Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation

Marjorie Plisch

Applications Engineer, Signal Path Solutions

November 2012 1

Outline

- Overview of the issue
- Sources of spurs
- Methods of mitigation
- Summary and recommendations

AN OVERVIEW OF THE ISSUE

Problem statement

How to minimize spurs in the GSPS ADC family in order to maximize SFDR performance?

4

ADC Sampling Rate and Architecture

- The absolute rate of what "low" or "high" is, changes as process technology advances.
- Higher sampling rate architectures imply lower resolutions.
- Certain techniques may be applied to the basic flash architecture in order to improve its performance.

Ultra high-speed architecture design (2)

Basic Flash Architecture

- Can achieve high sampling rates with low conversion latency
- Basic design requires 2^N comparators and latches
- Drawbacks are high power consumption, die area
- What techniques can make a 12-bit 3.6 GSPS ADC practically realizable?
 - Folding and interpolating to improve power consumption, reduce area

Diagrams are from "Analog Integrated Circuit Design" by Johns and Martin, 1997; "Circuit Techniques for Low-voltage and High-speed A/D Converters" by Waltari and Halonen, 2002.

GSPS ADC Functional Blocks

Block	Description	Pros	Cons
Track-and-hold	Track and hold analog input signal	Improve performance at low Fin	Can reduce max sampling rate
Folding	Fold transfer function into sub-ranges	Reduce number of latches to improve power, area	Introduces distortion
Interpolating	Interpolate conversion between series of amplifiers	Reduce number of amplifiers to improve power, area	Introduces distortion
Interleaving	Time-interleave multiple ADC cores	Achieve higher sampling rates	Introduce distortion from mismatch factors
Calibrating	Trim bias currents in linear amplifiers	Reduces distortion	Time off-line to calibrate

For more details on the GSPS ADC architecture, see "A 1.8V 1.0Gsps 10b Self-Calibrating Unified-Folding-Interpolating ADC with 9.1 ENOB at Nyquist Frequency" by R. Taft, et al. ISSCC 2009 / Session 4 / High-speed Data Converters.

7

SOURCES OF SPURS

8

Harmonic Distortion in an Amplifier

• What are the harmonic distortion terms for an amplifier? First, let us consider the non-linear system:

 $v_o(t) = a_1 v_{in}(t) + a_2 v_{in}^2(t) + a_3 v_{in}^3(t) + a_4 v_{in}^4(t) + a_5 v_{in}^5(t) + \dots$

For differential circuits, the even harmonics are ideally zero and H₃>>H₅, so we can approximate:

 $v_o(t) \cong a_1 v_{in}(t) + a_3 v_{in}^3(t)$

• For a sinusoidal input:
$$v_{in}(t) = A\cos(\omega t)$$

 $v_o(t) = a_1 A\cos(\omega t) + a_3 A^3 \cos^3(\omega t)$
 $= [a_1 A + \frac{3a^3 A^3}{4}]\cos(\omega t) + [\frac{a^3 A^3}{4}]\cos(3\omega t)$
 HD_1
 HD_3

• If we define:
$$v_o(t) \equiv HD_1 \cos(\omega t) + HD_3 \cos(3\omega t)$$

$$HD_1 = a_1A$$
 and $HD_3 = \frac{a_3A^3}{4}$

Example:

For a classic non-linear amplifier, if the input level, A, is decreased by 1dB, then HD_3 decreases by 3dB since HD_1 is proportional to A and HD_3 is proportional to A³.

Harmonic Distortion due to Non-Linearity

- Harmonic distortion contribution from all sources sum at ADC output
- Distortion location is easy to predict, but amplitude is not

Source of Distortion	Harmonics Produced	Rolls off with	Relationship to input power
Track-and-hold	Lower order harmonics	Analog input bandwidth	Classic relationship
Amplifiers in interpolating, folding architecture	Higher order harmonics	Folding-interpolating factor	Non-linear relationship

E.g.: Harmonic Distortion

ADC12D800RF

(Folding-interpolating)

ADS5400 (Pipeline)

E.g.: ADC12D1600RF Harmonic Levels

- H₃ is generally the highest level harmonic
- Lower index harmonics from the track-and-hold roll off with input bandwidth
- Higher index harmonics from the foldinginterpolating architecture remain present and have highly non-linear level
- A reduction in the input level is not strongly related to the harmonics level

ADC Interleaving Basics

- Multiple ADC cores sample signal to increase total sampling rate
- ADC cores sample at same divided frequency but different phase offset
- Digital outputs are re-aligned in time
- Input buffer typically drives cores

Non-Ideal Interleaving

- Offset Errors
 - Mismatched ADC core voltage offset
- Amplitude Errors
 - ADC core gain error
 - ADC reference voltage error

- Phase Errors
 - Input routing delay
 - Input BW difference
 - Clock phase error
 - ADC sampling instant

