2.1 Function
Computes weighted histogram from array of 8-bit integers using user-specified bins.

45.2.2 Inputs

char
int
int
unsi gned

char

unsi gned
unsi gned
unsi gned
unsi gned

45.2.3 Output

int

45.2.4 Notes

short

short
short
short
short

*X

nunX

nunB

*bi nWéi ght

*hi st Array
*internal HL
*internal H2
*internal H3
*H

Input array of scalar values
Number of elements in X
Number of bins

Array of size numX of weight that each element contributes to the
histogram

Array for internal use, initialized by VLIB_histogram_1D_Init_U16
Array for internal use

Array for internal use

Array for internal use

Array to hold the computed histogram

Returns VLIB Error Status

e HIK] will hold the number of elements that satisfy Equation 38:
binEdges|k] <= X[i] < binEdges[k+1]

X[i] == binEdges[end]
» histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
e internalH1, internalH2, and internalH3 should be of length numB, initialized to 0.
» H should be of length numB, initialized to 0.
* numX should be a multiple of 4.
* numB should be a multiple of 2.

The last bin H[end] will hold the number of elements that satisfy Equation 39:

(UQ8.0)
(SQ31.0)
(SQ31.0)
(UQ16.0)

(UQB.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)

(38)

(39)
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4525 APIs

int VLI B wei ghtedH stogram 1D U3(
char* restrict X
const int nun,
const int nunBins,
unsi gned short* restrict binWight,
char* restrict histArray,
unsi gned short* restrict Hi,
unsi gned short* restrict H2,
unsi gned short* restrict H3,
unsi gned short* restrict H);

45.3 Performance Benchmarks
On-chip memory performance has been measured as in Equation 40:
(2.5 x numX) + (1 x numBins) cycles (40)
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46 Initialization for Histogram Computation for Integer Scalars (16-Bit)
46.1 Introduction and Use Cases

Initializes arrays for histogram computation.
46.2 Specification
46.2.1 Function

Initializes buffer for 1D histogram computation by VLIB_histogram_1D U16 and

VLIB_weightedHistogram_1D U16.
46.2.2 Inputs

unsi gned short  *bi nEdges Array containing the edges of the histogram bins (must ~ (UQ16.0)

be monotonically increasing)
i nt nunB Number of bins (SQ31.0)
unsi gned short  *internal Buffer Buffer for internal use (UQ16.0)

46.2.3 Output

i nt Returns VLIB Error Status

46.2.4 Notes
» The values of the bin edges must increase monotonically.
 internalBuffer should be initialized to 0.
« internalBuffer should have a size equal to the length of the range of values that the input quantity can
take.
R = (max — min) + 1, where max and min are the maximum and minimum possible values that the
input quantity can have.

46.2.5 APIs

int VLIB_histogram 1D I nit_UL6(
unsi gned short* restrict binEdges,
const int nunBins,
unsi gned short* restrict H);

46.3 Performance Benchmarkss

On-chip memory performance of has been measured as in Equation 41, where R is the length of the
range of the quantity to be histogrammed:

8.6 x R cycles (41)
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47  Histogram Computation for Integer Scalars (16-Bit)

47.1 Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

47.2 Specification

47.2.1 Function
Computes histogram from array of 16-bit integers using user-specified bins.

47.2.2 Inputs

unsi gned
i nt

i nt

unsi gned
unsi gned
unsi gned
unsi gned

47.2.3 Output

int

47.2.4 Notes

short

short
short
short
short

*X

nunX

nunB

bi nWei ght
*hi st Array
*internal H
*H

Input array of scalar

Number of elements in X

Number of bins

Value to accumulate in histogram bins

Array for internal use, initialized by VLIB_histogram_1D_Init_U16
Array for internal use

Array to hold the computed histogram

Returns VLIB Error Status

* HIk] will hold the number of elements that satisfy Equation 42:
binEdges|k] <= X]i] < binEdges[k+1]

X[i] == binEdges[end]

4725 APIs

int VLIB_histogram 1D U16(
unsi gned short* restrict X
const int nunmX

47.3 Performance Benchmarks

const int nunBins,

The last bin H[end] will hold the number of elements that satisfy Equation 43:

histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
internalH should be of length numB, initialized to O.
H should be of length numB, initialized to 0.

const unsigned short binWei ght,
unsi gned short* restrict histArray,
unsi gned short* restrict internal H
unsi gned short* restrict H)

On-chip memory performance has been measured as in Equation 44:

(3.6 x numX) + (1 x numBins) cycles

(UQ16.0)
(SQ31.0)
(SQ31.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)
(UQ16.0)

(42)

(43)

(44)
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48 Weighted Histogram Computation for Integer Scalars (16-Bit)
48.1 Introduction and Use Cases
Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted

histograms permit the user he flexibility to influence the relative importance of different values in the input
data.

