MSC1210 Precision ADC with 8051 Microcontroller and Flash Memory Evaluation Module

User's Guide

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty, or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Resale of Tl's products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by Tl is intended for use for ENGINEERING
DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet technical requirements of the directive.

Should this evaluation kit not meet specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO THE BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMINITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Resitrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of Tl covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the analog input voltage range of 0 V to $5 \mathrm{~V}, 6 \mathrm{~V}$ to 12 V for input power and the output voltage range of 5 V . The included $\mathrm{AC} / \mathrm{DC}$ power module is used to supply power.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than $40^{\circ} \mathrm{C}$. The EVM is designed to operate properly with certain components above $40^{\circ} \mathrm{C}$ as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Preface

Read This First

About This Manual

This users guide describes the function and operation of the MSC1210EVM. This manual will help you quickly set up the evaluation module and its accompanying software, so that you can rapidly test and evaluate the MSC1210. A complete circuit description, as well as schematic diagram and bill of materials, is included.

How to Use This Manual

This manual begins with an introductory chapter that describes the EVM and what it can do. If you're anxious to set things up and start testing, we suggest you read at least the first two chapters. These two chapters introduce you to the board and how to set it up to start working with it. Later chapters go into more detail on the board's design and how to access its many features.

Information About Cautions and Warnings

This book may contain cautions.

The information in a caution is provided for your protection. Please read each caution carefully.

Related Documentation from Texas Instruments

Data Sheets:

MSC1210
TLC555CD
REG1117-5.0, REG1117-3.3
OPA340NA
DAC8531E
MAX3243CPWR
TPS3837L30DBVT, TPS3838L30DBVT
SN74HC573ADW
SN74AC10PWR
SN74AHC1G08DBVR
SN74AHC138PWR

Literature Number:

SBAS203A
SLFX043
SBVS001
PDS-1404C
SBAS192
SLLS350
SLVS292
SCLS147
SCAS529
SCLS3141
SCLS2581

If You Need Assistance

If you have questions about this or other Texas Instruments data converter evaluation modules, feel free to email the data converter application team at dataconvapps@list.ti.com. Include the product name in the subject heading.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

Trademarks

Windows is a trademark of Microsoft Corporation.

Contents

Read This First iii
About This Manual iii
How to Use This Manual iii
Information About Cautions and Warnings iii
Related Documentation from Texas Instruments iv
If You Need Assistance iv
FCC Warning iv
Trademarks iv
Contents v
Figures vi
Tables vi
Introduction 1-1
1.1 The MSC1210 1-2
1.2 EVM System Overview 1-2
1.3 Analog Inputs 1-2
1.4 Prototyping Area 1-3
1.5 Power Requirements 1-3
1.6 Host Computer Requirements 1-3
Getting Started 2-1
2.1 Unpacking the EVM 2-2
2.2 Default Configuration 2-2
2.3 Quick Start 2-2
Operation 3-1
3.1 Jumpers 3-2
3.1.1 JP1: AV $V_{D D}$ Power Source Select 3-2
3.1.2 JP2: DV ${ }_{\text {DD }}$ Power Source Select 3-2
3.1.3 J8: Reference Disconnect 3-2
3.1.4 J15: External AV ${ }_{\text {DD }}$ Power 3-2
3.1.5 J16: External DV ${ }_{\text {DD }}$ Power 3-2
3.2 INT Switch 3-3
3.3 Reset Switch 3-3
3.4 PRG LD Switch. 3-3
3.5 I/O Connectors and Signals 3-3
3.5.1 J5: Serial 0 RS-232 connector 3-3
3.5.2 J4: Serial 1 RS-232 Connector 3-4
3.5.3 J14, J15, J16, B1: Power Connectors 3-4
3.5.4 J13: Analog Inputs 3-5
3.5.5 J8: External Reference Input 3-6
3.5.6 SW3: Configuration Switch 3-6
3.5.7 SW6: Emulation and Control Switch 3-6
3.5.8 SW1: Signal Generator Control 3-7
3.5.9 TP1-6: Test Points 3-7
3.6 Circuit Description. 3-7
3.6.1 MSC1210 3-7
3.6.2 Programming and Host Communication. 3-7
3.6.3 Power Supply 3-8
Physical Description 4-1
4.1 Schematics 4-2
4.1.1 MSC1210 Page 1 Processor 4-2
4.1.2 MSC1210 Page 2 Power and Analog Inputs 4-3
4.2 Component Locations 4-4
4.2.1 MSC1210EVM 4-4
4.3 Bill of Materials 4-5
4.3.1 Appendix 1. Declaration of Conformity for Power Supply Included in the MSC1210EVM 4-7
Figures
Figure 1. MSC1210EVM Block Diagram 1-2
Figure 2. Installation Screen 2-3
Figure 3. Keil μ Vision2 2-3
Figure 4. Options for Target (Output). 2-4
Figure 5. MSC1210EVM Processor Schematic. 4-2
Figure 6. MSC1210EVM Power Schematic 4-3
Figure 7. MSC1210EVM Silk Screen 4-4

Tables

Table 1. Factory Jumper Settings 2-2
Table 2. Jumper/Function Reference 3-2
Table 3. J5: RS-232 Port Pinout 3-3
Table 4. J4: RS-232 Port Pinout 3-4
Table 5. J14: Unregulated Power Input Connector. 3-5
Table 6. J16: External Digital Power-Supply Input Connector. 3-5
Table 7. J15: External Analog Power-Supply Input Connector. 3-5
Table 8. B1: 9V Battery Connector 3-5
Table 9. J13: Analog Inputs 3-5
Table 10. J8: External Reference Input. 3-6
Table 11. SW3: Configuration Control Switch. 3-6
Table 12. SW3: Configuration Control Switch. 3-6
Table 13. SW3: Configuration Control Switch. 3-7
Table 14. TP1-6: Test Points 3-7
Table 15. Bill of Materials. 4-5

Introduction

This chapter provides an overview of the MSC1210EVM evaluation module and software.
Topic

Device Characteristics	Page
EVM Block Diagram	$1-2$
Analog Inputs	$1-2$
Prototyping Area	$1-2$
Power Requirements	$1-3$
Host Computer Requirements	$1-3$

1.1 The MSC1210

The MSC1210 is a precision 24-bit delta-sigma Analog-to-Digital Converter (ADC) with an 8051 microcontroller and up to 32 K of Flash Memory. It has eight differential/single-ended analog input channels. The delta-sigma architecture employed in the MSC1210 enables the device to achieve 22 bits of effective resolution (0.45 ppm rms noise) at a data rate of 10 Hz . It can be programmed for other data rates up to 1 kHz that have lower effective resolution. In addition to the standard 8051 peripherals and functions, the MSC1210 includes a 32-bit accumulator, high-speed SPI interface, 16-bit PWM output, Data Flash Memory, 1280 bytes of Data Ram, Dual UARTS, and dual DPTR registers.
The MSC1210 has an enhanced 8051 core which only requires 4 clock cycles per machine cycle. It has extra timers, Watchdog, Brownout, Low-Voltage Detect circuits, Power Management Control, and hardware Breakpoint Registers.

1.2 EVM System Overview

A block diagram of the MSC1210 evaluation module is shown in Figure 1.

Figure 1. MSC1210EVM Block Diagram.

During normal operation, programs are developed on the PC and then downloaded into the MSC1210 for execution. The primary development environment is Keil for assembly and C language programming. There is also a Basic interpreter available from MDL-Labs.

1.3 Analog Inputs

Analog input is supplied through the ten-way screw terminal block J13. The nine inputs are connected to the MSC1210 through a $1 \mathrm{k} \Omega$ resistor. There is also a terminal block for AGND. The inputs only have the $1 \mathrm{k} \Omega$ resistor to protect against overvoltage.

1.4 Prototyping Area

A prototyping area is provided on the MSC1210EVM. This may be used to incorporate additional circuitry, such as special reference or conditioning circuits, into the system. All of the signals on the MSC1210 are brought to connector pads. Additionally, there are digital and analog power and ground holes in the prototyping area.

1.5 Power Requirements

The MSC1210EVM must be supplied with 5.5 V to 15 V for proper operation. Power can be supplied through barrel jack J1 (tip positive), square pin connectors J 15 and J 16 , or with a 9 V battery connected to battery snap B1.
A 9V "wall-wart" power supply is included with the MSC1210EVM.

1.6 Host Computer Requirements

The Keil software development environment is designed to run on a PC running any Windows platform (Windows 95, 98, NT, 2000, etc).
Minimum Requirements:

- IBM-Compatible 486 PC or Higher
- Windows 95, 98, 2000, or NT4.0
- 64MB RAM Minimum
- 20MB Available Hard Disk Space
- CD-ROM Drive
- Available Serial Port

Getting Started

This chapter will guide you through unpacking your EVM, and setting it up so you can begin working with it immediately.
Topic

Unpacking the EVM	Page
Default Configuration	$\mathbf{2 - 2}$
Quick Start	$2-2$

2.1 Unpacking the EVM

After unpacking the MSC1210EVM kit, check to make sure you received all of the items listed here:

- MSC1210EVM Board
- 9 " "Wall-Wart" Power Supply
- 9-Pin D-Sub Male-Female Serial Cable
- This User Guide
- Software CD-ROM

If any of these items are missing, contact Texas Instruments to receive replacements.

2.2 Default Configuration

Although much of the MSC1210EVM's operation is controlled by the host PC, some configuration must be done directly on the board using four jumpers (shorting blocks). The MSC1210EVM is configured as shown in Table 1 at the factory:

Table 1. Factory Jumper Settings.

Jumper Identifier	Description	Default Setting
JP1	Analog Power-Supply Source	$1-2$
JP2	Digital Power-Supply Source	$1-2$
J8	External Reference Select	$1-2,3-4$

For more information about the jumpers, see section 3.1.

2.3 Quick Start

Once the MSC1210EVM has been unpacked from its shipping container, and you have verified that the board is configured as shown in Table 1, it can be powered on and tested.
First, connect the board to the host PC using the supplied 9-pin serial cable. Apply power to the board by plugging the wall power adapter into a suitable AC power source and plugging the barrel plug into the barrel jack on the MSC1210EVM. (You do not have to connect the serial cable first; it is also acceptable to apply power to the board first.) When the board is properly powered on, the two green "power-good" indicator lamps near the power connectors will glow brightly.

Place the CD-ROM into your PC's CD-ROM drive. You should then see the installation screen shown in Figure 2.

Install C51
MSC1210EVM Schematics
MSC Download Tool
Tutorials \& Training Brochures

How To Contact Keil

Tharks for taking the time to review this CD-ROM.
Here you will find the latest information about the Keil Software Development Tools.

This CD includes the latest product updates, evaluation software, datasheets, support solutions, and FAQs about our products. Click on the buttons at the left for more information.

If you have any questions about this disc, click on How To Contact Us and give us a call.

Figure 2. Installation Screen.
From this installation screen you want to install two pieces of software. Install C51 and the MSC1210 Download Tool on your PC. If you are running a Windows platform that is NT-based, such as Windows NT or Windows 2000, you will need administrator privileges to install the software. Follow the instructions that the installer gives you.

The latest version of the Download Tool is located in the "related software" section of the MSC1210 product folder (http://focus.ti.com/docs/prod/folders/print/msc1210.html).
Once the programs have been successfully installed, you can execute them. When the Keil μ Vision2 development system is run, it will display a title screen, and then you will see something like the display in Figure 3.

Figure 3. Keil μ Vision2.

Refer to the Keil documentation and Help menus for more information about how to interact with the Keil environment. When a program is compiled, it can be immediately downloaded into the MSC1210EVM using the MSC1210 download utility program.
In the Project Menu, select Options for target '. . .' Then select the output tab. You will have a screen like the one shown in Figure 4.

Figure 4. Options for Target (Output).
Check the box to "Create HEX File" and "Run User Program \#1", then enter the download command with its parameters in the window. The download.exe file will need to be in the current directory or the Windows path. All operands should immediately follow the switch character with no spaces except between options. i.e., download.exe /Fconv.hex /B9600 /P1

If the filename, crystal frequency, or port is not included, then a screen will prompt for the values.

/Ffile	hex file, \#H in the Keil environment will substitute the hex file (required).
/Xfreq	MSC1210 Xtal Clock frequency (required).
/Pport	PC Comm port 1, 2, 3, or 4 (required).
/Bbaud	Baud rate (standard rates), otherwise it is computed from /Xfreq.
/H	If this flag is present the configuration bytes will be erased.
/T	This flag requests a terminal window after download.

Chapter 3

Operation

This chapter describes each function of the MSC1210EVM, and how to use the accompanying software to program and use the MSC1210.
Topic

Jumpers	Page
INT Switch	$3-2$
Reset Switch	$3-3$
PRG LD Switch	$3-3$
I/O Connectors and Signals	$3-3$
Circuit Description	$3-3$

3.1 Jumpers

Table 2 shows the function of each jumper on the EVM:
Table 2. Jumper/Function Reference.

Reference Designator	Setting/Pin	Function	Default	Subsection
JP1	1 to 2	Onboard AV ${ }_{\text {DD }}$	1-2	3.1.1
	2 to 3	External $\mathrm{AV}_{\text {DD }}$ from J 15		
JP2	1 to 2	Onboard DV ${ }_{\text {DD }}$	1-2	3.1.2
	2 to 3	External DV ${ }_{\text {DD }}$ from J16		
J8	1	AGND	1-2	3.1.3
	2	REF IN-		
	3	REF IN+	3-4	
	4	REF ${ }_{\text {out }}$		
J15	1	JP1 Pin 3 for External $\mathrm{AV}_{\text {DD }}$	Disconnected	3.1.4
	2	AGND		
J16	1	JP2 Pin 3 for External DV ${ }_{\text {DD }}$	Disconnected	3.1.5
	2	AGND		

3.1.1 JP1: $A V_{D D}$ Power Source Select

The MSC1210EVM can use an externally supplied $\mathrm{AV}_{D D}$ power supply, the output, or the 5.0 V output from onboard voltage regulator U2; use JP1 to connect the desired voltage source. Shorting pins 1 and 2 connects the onboard 5.0 V regulator; shorting pins 2 to 3 connects $\mathrm{AV}_{\mathrm{DD}}$ to pin 1 of J 15 .

3.1.2 JP2: $D V_{D D}$ Power Source Select

The MSC1210 has separate analog and digital power supplies. Use JP2 to connect the desired voltage source for the digital power supply, DV DD. Shorting pins 1 and 2 connects the onboard 3.3 V regulator; shorting pins 2 to 3 connects $\mathrm{DV}_{\mathrm{DD}}$ to pin 1 of J 16 .

3.1.3 J8: Reference Disconnect

J8 has four pins. The two middle pins are the REF IN+ and REF IN- pins. An external reference voltage can be connected to these two pins. The other two pins of J8 enable use of the internal reference voltage. Pin 4 is the output from the on-chip voltage reference which can be conveniently connected to pin 3 REF IN+. Pin 1 is AGND, which can be easily connected to pin 2 (REF IN-).

3.1.4 J15: External AV ${ }_{D D}$ Power

If a jumper is between pins 2 and 3 of JP 1 , then J 15 can be used to supply the analog power, $\mathrm{AV}_{\mathrm{DD}}$. One pin connects to AGND and the other to JP1, pin 3.

3.1.5 J16: External DV $V_{D D}$ Power

If a jumper is between pins 2 and 3 of $\mathrm{JP2}$, then J 16 can be used to supply the digital power, $\mathrm{DV}_{\mathrm{DD}}$. One pin connects to DGND and the other to JP2, pin 3.

3.2 INT Switch

Switch SW2 is a miniature pushbutton which, when pressed, shorts Port 3.2 to ground. This pin is the $\overline{\text { INT0 }}$ pin and, therefore, can be setup to cause an interrupt when this pin goes LOW.

3.3 Reset Switch

Switch SW5 is a miniature pushbutton which, when pressed, forces the MSC1210 RST line HIGH. When released, the MSC1210 will enter a reset cycle. If communication becomes disrupted between the host and the board, or the board is unresponsive, pressing RESET will return the system to normal operation.

3.4 PRG LD Switch

Switch SW4 is a miniature pushbutton which, when pressed, forces the MSC1210 RST line HIGH. It also pulls the PSEN line LOW so that, when released, the MCU will enter a reset cycle in the Program Load mode. Program execution will be from the on-chip ROM and it first starts by waiting for a carriage return so that it can perform an autobaud function.

3.5 I/O Connectors and Signals

The various connectors on the MSC1210EVM are described in this section.

3.5.1 J5: Serial O RS-232 connector

The host PC communicates with the MSC1210EVM through this connector, which is a 9-pin female D-shell type, pinned out in the usual manner. Certain flow control lines are used for special purposes by the MSC1210EVM board; these are described in Table 3.
In the RS-232 electrical specification, -5 V to -15 V on a line indicates a logic "HIGH" (mark), and +5 V to +15 V indicates logic "LOW" (space). Line states are described here according to their logical states.
If a "non-handshaking" RS-232 cable is used-i.e., one which connects only RD, TD, and signal ground-the board can still operate normally, but it cannot be reset by the host PC, and bootstrap firmware upgrading cannot be performed through the serial port.

Table 3. J5: RS-232 Port Pinout.

Pin Number	Signal Name	RS-232 Name	Direction (at board)	Function
1	DCD	Data Carrier Detect	Output	None
2	RD	Receive Data	Output	Serial Data Output to Host PC
3	TD	Transmit Data	Input	Serial Data Input from Host PC
4	DTR	Data Terminal Ready	Input	Connected to the reset circuit. A LOW to HIGH transition on this line resets the MCU.
5	SG	Signal ground	Power	Ground Reference
6	DSR	Data Set Ready	Output	None
7	RTS	Request To Send	Input	Connected to PROG LOAD function. Used to enter serial programming mode. A HIGH to LOW transition resets the MCU and put it into the serial programming mode.
8	CTS	Clear To Send	Output	None
9	RI	Ring Indicator	Output	None

3.5.2 J4: Serial 1 RS-232 Connector

This connector is available for use with the second UART in the MSC1210. Only the TD and RD lines are used. The DTR pin is connected to the DSR pin and the RTS pin is connected to the CTS pin, as shown in Table 4.
In the RS-232 electrical specification, -5 V to -15 V on a line indicates a logic "HIGH" (mark), and +5 V to +15 V indicates logic "LOW" (space). Line states are described here according to their logical states.

Table 4. J4: RS-232 Port Pinout.

Pin Number	Signal Name	RS-232 Name	Direction (at board)	Function
1	DCD	Data Carrier Detect	Output	None
2	RD	Receive Data	Output	Serial Data Output to Host PC
3	TD	Transmit Data	Input	Serial Data Input from Host PC
4	DTR	Data Terminal Ready	Input	Connected to DSR
5	SG	Signal Ground	Power	Ground Reference
6	DSR	Data Set Ready	Output	Connected to DTR
7	RTS	Request To Send	Input	Connected to CTS
8	CTS	Clear To Send	Output	Connected to RTS
9	RI	Ring Indicator	Output	None

3.5.3 J14, J15, J16, B1: Power Connectors

The MSC1210EVM features a flexible power supply. Externally generated power, the onboard regulator circuitry and supplied "wall-wart", or a 9V battery may all be used to supply power. The separated analog and digital power supplies may, furthermore, be powered differently; e.g., the analog power supply may be powered externally, and the digital power supply may use the on board regulator, at the same time. (This is configured using jumpers JP1 and JP2.) The exception to this is that the battery and "wall-wart" cannot be used at the same time (see the paragraph below).
Four power connectors are provided: screw terminal blocks J15 and J16 for external power, battery terminal B1 for a 9V "transistor radio" battery, and J14 for the supplied "wall-wart". J14 is a "switched" jack: connecting a plug to J 14 automatically disconnects the battery terminal. This prevents the battery and J 14 from supplying power simultaneously.
Battery power is regulated by the same circuitry that regulates J 14 ("wall-wart") power. Note that when a battery is connected to B1, approximately one-half of the prototyping area is covered up by the battery.

WARNING: Be very careful when connecting external power supplies to J15 and J16. They are not protected against reversed polarity. If you connect them backwards (i.e., with reversed polarity), it is likely that the MSC1210EVM will be permanently damaged.

Table 5. J14: Unregulated Power Input Connector.

Terminal Name	Function
Tip	Positive Power-Supply Input
Sleeve	Power Ground

Table 6. J16: External Digital Power-Supply Input Connector.

Terminal Number	Function
1	Digital Positive Power-Supply Input
2	Digital Ground

Table 7. J15: External Analog Power-Supply Input Connector.

Terminal Number	Function
1	Analog Positive Power-Supply Input
2	Analog Ground

Table 8. B1: 9V Battery Connector.

Terminal Name	Function
Split ("female") Ring	Positive (mates with solid / "male" post on battery)
Solid ("male") Ring	Negative (mates with split / "female" post on battery)

3.5.4 J13: Analog Inputs

Terminal block J13 is the main analog input to the MSC1210EVM. One terminal is provided for each of the MSC1210's nine differential inputs. Each terminal is connected to the MSC1210 through a $1 \mathrm{k} \Omega$ resistor.

Table 9. J13: Analog Inputs.

