
Texas Instruments

TSW 1400

DAC FIRMWARE DESIGN DOCUMENT

11
th
DEC. 2011

TSW 1400 is a next generation of pattern generator and data capture card used to evaluate performance of

different high speed Analog to Digital (ADC) and Digital to Analog Converters (DAC). For the case of an

ADC, by capturing the sampled data over an LVDS/CMOS interface, TSW 1400 can be used to match

ADC performance against the data sheet. Together with the TSW1400 GUI, it is a complete system to

capture as well as assail the data samples. TSW1400 also enables the user to generate and send the desired

pattern or data samples to a DAC over an LVDS or a CMOS interface. A block diagram of the system is

shown in Fig. 1.

Fig. 1. Block diagram of TSW 1400

� Digital to Analog Converter (DAC)

As mentioned before, TSW1400 comes with its own GUI which sends the desired pattern over a USB

interface shown in Fig. 1. An onboard FTDI chip FT4232H which is a high speed USB 2.0 to

UART/MPSSE converter carrying a Multi-Protocol Synchronous Serial Engine takes data from USB and

transmits it to the SPI interface. The FPGA firmware shown in Fig. 1 stores the data received into an on

board 1GB DDR memory. The data from the memory is then read by the firmware and transmitted to the

DAC interface which feeds the DAC EVM.

Below is provided the description of firmware design for LVDS DACs. The design for the CMOS case is

very similar.

� DAC Firmware

D
A
C
 L
V
D
S
 I
N
T
E
R
A
C
E

inclk0

inclk1

clk_ser

clk_en

clk_par

DDR MEMORY

Rotate

LVDS016

16

LVDS

TX0

DDR

CONTROLLER

256

FTDI CHIP

FT4232H

REGISTER

FILE

SPI INTERFACE

FPGA

FIRMWARE

256 128

Format Data

Memory Bridge

FIFO

256

64

(DDR)

128

128

SPI

FIFO0

SPI

FIFO1

SPI

RX0

SPI

RX1

16

16

Host Interface

PLL

SCAN

CONTROL

ALTPLL

RECONFIG ALTPLL

PLL

Memory

Read/Write

Control

Rotate

LVDS1
LVDS

TX1

128

128

128

128

clk_dac

Fig. 2. DAC Firmware block diagram

DAC firmware in the FPGA is the Verilog code that performs all the necessary tasks to receive pattern

generated by the GUI and transmit them to the DAC. Fig. 2 shows various module of firmware and the

flow of data through them. A detailed description of these modules is provided below.

� Top Level Module

clk_osc

reset_n

clk_lvds_rx3_p

clk_spi[2:0]

spi_mosi[2:0]

spi_ss[2:0]

ext_sync

spi_miso[2:0]

spi_ss_dut[1:0]

led[7:0]

mem_addr[15:0]

mem_ba[2:0]

mem_cas_n

mem_cke[1:0]

mem_clk[1:0]

mem_clk_n[1:0]

mem_cs_n[1:0]

mem_dm[7:0]

mem_dq[63:0]

mem_dqs[7:0]

mem_dqsn[7:0]

mem_odt[1:0]

mem_ras_n

mem_we_n

TOP

LEVEL

DAC

LVDS Interface

From

FT4232H

To

FT4232H

To

DDR

Memory

push_button[3:0]

lvds_tx_port0_p[15:0]

lvds_tx_port1_p[15:0]

lvds_tx_port2_p[15:0]

lvds_tx_clk1_p

To

DAC LVDS

Interface

trig[3:0]

To

On board

SMA

Connectors

Fig. 3. Top level module tsw1400_top

Table 1

 I/O description for tsw1400_top

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_osc N/A Input 100 MHz clock from onboard oscillator

reset_n N/A Input Asynchronous signal used to reset the internal

logic

clk_lvds_rx3_p N/A Input Clock provided by the DAC EVM

clk_spi[2:0] N/A Input SPI clocks from FT4232H for the three SPI

interfaces

spi_mosi[2:0] clk_spi[2] Input spi_mosi[1:0] are the two SPI interfaces

which receive pattern or samples sent by the

user.

spi_mosi[2] is the SPI interface used to

program the register file.

spi_ss[2:0] clk_spi[2:0] Input spi_ss[1:0] are the slave select signals for the

two SPI interfaces used to receive the pattern

from user interface.

spi_ss[2] is the slave select signal for the SPI

interface used to program the register file.

ext_sync N/A Input It serves as an external on board trigger for

the firmware to start sending pattern to the

DAC

push_button[3:0] N/A Input These are connected to the onboard push

buttons.