48.2 Specification

48.2.1 Function
Computes weighted histogram from array of 16-bit integers using user-specified bins.

48.2.2 Inputs

unsi gned short *X Input array of scalar values (UQ16.0)
i nt nunX Number of elements in X (SQ31.0)
int nunB Number of bins (SQ31.0)
unsi gned short  *bi nWei ght Array of size numX of weight that each element contributes to the (UQ16.0)
histogram
unsi gned short  *histArray Array for internal use, initialized by VLIB_histogram_1D_Init_U16 (UQ16.0)
unsi gned short *internalH Array for internal use (UQ16.0)
unsi gned short *H Array to hold the computed histogram (UQ16.0)

48.2.3 Output

int Returns VLIB Error Status
48.2.4 Notes
* HIk] will hold the number of elements that satisfy Equation 45:
binEdges|k] <= X]i] < binEdges[k+1] (45)
* The last bin H[end] will hold the number of elements that satisfy Equation 46:
X[i] == binEdges[end] (46)

histArray should be initialized by calling VLIB_histogram_1D_Init_U16.
internalH should be of length numB, initialized to O.
H should be of length numB, initialized to 0.
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48.2.5 APIs

int VLI B wei ghtedH stogram 1D U16(
unsi gned short* restrict X
const int nun,
const int numBins,
unsi gned short* restrict binWight,
unsi gned short* restrict histArray,
unsi gned short* restrict Hi,
unsi gned short* restrict H);

48.3 Performance Benchmarks
On-chip memory performance has been measured as in Equation 47:
(3.6 x numX) + (1 x numBins) cycles 47)
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49

49.1

Histogram Computation for Multi-Dimensional Vectors (16-Bit)

Introduction and Use Cases

Histograms are used commonly as a discrete measure of the distribution of a given quantity.

49.2 Specification

49.2.1

49.2.2

49.2.3

49.2.4

Function

Histogram computation for 16-bit vector valued variables of multiple dimensions.

Inputs

unsi gned
i nt
i nt
unsi gned
unsi gned

unsi gned

unsi gned
unsi gned
unsi gned

Output
i nt

Notes

e The vectors in X should be arranged in planar form (see Example below).
* H should be initialized to 0.

short

short
short

short

short
short
short

*X

numX

di mX

bi nWei ght
*nunBi ns

*nor nval s

*internal 1
*internal 2
*H

Array of input values, data arranged in planar form
Number of individual vector elements in X
Dimensionality of vectors in X

Value to accumulate in histogram bins

(UQ16.0)
(SQ31.0)
(SQ31.0)
(UQ16.0)

Array of size dimX, each element specifies the number of bins required in  (UQ16.0)

that dimension

Array of size dimX, each element containing the normalization factor for (UQO.16)

that dimension
Buffer of size numX, for internal use (initialized to 0)

(UQ16.0)

Buffer of size equal to total number of bins, for internal use (initialized to 0) (UQ16.0)

Array of size equal to total number of bins to hold computed histogram (UQ16.0)

(initialized to 0)

Returns VLIB Error Status

* internall and internal2 should be initialized to O.

* The normalization factor normVals[k] for each dimension k should be set as in Equation 48, where M is
the maximum value in dimension k, and d is any non-zero value:

normVals[k] = 1 + (M+d),

All arrays are double-word aligned.

(48)
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Example:
Assume a 3-dimensional quantity:
F=1[923;

Dm1 = 10
Dm2 = 4
Dm3 =5

The required output is a histogram with 3x5x2 bins:

Dm1 = 3 bins
Dm2 =5 bins
Dim3 = 2 bins

The following is the form of the input:
X=[958472312135331];

nunmX = 5;
dimX = 3;
bi nWei ght 1 (or 1/5 for a normalized histogran

numBins = [3 5 2];

nornvals = [1/11 1/5 1/6] * 65536;
internall = array of 0Os of size 5
internal 2 = array of 0s of size 30
H = array of Os of size 30

49.25 APIs

int VLIB_histogramnD U16(
unsi gned short* restrict X
const int numX,
const int dinX
const unsi gned short bi nWei ght,
unsi gned short* restrict nunBins,
unsi gned short* restrict nornvals,
unsi gned short* restrict internall,
unsi gned short* restrict internal 2,
unsi gned short* restrict H);

49.3 Performance Benchmarks
On-chip memory performance was measured as in Equation 49:
((1.25 * numX * dimX) + (3.5 * numX) + (total number of bins)) cycles (49)
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50 Weighted Histogram Computation for Multi-Dimensional Vectors (16-Bit)
50.1 Introduction and Use Cases
Histograms are used commonly as a discrete measure of the distribution of the input data. Weighted

histograms permit the user he flexibility to influence the relative importance of different values in the input
data.

50.2 Specification

50.2.1 Function
Computes a weighted multi-dimensional histogram for 16-bit vector valued variables.

50.2.2 Inputs

unsi gned short *X Array of input values, data arranged in planar form (UQ16.0)

i nt numX Number of individual vector elements in X (SQ31.0)

int di mX Dimensionality of vectors in X (SQ31.0)

unsi gned short  *bi nWei ght Array of size numX of weight that each element contributes to the (UQ16.0)
histogram

unsi gned short *nornVal s Array of size dimX, each element specifies the number of bins required (UQ16.0)
in that dimensions

unsi gned short *internall Buffer of size numX, for internal use (initialized to 0) (UQ16.0)

unsi gned short *internal 2 B)uffer of size equal to total number of bins, for internal use (initialized to (UQ16.0)
0

unsi gned short *H Array of size equal to total number of bins to hold computed histogram  (UQ16.0)

(initialized to 0)

50.2.3 Output

int Returns VLIB Error Status

50.2.4 Notes

e The vectors in X should be arranged in planar form (see Example below)

* H should be initialized to 0

* internall and internal2 should be initialized to O

* The normalization factor normVals[k] for each dimension k should be set as in Equation 50, where M is
the maximum value in dimension k, and d > O:
normVals[k] = 1/(M+d) (50)

» All arrays are double-word aligned

Example:
Assume a 3-dimensional quantity:
F=1[9 23

53 5;
8 1 3;
42 3;
71 1];

Where the maximum possible value in each dimension is as follows:
Dm1 = 10
Dm2 =4
Dm3 =5
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The required output is a histogram with 3x5x2 hins:

Dm1 = 3 bins
Dm2 =5 bins
Dm3 = 2 bins

The following is the form of the input:

X=[958472312135331];

numX = 5;
dinX = 3

bi n\Wei ght
nunBi ns =

nornval s =

internal 1

H = array of Os of size 30

50.2.5 APIs

array of 1/5 of size 5

35 2];

[1/11 1/5 1/6]
array of Os of size 5
internal2 = array of 0Os of size 30

int VLI B_wei ght edHi st ogram nD_U16(

unsi gned short* restrict X

const int numX
const int dinX

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short*
short*
short*
short*
short*
short*

bi nWei ght ,

nunBi ns,
nor nval s,
internal 1,
i nternal 2,

restrict
restrict
restrict
restrict
restrict

50.3 Performance Benchmarks

* 65536

On-chip memory performance has been measured as in Equation 51:

((1.25 x numX x dimX) + (3.5 x numX) + (total number of bins)) cycles

(51)
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51 Bhattacharya Distance (32-Bit)

51.1 Introduction and Use Cases

Bhattacharya distance is a popular measure of the similarity between two discrete probability distribution
functions.

51.2 Specification

51.2.1 Function

This function accepts as input two arrays, p and g, of size N containing the discrete probability
distributions. It returns the Bhattacharya distance, B, between p and q as a 32-bit unsigned integer as
defined in Equation 52:

N 1/2
[1- b \/p(i)xq(i)J

i=1 (52)

51.2.2 Inputs

unsi gned short *X Pointer to array containing first probability distribution (UQ16.0)
unsi gned short *Y Pointer to array containing second probability distribution (UQ16.0)
int N Number of elements in the probability distributions (SQ31.0)
unsi gned int *D Pointer to variable to store the computed Bhattacharya Distance (SQ32.0)

51.2.3 Output
voi d

51.2.4 Notes
e All arrays should be double-word aligned.

» Bhattacharya distance is defined on probability distribution functions. This implies that the elements in
X and Y should sum to 1, respectively.

e There should be a minimum of four elements in X and Y.

51.25 APIs

voi d VLI B_bhattacharyaDi st ance_U32(
unsi gned short * restrict X
unsi gned short * restrict Y,
int N
unsigned int * D);

51.3 Performance Benchmarks

The performance of the function was measured as: 45.7 x N cycles, where N is the number of elements in
the input probability distribution functions.
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52 L1 Distance (City Block Distance) (16-bit)

52.1 Introduction and Use Cases

L1 Distance, also called city block distance, is a measure of the distance between two vectors.
52.2 Specification

52.2.1 Function

This function accepts as input two vectors, p and g, of size N. It returns the L1 distance, L1D, between p
and g as a 32-hit unsigned integer as in Equation 53.

LID= lZZmin[(fs —1)(117,' _%D]

(53)

52.2.2 Inputs

short restrict *X Pointer to array containing first vector (SQ15.0)
short restrict *Y Pointer to array containing second vector (SQ15.0)
i nt N Number of elements in each vector (SQ32.0)
unsi gned int *L1D Pointer to variable to store the computed L1 Distance (Q32.0)

52.2.3 Output

voi d

52.2.4 Notes
* All arrays should be double-word aligned.
e There should be a minimum of four elements in X and Y.

« If the absolute difference between two corresponding vector elements is greater than 2715-1, then that
particular value is saturated to 2°15-1.

52.25 APIs

void VLI B_L1D stanceS16(
short* restrict X
short* restrict Y,
int N
unsigned int* L1D)

52.3 Performance Benchmarks

The performance of the function was measured as: 0.54 x N cycles, where N is the number of elements in
the input vectors.
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53 Luminance Extraction From YUV422

53.1 Introduction and Use Cases

When the image data is stored in the YUV422 format but the processing needs to be done on its
luminance component only, it is often desirable to extract the Y component and store it in a separate
buffer. This is particularly useful when data needs to be contiguous.

53.2 Specification

53.2.1 Function
Extracts the luminance data from the YUV422 image.

53.2.2 Inputs

char *i nput | mage Input YUV422 image (UQ8.0)
unsi gned short inputWdth Width of input image (in pixels)
unsi gned short inputPitch Pitch of input image (in pixels)
unsi gned short i nput Hei ght Height of input image (in pixels)
char *out put | mage Luma-only output image (UQ8.0)

53.2.3 Output

int Returns VLIB Error Status

53.2.4 Method

If the input data is in YUV422, then in order to obtain a luminance only buffer, every other byte is
extracted and copied to the buffer pointed to by outputimage.

53.25 APIs

int VLIB_extract LumaFr omUYUV(
char* restrict inputlnage,
unsi gned short input W dth,
unsi gned short inputPitch,
unsi gned short i nputHei ght,
char* restrict outputlnage);

53.3 Performance Benchmarks

The performance with all input and output data in on-chip memory is 0.29 cycles/outputs.
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54.1

54.2 Specification

54.2.1

54.2.2

54.2.3

54.2.4

54.2.5

54.3

54.4

Conversion From 8-Bit YUV422 Interleaved to YUV422 Planar

Introduction and Use Cases

YUV422 is a common imaging data format [ 1 ]. If the YUV color channels are interleaved, as is often the

case, this function is usually beneficial for improving the performance of vision applications, as it
separates the three color channels into separate buffers, color planes. This is helpful because data
transfers between external and internal memory are faster for contiguous data.