Terminal Number	Terminal Name	MSC1210	Function
1	AIN0	18	Analog Input 0
2	AIN1	19	Analog Input 1
3	AIN2	20	Analog Input 2
4	AIN3	21	Analog Input 3
5	AIN4	22	Analog Input 4
6	AIN5	23	Analog Input 5
7	AIN6/EXTD	24	Analog Input 6 and Digital Low Voltage Detect
8	AIN7/EXTA	25	Analog Input 7 and Analog Low Voltage Detect
9	AINCOM	26	Analog Common
10	AGND	17,27	Analog Ground

3.5.5 J8: External Reference Input

The MSC1210EVM has an onboard $2.5 \mathrm{~V} / 1.25 \mathrm{~V}$ band-gap reference. If a lower-noise reference source or a reference with a different voltage is desired, it can be connected to square pin connector J8. The reference source-onboard or external-is selected using the pins of J8. C27 and C28 provide bypassing for the Reference Inputs. To use the internal REF $_{\text {out }}$ signal, connect pin 1 to 2 and 3 to 4.

Table 10. J8: External Reference Input.

Terminal Number	Function
1	AGND-Analog Ground
2	REF IN-
3	REF IN +
4	REF $_{\text {out }}$

3.5.6 SW3: Configuration Switch

SW3 provides the means to enable or disable many of the functions on the MSC1210EVM.
Table 11. SW3: Configuration Control Switch.

Switch Number	Function
1	Enables pin P3.5 to control the Yellow LED D5.
2	Enables pin P3.4 to control the Red LED D4.
3	Enables pin P3.3 to drive the speaker.
4	Enables pin P3.0 to receive data from Serial 0 (J5).
5	Disables onboard 11.0592MHz crystal oscillator.
6	Enables pin P1.2 to receive data from Serial 1 (J4).
7	Allows DTR from Serial 0 to reset MSC1210.
8	Allows RTS from Serial 0 to reset to Prog. Load mode.

3.5.7 SW6: Emulation and Control Switch

SW6 provides the means to break several signals so that they can be controlled by an emulator plugged into J11. This switch also provides a means to set the operating mode of the MSC1210.

Table 12. SW3: Configuration Control Switch.

Switch Number	Function
1	Enables the $\overline{\mathrm{RD}}$ signal or breaks for emulator use.
2	Enables the $\overline{\mathrm{WR}}$ signal or breaks for emulator use.
3	Enables the Reset signal or breaks for emulator use.
4	Enables the $\overline{\text { PSEN signal or breaks for emulator use. }}$
5	Provides a method to pull $\overline{\text { PSEN LOW. }}$
6	Enables banks switching of 128K RAM memory
7	Provides a method to pull ALE LOW.
8	Connects $\overline{\mathrm{EA}}$ to DGND.

3.5.8 SW1: Signal Generator Control

SW6 provides the means to enable the signal generator and select several waveforms.
Table 13. SW3: Configuration Control Switch.

Switch Numbers	Function
1 and 3	Connects a sine wave to AIN7.
2	Connects a square wave to AIN7.
3	Connects a ramp waveform to AIN7.
4	Turns on the power to the signal generator circuit.

3.5.9 TP1-6: Test Points

The test points can be used to monitor certain signals on the board.
Consult the MSC1210 datasheet for information on the signals connected directly to the MSC1210.
Table 14. TP1-6: Test Points.

Test Point Designator	MSC1210 Pin Number	AMSC1210 Pin Name	Signal Description
TP1	6	P3.3/NT1n/PWM	PWM Output Connected to the Speaker
TP2	13	RST	Reset Signal to the MSC1210
TP3	44	$\overline{\text { PSEN }}$	Program Select Enable from MSC1210
TP4	48	EA	External Memory Enable
TP5	45	ALE	Address Latch Enable
TP6	-	-	GND

3.6 Circuit Description

The MSC1210EVM combines the MSC1210 microcontroller, 128K RAM, DAC8531, 11.0592 MHz oscillator, support for two serial ports, and other support circuits to aid in the evaluation of the MSC1210.

3.6.1 MSC1210

The MSC1210 (U7) is clocked by the 11.0592 MHz crystal oscillator, unless it is disabled with switch SW3-6. When the oscillator is disabled, the MSC1210 can use crystal X2 to provide the clock source using on-chip circuitry. Inputs come from J13 through current-limiting resistors R1-R9.
Programs can be loaded into the 32K bytes of Flash memory using the serial port (Serial 0). The MSC1210 has 1380 bytes of RAM on-chip. Extra RAM is available through the use of the 128 K RAM (U12). 64 K of the RAM is directly addressable, with P1.4 providing the means for bank switching.
For detailed information about the MSC1210, consult the MSC1210 (literature number SBAA076) product datasheet at our web site www.ti.com.