Non-Ideal Interleaving

Offset Error ۲

Power

 F_{IN}

- Different voltage offset at ADC input between different cores
- Alternating up/down in transient ulletwaveform
- Creates signal independent spurs in spectrum at Fs*n/N for n=1,2,...,N-1 where N is # of interleaved cores

Input Signal

 $F_{S}/4$

 $F_{S}/2$

INSTRUMENTS

Non-Ideal Interleaving

- Amplitude and Phase errors
 - Gain difference between different cores
 - BW differences or transmission length differences result in phase difference
- Creates N-1 input signal dependent images from 0 to Fs/2 in a repetitive, mirror-image pattern where N is # of interleaved cores
- Also creates harmonic distortion images

Interleaved Gain Mismatch ADC 0 ADC 1 0.5 -0.5 10 0 12 2 4 6 8 14 16 Sample Number Interleaved Gain Mismatch Combined ADC 0 ADC 1 10 12 8 14 16 Sample Number 16

Amplitude

E.g.: ADC12D1800RF DES Mode Interleaving Spurs

Interleaving by Product

Product	Number of sub- converters in Non-DES Mode	Number of sub- converters in DES Mode	Non-DES Mode Offset Spur Locations	DES Mode Offset Spur Locations
ADC10D1x00	2	4	DC, Fs/2	DC, Fs/4, Fs/2
ADC12D1x00	2	4	DC, Fs/2	DC, Fs/4, Fs/2
ADC12Dx00RF	1	2	DC	DC, Fs/2
ADC12Dxx00RF	2	4	DC, Fs/2	DC, Fs/4, Fs/2

- Dual-channel mode is "Non-DES Mode"; interleaved mode is "DES Mode."
- The ADC12D800/500RF offer the possibility of one sub-converter per bank in Non-DES Mode.

E.g.: ADC12D1000RF Harmonic Distortion Interleaved

TEXAS

INSTRUMENTS

IMD₃ **Concept**

$$IMD_3 = \min(f_1, f_2) - \max(f_2 - f_1, f_1 - f_2)$$

- Although there are 4 3rd order inter-modulation distortion products, only the 2 near-in ones are typically considered for an ADC: 2f₂-f₁ and 2f₁-f₂.
- The amplitude of the fundamentals, f₁ and f₂, should be set:
 - At, but not above -7dBFS
 - As close to each other as possible, preferably <0.1dB
- The difference between f_1 and f_2 in the diagram is exaggerated to show which is chosen to measure IMD₃.

E.g. ADC12D1800RF IMD₃

21

DCLK Spur

Product	NDM SDR DCLK (MHz)	NDM DDR DCLK (MHz)	Demux SDR DCLK (MHz)	Demux DDR DCLK (MHz)	DES Mode Spur Locations		Non-DES Mode Spur Locations					
ADC10D1500	N/A	500	N/A	250	N/A	Fs/4	N/A	Fs/8	N/A	Fs/2	N/A	Fs/4
ADC12D1800	N/A	900	N/A	450	N/A	Fs/4	N/A	Fs/8	N/A	Fs/2	N/A	Fs/4
ADC12D800RF	800	400	400	N/A	Fs/2	Fs/4	Fs/4	N/A	Fs	Fs/2	Fs/2	N/A
ADC12D1800RF	N/A	900	N/A	450	N/A	Fs/4	N/A	Fs/8	N/A	Fs/2	N/A	Fs/4

 Depending upon the mode, the Data Clock (DCLK) can couple back into the analog circuitry to appear in the output.

Sub-converter Clock Spur

0°

180°

÷2

FCLK-

Product	Fclk (MHz)	Sub- converters / Channel	Sub- converter Clock (MHz)	DES Mode Spur Location	Non-DES Mode Spur Location
ADC1xDxxxx	Fclk	Ν	Fclk / N	Fs / (2*N)	Fs / N
ADC12D1800RF	1800	2	900	Fs / 4	Fs / 2
ADC12D500RF	500	1	500	Fs / 2	Fs = DC

TEXAS INSTRUMENTS 23

Spur Source Summary and Conclusions

- Spur sources
 - Non-linearities from the track-and-hold
 - Non-linearities from the folding-interpolating architecture
 - Interleaving images from gain mismatch and timing skew
 - Fixed frequency spurs: DCLK, offset mismatch in interleaving, subconverter clock
- Conclusions
 - Testing with single tone inputs is the traditional method for assessing the non-linear performance of an ADC, but...
 - It may not be adequate or relevant for most real world applications
 - The next section illustrates how some non-linearities discussed in this section are either mitigated or reduced based on input signal type

