Nationa [
Semiconductor) ..
Strategic Applications

Programmers' Guide to WV5_DLL API

Revision: 0.9
Date: May 5, 2009

Revision History

Rev. 0.9 May 5, 2009 Document corresponds with the P1R2 release of the
WaveVision-5 package.

National Semiconductor Corp. Page 1 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

1 Introduction

The WV5 DLL provides a set of functions that will allow the caller to configure and
communicate with all the WaveVision-5 family of data 1/0 boards and the devices connected to
those 1/0 boards. The main objective of the DLL is to provide access to the data both generated
and consumed by the device under test (DUT). As of this revision, the devices are currently
limited to ADCs. The support for DACs will be provided at a future time.

Although the user of this API will only be interacting with the exported function calls of the
DLL, there are several other blocks of software and hardware that are involved in providing the
services of the DLL. These blocks include the low-level USB communication drivers, the
firmware residing on the WaveVision capture board, the FPGA to capture the ADC output, and
the ADC itself. Please refer to the WV5 System Developers' Guide for more details on these
other blocks.

The beginning portion of this document should be read and understood by all those who
eventually use the DLL. The reason is the beginning portion describes the behavior of the DLL
which needs to be understood to effectively debug problems. The document also provides a link
to an associated document that describes in detail the C interface exported by the DLL. The C
technical reference details will need to be understood by those writing application programs to
interface directly to wvdll.h.

Please note that this API is designed with a C/C++ application in mind that is running on a
Windows platform.

1.1 WaveVision-5 System Background

Though it has several variants, collectively WaveVision refers to National's common evaluation
platform for signal-path solutions - be they evaluation boards or more complex reference boards.
The following gives a high-level overview of this platform's architecture and capabilities.

Key Features

» Runs on a Windows XP system using USB 2.0/1.0 port.

» Capable of working across a broad range of signal path boards - from precision (16-bit or
greater resolution at ksamples/sec type speeds) to very high speed (up to 16-bit resolution
at hundreds of Msamples/sec type speeds).

» Easy adaptability to future board designs.

» Standardized interfaces at the top and the bottom of the "software/hardware stack™ that
allow a user to leverage the WV5 core functionality and spend his resources developing
custom GUI software and/or the future hardware designs.

» Jumper less plug-and-play experience for the user due to auto-discovery and
configuration capabilities.

» Supported by the Strategic Applications group.

National Semiconductor Corp. Page 2 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

High-Level Architecture

Figure 1 shows the high-level architecture of the WaveVision system.

WaveVision-5
GUI

SensorVision
GUI

Other User
Interface Apps

) 2

WV5 Core

WVS5 DLL

Windows USB Drivers

A

%USB

SigPath USB I/F
Firmware

WV5 DLL API

WV5-DLL
Script

SigPathData Interface

SigPath Data &
Control Hardware

Z Examples:

+ WaveVision-5.1 high-speed data capture board
* “Big Gig" Reference Design
* USI-2 controller for Sensor reference designs

Figure 1 - High-level architecture of the WaveVision system

National has documented the top-level interface (the WV5_DLL API) into the WV5 Core
software so that our internal applications engineers may develop their own application software
for their needs. One may write a custom GUI, or even a command-line type of simple program
quickly to accomplish a specific lab task. Or one may write a more ambitious GUI or a purely
analytical software routine such as Matlab that does something that the commercial apps like

WaveVision-5 or SensorVision-

2008 cannot.

*** IMPORTANT NOTE: The WV5_DLL API is sometimes provided to our valued
customers as courtesy to help them develop solutions using National silicon. It is provided as-
is and there is no product support made available ***

National Semiconductor Corp.

