

USING ULTRALIGHT C

VERSION 100212

TABLE OF CONTENTS

1 Overview .. 3

1.1 Required Reading .. 3

1.2 Document Scope ... 3

1.3 Memory Structure .. 3

1.4 Lock Bytes ... 3

1.5 Authentication ... 4

2 Using Write Lock Features for Ultralight C ... 5

2.1 Details ... 5

2.2 Write Lock Bytes using Write Tag Command .. 5

2.2.1 Lock Bytes at Address 0x02 ... 5

2.2.2 Example 1 – Lock Block 0x05 and 0x0A From Writing 6

2.2.3 Example 2 – Locking Lock bits for Blocks 4 - 9 .. 6

2.2.4 Lock Bytes at Address 0x28 ... 7

2.2.5 Example 3 – Lock Block 0x24 to 0x27 and AUTH1 From Writing 7

2.3 Get Lock Status Command ... 8

2.3.1 Example – Get lock status of block 0x05 ... 8

3 Using Authentication Features for Ultralight C .. 9

3.1 Details ... 9

3.2 Write Authentication Key with Write Tag Command .. 9

3.2.1 Example – Write Authentication Password
0x000102030405060708090A0B0C0D0E0F..10

3.3 Write Authentication Configuration with Write Tag Command10

3.3.1 Example – Write AUTH0 to 0x10 to restrict tag access beyond address 0x10 11

3.4 Authenticate Tag Command ..11

3.4.1 Example – Authenticate tag with key
0x000102030405060708090A0B0C0D0E0F..12

4 References ..13

5 Revision History: ...14

1 Overview

1.1 Required Reading

This document assumes you have read and are familiar with the SkyeTek Protocol V3
Reference Guide and the SkyeTek Protocol V3 Basic Examples application note.

1.2 Document Scope

This application note describes how to use special features of Ultralight C (ULC) tags with

the M2 and M4 modules. ULC tags have 2 special features that can be accessed using

SkyeTek Protocol v3 without requiring familiarity with detailed ULC tag operations.

1.3 Memory Structure

There are 192 total bytes of memory, of which 144 bytes are user memory. The memory

organization of ULC tags is illustrated below:

Figure 1 ULC Memory Organization[1]

1.4 Lock Bytes

The write locking feature is an extension of the write locking feature also available in the

Ultralight tags. There is more memory in the ULC tag, so additional lock bytes were

added.

The lock bytes are located at bytes 2/3 of block 0x02 and bytes 0/1 of block 0x28. These

bytes control which blocks of memory are locked from being written. Bits in the lock

bytes are one time settable and cannot be returned to zeros. This means that ONCE A

BLOCK IS SET TO READ-ONLY IT CAN NEVER BE RETURNED TO A WRITABLE STATE. The use

http://www.skyetek.com/docs/commonblade/stpv3guide.pdf
http://www.skyetek.com/docs/commonblade/stpv3guide.pdf
http://www.skyetek.com/docs/commonblade/basicexamples.pdf

of lock bytes is described in detail in next section of this application note. The functions

described in detail are:

 Write Lock Bytes

 Get Lock Status

1.5 Authentication

The authentication feature is a new security capability added to the ULC tag and not

supported by standard Ultralight tags. ULC authentication gives users the ability to secure

sections of user memory from write or read/write with a 128-bit key. The ULC tag uses

3DES authentication to verify that both the reader and tag have the same key before

granting access to secure sections. The authentication features described in detail are:

 Write Authentication Configuration

 Write Authentication Key

 Authenticate Tag

2 Using Write Lock Features for Ultralight C

2.1 Details

Locking blocks of memory from write access is achieved through normal write tag

commands to specific blocks of memory. The ULC tag contains 2 lock bytes located at

block address 0x02 and 0x28. The lock byte at 0x02 controls write access to memory

blocks 0x03 – 0x0F. The lock byte at 0x28 controls write access to memory blocks 0x10 –

0x2F. Once a bit is set in any of the lock bytes it cannot be unset, so changes to these

bytes are IRREVERSIBLE.

Full detailed information about these lock bytes can be found in the Ultralight C

datasheet[1]. A short description of the lock bytes and how to use the SkyeTek Protocol

v3 to set them is described in the following sections.

2.2 Write Lock Bytes using Write Tag Command

2.2.1 Lock Bytes at Address 0x02

The layout of lock bytes at address 0x02 are shown below:

Figure 2 Lock bytes 0 and 1 [1]

Setting a 1 to lock bits labeled “Lock Page X” corresponds to locking the specified “Page”

(equivalent to a block) for read-only access. Setting a 1 to the “Block Locking Lockbits X”

makes the corresponding Lock Page bits uneditable. These bits essentially lock the

read/write access for the selected pages.