METHODS OF MITIGATION

Calibration

- Calibration is the primary way to address spurs due to nonlinearities in the conversion process
- A foreground calibration addresses the following:
 - (1) trim the analog input resistance
 - (2) trim amplifier bias currents
- Minimize full-scale error, offset error, DNL and INL, which results in the maximum dynamic performance

Before-and-After Calibration

ADC12D1800RF Fin = 997.47MHz Non-DESI Mode

Dithering to Improve Harmonics

• Adding dither or bandlimited noise improves harmonic performance

E.g. ADC12D1800RF Ain=-13dBFS				
Harmonic	No Dither (dBc)	With Dither (dBc)	Improvement (dB)	
H2	-65	-70	5	
H3	-64	-74	10	
H4	-77	-77	0	
H5	-70	-75	5	
H6	-67	-77	10	
H7	-66	-78	12	

Wideband Input Signals behave like dither

- In an application with wideband input signals, each signal will act as "dither" on the others and improve its harmonics
- Noise Power Ratio (NPR) can be used to measure how quiet one unused channel in a wideband system remains in the presence occupied channels

Frequency Planning

- Frequency planning can be used to make sure lower order harmonics do not interfere with the desired signal.
- The *ADC Harmonic Calculator* can be found at the link below.
- Please note that this tool does not yet include the effects of interleaved harmonics.

http://www.ti.com/lsds/ti/analog/dataconverters/tools.page

Analog Correction of Interleaving Spurs

- Example: Using the DES Timing Adjust on the ADC12D1800RF to adjust the level of the interleaving spur at Fs/2-Fin.
- At its relative minimum, the power in the spur is due to gain mismatch between the I/Q-channel

GSPS ADC Feature	DES Mode Spur Addressed	Spur Source
I/Q-ch Offset Adjust	Fs/2	I/Q-ch offset mismatch
I/Q-ch FSR Adjust	Fs/2 - Fin	I/Q-ch gain mismatch
Duty Cycle Correct	Fs/2 - Fin	I/Q-ch timing skew
DES Timing Adjust	Fs/2 - Fin	I/Q-ch timing skew

Digital Correction of Interleaving Spurs

- Interleave correction reduces spectrum offset spurs and images
- Dithering does not affect the level of interleaving spurs
- Correction in analog /digital domain
 - For resolution > 8 bits, achieving the level of matching required in the analog domain is extremely difficult
- Digital correction: estimate the errors and correct the data with coefficients
- Estimation
 - Detection in time-domain or frequency domain
 - Convergence
- Calibration time
 - Foreground: Calibration interrupts normal operation
 - Background: Calibration runs continuously

Reducing Fixed Frequency Spurs

- Fixed frequency spurs occur from the DCLK, offset mismatch, and subconverter clock
- Example solutions include DCLK Mode choice, system architecture choices, and ADC selection

Example	Spur Source	Solution
A spectrum analyzer uses the ADC12D800RF interleaved and cannot tolerate a strong spur in the middle of the spectrum	• DCLK running in Demux SDR Mode causes a spur at Fs/4	• Choose instead the Non- Demux SDR DCLK, which moves the spur to Fs/2
A wideband communications application uses the ADC12D1800RF interleaved to achieve high sampling bandwidth	 DCLK produces spur at Fs/8 or Fs/4 Offset mismatch spur at Fs/4 Sub-converter clock spur at Fs/4 	• Adjust the sampling clock so that the fixed- frequency spurs land on channel boundaries
A long-range tactical radar with Fs = 750Msps cannot tolerate interleave images	• Most members of the GSPS ADC family have interleaved channels, which produce image spurs	• Use the ADC12D800RF, which has only 1 converter per channel

SUMMARY AND RECOMMENDATIONS

34

Summary and conclusions

- In order to achieve high-resolution, high-sampling rate ADCs, certain techniques were chosen which also generate spurious content.
- Spurs in the GSPS ADC family come from non-linearities, interleaving, and system clocks.
- Techniques to address these spurs include ADC features such as calibration, dithering, and frequency planning.
- Input signals that consist of multiple wideband signals or single tones act like dithering and reduce the impact of nonlinearities.

Solutions Recommendation

Spur	Dominant Source	Solution
Lower order narmonics	Non-linearity in track-and- hold	CalibrationFrequency planning
Higher order harmonics	Folding-interpolating architecture	CalibrationDithering
IMD ₃	Non-linearity in track-and- hold, folding-interpolating architecture	
DC, Fs/4, Fs/2	Sub-converter offset mismatch in interleaving architecture	ADC selectionADC featuresDigital correction
Fs/2 – Fin, Fs/4 ± Fin	Sub-converter gain mismatch and timing skew in interleaving architecture	
Fs/8, Fs/4, Fs/2	Coupling from DCLK	 DCLK selection
DC, Fs/2	Coupling from sub- converter clock	 ADC selection
		Texas Instruments

36

•Thank you for attending!

Any questions?