Page 3 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

~
\N)

Sy Ay ey N Ry Ny

000D

~
DDC’O

Hardware-related services provided by the DLL

Dynamically recognize both the capture board and DUT

Download microcontroller firmware to capture board

Program FPGA using appropriate image

Read/write FPGA registers

Read/write Cypress microcontroller registers

Read/write DUT registers if applicable

Access to the 12C bus on the Cypress microcontroller to allow for communication with
other peripherals on the boards

Return data deserialized by the FPGA

Support multiple capture boards and DUTSs simultaneously

Detect USB connect and disconnect conditions

Detect loss of clock and loss of power on the capture board and DUT

Software features of the DLL

Thread-safe operation with synchronized messages

Access to the same capture board from multiple DLL clients simultaneously. There may
be situations when multiple GUIs or multiple client applications need to communicate
with the same capture board. This is supported by the DLL. Typically, each application
will load its own individual instance of the DLL. However, the DLL uses a system-wide
resource to guarantee that only one DLL instance is accessing the hardware at any given
time. Due to potential DLL version problems, the applications are advised to always use
the same DLL from the hard drive.

Callbacks to inform user of asynchronous hardware events

Basic layout of GUI designed by the hardware engineer that best illustrates the features of
the device

Unified set of functions to communicate with DUT regardless of physical hardware
mechanism

National Semiconductor Corp. Page 4 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

2 Environment

The WV5 Core release consists of only a few files and one large firmware directory.

2.1 Files
Name Description
wvdll.dll DLL
libcint.dll C Scripting engine
Wv5.sys low-level Windows communication driver
wvb.inf wvb5.sys information file
wvdll.h Programmer’s interface

2.2 hardware directory

Name Description
firmware_images*.bix Cypress microcontroller images
fpga_images*.bit FPGA images
scripts\image_map.xml File to map boards and devices to their support
files

scripts*.brd.xml Describes the hardware layout of a capture
board

All other scripts*.xml Device-specific configuration files. These files
are referred to as device files.

scripts*.brd.cpp Board-level C scripting files

scripts*.dut.cpp DUT C scripting files

scripts\include* C scripting include files

The wv5.sys and wvb.inf file should be installed using the standard procedure for installing
Windows drivers.

The wvdll.dll file can exist anywhere. However, it is customary to have this reside in the same
location as the executable the uses the DLL. Also, it is customary to have the firmware directory
reside in the same level as the DLL. However, the location of the firmware directory may be
modified using a DLL function call.

National Semiconductor Corp. Page 5 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

2.3 Quick note regarding device files

To support an ever increasing number of devices, all of the device-specific logic is implemented
in the device files. This reduces the number of changes necessary to the DLL and the DLL API.
These files are written by National Semiconductor hardware/application engineers and are not
intended to be manipulated by the caller of the DLL.

National Semiconductor Corp. Page 6 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9
3 Basic User and DLL Interaction
I User application I
User DLL DLL reports
calls responds changes to
functions with status the board
n and any and DUTs
wvdll.h requested using
data callbacks
v
WV DLL
National Semiconductor Corp. Page 7 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

4 Basic State Machine in DLL

A 4

Wait for new user command

Timeout

A 4

Poll USB devices and check for any changes

A 4

Inform user application of any changes via callbacks

A

Command found

A 4

Poll USB devices and check for any changes

A 4

Parse command

A 4

Execute command

A 4

Inform user application of any changes via callbacks

A 4

Return status back to user

Some notes:

o The DLL is always checking for device status changes.

o If the DLL is waiting for a response from the firmware and the USB connection was
interrupted, then it is possible the "execute command" stage will take a long time while
waiting for the Windows USB driver to timeout.

o The DLL only executes one command at a time. This fact along with the global locking
mechanism guarantees that there is only one active request to the hardware at any given
time.

National Semiconductor Corp. Page 8 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

5 DLL Thread

Legend:
RED - flow of messages between threads/process

User application calls API
function

WV DLL

Messaging Layer
A 4

Wait for command
interface to be ready

\ 4

Send command message

Worker Thread
(See basic state machine
section for details)

to DLL thread

A 4

Wait for command

A 4

Execute command

\ 4

| Signal command

\ 4 A 4

Wait for command
completion

completion

API function returns and the user

application continues

National Semiconductor Corp.