Function

Deinterleaves color channels of an interleaved YUV422 data block.

Inputs
const unsigned char *yc
i nt wi dt h
int pitch
int hei ght

unsi gned char
unsi gned char
unsi gned char

Output

i nt

Method

Given pixels in the interleaved format, this function separates the three channels into separate buffers.
The width must be a multiple of 8, while input and output buffers must be 64-bit aligned.

APls

*restrict y
*restrict cr
*restrict cb

Returns VLIB Error Status

int VLIB_convert UYVYint_to_YUVpl (
const unsigned char *yc,
int width,
int pitch,
int height,

unsi gned char *restrict vy,
unsi gned char *restrict cr,
unsi gned char *restrict cb);

Performance Benchmarks

Interleaved luma/chroma

Width of input image (number of luma pixels)
Pitch of input image (number of luma pixels)
Height of input image(number of luma pixels)
Luma plane (8-bit)

Cr chroma plane (8-bit)

Cb chroma plane (8-bit)

The compute-only performance is 0.4 cycles/pixel.

References

1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

(UQ8.0)
(in pixels)
(in pixels)
(in pixels)
(in pixels)
(UQ8.0)
(UQ8.0)
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55  Conversion From 8-bit YUV422 Interleaved to YUV420 Planar
55.1 Introduction and Use Cases
YUV420 is a common imaging data format [ 1 ]. It offers more compressed chroma data and thus a
reduced bandwidth over YUV422. If the YUV422 color channels are interleaved, as is often the case, this
function is usually beneficial for improving the performance of vision applications, as it separates the three
color channels into separate buffers, color planes. This is helpful because data transfers between external
and internal memory are faster for contiguous data.
55.2 Specification
55.2.1 Function
Deinterleaves color channels of an interleaved YUV422 data block and creates YUV420 planar format.
55.2.2 Inputs
const unsigned char *yc Interleaved luma/chroma (UQ8.0)
i nt wi dt h Width of input image (number of luma pixels) (in pixels)
int pitch Pitch of input image (number of luma pixels) (in pixels)
i nt hei ght Height of input image(number of luma pixels) (in pixels)
unsi gned char *restrict y Luma plane (8-bit) (in pixels)
unsi gned char *restrict cr Cr chroma plane (8-bit) (UQ8.0)
unsi gned char *restrict cb Cb chroma plane (8-bit) (UQ8.0)
55.2.3 Output
int Returns VLIB Error Status
55.2.4 Method
Given pixels in the YUV422 interleaved format, this function separates the three channels into separate
buffers, and vertically subsamples the chroma information by a factor of 2. To prevent aliasing in the
chroma data, the values extracted from YUV422 are averaged. The width must be a multiple of 8, the
height must be a multiple of 2, while input and output buffers must be 64-bit aligned.
55.2.5 APIs
int VLI B_convertUYVYint_to_YUv420pl (
const unsigned char *yc,
int width,
int pitch,
int height,
unsi gned char *restrict vy,
unsi gned char *restrict cr,
unsi gned char *restrict ch);
55.3 Performance Benchmarks
The compute-only performance is 0.41 cycles/pixel.
55.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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56 Conversion From 8-bit YUV422 Interleaved to HSL Planar

56.1 Introduction and Use Cases

HSL (Hue Saturation Lightness), also known as HSI (Hue Saturation Intensity), or HSB (Hue Saturation
Brightness) is a popular color space for image representation, especially in computer graphics and other
applications where color perception needs to be modeled better than with RGB [ 1 ]. If the input data is in
the interleaved YUV422 color format, this function transforms the data into the HSL format and separates
the three color channels into separate buffers, color planes.

56.2 Specification

56.2.1 Function
Calculates HSL representation of pixels represented in interleaved YUV422 format.

56.2.2 Inputs

const unsigned char *yc Interleaved luma/chroma (UQ8.0)
i nt wi dt h Width of input image (number of luma pixels) (in pixels)
int pitch Pitch of input image (number of luma pixels) (in pixels)
i nt hei ght Height of input image(number of luma pixels) (in pixels)
const short coef f[ 5] Matrix coefficients (SQ16.0)
const unsigned short di v_t abl e[ 510] Division table (UQ16.0)
unsi gned char *restrict H Pointer to H plane (8-bit) (UQ8.0)
unsi gned char *restrict S Pointer to S plane (8-bit) (UQ8.0)
unsi gned char *restrict L Pointer to L plane (8-bit) (UQ8.0)

The matrix coefficients specified by the array coeff are typically as shown in Equation 54 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 }; (54)

Alternatively, as shown in Equation 55for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -O0x0C8A, -0x1A04, 0x408D }, (55)

The division table is used to provide an LUT to replace integer divisions by multiplications with
corresponding inverses, shifted left by 15.