If pressed, push_button[0] is used to disable

the sync signal going to the DAC. Connected

to sync_en port of format data module

If pressed, push_button[1] is used to disable

the frame signal going to the DAC.

Connected to frame_en port of format data

module

push_button[3:2] are unused

trig[3:0] N/A Output The four ports to which either the external

trigger or the software trigger is routed

spi_miso[2:0] clk_spi[2:0] Output spi_miso[1:0] are unused

spi_miso[2] is used by the user interface to

read the configuration registers in the register

file.

spi_ss_dut[1:0] - - Unused

led[7:0] N/A Output This is connected to the seven LEDs on

TSW1400 to provide visual status of various

signals.

led[1:0] : SPI slave select signals

spi_ss[1:0], used to indicate reception of

pattern by the firmware over SPI interface

led[2] : System reset led.

led[4:3] : PLL lock indications from the

two PLL driving the two LVDS transmitters

shown in Fig. 2

led[5] : This LED turns up if bridge FIFO

gets empty at any point during data transfer to

the DAC (error indication)

led[6:7] : Indicates if there is any unread

sample left in the two SPI FIFOs (error

indication)

lvds_tx_clk1_p N/A Output This serves as the data clock for the DAC

lvds_tx_port0_p[15:0] lvds_tx_clk1_p Output This is one of the two buses transmitting the

pattern to the DAC

lvds_tx_port1_p[15:0] lvds_tx_clk1_p Output This is the second of the two buses

transmitting the pattern to the DAC

lvds_tx_port2_p[15:0] N/A Output lvds_tx_port2_p[10:0]:

Unused

lvds_tx_port2_p[11]:

This bit makes the sync signal of the DAC

lvds_tx_port2_p[14:12]:

Unused

lvds_tx_port2_p[15]:

This bit makes the frame signal of the DAC

Note that all the outputs starting with mem have been derived directly from the altera DDR2 SDRAM

Controller megafunction. If interested, reader is referred to the corresponding altera documentation for

description of those signals.

� Host Interface

clk_spi[1:0]

spi_ss[1:0]

clk_sys

flush_fifo[1:0]

host_rd

host_dyes

host_data[255:0]

HOST

INTERFACE
From

FT4232H

From

Register File

To

DDR Controller

clk_ddr2

spi_mosi[1:0]

reset_n

 Fig. 4. Host Interface module hostif

Table 2

 I/O description for hostif module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

reset_n N/A Input This port is connected to local_init_done port of the

DDR controller. The controller asserts this signal once

it has completed memory initialization. In this module

it serves as asynchronous reset signal

clk_sys N/A Input This is the system clock running at 400 MHz. The

clock is sourced from altpll megafunction

clk_ddr2 N/A Input The clock runs at 200 MHz, half the rate of system

clock clk_sys. It is sourced from the PLL of altera

DDR controller

clk_spi[1:0] N/A Input SPI clocks for the two SPI interfaces

spi_ss[1:0] clk_spi[1:0] Input Slave select signal for the two SPI interfaces used to

receive the pattern from user interface

spi_mosi[1:0] clk_spi[1:0] Input These are the two SPI interfaces which receive the

pattern from user interface

flush_fifo[1:0] clk_ddr2 Input Clears the two SPI FIFOs.

host_rd clk_ddr2 Input It serves as read request for the two SPI FIFOs. This

signal is obtained by ANDing the local_ready signal

from DDR controller and local_write_req signal from

memory read/write control module

host_dyes clk_ddr2 Output This signal is asserted when there are atleast four read

words in each of the two SPI FIFOs. It is connected

to dowrburst port of memory read/write control

module

host_data[255:0] clk_ddr2 Output Data read from the two SPI FIFOs.

The pattern or sample data transmitted by user program over SPI is received by the SPI receiver

dumpmem_mspi module in the host interface. In order to double the data transfer rate, samples are

transmitted over two SPI interfaces as shown in Fig. 2. Each SPI receiver is a SPI slave configured for

Clock Phase Polarity (CPHA) = 1 and Clock Polarity (CPOL) = 1 (sample on rising edge while transmit on

falling edge) as well as 8-bit data length with LSB first.

The receiver gives a 16-bit sample at the output which is stored in SPI FIFO. Output of host interface is

256-bit which is obtained by placing all the 128-bit words from SPI FIFO0 at even word positions and

those from SPI FIFO1 at odd word positions. See appendix B to find out the required sequence in which

samples must be transmitted for correct operation of the firmware

� DDR Controller

The DDR controller is an altera DDR2 SDRAM Controller megafunction which serves as an interface to

the external onboard DDR memory used to store the samples before they are transmitted to the DAC. Read

and write operations with the DDR memory are governed by the controller which in turn follows a state

machine in memory read/write control module dumpmem. The controller here has been used as a half rate

controller. For further details, reader is referred to the corresponding altera documentation.

� Memory Bridge

clk_dac

clk_ddr2

reset_n

ext_sync

ext_sync_en

flush_fifo

din_fifo[255:0]

we_fifo

rdreq

dordburst

first_data
MEMORY

BRIDGE
From

Register File To

Format

Data

ext_sync_dlysel[2:0]

first_read

From

DDR Controller

drdy_r

dout_fifo[127:0]

Fig. 5. Memory Bridge module dumpmem_bridge

Table 3

 I/O description for dumpmem_bridge module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_dac N/A Input This clock is twice the frequency of the fpga clock

from the DAC EVM. The clock is generated by

alter PLL megafunction altpll

clk_ddr2 N/A Input The clock runs at 200 MHz, half the rate of

system clock clk_sys. It is sourced from the PLL

of altera DDR controller

reset_n N/A Input Asynchronous reset signal used to reset internal

logic

ext_sync N/A Input Connected to ext_sync port of top level module

tsw1400_top

ext_sync_en clk_sys Input Connected to ext_sync_en port of the register file

ext_sync_dlysel[2:0] clk_sys Input Connected to ext_sync_dlysel port of the register

file

flush_fifo clk_dac Input Clears the internal FIFOs

din_fifo[255:0] clk_ddr2 Input Data read by the DDR controller from the

memory

we_fifo clk_ddr2 Input It serves as write request for the internal FIFO.

This signal is obtained by ANDing data valid

signal loca-rdata_valid from DDR controller and

play signal from the register file

rdreq clk_dac Input Connected to rdreq port of format data module

first_read clk_ddr2 Input Connected to first_read port of memory read/write

control module

dordburst clk_ddr2 Output This signal goes to memory read/write control

module and serves as read request for the DDR

memory. The signal is deasserted if the bridge

FIFO gets half filled

first_data clk_dac Output This signal is asserted for the first two cycles at

the start of a pattern

drdy_r clk_dac Output This is data ready signal asserted when the FIFO

gets half filled. Remains high afterwards till reset

or if flush_fifo is asserted

dout_fifo[127:0] clk_dac Output Data read from the FIFO

This module contains a FIFO in which the DDR controller writes samples after reading them from DDR

memory. Write request to the FIFO is generated with the assertion of we_fifo input. This signal is obtained

by ANDing data valid signal loca-rdata_valid from DDR controller and play signal from register file. The

data valid signal in turn is asserted in response to DDR memory read request generated by the memory

read/write control module to the DDR controller. The play flag is asserted by the user through register file

to start sending pattern stored in the DDR memory to the DAC.

The output first_data is same as first_read input and indicates start of a pattern. Note that since output data

width is half that of the input, this signal is high for the first two cycles every time a pattern starts.

� Memory Read/Write Control Module

Fig. 6. Memory read/write control module dumpmem

Table 4

 I/O description for dumpmem module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_sys N/A Input This is the system clock running at 333.3333 MHz.

The clock is sourced from altpll megafunction

clk_ddr2 N/A Input The clock runs at 166.66 MHz, half the rate of system

clock clk_sys. It is sourced from the PLL of altera

DDR controller

local_rdata_valid clk_ddr2 Input Valid signal for the data read out of the memory.

Connected to local_rdata_valid port of DDR

controller

local_ready clk_ddr2 Input Indicates that the DDR controller is ready to accept

data. Connected to local_ready port of DDR

controller

flush_fifo clk_ddr2 Input Resets internal state machine.

max_cs clk_sys Input Maximum chip select address corresponding to

pattern length. Connected to mem_max_addr [29]

port of register file.

max_bank[2:0] clk_sys Input Maximum memory bank address address

corresponding to pattern length. Generated from

mem_max_addr [26:28] from register file

max_row[15:0] clk_sys Input Maximum memory row address address

corresponding to pattern length. Generated from

mem_max_addr [25:10] from register file

max_col[9:0] clk_sys Input Maximum memory column address address

corresponding to pattern length. Generated from

mem_max_addr [9:0] from register file

min_cs clk_sys Input Minimum chip select corresponding to preamble

length. Connected to mem_min_addr [29] port of

register file.

min_bank[2:0] clk_sys Input Minimum memory bank address corresponding to

preamble length. Generated from mem_min_addr

[26:28] from register file

min_row[15:0] clk_sys Input Minimum memory row address corresponding to

preamble length. Generated from mem_min_addr

[25:10] from register file

min_col[9:0] clk_sys Input Minimum memory column address corresponding to

preamble length. Generated from mem_max_addr

[9:0] from register file

dowrburst clk_ddr2 Input Connected to host_dyes port of host interface module

dordburst clk_ddr2 Input Connected to dordbust port of memory bridge module

first_read clk_ddr2 Output One shot signal asserted with the first word of a

pattern read out of the memory

Note that all the output ports with their names starting with local feed the corresponding ports in the altera

DDR2 SDRAM controller megafunction. For the description of these ports, see corresponding altera

documentation.

This module initiates all the data transfers to and from the DDR memory. It generates the read and write

requests to the DDR controller which in turn reads from or writes the pattern into the memory. The module

is also responsible for generating read/write address.

A state machine in the module controls the generation of above signals. The flow of the state machine is as

follows

1- When the two SPI FIFOs in the host interface module are filled above a minimum level,

dowrburst input is asserted. If then the memory is ready for data transfer, as indicated by

local_ready input, the module asserts write request local_write_req as well as burst begin signal

local_burstbegin which begins the data transfer to the DDR memory. It is to be noted that both

read/write transfer is done in the burst transfer mode with burst length set to 2.

2- Sample bursts are kept being transferred till maximum address of the memory is reached which

implies maximum column address, maximum row address as well as maximum bank address of

the memory. Note that each one of the maximum address is programmable through register file.

3- After which local_write_req is deasserted.

4- If memory is ready for read transfer and dordburst input is high, read request is generated by

asserting local_read_req.

5- Reading is restarted from the starting address every time after one complete pattern has been read
1
.

The state machine remains in the read state until a new pattern is sent by the user which is

indicated by the assertion of dowrburst input.

6- The state machine completes reading current burst and then begins writing the new pattern to the

memory starting from the first memory address. This follows all the steps from 1 to 5.

It is to be noted that the data read out of the memory is available at the output of DDR controller. The input

signal loca_rdata_valid indicates when a valid data is available.

As mentioned above, the module also generates read/write addresses. The onboard DDR memory consists

of 8 banks. In each bank there are 16376 rows and in each row there are 1016 columns. The module

generates the addresses for each one of the three. The module writes the memory up to the programmable

address location which is computed by the TSW1400 GUI from the number of samples user wants to send

to the DAC.

� DAC Interface

DAC interface module dacif serves as a top level for format data and LVDS TX modules shown in Fig. 2.

It receives data from the memory bridge module and transmits it on to two 16-bit LVDS channels. Detail of

each of the sub modules is given below.

Format Data

Fig. 7. Format Data module dacif_formatpdata

1
 If preamble is also loaded in the memory with the data samples as indicated by non zero minimum

memory address, the preamble is sent only once to the DAC, rest of the pattern is repeated in a continuous

loop

Table 5

 I/O description for adcif_formatpdata module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_dac N/A Input This clock is twice the frequency of the fpga clock

from the DAC EVM. The clock is generated by alter

PLL megafunction altpll

drdy clk_dac Input Connected to drdy_r port of memory bridge module

first_data clk_dac Input Connected to first_data port of memory bridge module

din[127:0] clk_dac Input Data read out of memory bridge FIFO

dac_sel[1:0] clk_sys Input Connected to dac_sel port of register file

frame_en N/A Input Connected to push_button[1] port in the top level

module tsw1400_top

sync_en N/A Input Connected to push_button[0] port in the top level

module tsw1400_top

dout[255:0] clk_dac Output Data output

frame_out[15:0] clk_dac Output This is the frame signal required by the DAC. The 16

bits of this signal are for 16 samples contained in the

output bus.

sync_out[15:0] clk_dac Output This is the sync signal required by the DAC. The 16

bits of this signal are for 16 samples contained in the

output bus.

rdreq clk_dac Output This is the read request for memory bridge FIFO

This module reads 128-bit data from memory bridge module and deserializes it into 256-bit output. For

dual bus DACs such as TI’s DAC34H84, read request rdreq is generated in every cycle once data ready

input drdy is asserted. In this case, the lower 128 bits contain samples for channels A and B while the upper

128 bits carry samples for channels C and D on alternate word boundary. If a single bus DAC is present for

instance TI’s DAC3484., read request is generated on alternate cycle after drdy goes high. In this case the

upper and lower 128 bits in the output carry same data. A programmable dac_sel input specifies whether

the DAC plugged in is a dual bus DAC or single bus. It must be noted from the preceding discussion that

the 256-bit output is valid on alternate cycles of clk_dac clock.

The module also generates frameout and syncout signals required by the DAC. The syncout signal is

asserted at the start of every pattern as determined by firstdata input while the frameout signal is asserted

after every 64 samples on a single bus.

Rotate LVDS

Upper and lower data 128 bits from the preceding module are fed into one of the two rotate LVDS modules

as shown in Fig. 2. This module simply rewires the input data such that when the data is serialized by the

LVDS TX module, the 16-bit serialized data is in the conventional bit order (most significant bit in the

most significant position and least significant bit in least significant position). The module rearranges the

data bits in the same order as they come out of a deserializer. Refer to the format data module description in

the TSW1400 ADC firmware section to see how bits are placed in the output of a deserializer.

LVDS TX

Fig. 8. LVDS Transmitter dacif_lvds
2

For LVDS transmitter module, firmware uses altlvds TX which is an altera megafunction. It serializes the

128-bit input data from rotate LVDS module into 16-bit output as shown in Fig. 2. The output of this

module feeds DAC directly through the DAC LVDS interface on TSW1400. For dual bus DACs such as

TI’s DAC34H84, two such transmitter modules are used. Although not shown in Fig. 2, upper 8 bits of

frameout and syncout signals from format data module are also serialized into single bit for input to the

DAC. Note that only 8-bits of these signals are used as even for the dual bus DACs, only a single frame and

sync input is required.

For clocking scheme of LVDS TX, see phase locked loop description.

� Phase Locked Loop

PLL used is the altera megafunction altpll which provides the required clocking. As shown in Fig. 2, inclk0

is the clock provided by DAC EVM. This serves as the reference clock for the PLL. The frequency of this

clock (called FPGA clock) must satisfy (1)

 FPGA_clk = (FDATA*ndac*B) / (BUS*8) (1)

where FDATA is the data rate (sampling frequency/interpolation), ndac is the number of channels of the

device, B is the number of bits in a DAC sample which is always 16-bits and BUS is the width of the

output interface, which is 16 for all the currently supported DACs except for DAC34H84 for which it is 32.

The factor of 8 in the denominator is used to slow down the incoming clock for the reason which will make

apparent shortly.

The second clock input inclk1 in Fig. 2 is tied internally to zero and has been used to extend PLL input

frequency lock range. At the output, clk_dac is used by the internal logic and is four times as fast as the

reference clock. The two clocks clk_ser and clk_en serve as fast and slow clocks of the serializer (LVDS

TX module) respectively while clk_par clocks the synchronizing register which is used to register the data

before it is fed to the serializer. These clocks are shown explicitly in Fig. 9.

2
 For the description of I/O ports, see altera documentation on ALTLVDS megafunction.

Fig. 9. Clocking scheme for LVDS TX module

Note that this type of clocking scheme has been used due to the fact that the altlvds megafunction which is

the LVDS transmitter has been used with external PLL option. Moreover the altpll megafunction is

configured for source synchronous compensation mode. For further information, reader is referred to altera

“Clock Networks and PLLs in Stratix IV devices” documentation as well as altera support example on

“Using altlvds With External PLL Option”.

For the case of dual bus DAC34H84, the two LVDS TX modules are clocked by two different PLL having

the same configuration and phase settings. For such a case, DAC348H4 EVM provides two synchronized

FPGA clocks to serve as reference clock for the two PLLs. Note that in order to ensure that the output

clocks of the two PLLs are synchronized, all the output clocks are generated by multiplying the input clock

with a desired factor
3
. It is due to this reason that the input clock is slowed down by using a factor of 8 as

given by (1).

The data clock for the DAC is generated by another LVDS transmitter module (not shown in Fig. 2) using

8:1 serialization. This transmitter is clocked by the same PLL as the one which clocks LVDS transmitter of

channel A/B in the firmware. Note that the data clock is generated with the serializer so that at the output,

the clock is synchronized (edge aligned) with the data

.

In the firmware, a module ipll_top serves as the top level module for the PLL. As shown in Fig. 2, this

module contains various sub modules including the altpll megafucntion as well as the modules required to

reconfigure the PLL.

