Code Changes to NIMU and Explanation
1) [image:]Updated NIMUDeviceTable to include an initialization function for a second interface

2) EMACInit_Core:
a. Create static global variable called PhysIdx which is used to set SGMII physical index. Also used to gate which interface is initialized
[image:]
b. MAC address needs to be unique for separate interface to prevent packet misdirection. LSB of the MAC is incremented to make it unique
[image:]
c. When setting driver interface functions, pointed the second interface to a different send function.
[image:]
d. PA should only have to be initialized once
[image:]
3) Setup_Rx
a. Each interface needed its own receive queue, so gRxQHnd was made into an array, using PhysIdx as the index
[image:]
b. Changed accumulator channel number so each interface has a separate one. The +8 comes from usable accumulator channels on each core
[image:]
c. Registered a new interrupt/event for the second interface
[image:]

4) EmacSendAMC
a. Needed to change physical index that send is using (in regular EmacSend, this PhysIdx is set to 0)
[image:]
5) EmacRxPktAmcISR
a. Same as ISR that is used for first port except event and accumulator numbers are changed to match those that the second interface uses.
6) Qmss_QueueHnd gPaTxQHnd [NUM_PA_TX_QUEUES], gTxReturnQHnd[2], gTxFreeQHnd[2], gRxFreeQHnd[2], gRxQHnd[2], gTxCmdReturnQHnd[2], gTxCmdFreeQHnd[2];
a. The above variables were changed into arrays with two entries (one for each interface). This requires several other parts in the code to change as well
b. Setup_Rx
i. When these queues are used in Setup_Rx, they are indexed by [ptr_pvt_data->pdi.PhysIdx] which indicates the interface
c. Setup_Tx
i. Loop over the number of interfaces, indexing queues such as gTxFreeQHnd[index], thus setting up the queues for each interface
d. EMACSend/EMACSendAMC
i. Since each one of these is exclusive to an interface, the number used to index these queues is simply the one I know it is supposed to be (0 or 1)
e. EmacRxPktISR/EmacRxPktAMCISR
i. Once again index by [ptr_pvt_data->pdi.PhysIdx]
f. Add_MACAddress
i. Queues are indexed by [ethInfo->inport] which describes the appropriate interface
g. EmacStop
i. [bookmark: _GoBack]Queues are indexed by [ptr_pvt_data->pdi.PhysIdx] since each interface will call EmacStop
	
image5.tmp
/% Init PA LLD */
f(ptr_pvt_data->pdi.PhysIdx == @)

{
if (Init_Pass () != @)
{
platforn_write ("PASS init failed \n");
return -1;
1
else
{
platforn_write ("PASS successfully initialized \n");
i

/* Initialize the CPSW switch */
if (Init_Cpsw ((uint32_t) ptr_device->mtu, ptr_pvt_data->pdi.bMacAddr)
{

platforn_write ("Ethernet subsystem init failed \n");

return -1;
1
else
{
platforn_write ("Ethernet subsystem successfully initialized \n");
i

image6.tmp
if ((gRxQHnd[ptr_pvt_data->pdi.PhysIdx] = Qmss_queueOpen (Qmss_QueueType HIGH_PRIORITY_QUEUE, QMSS_PARAM NOT_SPECIFIED, &isAllocated)) < @)

platforn_write ("Error opening a High Priority Accumulation Rx queue \n");
return -1;

image7.tmp
f(ptr_pvt_data->pdi.PhysIdx == @)
{

J/accChanneltium = PA_ACC_CHANNEL_NUM + 8;
accchanneltium PA_ACC_CHANNEL_NUM;

1

else

{
accChanneliom = PA_ACC_CHANNEL_NUM + ;

i

image8.tmp
Eise

€
eventId = PLATFORM_ETH_EVENTIDSL; //Added +1

/% Pick a interrupt vector id to use */
vectId = PLATFORM_ETH_INTERRUPTH1;

platforn_write ("Ethernet eventld : %d and vectld (Interrupt) : %d \n", eventld, vectld);
/* Register our ISR handle for this event */

EventCombiner_dispatchPlug (eventld, (EventCombiner FuncPtr)EmacRxPKEAmCISR, (UArg)ptr_net_device, TRUE);
EventCombiner_enableEvent (eventId);

/* Map the event id to hardware interrupt 7. */
Hui_eventiap(vectId, eventld >> 5);

/* Enable interrupt */
Hui_enableInterrupt (vectld);

image9.tmp
if (((PBM_Pkt *)hPkt)->PktPriority != PRIORITY_UNDEFINED)

/% PktPriority contains the EMAC channel number on which
* the packet needs to be txed.
=/
ptr_pvt_data->pdi.PhysIdx = (((PBM_Pkt *)hPkt)->PktPriority);
1
else
{
/% This is just a normal 1P packet. Enqueve the packet in the
* Tx queue and send it for transmission.
* lie are assuming here that the IP packets are transmitted
* on Channel 6 -> Core 8; Channel 1 --> Core 1; Channel 2 --> Core 2.
* and that the Raw packets can be transmitted on any channel.
=/
ptr_pvt_data->pdi.PhysIdx = 1;

image1.tmp
68 Gorief
6 * NIDeviceTable

0+

71 * gaetails

72 * This is the NIW Device Table for the Platform.

73 * This should be defined for each platforn. Since the current platform
74 * has a single netuork Interface; this has been defined here. If the
75 * platforn supports more than one network interface this should be

76 * defined to have a List of “initialization” functions for each of the
77 * interfaces.

7 %

7

50 IMU_DEVICE _TABLE_ENTRY NIMUDeviceTable[]

81{

82/

83 * @orief Emacinit for the platforn

84 */

85 Emactnit,

6 Emactnit,

T

sl

89

image2.tmp
/* Set physical index */
//ptr_pvt_data->pdi.PhysTdx = corefium;
ptr_put_data->pdi.PhysIdx = physidx;

//physidi+s

Gets incremented at bottom

ptr_pvt_data->pdi.hEvent = hEvent;

image3.tmp
for (1 =

{

); 1 < PLATFORM_MAX_EMAC_PORT_NUM; i++)

platforn_get_emac_info (i, &emac_info);
iF (emac_info.mode == PLATFORM_EFAC_PORT_MODE_PHY && ptr_pvt_data->pdi.PhysIdx == o)
{
platform_write("\tPHY = SGIT port d\n", 1);
//platform_write("\tHaC address=¥s\n", mac_to_string(emac_info.mac_address));
break;
1
if (emac_info.mode == PLATFORM_EMAC_PORT_MODE_AVC &R ptr_pvt_data->pdi.PhysIdx == 1)
{
platform_write("\tANC = SGIT port %d\n", 1);
emac_info.mac_address[S]++; //T000: giving the AMC a different MAC address-

//platform_write("\tHAC address=¥s\n", mac_to_string(emac_info.mac_address));
break;

image4.tmp
/* Populate the Driver Interface Functions. */

ptr_device->start = Emacstart;
ptr_device->stop Emacstop;
ptr_device->poll = EmacPoll;
f(ptr_pvt_data->pdi.PhysIdx == @)
{

ptr_device->send = Emacsend;
1
else
{

ptr_device->send = Emacsendanc;
1
ptr_device->pkt_service = EmacPktService;
ptr_device->ioctl Emacioctl;
ptr_device->add_header = NIMUAddEthernetHeader;