56.2.3 Output

int Returns VLIB Error Status

56.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the HSL format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.
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56.2.5 APIs
int VLIB_convertUYVYint_to_HSLpl (
const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
const unsigned short div_tabl e[510],
unsi gned short *restrict H,
unsi gned char *restrict S,
unsi gned char *restrict L);
56.3 Performance Benchmarks
The compute-only performance is 113 cycles/pixel.
56.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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57 Conversion From 8-bit YUV422 Interleaved to LAB Planar

57.1 Introduction and Use Cases

Lab color space is an important color-opponent color space. It is derived from the CIE XYZ color space

through a non-linear compression, which assures perceptual uniformity [ 1 ]. If the input data is in the

interleaved YUV422 color format, this function transforms the data into the LAB format and separates the

three color channels into separate buffers, color planes.
57.2 Specification

57.2.1 Function
Calculates LAB representation of pixels represented in interleaved YUV422 format.

57.2.2 Inputs

const unsigned char *yc Interleaved luma/chroma (UQ8.0)

i nt wi dt h Width of input image (number of luma pixels) (in pixels)
i nt pitch Pitch of input image (number of luma pixels) (in pixels)
int hei ght Height of input image(number of luma pixels) (in pixels)
const short coef f[ 5] YUV to sRGB matrix coefficients (SQ16.0)
f1 oat whi t ePoi nt [ 3] D65 = {0.950456, 1.0, 1.088754}; (float)

fl oat *restrict L Pointer to L plane (8-bit) (float)

f | oat *restrict a Pointer to A plane (8-bit) (float)

f | oat *restrict b Pointer to B plane (8-bit) (float)

The matrix coefficients specified by the array coeff are typically as shown in Equation 56 for the case of

RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for

Cb and Cr.
coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 };
Alternatively, as shown in Equation 57, for the case of RGB conversion with the 219-level range of Y

(56)

expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and

Cr.
coeff[] = { 0x2543, 0x3313, -OXOC8A, -0x1A04, 0x408D };

The white point specification is used in the normalization step of the intermediate XYZ color space. A

common value is a D65 value given by Equation 58:
float whitePoint[3] = {0.950456, 1.0, 1.088754};

57.2.3 Output

i nt Returns VLIB Error Status

57.2.4 Method

(67)

(58)

Given pixels in the interleaved YUV422 format, this function transforms the data into the LAB format and

separates the three channels into separate buffers. The width must be a multiple of 8, while input and

output buffers must be 64-bit aligned.

SPRUGO00C-November 2009 Vision Library (VLIB) Application Programming Interface

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

109


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS

INSTRUMENTS
Conversion From 8-bit YUV422 Interleaved to LAB Planar www.ti.com
57.25 APIs
int VLIB_convertUYVYint_to_LABpl (
const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
float whitePoint[3],
float *restrict L,
float *restrict a,
float *restrict b);
57.3 Performance Benchmarks
The compute-only performance is 75000 cycles/pixel.
57.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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58 Conversion From 8-bit YUV422 Interleaved to RGB Planar
58.1 Introduction and Use Cases
Some vision applications require the data to be in the RGB format [ 1 ]. If the input data is in the
interleaved YUV422 color format, this function transforms the data into the sRGB format and separates
the three color channels into separate buffers, color planes. Planarization is helpful because data transfers
between external and internal memory are faster for contiguous data.
58.2 Specification
58.2.1 Function
Calculates sRGB representation of pixels given in interleaved YUV422 format.
58.2.2 Inputs
const unsigned char *yc Interleaved luma/chroma (UQ8.0)
i nt wi dt h Width of input image (number of luma pixels) (in pixels)
i nt pitch Pitch of input image (number of luma pixels) (in pixels)
int hei ght Height of input image(number of luma pixels) (in pixels)
const short coef f[ 5] Matrix coefficients (SQ16.0)
unsi gned char *restrict r Pointer to R plane (8-bit) (UQ8.0)
unsi gned char *restrict g Pointer to G plane (8-bit) (UQ8.0)
unsi gned char *restrict b Pointer to B plane (8-bit) (UQ8.0)
The matrix coefficients specified by the array coeff are typically as shown in Equation 59 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.
coeff] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 }; (59)
Alternatively, as shown in Equation 60, for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.
coeff[] = { 0x2543, 0x3313, -0X0C8A, -0x1A04, 0x408D }; (60)
58.2.3 Output
int Returns VLIB Error Status
58.2.4 Method
Given pixels in the interleaved YUV422 format, this function transforms the data into the sSRGB format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.
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58.25 APIs
int VLIB_convert UYVYint _to_RGBpl (
const unsigned char *yc,
int width,
int pitch,
int height,
const short coeff[5],
unsi gned char *restrict r,
unsi gned char *restrict g,
unsi gned char *restrict b);
58.3 Performance Benchmarks
The compute-only performance is 2 cycles/pixel.
58.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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59 LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar

590.1

Introduction and Use Cases

This function is a fast approximation to the function VLIB_convertUYVYint_to LABpl. Lab color space is
an important color-opponent color space. It is derived from the CIE XYZ color space through a non-linear
compression, which assures perceptual uniformity [ ]. If the input data is in the interleaved YUV422 color
format, this function transforms the data into the LAB format and separates the three color channels into
separate buffers, color planes.

59.2 Specification

59.2.1

Function

Calculates LAB representation of pixels represented in interleaved YUV422 format.

59.2.2 Inputs
unsi gned
i nt
int
int
int
unsi gned
unsi gned

unsi gned
unsi gned

char

short

short
short
short

*restrict
wi dt h
pitch

hei ght

d

*restrict
LabLUT

*restrict
*restrict
*restrict

yc Interleaved luma/chroma

Width of input image (number of luma pixels)

Pitch of input image (number of luma pixels)

Height of input image(number of luma pixels)

Defines the LUT sparsity: 1/2°(3d)

Pointer to the Lab LUT

| Pointer to L plane

Pointer to L plane

b Pointer to L plane

(UQB.0)

(in pixels)

(in pixels)
(in pixels)

(UQ16.0)

(UQ16.0)
(UQ16.0)
(UQ16.0)

The calculated values are stored as 16-bit values. The approximate relationship to the floating-point

values calculated by the VLIB function VLIB_convertUYVYint_to_LABpl is as follows:

(unsi gned short) (439.832xL_f + 3518.66 + 0.5);
(unsi gned short) (232.394xa_f + 29513.99 + 0.5);
(unsi gned short) (221.402xb_f + 29225.07 + 0.5);

L
a
b

The conversion back to the floating pt. representation is given by:

(L - 3518.66)/439.832;
(a - 29513.99)/232. 394,
(b - 29225.07)/221. 402;

L_f
a_f
b_f

Parameter d defines the sparsity of the LUT — each of three dimensions of the LUT is subsampled by a
factor of 2d. The associated memory / accuracy trade-off is given in Table 1.

Table 1. LUT Associated Memory/Accuracy Tradeoff

0 <L <65536 0 <a<65536 0<b < 65536
Param Decimation Memory for | Mean abs Max abs err Mean abs Max abs err Mean abs Max abs err
d Factor LUT err err err
0 1 97 MB 0 0 0 0 0 0
1 2x2x2 12 MB 0.43 15 0.98 55 0.7 28
2 4Ax4x 1.6 MB 1.72 46 4.23 169 2.97 99
3 8x8x8 120 KB 7.51 165 16.6 521 12.1 283
4 16x16x16 29 KB 30.7 597 61.3 1705 46.9 699

SPRUGO00C—-November 2009
Submit Documentation Feedback

Vision Library (VLIB) Application Programming Interface 113

Copyright © 2009, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG00C

13 TEXAS
INSTRUMENTS

LUT-Based Conversion From 8-Bit YUV422 Interleaved to LAB Planar www.ti.com

The pointer LabLUT points to the LUT, which can be generated using the initialization function
VLIB_initUYVYint_to_LABpl_LUT. The initialization function takes the following arguments:

const int d Decimation factor (in pixels)
const short coef f[ 5] YUV to sRGB Matrix coefficient (SQ16.0)
const float whi t ePoi nt [ 3] D65 = {0.950456, 1.0, 1.088754}; (float)

unsi gned short *| ab Interleaved Lab values (UQ16.0)

Parameter d, as before, determines the level of sparsity of the LUT.

The matrix coefficients specified by the array coeff are typically as shown in Equation 61 for the case of
RGB levels that correspond the 219-level range of Y. Expected ranges are [16..235] for Y and [16..240] for
Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, -0x0ACS5, -0x1658, 0x3770 } (61)

Alternatively, as shown in Equation 62, for the case of RGB conversion with the 219-level range of Y
expanded to fill the full RGB dynamic range. Expected ranges are [16..235] for Y and [16..240] for Cb and
Cr.

coeff[] = { 0x2543, 0x3313, -0XOC8A, -0x1A04, 0x408D }; (62)

The white point specification is used in the normalization step of the intermediate XYZ color space. A
common value is a D65 value given by Equation 63.

float whitePoint[3] = {0.950456, 1.0, 1.088754}; (63)

59.2.3 Output

int Returns VLIB Error Status

59.2.4 Method

Given pixels in the interleaved YUV422 format, this function transforms the data into the LAB format and
separates the three channels into separate buffers. The width must be a multiple of 8, while input and
output buffers must be 64-bit aligned.

59.25 APIs
int VLIB convertUYVYint_to_LABpl _LUT(
unsi gned char * restrict yc, /* Interleaved | uma/chroma */
int width, /* width (nunber of Iuma pixels) */
int pitch,
int height,
int d, /* Decimation factor */

unsi gned short * restrict LabExt, /* pointer to the Lab LUT */
unsi gned short * restrict L,
unsi gned short * restrict a,
unsi gned short * restrict b);

int VLIB_initUYVYint_to_LABpl _LUT(

const int d, /* Decimation factor */
const short coeff[5], /* YU to sRGB Matrix coefficients */
const float whitePoint[3], /* D65 = {0.950456, 1.0, 1.088754}; */
unsi gned short *Lab); /* Interleaved Lab val ues
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59.3 Performance Benchmarks
The compute-only performance depends on which memory is used for the LUT:

Memory Performance
DDR2 82 cycles/pixel
L2D 39 cycles/pixel
L1D 33 cycles/pixel

The reported performance is for d = 4 (16x16x16 decimation factor) and it may be different for other
values.