Page 9 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

6 Example Code

int main() {
WvWord board count;
WvString* board names;
Wv_Version Number version dll;
WvWord code version;
Wv_Version Number version firmware;
Wv_Version Number version fpga;
// Enum DUTs
WvWord dut count;
WvString* dut names;
WvDUTInfo info;
Wv_Version Number version dut;
Wv_Capture Request redq;
WvBool data valid;
WvWord captured data[409¢6] ;

WvDebugModuleSetOutputFilename ("dlloutput.txt") ;

// This is absolutely necessary to start the DLL
WvDebugModuleModifyAll (TRUE) ;

if

)

if

(!WvBoardEnum (&board count, &board names, &version dll)) {
return false;

(board count == 0)
// No boards thus nothing to do.
return -1;

(!WvBoardOpen (0, "", &code version, &version firmware)) {
// Something went wrong.
return -1;

(!WvBoardDUTEnum (0, &dut count, &dut names)) {
// Something went wrong.
return -1;

(dut_count == 0) {
// No DUTs. Nothing to do.
return -1;

(!WvBoardLoadFPGA (0, 0, "", &version fpga)) {
// Something went wrong.
return -1;

(IWvBoardReadDUTInfo (
0,
0,
&info,
&version dut)) {
// Something went wrong.

National Semiconductor Corp. Page 10 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

return -1;

)

if (info.ChannelCount == 0) {
// No channels to capture. Nothing to do.
return -1;

)

reqg.DACFreqg = 0;

req.TransferSize = info.pChannelData[0] .TransferMinSize;
req.ChannelDataIndex = 0;
reqg.HistogramEnable = 0;
req.HistogramMaxBin = 0;

req.DataFormat = info.pChannelData[0] .default data format;

if (!WvBoardWriteCaptureStart (0, 0, &req)) {
// Something went wrong.
return -1;

if (!WvBoardReadCaptureData (0, 0, captured data, 4096,
&data valid)) {
// Something went wrong.
return -1;

)

if (!WvBoardWriteCaptureEnd (0, 0)) {
// Something went wrong.
return -1;

WvBoardClose (0) ;
WvShutdown () ;
return 0;

National Semiconductor Corp. Page 11 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

7 Hardware Boot Process

This section will describe major steps taken by the DLL and firmware during the initialization
process. The process described in this section assumes the following conditions:
o Board has just been power cycled
o Physical USB connection between the board and the computer has just been established
o DLL has not been launched

Any reference to a .c file in the "Firmware" blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy
FPGA architectures.

DLL: recognizes board
DLL: processes Cypresss EEPROM

DLL: downloads Cypress firmware
Uses image_map.xml to determine with .bix file to download

DLL: Programming complete

Firmware: usb.c:TD_init
Setup endpoints

Firmware: mm_fpga.c:mm_fpga_init_ports
Initial setup for GPIO pins

Firmware: usb.c:TD_Poll
Main loop
Does nothing until command arrives
At this point, the firmware is now ready to accept commands from the PC

DLL: sends CMD_ID _PING
Check for alive

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_PING

DLL: sends CMD_ID_EEPROM_READ
Read Cypress EEPROM

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_EEPROM_READ command
eeprom_imp.c:.eeprom_read

National Semiconductor Corp. Page 12 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

Returns EEPROM data

DLL: parses board-level script file

This script file contains additional information regarding GP1O pin usage

DLL: sends CMD_ID_PIN_CONFIG

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_PIN_CONFIG
pin_imp.c:pin_config

Processes pin configuration

DLL: sends CMD_ID_SEQ

This sequence of commands makes sure all pins configured for output properly have their

corresponding output enable signals set and sets their default output state to low

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_SEQ
cmd_seq_imp.c:cmd_seq_process
Processes the commands

DLL: sends CMD_ID_ENABLE_DUT_EEPROM_QUERY

This command tells the firmware to occassionally poll for DUT EEPROM existence.
This is used for detecting hot plug out. For all boards newer than WaveVision-5.1 (eg, USI-2,
WaveVision-5.2, SP10-5.5 and later), the DUT_Presence_Detect pin is used instead of trying to
detect 12C communication failure. However, for legacy reasons this functionality remains in the

code.