3
 Synchronization can never be guaranteed among divided down clocks

PLL Reconfiguration

Fig.10. PLL reconfiguration module ipll_reconfig
4

PLL can also be reconfigured in real time using altera altpll_reconfig megafunction in order to change the

PLL frequency lock range to support various DACs each having different sampling rate. Reconfiguration

block is driven by a state machine implemented in ipll_scanctrl module.

clk

reset_n

busy

phasedone

req_update_p

req_dpstep_p

dp_sel[4:0]

phasestep

phase_updn_r

phase_cnt_sel_r[3:0]

mux_sel_r[1:0]

PLL

SCAN CONTROLFrom

Register File

To

ALTPLL

To

ALTPLL

Reconfig

write_from_rom

reconfig

rom_sel[1:0]

Fig. 11. PLL scan control module ipll_scanctrl

 Table 6

 I/O description for ipll_scanctrl module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk N/A Input This clock is sourced from clk_scan port of altera DDR

4
 For the description of I/O ports, see altera documentation on ALTPLL RECONFIG megafunction.

controller and is 66.66MHz i.e. 2/3 of clk_osc

reset_n N/A Input Asynchronous reset signal. Resets the internal state

machine

busy clk Input Connected to busy port of altpll_reconfig megafunction

phasedone clk Input Connected to phasedone port of altpll megafunction.

req_update_p clk Input Asserted for the PLL reconfiguration request. This is a

one shot signal generated from the pll_req_rc port of

the register file

req_dpstep_p clk Input Asserted for the PLL phase reconfiguration request.

This is a one shot signal generated from the pll_req_dp

port of the register file

rom_sel[1:0] clk_sys Input This port selects one of the PLL ROMs during PLL

reconfiguration depending upon the required clock

frequency settings. Connected to pll_rom port of the

register file

dp_sel[4:0] clk_sys Input dp_sel[0] : Selects the direction of phase shift

(increment or decrement). Connected to pll_dp_sel[0]

port of the register file

dp_sel[4:1] : Select the PLL counter for which the

phase tap settings need to be reconfigured Connected

to pll_dp_sel[4:1] port of the register file

phasestep clk Output This signal feeds the pll_phasestep port of altpll

megafunction

phase_updn_r clk Output Selects the direction of phase shift (increment or

decrement) as determined by dp_sel[0] input

phase_cnt_sel_r clk Output PLL phase counter whose VCO tap settings need to be

adjusted

mux_sel_r[1:0] clk Output Selects the required PLL ROM as determined by

rom_sel input

write_from_rom clk Output Feeds the write_from_rom port of altpll reconfig

megafunction

reconfig clk Output Feeds the reconfig port of altpll reconfig megafunction

The reconfiguration block reprograms the pre and post scale counters of PLL for new counter clock

frequency settings. The .mif file for each of the different pll lock ranges is first generated and stored in

ipll_configROM which is an altera megafunction. Whenever reconfiguration request is generated by the

user, req_update_p flag is asserted. This causes the scan control module to assert write_from_rom signal at

which the reconfiguration module starts reading data from the rom selected by mux_sel output which in

turn is generated by rom_sel user input. Afterwards, the reconfig flag is asserted and ipll_reconfig module

starts reconfiguring the pll using pll_configupdate and pll_scandata signals.

The .mif file does not contain any information about the phase settings of the output clock. Every time PLL

is reconfigured, the phase tap settings revert to what was originally mentioned in the altpll megafunction.

Therefore, every time the PLL is reconfigured, in order to keep the same phase shifts of the output clocks,

it is imperative to reconfigure all the phase taps as well (see appendix A). altpll megafunction provides the

provision to dynamically change the phase settings of the PLL. Phase reconfiguration request is generated

by the user through req_dp_p signal. Depending upon the user input through dp_sel, the scan control

module selects the PLL counter phase_cnt_sel_r whose phase is to be adjusted and direction for the phase

shift phase_updn_r and asserts the phasestep flag. For a more detailed description of the steps required to

reconfigure phase settings, reader is referred to altera’s “Clock Networks and PLLs in Stratix IV devices”

documentation

� Register File

Fig. 12. Register File dumpmem_config

Table 7

 I/O description for dumpmem_config module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

reset_n N/A Input Asynchronous reset signal. It resets the internal

logic as well as reconfigure the configuration

registers with their default values

clk_sys N/A Input This is the system clock running at 400 MHz.

The clock is sourced from altpll megafunction

clk_spi N/A Input spi clock for the SPI interface. Connected to

clk_spi[2] port of the top level module

tsw1400_top

spi_ss clk_spi Input SPI slave select signal.

mosi_ctrl clk_spi Input Carries the data to program the configuration

registers. Connected to port spi_mosi[2] of the

top level module tsw1400_top

dac_sel[1:0] clk_sys Output It is the DAC select signal which specifies

whether the DAC plugged in is a single bus DAC

or dual bus

flush_fifo[7:0] clk_sys Output See Config0 register description

play clk_sys Output Host interface module uses play as a trigger to

start receiving pattern from the user interface

ext_sync_en clk_sys Output External trigger enable signal. See Config2

register description

ext_sync_dlysel[2:0] clk_sys Output See Config2 register description

sif_sync clk_sys Output Software trigger generated by the user

srcsel_sync clk_sys Output Trigger source select signal. See Config2 register

description

pll_sel clk_sys Output This is the PLL select signal which specifies

which of the two PLL driving the two LVDS TX

(shown in Fig.1) are to be reconfigured

pll_req_rc clk_sys Output PLL reconfiguration request.