59.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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60 Conversion From 8-Bit YUV422 Semiplanar to YUV422 Planar
60.1 Introduction and Use Cases
YUV422 is a common imaging data format [ 1 ]. If the YUV is in the semiplanar format (luma is planar but
chroma channels are interleaved), as is sometimes the case, this function may be useful to interleave the
chroma channels.
60.2 Specification
60.2.1 Function
Deinterleaves chroma channels of a semiplanar YUV422 data block.
60.2.2 Inputs
const unsigned char *crb Interleaved chroma (UQ8.0)
i nt wi dt h Width of input image (number of luma pixels) (in pixels)
int pitch Pitch of input image (number of luma pixels) (in pixels)
i nt hei ght Height of input image(number of luma pixels) (in pixels)
unsi gned char *restrict cr Cr chroma plane (8-bit) (UQ8.0)
unsi gned char *restrict cb Cb chroma plane (8-bit) (UQ8.0)
60.2.3 Output
i nt Returns VLIB Error Status
60.2.4 Method
Given pixels in the semiplanar format, this function separates the chroma channels into separate buffers.
The width must be a multiple of 8, while input and output buffers must be 64-bit aligned.
60.2.5 APIs
int VLIB_ Convert UYVYsem pl _to_YUVpl (
const unsigned char * crch, /* Interleaved chroma */
int width, /* width (nunber of |uma pixels) */
int pitch, /* pitch (nunber of |uma pixels) */
int height, /* hei ght (nunber of |uma pixels)*/
unsi gned char *restrict cr, /* C chroma plane (8-bit) */
unsi gned char *restrict ch); /* Cb chroma plane (8-bit) */
60.3 Performance Benchmarks
The compute-only performance is 0.26 cycles/pixel.
60.4 References
1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007
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61 Conversion From 8-Bit YUV422 Planar to YUV422 Interleaved

61.1 Introduction and Use Cases

YUV422 is a common imaging data format [ 1 ]. If the information stored in the planar YUV format needs

to be displayed it often needs to be interleaved first. This functions efficiently interleaves the YUV color

channels.
61.2 Specification

61.2.1 Function

Interleaves YUV channels of a planar YUV422 data block.

61.2.2 Inputs

const unsigned char
const unsigned char
const unsigned char

i nt
i nt
i nt
unsi gned char

61.2.3 Output

int

61.2.4 Method

*restrict
*restrict
*restrict
wi dt h
pitch
hei ght
*restrict

cr
cb

vC

Returns VLIB Error Status

The luma plane

The Cr plane

The Cb plane

Width of input image (number of luma pixels)
Pitch of input image (number of luma pixels)
Height of input image(number of luma pixels)
Interleaved data

(UQ8.0)
(UQ8.0)
(UQ8.0)
(in pixels)
(in pixels)
(in pixels)

(UQ8.0)

Given data in the planar format, this function interleaves the data to the YUV422 format. The width must
be a multiple of 8, while input and output buffers must be 64-bit aligned.

61.2.5 APIs

int VLI B Convert UYVYpl _to_YUWVi nt (

const unsigned char *restrict vy,
const unsigned char *restrict cr,
const unsigned char *restrict cb,
int wdth,

int pitch,

int height,

unsi gned char *restrict yc);

61.3 Performance Benchmarks

/* Luma plane (8-hbit)

/* Interleaved | uma/chroma

The compute-only performance is 0.7 cycles/pixel.

61.4 References

1. Digital Image Processing by R.C.Gonzales and R.E.Woods, Prentice-Hall, 2007

/* C chroma plane (8-bit) */
/* Cb chroma plane (8-bit) */
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62 SAD Based Disparity Computation (8-Bit)

62.1 Introduction and Use Cases

Disparity gives a measure of depth information from stereo images. Here we provide an algorithm to
compute disparity from rectified stereo images using Sum of absolute difference (SAD) based block
matching.

62.2 Specification

62.2.1 Function

VLIB_disparity_SADS8 calculates the disparity at each position in a row of an 8-bit image. This function is
optimized reusing the previous calculations. For the first row calculations cannot be reused; thus,
VLIB_disparity SAD_firstRow8 should be used to calculate the disparities in the first row.

62.2.2 Inputs

Both the APIs VLIB_disparity SAD8 and VLIB_disparity SAD_firstRow8 use the same set of inputs
except the input pScratch which only the second API uses.

const unsigned char * pLeft Pointer to left image (UQ8.0)
const unsigned char * pRight Pointer to right image (UQ8.0)
unsi gned short * pCost Cost corresponding to current displacement (UQ16.0)
unsi gned short * pM nCost Minimum cost across all displacements (UQ16.0)
unsi gned char * restrict pScratch Scratch Memory of size width (UQ8.0)
char * pDisparity Displacement having the minimum cost (SQ8.0)
i nt di spl acenent Current displacement (in pixels)
i nt wi dt h Width of the input images (in pixels)
i nt pitch Pitch of the input images (in pixels)
i nt wi ndowSi ze Size of the block used for computing SAD (in pixels)

62.2.3 Output

i nt Returns VLIB Error Status

62.2.4 Method

Two images, the left and right images (8-bit), are used as inputs to the algorithm. These images are
assumed to be rectified so that the disparity search is only along the row. The parameter pCost buffer is
used to hold the SAD cost function for all pixels in a row and for all permissible values of horizontal
displacements. VLIB_disparity_ SAD8 computes the cost measure for a row and for a specified
displacment. This function has to be looped over the range of disparity and then through all the rows. The
function also updates the pMinCost buffer and stores the displacement which corresponds to the
mininmum cost in pDisparity buffer. This is the simplest method for disparity calcuation. But the API gives
out the cost measure at each pixel and each disparity which can be used for more complicated algorithms
like dynamic programming,etc.