Firmware: mm_fpga.c:mm_fpga_parse_command_packet

Processes CMD_ID_ENABLE_DUT_EEPROM_QUERY

DLL: sends CMD_ID_FIRMWARE_INFO

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_FIRMWARE_INFO
Returns a version string

DLL: sends CMD_ID_EEPROM_READ
Read DUT EEPROM

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_EEPROM_READ command
eeprom_imp.c:eeprom_read

Returns EEPROM data

DLL: sends CMD_ID_FPGA_PROGRAMMED

National Semiconductor Corp.

Page 13 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

Determine current FPGA programmed state

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD _ID FPGA PROGRAMMED command

DLL: sends CMD_ID_FPGA_APPLY_POWER
Apply power using PIN_NPOWER_EN

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD _ID _FPGA_APPLY_POWER command

DLL: sends CMD_ID_FPGA_SET 64_SIZE
Informs firmware of FPGA image size in 64 byte chunks

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD _ID FPGA SET 64 SIZE command

DLL: sends CMD_ID_FPGA_PROGRAM
Program FPGA

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD _ID_FPGA PROGRAM command
utils.c:common_program_fpga

Do bit-bang programming

DLL: sends CMD_ID_FPGA_CHECK_PROGRAM_DONE
Determine programming state

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_FPGA_CHECK_PROGRAM_DONE command

DLL: sends CMD_ID_FPGA_GET_INTERFACE_ID
Determine interface id

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_FPGA_GET_INTERFACE_ID command

DLL: sends CMD_ID FPGA RESET
Reset FPGA

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Processes CMD_ID_FPGA_RESET command

DLL: sends CMD_ID _PING
Check for alive

National Semiconductor Corp.

Page 14 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_PING

DLL: sends CMD_ID _GET_FPGA VERSION
Get version

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_GET_FPGA_VERSION

DLL: parses out DUT-level script file
DLL: executes all commands in the <boot_seq> segment of the script file

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Process all firmware-related commands from <boot_seg>

National Semiconductor Corp.

Page 15 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

8 Hardware Activities While Idle

While there are no user commands being executed, the firmware and the DLL are in constant
communication. This section describes the actions taking during this idle time. The main goal is
to poll for changes in connectivity and power status.

Any reference to a .c file in the "Firmware" blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy
FPGA architectures.

DLL: sends CMD_ID_CHECK_DUT

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_CHECK_DUT

DLL: sends CMD_ID _PING
Firmware will place some power status info in the response

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_PING

National Semiconductor Corp. Page 16 of 21

Programmers' Guide to WV5_DLL API

Rev. 0.9

9 Hardware Activities During Capture

This section describes the commands and replies to and from the firmware during the capture

process.

Any reference to a .c file in the "Firmware™ blocks refers to the file that contains the
implemention of the function that handles the command. mm_fpga.c is the file for the new WV5
boards. There are other boards that use different files. Please see the firmware documentation
for more details relating to the USB1 firmware and the USB2 firmware the supports the legacy

FPGA architectures.

DLL: sends CMD_ID_CAPTURE_FPGA_INIT
Initial configuration

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_CAPTURE_FPGA_INIT
mm_fpga.c:capture_fpga_init

DLL: sends CMD_ID_CAPTURE_INIT
More configuration

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_CAPTURE_INIT
mm_fpga.c:capture_init

DLL: sends CMD_ID_CAPTURE_START
Start the acquisition

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_CAPTURE_START
mm_fpga.c:capture_start

DLL: sends CMD_ID _CAPTURE_SEND DATA
Get the data

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_CAPTURE_START
mm_fpga.c:capture_send_data

DLL: sends CMD_ID_PING
Make sure firmware still alive

Firmware: mm_fpga.c:mm_fpga_parse_command_packet
Responds to CMD_ID_PING

National Semiconductor Corp.

Page 17 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

10 User Commands for Capturing

The process of capturing data requires three commands. These commands must be executed for
each iteration of the capture. This means all three must be called if the user wants to repeatedly

capture data.
WvBoardWriteCaptureStart

WvBoardReadCaptureData
WvBoardWriteCaptureEnd

National Semiconductor Corp. Page 18 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

11 Choosing the Support Files

This describes how the DLL chooses the files in the firmware directory. This process is
automated and requires no decision making from the application. This appendix is strictly for
information purposes.