pll_req_dp clk_sys Output PLL phase reconfiguration request

pll_rom[1:0] clk_sys Output Selects the required PLL ROM from which

reconfiguration data is to be read

pll_dp_sel[4:0] clk_sys Output pll_dp_sel[0] : Selects the direction of phase

shift (increment or decrement).

pll_dp_sel[4:1] : Select the PLL counter for

which the phase tap settings need to be

reconfigured. See Config3 register description

mem_max_addr[31:0] clk_sys Output This specifies the maximum address up to which

memory can be written. See Config4-Config7

registers description

mem_min_addr[31:0] clk_sys Output Specifies DAC preamble length. See Config8-

Config9 registers description

ss0

ss1

- - Unused

ctrl_miso clk_spi Output This port is used by the user interface to read the

configuration registers over SPI. Connected to

spi_miso[2] port of top level module

tsw1400_top

The register file is used to program various configuration registers allowing the user to set various user

selectable parameters in the firmware. These are programmed by the user interface in MATLAB through

SPI. The SPI interface in this case is implemented using the Bit-Banging technique and has the same

configuration as that of the other two SPI interfaces used to receive pattern from the user interface.

Detail of various configuration registers is provided below.

Config 0 :

 Write Address Read Address D7 D6 D5 D4 D3 D2-D1 D0

0x10 0x00 flush_fifo[3] flush_fifo[2:1] flush_fifo[0]

D0 : flush_fifo[0]

 1’b1 : Resets state machine in memory read/write control module

D2-D1 : flush_fifo[2:1]

 2’b11 : Clears the two SPI FIFOs in host interface module

D3 : flush_fifo[3]

 1’b1 : Clears the FIFO in memory bridge module

Config 1 :

Write Address Read Address D7 D6 D5-D4 D3 D2 D1 D0

0x11 0x01 dac_sel

D5-D4 : dac_sel

It provides the information whether the DAC plugged in is single bus

or dual bus

 2’b11 : Dual bus DAC

For any other value of dac_sel, DAC is assumed to be single bus

Config 2 :

Write Address Read Address D7 D6-D4 D3 D2 D1 D0

0x12 0x02 ext_sync_en delay_sel sif_sync srcsel_sync play

D7 : ext_sync_en

1’b1 : Enables external trigger. If enabled, pattern is not be sent to the DAC (by

 disabling writing to the bridge FIFO) until externally triggered . Works on rising

 edge

D6-D4 : delay_sel

This signal is used to delay the external trigger by the specified number of

cycles of clk_dac clock in the memory bridge module

D2 : sif_sync

1’b1 : Acts as a software trigger. This bit is asserted by the user whenever trigger is to

 be applied through the user’s command

D1 : srcsel_sync

1’b1 : Routes the external trigger ext_sync, input port of the top level module, to the

 trig output port of the top level.

1’b0 : Routes the software trigger sif_sync signal to the trig output port of the top

 level. Used to synchronize output of multiple DACs connected to different

 TSW1400 boards

D0 : play

1’b1 : Enables writing to the bridge FIFO to start sending the pattern to the firmware

Config 3 :

PLL Reconfiguration

Write Address Read Address D7 D6 D5-D4 D3 D2 D1 D0

0x13 0x03 pll_rom pll_reconfig

D0 : pll_reconfig

1’b1 : Enables real time reconfiguration of the PLL counters’ clock

 frequencies

D4-D5 : pll_rom

PLL ROM selection corresponding to the desired frequency settings

 2’b00 : 75M < inclk0
5
 < 200M.

 2’b01 : 40M < inclk0 < 80M.

 2’b10 : 20M < inclk0 < 40M.

 2’b11 : 10M < inclk0 < 20M

PLL Phase Shift Settings

Write Address Read Address D7-D3 D2 D1 D0

0x13 0x03 pll_counter_sel pll_sel pll_phase

D1 : pll_phase

1’b1 : Enables real time reconfiguration of the PLL output clock phase

 shift

D2 : pll_sel

 This bit selects one of the two PLLs (driving two LVDS TX shown in Fig. 2) for

 reconfiguration.

D7-D3 : pll_counter_sel

 D3 : Selects direction of phase shift (increment 1 or decrement 0)

D7-D4 : Selects PLL post scale counter of the output clock to be phase shifted
6

Note that the bits D0 and D1 must not be asserted simultaneously..