VLIB_disparity_SADS8 uses the pCost buffer corresponding to the previous row for calculations of the
current row. Care has to be taken that pCost buffer is not cleared or reused for some other purpose. For
the first row, we cannot reuse the calculations. Thus a separate API VLIB_disparity SAD_firstRow8 is
provided. It uses a scratch buffer pScratch of size width for internal calcuations. This is required only for
the first row disparity computation and can be freed after that. The buffers pCost, pMinCost, pDisparity
have to be padded up with eight extra locations as illustrated in VLIB_testDisparity8 using ARRAY_PAD
macro.
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62.25 APIs

int VLI B disparity_SAD firstRow(
const unsigned char *restrict pLeft,
const unsigned char *restrict pR ght,
unsi gned short *restrict pCost,
unsi gned short *restrict pM nCost,
char *restrict pDisparity,
int displacenent,
int wdth,
int pitch,
int wi ndowSi ze );

int VLIB_disparity_SAD8(
const unsigned char *restrict pLeft,
const unsigned char *restrict pR ght,
unsi gned short *restrict pCost,
unsi gned short *restrict pM nCost,
unsi gned char *restrict pScratch,
char *restrict pDisparity,
int displacenent,
int wdth,
int pitch,
int wi ndowSi ze );

62.3 Performance Benchmarks
On-chip memory performance has been measured as:

VLIB_disparity_SAD_firstRow8 9.1 cycles/pixel
VLIB_disparity_SADS8 2.6 cycles/pixel

62.4 References
1. Computer Vision, pages 371-409, by Linda G. Shapiro and George C. Stockman, Prentice-Hall, 2001
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63 SAD Based Disparity Computation (16-Bit)

63.1 Introduction and Use Cases

Disparity gives a measure of depth information from stereo images. Here we provide an algorithm to
compute disparity from rectified stereo images using Sum of absolute difference (SAD) based block
matching.

63.2 Specification

63.2.1 Function

VLIB_disparity_SAD16 calculates the disparity at each position in a row of an 16-bit image. This function
is optimized reusing the previous calculations. For the first row calculations can't be reused, thus
VLIB_disparity SAD_firstRow16 should be used to calculate the disparities in the first row.

63.2.2 Inputs

Both the APIs VLIB_disparity SAD16 and VLIB_disparity SAD_firstRow16 use the same set of inputs
except the input pScratch which only the second API uses.

const unsigned short * pLeft Pointer to left image (UQ16.0)
const unsigned short * pRight Pointer to right image (UQ16.0)
unsi gned short * pCost Cost corresponding to current displacement (UQ16.0)
unsi gned short * pM nCost Minimum cost across all displacements (UQ16.0)
unsi gned char * restrict pScratch Scratch Memory of size width (UQ8.0)

char * pDisparity Displacement having the minimum cost (SQ8.0)

i nt di spl acenent Current displacement (in pixels)
i nt wi dt h Width of the input images (in pixels)
i nt pitch Pitch of the input images (in pixels)
i nt wi ndowSi ze Size of the block used for computing SAD (in pixels)

63.2.3 Output

i nt Returns VLIB Error Status

63.2.4 Method

Two images, the left and right images (16-bit), are used as inputs to the algorithm. These images are
assumed to be rectified so that the disparity search is only along the row. pCost buffer is used to hold the
SAD cost function for all pixels in a row and for all permissible values of horizontal displacements.
VLIB_disparity_SAD16 computes the cost measure for a row and for a specified displacment. This
function has to be looped over the range of disparity and then through all the rows. The function also
updates the pMinCost buffer and stores the displacement which corresponds to the mininmum cost in
pDisparity buffer. This is the simplest method for disparity calcuation. But the API gives out the cost
measure at each pixel and each disparity which can be used for more complicated algorithms like dynamic
programming,etc.

VLIB_disparity_SAD16 uses the pCost buffer corresponding to the previous row for calculations of the
current row. Care has to be taken that pCost buffer is not cleared or reused for some other purpose. For
the first row, we cannot reuse the calculations. Thus a separate API VLIB_disparity SAD_firstRow16 is
provided. It uses a scratch buffer pScratch of size width for internal calcuations. This is required only for
the first row disparity computation and can be freed after that. The buffers pCost, pMinCost, pDisparity
have to be padded up with eight extra locations as illustrated in VLIB_testDisparityl6 using ARRAY_PAD
macro.
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63.2.5 APIs

int VLIB disparity_SAD firstRowl6(

const unsi gned
const unsi gned
unsi gned short
unsi gned short

short *restrict pLeft,
short *restrict pR ght,
*restrict pCost,
*restrict pM nCost,

unsi gned char *restrict pScratch

char *restrict

pDi sparity,

int displacenent,

int width
int pitch
int windowSi ze

int VLIB_ disparity_SADL6(
const unsi gned
const unsi gned
unsi gned short
unsi gned short
char *restrict

)

short *restrict pLeft,
short *restrict pR ght,
*restrict pCost,
*restrict pM nCost,
pDisparity,

int displacenent,

int width
int pitch
int windowsSi ze

)

63.3 Performance Benchmarks

On-chip memory performance has been measured as:

VLIB_disparity_SAD_firstRow16 13.6 cycles/pixel

VLIB_disparity_SAD16

63.4 References

3.7 cycles/pixel

1. Computer Vision, pages 371-409, by Linda G. Shapiro and George C. Stockman, Prentice-Hall, 2001
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