3.6.2 Programming and Host Communication

The Keil integrated software environment and the TI Downloader program make for a convenient system of program development, download, and execution.
Full source code for the MSC1210EVM firmware is included on the CD-ROM.

3.6.3 Power Supply

Power is brought into the board through external power connectors J 15 and J 16 , battery B 1 , or unregulated power input J14. If a wall power adapter is plugged into J 14 , the battery is disconnected. Power supplied from the battery or through J 14 is regulated by voltage regulators U 2 and U 3 , which provide +3.3 V digital and +5 V analog supplies. Power supplied from the external connectors (J15 and J16) is not filtered; regulated power of the correct voltages must be supplied to these connectors. The board is laid out with separate "analog" and "digital" power supplies. "Analog" power is 5 V and is supplied from regulator U 2 , or external power connector J 15.3 .3 V "digital" power is supplied from regulator U 3 or J 16 . When the external power connector J 14 is used, it supplies regulators U2 and U3.

Physical Description

This chapter contains the schematic drawings and PCB layouts for the MSC1210EVM board.
Topic

Schematics	Page
Component Locations	$4-2$
Bill of Materials	$4-4$

4.1 Schematics

4.1.1 MSC1210 Page 1 Processor

Figure 5. MSC1210EVM Processor Schematic.

4.1.2 MSC1210 Page 2 Power and Analog Inputs

Figure 6. MSC1210EVM Power Schematic.

4.2 Component Locations

4.2.1 MSC1210EVM

Figure 7. MSC1210EVM Silk Screen.

4.3 Bill of Materials

Table 15. Bill of Materials.