(Please note that higher-level description of the WaveVision-5 system is provided in the WV5
System Developers' Guide).

Before any decision making, the DLL loads the file firmware\image_map.xml. This file lists any
exceptions that need to be considered when determing which file to load.

When a board is connected to the USB port, the DLL identifies the specific board using the USB
VID and PID numbers. These numbers are used to find the board properties entry in the image
map. The most important piece of information extracted from this process is the nickname of the
board. Although this nickname is not exposed to the user, it is used throughout the image map.

Once the board is identified, the Cypress firmware must be loaded. First, the CPU exception
section of the image map is consulted to see if there is an exception for this board. If there is a
match, then the DLL uses the value in the override field as the basename. Otherwise the DLL
constructs the default basename using the form "boardnick_cputype,” where "boardnick™ is the
board nickname and "cputype" is the CPU type from the board properties. Once the basename
is identified, the wildcard name "basename*.bix" is used to look for the CPU image.

Once the CPU is programmed, the DLL attempts to configure the board. This process involves
configuring how the Cypress GPIO pins are used. The information regarding the pin allocation
is usually found in a board level script file. A similar process for finding the CPU file is used for
the board level script file. First the image map is consulted for any board script file exceptions.
If one is found, then the DLL uses the value in the override field as the basename. Otherwise the
DLL construsts the default basename using the form "boardnick,” where "boardnick™ is the board
nickname from the board properties. Once the basename is identified, the wildcard name
"basename*.brd.xml" is used to look for the board level script. This script is optional and may or
may not exist.

Once the board is configured, the application may attempt to enumerate all the DUTs. This is
important because this process tells the DLL which DUTSs are connected. The DLL uses the
DUT names as a parameter into determining which FPGA image to load.

The application may then attempt to load the FPGA. The DLL first consults the image map for
FPGA image exceptions. If one is found, then the DLL uses the value in the override field as the
basename. Otherwise the DLL constructs the default basename using the form
"boardnick_fpgatype_dut,” where "boardnick™ is the board nickname, "fpgatype" is the FPGA
type, and "dut™ is the name of the DUT. Once the basename is identified, the wildcard name
"basename*.bit" is used to look for the FPGA image.

National Semiconductor Corp. Page 19 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

Lastly, the device-specific script file must be loaded. The DLL consults the image map for
register exceptions. If one is found, then the DLL uses the value in the override field as the
basename. Otherwise the DLL constructs the default basename using the form
"boardnick_fpgatype_dut,” where "boardnick™ is the board nickname, "fpgatype" is the FPGA
type, and "dut™ is the name of the DUT. Once the basename is identified, the wildcard name
"basename*.reg.xml" is used to look for the device file. This file is also optional.

Support file Default basename Wildcard
CPU image boardnick_cputype basename*.bix
Board level script boardnick basename*.brd.xml
FPGA image boardnick_fpgatype dut basename*.bit
Device script boardnick fpgatype dut basename*.reg.xml

The reason for the wildcard is to allow these files to have other identifying hints. For instance,
there is a file called wv5_xc4vIx25 adc14ds105 20080220 _spec_compliant.bit. As the name
hints, this image was built on February 2, 2008 and is compliant with a specification. The
basename for this will be "wv5_xc4vIx25 adc14ds105" and so the wildcard

"wv5_xc4vIx25 adcl4ds105*.bit" will be able to find this bit file.

National Semiconductor Corp. Page 20 of 21

Programmers' Guide to WV5_DLL API Rev. 0.9

12 DLL API Technical Reference

The API provides a set of functions that can be called by the Application. It also implements
several structures necessary for its operation. A complete technical reference to these is provided
in an associated file: dll_help.chm

In addition to the technical reference, the support package for the WV5_DLL API also includes
the header and library files.

National Semiconductor Corp. Page 21 of 21