2.2.2 Example 1 – Lock Block 0x05 and 0x0A From Writing

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Addr # of

Blocks

Data

Length
Data

<CR> 0840 0103 0211 07 043A8589A72780 0002 0001 0004 00002004 <CR>

 Sets bit 5 of lock byte 0 and bit 2 of lock byte 1 as illustrated in figure 2

 Italicized section is the Tag ID

 Bold section is the lock bytes

Response for success:

 Response

Code

<LF> 0103 <CR> <LF>

2.2.3 Example 2 – Locking Lock bits for Blocks 4 - 9

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Addr # of

Blocks

Data

Length
Data

<CR> 0840 0103 0211 07 043A8589A72780 0002 0001 0004 00000200 <CR>

 Sets bit 2 of lock byte 0 as illustrated in figure 2

 Italicized section is the Tag ID

 Bold section is the lock bytes

Response for success:

 Response

Code

<LF> 0103 <CR> <LF>

2.2.4 Lock Bytes at Address 0x28

The layout of lock bytes at address 0x28 are shown below:

Figure 3 Lock bytes 2 and 3 [1]

Setting a 1 to lock bits labeled “Lock Page X-X” corresponds to locking the specified

“Pages” (equivalent to blocks) for read-only access. Setting a 1 to the “Block Locking

Lockbits X” makes the corresponding Lock Page bits uneditable. These bits essentially

lock the read/write access for the selected pages. Note that figure 3 above also

references the Key, Auth0 and Auth1. These correspond to sections of memory 0x2A-

0x2F, which are used for the authentication feature described in detail in later sections

of this application note.

2.2.5 Example 3 – Lock Block 0x24 to 0x27 and AUTH1 From Writing

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Addr # of

Blocks

Data

Length
Data

<CR> 0840 0103 0211 07 043A8589A72780 0028 0001 0004 80400000 <CR>

 Sets bit 7 of lock byte 2 and bit 6 of lock byte 3 as illustrated in figure 3

 Italicized section is the Tag ID

 Bold section is the lock bytes

Response for success:

 Response

Code

<LF> 0103 <CR> <LF>

2.3 Get Lock Status Command

The Get Lock Status command is a simple SkyeTek Protocol v3 command that checks

whether a specified block is locked and returns the status.

2.3.1 Example – Get lock status of block 0x05

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Data

<CR> 0040 0108 0211 07 043A8589A72780 0005 <CR>

 Requests lock status of block 0x05

 Italicized section is the Tag ID

 Bold section is the block address in question

Response:

 Response

Code

Data

Length
Data

<LF> 0108 0001 01 <CR> <LF>

 Bold section is the lock status
o 0x00 for not locked
o 0x01 for locked

3 Using Authentication Features for Ultralight C

3.1 Details

The security feature of the ULC tag allows the user to lock some or all of the tag memory

from reading or writing. The amount of memory locked and whether the memory is

locked only from writing or from reading and writing is set by writing specific values to

the AUTH0 and AUTH1 bytes of tag memory. This is detailed in the section below titled

“Write Authentication Configuration with Write Tag Command.”

Typical ULC tags come from the manufacturer with no memory restricted, allowing the

user access to write their own authentication key and change the authentication

configuration freely. The 128-bit 3DES authentication key can be set on a tag as

described in the following section. Once access to secure memory is restricted, it can

only be accessed by sending the authentication key as described in the “Authenticate Tag

Command” section below.

3.2 Write Authentication Key with Write Tag Command

The authentication key is stored in address 0x2C-0x2F. Note that this area of tag memory

is not readable. It can only be written to if the value of AUTH0 is 0x30, which is the

typical default value from the tag manufacturer. The authentication key is stored in

memory as shown below:

Figure 4 Authentication Key Memory Configuration[1]

The authentication key is stored in tag memory in little-endian format while it is sent in

big-endian format for authentication. This can cause some confusion. Basically when you

write the key to memory, it is written “backwards”. The data is sent to the reader in the

order shown below:

Key1 [K0][K1][K2][K3][K4][K5][K6][K7], Key2 [K0][K1][K2][K3][K4][K5][K6][K7]

3.2.1 Example – Write Authentication Password

0x000102030405060708090A0B0C0D0E0F

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Addr # of

Blocks

<CR> 0840 0103 0211 07 043A8589A72780 002C 0004

Data

Length
Data

0010 07060504030201000F0E0D0C0B0A0908 <CR>

 Sets authentication key (Starting address 0x2C)

 Italicized section is the Tag ID

 Bold section is the key value sent in the order described in the previous section

Response for success:

 Response

Code

<LF> 0103 <CR> <LF>

3.3 Write Authentication Configuration with Write Tag Command

The configuration of the authentication feature on ULC tags is stored in the last blocks of

the tag, 0x2A – 0x2F. The configuration is stored as follows:

 Address 0x2A
o Byte 0 is AUTH0
o AUTH0 sets the block address from which authentication is required
o EX: If AUTH0 is 0x10, Authentication is required for access to all data from

address 0x10 to the end of the tag memory 0x2F
o Typical default value is 0x30 (no authentication required)

 Address 0x2B
o Byte 0 is AUTH1
o AUTH1 sets the write access for all memory defined in AUTH0
o Value of 0x80 means only write access is restricted
o Value of 0x00 means read and write access is restricted
o Typical default value is 0x80 (write restrictions)

 Address 0x2C – 0x2F – 16 bytes makes up 128 bit Authentication Key

Writing authentication configuration is done with a write tag command at the correct

address. This is illustrated in the following example.

3.3.1 Example – Write AUTH0 to 0x10 to restrict tag access beyond address

0x10

Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID Addr # of

Blocks

Data

Length
Data

<CR> 0840 0103 0211 07 043A8589A72780 002A 0001 0004 10000000 <CR>

 Sets AUTH0 to 0x10

 Italicized section is the Tag ID

 First Bold section is the address (0x2A for AUTH0)

 Second Bold section in the AUTH0 value

Response for success:

 Response

Code

<LF> 0103 <CR> <LF>

3.4 Authenticate Tag Command

The authenticate tag command is used to send the authentication key to a tag to gain

access to restricted sections of tag memory. A series of commands is needed to select the

tag, create a session with the tag, and then authenticate the tag. All commands during

authentication and once authenticated must be sent with the RF flag on, because as soon

as the tag loses power it will lose its authentication state. The RF flag ensures that the

tag maintains power as long as it is within the field of the reader antenna. The example

below will show how to get a ULC tag into the authenticated state with the

authentication key written in the previous section. Note that the authentication key is

now sent big endian as illustrated below:

Key1 [K7][K6][K5][K4][K3][K2][K1][K0], Key2 [K7][K6][K5][K4][K3][K2][K1][K0]

3.4.1 Example – Authenticate tag with key

0x000102030405060708090A0B0C0D0E0F

First Request in ASCII:

 Flags Cmd Tag

Type

TID

Len
TID

<CR> 0048 0101 0211 07 043A8589A72780 <CR>

 Selects the tag with the specified tag in the field and creates a session (RF and TID
flags set)

 Italicized section is the Tag ID

Response for success:

 Response

Code

Data

Length
Data

<LF> 0101 0001 XX <CR> <LF>

 Bold section is the session number used in the next command

Second Request in ASCII:

 Flags Cmd Tag

Type
Session Addr Data

Length

<CR> 0C08 0201 0211 XX 0000 0010

Data

000102030405060708090A0B0C0DE0F <CR>

 Authenticate tag command (With RF, Data, and Session flags)

 First bold section is the session number noted in the previous step

 Second bold section is the authentication key sent big-endian

Response for success:

 Response

Code

<LF

>

0201 <CR> <LF>

4 References

[1] MF0ICU2 - MIFARE Ultralight C (v.3.2) – Product short data sheet – 171432 – NXP

5 Revision History:

Revision Author Change

013112 Brad Alcorn Initial Release

021712 Brad Alcorn Fixed errors in Lock bits examples.

100212 Ryan Smith Updated Overview Section

	1 Overview
	1.1 Required Reading
	1.2 Document Scope
	1.3 Memory Structure
	1.4 Lock Bytes
	1.5 Authentication

	2 Using Write Lock Features for Ultralight C
	2.1 Details
	2.2 Write Lock Bytes using Write Tag Command
	2.2.1 Lock Bytes at Address 0x02
	2.2.2 Example 1 – Lock Block 0x05 and 0x0A From Writing
	2.2.3 Example 2 – Locking Lock bits for Blocks 4 - 9
	2.2.4 Lock Bytes at Address 0x28
	2.2.5 Example 3 – Lock Block 0x24 to 0x27 and AUTH1 From Writing

	2.3 Get Lock Status Command
	2.3.1 Example – Get lock status of block 0x05

	3 Using Authentication Features for Ultralight C
	3.1 Details
	3.2 Write Authentication Key with Write Tag Command
	3.2.1 Example – Write Authentication Password 0x000102030405060708090A0B0C0D0E0F

	3.3 Write Authentication Configuration with Write Tag Command
	3.3.1 Example – Write AUTH0 to 0x10 to restrict tag access beyond address 0x10

	3.4 Authenticate Tag Command
	3.4.1 Example – Authenticate tag with key 0x000102030405060708090A0B0C0D0E0F

	4 References
	5 Revision History:

