
National Semiconductor Corp. Page 1 of 21

 Strategic Applications

Programmers' Guide to WV5_DLL API

Revision: 0.9
Date: May 5, 2009

Revision History

Rev. 0.9 May 5, 2009 Document corresponds with the P1R2 release of the

WaveVision-5 package.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 2 of 21

1 Introduction

The WV5 DLL provides a set of functions that will allow the caller to configure and
communicate with all the WaveVision-5 family of data I/O boards and the devices connected to
those I/O boards. The main objective of the DLL is to provide access to the data both generated
and consumed by the device under test (DUT). As of this revision, the devices are currently
limited to ADCs. The support for DACs will be provided at a future time.

Although the user of this API will only be interacting with the exported function calls of the
DLL, there are several other blocks of software and hardware that are involved in providing the
services of the DLL. These blocks include the low-level USB communication drivers, the
firmware residing on the WaveVision capture board, the FPGA to capture the ADC output, and
the ADC itself. Please refer to the WV5 System Developers' Guide for more details on these
other blocks.

The beginning portion of this document should be read and understood by all those who
eventually use the DLL. The reason is the beginning portion describes the behavior of the DLL
which needs to be understood to effectively debug problems. The document also provides a link
to an associated document that describes in detail the C interface exported by the DLL. The C
technical reference details will need to be understood by those writing application programs to
interface directly to wvdll.h.

Please note that this API is designed with a C/C++ application in mind that is running on a
Windows platform.

1.1 WaveVision-5 System Background

Though it has several variants, collectively WaveVision refers to National's common evaluation
platform for signal-path solutions - be they evaluation boards or more complex reference boards.
The following gives a high-level overview of this platform's architecture and capabilities.

Key Features

 Runs on a Windows XP system using USB 2.0/1.0 port.
 Capable of working across a broad range of signal path boards - from precision (16-bit or

greater resolution at ksamples/sec type speeds) to very high speed (up to 16-bit resolution
at hundreds of Msamples/sec type speeds).

 Easy adaptability to future board designs.
 Standardized interfaces at the top and the bottom of the "software/hardware stack" that

allow a user to leverage the WV5 core functionality and spend his resources developing
custom GUI software and/or the future hardware designs.

 Jumper less plug-and-play experience for the user due to auto-discovery and
configuration capabilities.

 Supported by the Strategic Applications group.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 3 of 21

High-Level Architecture

Figure 1 shows the high-level architecture of the WaveVision system.

WV5 DLL

SigPath USB I/F
Firmware

SigPath Data &
Control Hardware

Windows USB Drivers

WaveVision-5
GUI

SensorVision
GUI

USB

WV5 DLL API

SigPathData Interface

WV5-DLL
Script

Other User
Interface Apps

WV5 Core

Examples:
• WaveVision-5.1 high-speed data capture board
• “Big Gig” Reference Design
• USI-2 controller for Sensor reference designs

Figure 1 - High-level architecture of the WaveVision system

National has documented the top-level interface (the WV5_DLL API) into the WV5 Core
software so that our internal applications engineers may develop their own application software
for their needs. One may write a custom GUI, or even a command-line type of simple program
quickly to accomplish a specific lab task. Or one may write a more ambitious GUI or a purely
analytical software routine such as Matlab that does something that the commercial apps like
WaveVision-5 or SensorVision-2008 cannot.

*** IMPORTANT NOTE: The WV5_DLL API is sometimes provided to our valued
customers as courtesy to help them develop solutions using National silicon. It is provided as-
is and there is no product support made available ***

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 4 of 21

1.2 Hardware-related services provided by the DLL
 Dynamically recognize both the capture board and DUT
 Download microcontroller firmware to capture board
 Program FPGA using appropriate image
 Read/write FPGA registers
 Read/write Cypress microcontroller registers
 Read/write DUT registers if applicable
 Access to the I2C bus on the Cypress microcontroller to allow for communication with

other peripherals on the boards
 Return data deserialized by the FPGA
 Support multiple capture boards and DUTs simultaneously
 Detect USB connect and disconnect conditions
 Detect loss of clock and loss of power on the capture board and DUT

1.3 Software features of the DLL
 Thread-safe operation with synchronized messages
 Access to the same capture board from multiple DLL clients simultaneously. There may

be situations when multiple GUIs or multiple client applications need to communicate
with the same capture board. This is supported by the DLL. Typically, each application
will load its own individual instance of the DLL. However, the DLL uses a system-wide
resource to guarantee that only one DLL instance is accessing the hardware at any given
time. Due to potential DLL version problems, the applications are advised to always use
the same DLL from the hard drive.

 Callbacks to inform user of asynchronous hardware events
 Basic layout of GUI designed by the hardware engineer that best illustrates the features of

the device
 Unified set of functions to communicate with DUT regardless of physical hardware

mechanism

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 5 of 21

2 Environment

The WV5 Core release consists of only a few files and one large firmware directory.

2.1 Files

Name Description

wvdll.dll DLL

libcint.dll C Scripting engine

wv5.sys low-level Windows communication driver

wv5.inf wv5.sys information file

wvdll.h Programmer’s interface

2.2 hardware directory

Name Description

firmware_images*.bix Cypress microcontroller images

fpga_images*.bit FPGA images

scripts\image_map.xml File to map boards and devices to their support
files

scripts*.brd.xml Describes the hardware layout of a capture
board

All other scripts*.xml Device-specific configuration files. These files
are referred to as device files.

scripts*.brd.cpp Board-level C scripting files

scripts*.dut.cpp DUT C scripting files

scripts\include* C scripting include files

The wv5.sys and wv5.inf file should be installed using the standard procedure for installing
Windows drivers.

The wvdll.dll file can exist anywhere. However, it is customary to have this reside in the same
location as the executable the uses the DLL. Also, it is customary to have the firmware directory
reside in the same level as the DLL. However, the location of the firmware directory may be
modified using a DLL function call.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 6 of 21

2.3 Quick note regarding device files
To support an ever increasing number of devices, all of the device-specific logic is implemented
in the device files. This reduces the number of changes necessary to the DLL and the DLL API.
These files are written by National Semiconductor hardware/application engineers and are not
intended to be manipulated by the caller of the DLL.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 7 of 21

3 Basic User and DLL Interaction

User
calls

functions
in

wvdll.h

WV DLL

User application

DLL reports
changes to
the board
and DUTs

using
callbacks

DLL
responds

with status
and any

requested
data

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 8 of 21

4 Basic State Machine in DLL

Some notes:

 The DLL is always checking for device status changes.
 If the DLL is waiting for a response from the firmware and the USB connection was

interrupted, then it is possible the "execute command" stage will take a long time while
waiting for the Windows USB driver to timeout.

 The DLL only executes one command at a time. This fact along with the global locking
mechanism guarantees that there is only one active request to the hardware at any given
time.

Wait for new user command

Timeout

Poll USB devices and check for any changes

Inform user application of any changes via callbacks

Parse command

Execute command

Command found

Inform user application of any changes via callbacks

Poll USB devices and check for any changes

Return status back to user

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 9 of 21

5 DLL Thread
Legend:
RED – flow of messages between threads/process

User application calls API
function

Wait for command
interface to be ready

Messaging Layer

Send command message
to DLL thread

Wait for command
completion

Worker Thread
(See basic state machine
section for details)

Wait for command

Execute command

Signal command
completion

WV DLL

API function returns and the user
application continues

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 10 of 21

6 Example Code

int main() {
 WvWord board_count;
 WvString* board_names;
 Wv_Version_Number version_dll;
 WvWord code_version;
 Wv_Version_Number version_firmware;
 Wv_Version_Number version_fpga;
 // Enum DUTs
 WvWord dut_count;
 WvString* dut_names;
 WvDUTInfo info;
 Wv_Version_Number version_dut;
 Wv_Capture_Request req;
 WvBool data_valid;
 WvWord captured_data[4096];

 WvDebugModuleSetOutputFilename("dlloutput.txt");

 // This is absolutely necessary to start the DLL
 WvDebugModuleModifyAll(TRUE);

 if (!WvBoardEnum(&board_count, &board_names, &version_dll)) {
 return false;
 }
 if (board_count == 0) {
 // No boards thus nothing to do.
 return -1;
 }
 if (!WvBoardOpen(0, "", &code_version, &version_firmware)) {
 // Something went wrong.
 return -1;
 }
 if (!WvBoardDUTEnum(0, &dut_count, &dut_names)) {
 // Something went wrong.
 return -1;
 }
 if (dut_count == 0) {
 // No DUTs. Nothing to do.
 return -1;
 }
 if (!WvBoardLoadFPGA(0, 0, "", &version_fpga)) {
 // Something went wrong.
 return -1;
 }
 if (!WvBoardReadDUTInfo(
 0,
 0,
 &info,
 &version_dut)) {
 // Something went wrong.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 11 of 21

 return -1;
 }
 if (info.ChannelCount == 0) {
 // No channels to capture. Nothing to do.
 return -1;
 }
 req.DACFreq = 0;
 req.TransferSize = info.pChannelData[0].TransferMinSize;
 req.ChannelDataIndex = 0;
 req.HistogramEnable = 0;
 req.HistogramMaxBin = 0;
 req.DataFormat = info.pChannelData[0].default_data_format;

 if (!WvBoardWriteCaptureStart(0, 0, &req)) {
 // Something went wrong.
 return -1;
 }
 if (!WvBoardReadCaptureData(0, 0, captured_data, 4096,
&data_valid)) {
 // Something went wrong.
 return -1;
 }
 if (!WvBoardWriteCaptureEnd(0, 0)) {
 // Something went wrong.
 return -1;
 }
 WvBoardClose(0);
 WvShutdown();
 return 0;
}

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 12 of 21

7 Hardware Boot Process
This section will describe major steps taken by the DLL and firmware during the initialization
process. The process described in this section assumes the following conditions:

 Board has just been power cycled
 Physical USB connection between the board and the computer has just been established
 DLL has not been launched

Any reference to a .c file in the "Firmware" blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy
FPGA architectures.

DLL: recognizes board

DLL: processes Cypresss EEPROM

DLL: downloads Cypress firmware
 Uses image_map.xml to determine with .bix file to download

DLL: Programming complete

Firmware: usb.c:TD_init

Setup endpoints

Firmware: mm_fpga.c:mm_fpga_init_ports

Initial setup for GPIO pins

Firmware: usb.c:TD_Poll

Main loop
Does nothing until command arrives
At this point, the firmware is now ready to accept commands from the PC

DLL: sends CMD_ID_PING

Check for alive

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_PING

DLL: sends CMD_ID_EEPROM_READ

Read Cypress EEPROM

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_EEPROM_READ command
eeprom_imp.c:eeprom_read

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 13 of 21

Returns EEPROM data

DLL: parses board-level script file

This script file contains additional information regarding GPIO pin usage

DLL: sends CMD_ID_PIN_CONFIG

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_PIN_CONFIG
pin_imp.c:pin_config

Processes pin configuration

DLL: sends CMD_ID_SEQ

This sequence of commands makes sure all pins configured for output properly have their
corresponding output enable signals set and sets their default output state to low

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_SEQ
cmd_seq_imp.c:cmd_seq_process
Processes the commands

DLL: sends CMD_ID_ENABLE_DUT_EEPROM_QUERY

This command tells the firmware to occassionally poll for DUT EEPROM existence.
This is used for detecting hot plug out. For all boards newer than WaveVision-5.1 (eg, USI-2,
WaveVision-5.2, SPIO-5.5 and later), the DUT_Presence_Detect pin is used instead of trying to
detect I2C communication failure. However, for legacy reasons this functionality remains in the
code.

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_ENABLE_DUT_EEPROM_QUERY

DLL: sends CMD_ID_FIRMWARE_INFO

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FIRMWARE_INFO
Returns a version string

DLL: sends CMD_ID_EEPROM_READ

Read DUT EEPROM

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_EEPROM_READ command
eeprom_imp.c:eeprom_read

Returns EEPROM data

DLL: sends CMD_ID_FPGA_PROGRAMMED

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 14 of 21

Determine current FPGA programmed state

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_PROGRAMMED command

DLL: sends CMD_ID_FPGA_APPLY_POWER

Apply power using PIN_NPOWER_EN

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_APPLY_POWER command

DLL: sends CMD_ID_FPGA_SET_64_SIZE

Informs firmware of FPGA image size in 64 byte chunks

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_SET_64_SIZE command

DLL: sends CMD_ID_FPGA_PROGRAM

Program FPGA

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_PROGRAM command
utils.c:common_program_fpga

Do bit-bang programming

DLL: sends CMD_ID_FPGA_CHECK_PROGRAM_DONE

Determine programming state

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_CHECK_PROGRAM_DONE command

DLL: sends CMD_ID_FPGA_GET_INTERFACE_ID

Determine interface id

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_GET_INTERFACE_ID command

DLL: sends CMD_ID_FPGA_RESET

Reset FPGA

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_FPGA_RESET command

DLL: sends CMD_ID_PING

Check for alive

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 15 of 21

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_PING

DLL: sends CMD_ID_GET_FPGA_VERSION

Get version

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_GET_FPGA_VERSION

DLL: parses out DUT-level script file

DLL: executes all commands in the <boot_seq> segment of the script file

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Process all firmware-related commands from <boot_seq>

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 16 of 21

8 Hardware Activities While Idle
While there are no user commands being executed, the firmware and the DLL are in constant
communication. This section describes the actions taking during this idle time. The main goal is
to poll for changes in connectivity and power status.

Any reference to a .c file in the "Firmware" blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy
FPGA architectures.

DLL: sends CMD_ID_CHECK_DUT

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_CHECK_DUT

DLL: sends CMD_ID_PING

Firmware will place some power status info in the response

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_PING

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 17 of 21

9 Hardware Activities During Capture
This section describes the commands and replies to and from the firmware during the capture
process.

Any reference to a .c file in the "Firmware" blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy
FPGA architectures.

DLL: sends CMD_ID_CAPTURE_FPGA_INIT

Initial configuration

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_CAPTURE_FPGA_INIT
mm_fpga.c:capture_fpga_init

DLL: sends CMD_ID_CAPTURE_INIT

More configuration

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_CAPTURE_INIT
mm_fpga.c:capture_init

DLL: sends CMD_ID_CAPTURE_START

Start the acquisition

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_CAPTURE_START
mm_fpga.c:capture_start

DLL: sends CMD_ID_CAPTURE_SEND_DATA

Get the data

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_CAPTURE_START
mm_fpga.c:capture_send_data

DLL: sends CMD_ID_PING

Make sure firmware still alive

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Responds to CMD_ID_PING

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 18 of 21

10 User Commands for Capturing
The process of capturing data requires three commands. These commands must be executed for
each iteration of the capture. This means all three must be called if the user wants to repeatedly
capture data.

 WvBoardWriteCaptureStart
 WvBoardReadCaptureData
 WvBoardWriteCaptureEnd

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 19 of 21

11 Choosing the Support Files

This describes how the DLL chooses the files in the firmware directory. This process is
automated and requires no decision making from the application. This appendix is strictly for
information purposes.

(Please note that higher-level description of the WaveVision-5 system is provided in the WV5
System Developers' Guide).

Before any decision making, the DLL loads the file firmware\image_map.xml. This file lists any
exceptions that need to be considered when determing which file to load.

When a board is connected to the USB port, the DLL identifies the specific board using the USB
VID and PID numbers. These numbers are used to find the board properties entry in the image
map. The most important piece of information extracted from this process is the nickname of the
board. Although this nickname is not exposed to the user, it is used throughout the image map.

Once the board is identified, the Cypress firmware must be loaded. First, the CPU exception
section of the image map is consulted to see if there is an exception for this board. If there is a
match, then the DLL uses the value in the override field as the basename. Otherwise the DLL
constructs the default basename using the form "boardnick_cputype," where "boardnick" is the
board nickname and "cputype" is the CPU type from the board properties. Once the basename
is identified, the wildcard name "basename*.bix" is used to look for the CPU image.

Once the CPU is programmed, the DLL attempts to configure the board. This process involves
configuring how the Cypress GPIO pins are used. The information regarding the pin allocation
is usually found in a board level script file. A similar process for finding the CPU file is used for
the board level script file. First the image map is consulted for any board script file exceptions.
If one is found, then the DLL uses the value in the override field as the basename. Otherwise the
DLL construsts the default basename using the form "boardnick," where "boardnick" is the board
nickname from the board properties. Once the basename is identified, the wildcard name
"basename*.brd.xml" is used to look for the board level script. This script is optional and may or
may not exist.

Once the board is configured, the application may attempt to enumerate all the DUTs. This is
important because this process tells the DLL which DUTs are connected. The DLL uses the
DUT names as a parameter into determining which FPGA image to load.

The application may then attempt to load the FPGA. The DLL first consults the image map for
FPGA image exceptions. If one is found, then the DLL uses the value in the override field as the
basename. Otherwise the DLL constructs the default basename using the form
"boardnick_fpgatype_dut," where "boardnick" is the board nickname, "fpgatype" is the FPGA
type, and "dut" is the name of the DUT. Once the basename is identified, the wildcard name
"basename*.bit" is used to look for the FPGA image.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 20 of 21

Lastly, the device-specific script file must be loaded. The DLL consults the image map for
register exceptions. If one is found, then the DLL uses the value in the override field as the
basename. Otherwise the DLL constructs the default basename using the form
"boardnick_fpgatype_dut," where "boardnick" is the board nickname, "fpgatype" is the FPGA
type, and "dut" is the name of the DUT. Once the basename is identified, the wildcard name
"basename*.reg.xml" is used to look for the device file. This file is also optional.

Support file Default basename Wildcard

CPU image boardnick_cputype basename*.bix

Board level script boardnick basename*.brd.xml

FPGA image boardnick_fpgatype_dut basename*.bit

Device script boardnick_fpgatype_dut basename*.reg.xml

The reason for the wildcard is to allow these files to have other identifying hints. For instance,
there is a file called wv5_xc4vlx25_adc14ds105_20080220_spec_compliant.bit. As the name
hints, this image was built on February 2, 2008 and is compliant with a specification. The
basename for this will be "wv5_xc4vlx25_adc14ds105" and so the wildcard
"wv5_xc4vlx25_adc14ds105*.bit" will be able to find this bit file.

Programmers' Guide to WV5_DLL API Rev. 0.9

National Semiconductor Corp. Page 21 of 21

12 DLL_API Technical Reference

The API provides a set of functions that can be called by the Application. It also implements
several structures necessary for its operation. A complete technical reference to these is provided
in an associated file: dll_help.chm

In addition to the technical reference, the support package for the WV5_DLL API also includes
the header and library files.