Config 4-Config7 :

These registers are used to program maximum column, row and bank addresses up to which DDR memory

is written or read as computed from the length of the DAC pattern.

mem_max_addr : {config7, config6, config5, config4}

mem_max_addr [9:0] : Maximum column address

mem_max_addr [25:10] : Maximum row address

mem_max_addr [26:28] : Maximum bank address

mem_max_addr [29] : Maximum chip select. This should be set zero as

 there is only one onboard DDR memory

Config 8-Config9 :

The firmware also provides the support of DAC preamble. It is a portion of the loaded pattern embedded in

the first few samples and is sent only once to the DAC. When the memory loops around to resend the

pattern, it reads from the starting address where the DAC samples are stored, skipping the preamble.

Config8 and Config9 registers are used to specify the last address of the preamble The use of two registers

limit the preamble size to 64M in multiples of 32.

mem_min_addr : {16’d0, config9, config8}

5
 Note that inclk0 is the clock provided by the DAC

6
 Clocks have been drawn from post scale counters 0, 2, 3, 4and 5. See altera documentation “Clock Networks and PLLs in Stratix IV

devices” for value corresponding to each of these counters

mem_max_addr [9:0] : Minimum column address

mem_max_addr [25:10] : Minimum row address

mem_max_addr [26:28] : Minimum bank address

mem_min_addr [29] : Minimum chip select.

Appendix A :

Phase Shifts Settings for PLL Output Clocks

For error free transmission of DAC samples, clocks going to altlvds_tx megafunction, as shown in Fig. 9,

must be given certain amount of phase shift. The phase shift given depends upon serialization factor as

mentioned in the altera design example on “Using altlvds With External PLL Option”.

For a serialization factor of 8, the phase shifts to the output clocks of the PLL are given in Table 9

Table 9

Phase Shifts of PLL output clocks

Clocks Phase Shift
C0 (clk_par) -22.5

o

C2 (clk_dac) 0
o

C3 (clk_ser) -180
o

C5 (clk_en) 270
o

To realize phase shift, the PLL uses VCO delay cycles in order to delay the output clocks. For a finer

resolution, phase taps are used where 1 phase tap is 1/8
th

 of a VCO cycle. These delay settings are different

for different PLL lock ranges as shown in Table 10

Table 10

Delay Settings for the PLL Counters

 Counter 75M-200M 40M-80M 20M-40M 10M-20M

M

C0

C2

C3

C5

1(4)

1

1(4)

1

7(4)

2

1

2

1

14

3(4)

1

3(4)

1

33(4)

6

1

6

1

66

The quantity in parentheses is the number of phase taps and the one outside is the number of VCO cycles

by which the corresponding clock is delayed. M counter shifts all of the output counters (C0-C6).

As mentioned in the PLL reconfiguration section, every time after reconfiguring the PLL lock range, the

settings for the initial VCO delay cycles and phase taps revert to what was mentioned in the altpll

megafunction. Therefore in order to program the correct phase shifts, the output counters’ delay settings

have to be reconfigured according to Table 10. Note that the settings in Table 10 have been found using the

altpll megafunction.

Appendix B :

RECEIVE DATA FORMAT EXPECTED BY THE FIRMWARE

As mentioned in the Host Interface module. samples by the GUI are transmitted over two SPI interfaces.

All the I samples (samples corresponding to channels A and C for a four channel device.) are transmitted

on spi_mosi[0] of the top level module, while the Q samples (samples corresponding to channels B and D)

are transmitted on spi_mosi[1].Received samples in the firmware are stored in two FIFOs, SPI_FIFO0 (for

I samples) and SPI_FIFO1 (for Q samples) as shown in Fig. 2. The order in which samples are expected by

the firmware for single and dual bus type DACs is shown in Table 11

SPI FIFO0 (I SAMPLES) SPI FIFO1 (Q SAMPLES)

Single Bus Dual Bus Single Bus Dual Bus

A A B B

C A D B

A A B B

C A D B

A C B D

C C D D

A C B D

C C D D

Samples out of the Host Interface module are interleaved in the following order on 256-bit boundary

Signle Bus : { D,C,B,A,D,C,B,A}

Dual Bus : { D,C,D,C,B,A,B,A}

Note that the difference in the order of samples between single and dual bus mode arises from the fact that

at the LVDS interface, in case of dual bus DACs, channels A and B are transmitted over one16-bit LVDS

bus while those for channels C and D are transmitted over the other bus as shown in Fig. 2. However in

case of a single bus DAC, all the channels are transmitted over the same bus one after the other.