Item Number	Value	Reference Designators	Qty	Mfg	Mfg's Part Number	Description
1		B1 (+)	1	Keystone	594	9V Battery Clip, Female
2		B1 (-)	1	Keystone	593	9V Battery Clip, Male
Not Installed	18pF	C14, C22	2	Panasonic or Alternate	ECJ-1VC1H180J	CAP 18pF 50V 5\% CERAMIC CHIP 603
3	$0.01 \mu \mathrm{~F}$	C7, C 13	2	Panasonic or Alternate	ECJ-1VB1C103K	CAP 0.01~F 16V 10\% CERAMIC CHIP 603
4	0.14 F	$\begin{gathered} \text { C1, C6, C10, C17, C18, } \\ \text { C20, C21, C23, C24, } \\ \text { C26-C39 } \end{gathered}$	23	Panasonic or Alternate	ECJ-1VB1C104K	CAP 0.1 1 F 16V 10\% CERAMIC CHIP 603
5	$0.22 \mu \mathrm{~F}$	C11	1	Panasonic or Alternate	ECJ-2VB1C224K	CAP 0.22 F 16V 10\% CERAMIC CHIP 805
6	$0.33 \mu \mathrm{~F}$	C4, C5, C19	3	Panasonic or Alternate	ECJ-2YB1C334K	CAP 0.33-F 16V 10\% CERAMIC CHIP 805
7	0.47 $\mu \mathrm{F}$	C15, C16, C25	3	Panasonic or Alternate	ECJ-2YB1C474K	CAP 0.47-F 16V 10\% CERAMIC CHIP 805
8	$1 \mu \mathrm{~F}$	C2	1	Panasonic or Alternate	ECJ-2YB1A105K	CAP $1 \mu \mathrm{~F} 10 \mathrm{~V}$ 10\% CERAMIC CHIP 805
9	10 $\mu \mathrm{F}$	C3, C8, C9	3	Panasonic or Alternate	ECJ-3YB0J106K	CAP 10^F 6.3 V 10\% CERAMIC CHIP 1206
10		D1	1	Micro Commercial Corp	DL4001	Diode 1A 50V SMD MELF
11		D6	1	Diodes Incorporated	LL4148	Diode Fast Switching SMD MiniMELF
12		D2, D3	2	Lumex	SML-LX1206GC-TR	LED Green Clear Lens 1206 SMD
13		D4	1	Lumex	SML-LX1206IC-TR	LED Red Clear Lens 1206 SMD
14		D5	1	Lumex	SML-LX1206YC-TR	LED Yellow Clear Lens 1206 SMD
15		J14	1	CUI-Stack	PJ-102B	2.5 mm Power Connector
16		J7	1	On Shore Technology	ED120/2DS	2 Contact Screw Terminal Block
17		J13	1	On Shore Technology	ED120/10DS	10 Contact Screw Terminal Block
18		J4, J5	2	AMP Incorporated	747844-4	DB9 Right Angle Female Conn. W/ Board Locks
19		J8	1	Samtec	TSW-104-07-L-S	4-Pin Single Row Header (4x1)
Not Installed		J9	1			
Not Installed		J10	1			
Not Installed		J0-J3	4			
Not Installed		J6	1			
Not Installed		J11	2	Mill-Max	851-93-050-10-001 (15)	1×15 Single Row Socket $0.050^{\prime \prime}$ Spacing
Not Installed		J12	1			
20		J15, J16	2	Samtec	TSW-102-07-L-S	2-Pin Single Row Header (2x1)
21		JP1, JP2	2	Samtec	TSW-103-07-L-S	3-Pin Single Row Header (3x1)
22	100	R29, R30	2	Panasonic or Alternate	ERJ-6GEYJ101V	RES 100 1/10W 5\% 805 SMD
23	220	R18, R21, R22	3	Panasonic or Alternate	ERJ-6GEYJ221V	RES $220 \Omega 1 / 10 \mathrm{~W} 5 \% 805$ SMD
24	390	R17	1	Panasonic or Alternate	ERJ-6GEYJ391V	RES 390 1 1/10W 5\% 805 SMD
25	1k	R1-R9, R11, R27	11	Panasonic or Alternate	ERJ-6GEYJ102V	RES 1k $21 / 10 \mathrm{~W} 5 \% 805$ SMD
26	8.2k	R19	1	Panasonic or Alternate	ERJ-6GEYJ822V	RES 8.2k 1 1/10W 5\% 805 SMD
27	10k	R23, R28, R35	3	Panasonic or Alternate	ERJ-6GEYJ103V	RES 10k $\Omega 1 / 10 \mathrm{~W} 5 \% 805$ SMD
28	22k	R13, R15, R20	3	Panasonic or Alternate	ERJ-6GEYJ223V	RES 22k Ω 1/10W 5\% 805 SMD
29	100k	R24-R26, R31-R34	7	Panasonic or Alternate	ERJ-6GEYJ104V	RES 100k $21 / 10 \mathrm{~W} 5 \% 805$ SMD
30	200k	R12	1	Panasonic or Alternate	ERJ-6GEYJ204V	RES 200k 1 1/10W 5\% 805 SMD
31	715k	R10	1	Panasonic or Alternate	ERJ-6GEYJ153V	RES $715 \mathrm{k} \Omega 1 / 10 \mathrm{~W} 1 \% 805$ SMD
32	787k	R14	1	Panasonic or Alternate	ERJ-6ENF7873V	RES 787k 1 1/10W 1\% 805 SMD
33	1.4M	R16	1	Phycomp or Alternate	9C08052A1404FKHFT	RES 1.4M $21 / 10 \mathrm{~W} 1 \% 805$ SMD
34		SP1	1	Panasonic	EFB-AA14D001	Piezoelectric Ceramic Buzzer

Item Number	Value	Reference Designators	Qty		Mfg

4.3.1 Appendix 1. Declaration of Conformity for Power Supply Included in the MSC1210EVM.

Wir, der Hersteller, erklären hiermit, daß das Produkt: We, the manufacturer, hereby confirm, that the product:

Typ:	Type:	FW 7207/9
Zeichnungs-Nr:	Port-No.:	$15.0661 .500-00$

weitere Merkmale:

additional information:
mit der beiliegenden Beschreibung die Anforderungen der Nlederspannungsrichttinie $73 / 23 / E W G$, CE-Kennzeichnungsrichtlinie $93 / 68 / E W G$ und der EMV-Richtlinien 89/336/EWG, 92/31/EWG erfült.
with the enclosed description fulfills the requirements of the Low Voltage Directive 73/23/EEC, CE Marking Standard 93/68/EEC and the regulations of the EMC Directives $89 / 336 / E E C, 92 / 31 / E E C$.

Das Gerät entspricht der:
The unir corresponds to:

4.3.2

