
Code Composer Studio v5

Moving from CCSv3

C
C

S
 A

P
P

S

Summary

• What is it?

– Major upgrade from CCSv3

– Based on a new open source software framework (Eclipse)

– New registration/licensing/updating mechanism and model

• Why Eclipse?

– Quickly becoming a standard for IDEs

– Excellent software architecture

– Ability to leverage the work of others

– Cross-platform support (i.e. Windows & Linux)

– Wide selection of 3rd party plug-ins available

• When?

– Available now

• How?

– Restructured debug stack from CCSv3

– Porting of existing features to Eclipse

C
C

S
 A

P
P

S

Code Composer Studio v5

Key Benefits form CCSv3

C
C

S
 A

P
P

S

Windowing Environment

• Problems (v3):

– Today’s embedded IDEs offer a large selection of features however fitting

all of your windows into the IDE is a challenge

– You use different windows at different times

• Solution (v4/5):

– A comprehensive windowing solution that allows you to maximize the

available screen space but still have all functionality at your finger tips

– Ability to create different perspectives that have the windows that you use

most for a given development activity readily available

C
C

S
 A

P
P

S

CCSv3.3 Environment

Limited space for windows

Often have to make windows small

Can only have a few windows open

C
C

S
 A

P
P

S

CCSv4/5 Environment

Tabbed editor windows
Tab data displays together

to save space

Fast view windows don’t display

Until you click on them

Perspectives contain separate

window arrangements depending

on what you are doing.

Customize toolbars & menus

C
C

S
 A

P
P

S

Source Code Editor

• Problem:

– Most IDEs contain an editor with limited functionality requiring the purchase

of an additional external editor (UltraEdit, etc)

• Solution:

– CCSv4/5 includes an excellent editor with equivalent functionality to the

majority of commercial editors

• Code completion (auto-parameter info…)

• Jump to definition/declaration

• Outline view of current source file

• Local history of source file changes

• Compare files

• Back/forward/back to last edit location

• …

C
C

S
 A

P
P

S

Multi-processor Environment

• Problem:

– Many devices today include more than one processing core and

often reside in a system with many other devices. Displaying debug

information from many different cores typically requires many IDE

windows.

• Solution:

– CCSv4 allows you to have a single IDE window and to change the

debug context of the IDE to any of the cores in the system.

– You can also “pin” the context of a debug display to a specific core.

– If desired you can open a top level IDE for any core

C
C

S
 A

P
P

S

CCSv3.3 Multi-core Environment

Separate top level IDE windows for each core

Can actually run out of windows resources

Parallel debug manager to see status of all cores

C
C

S
 A

P
P

S

CCSv4/5 Multi-core Environment

Use the Debug view to select the context

Displays show content for the current debug

context

C
C

S
 A

P
P

S

Project Management

• Problem:

– Typically you have more than one project on going at a time, with each

project being at a different stage in development and often using different

versions of compile tools, operating systems, and even target configurations

• Solution:

– CCSv4/5 allows you to set the version of the compiler and DSP/BIOS that

each individual project will use, allowing projects in maintenance mode to

continue to use the tools they were deployed with and enabling new projects

to use the latest high performance tools

– CCSv4/5 allows you to associate a specific target configuration on a per

project basis by allowing a project to have a target configuration file

C
C

S
 A

P
P

S

Tool Integration & Customization

• Problem:

– More than just an embedded debugger is required during product

development

• Solution:

– CCSv4/5 is based on Eclipse which has a huge selection of 3rd party plug-

ins available (code analysis, source code control, modelling, Perl

development…)

– The Eclipse plug-in development environment allows for the creation of your

own custom tooling

• Wizards for creating plug-ins quickly

C
C

S
 A

P
P

S

Scripting

• Problem:

– Some tasks such as testing need to run for hours or days without user

interaction

– Need to be able to automate common tasks

• Solution:

– CCSv4/5 has a complete scripting environment (DSS) allowing for the

automation of repetitive tasks such as testing and performance

benchmarking.

– The CCSv4/5 Scripting Console allows you to type commands or to execute

scripts within the IDE

C
C

S
 A

P
P

S

Image Analysis

• Problem:

– Analyzing the output of an imaging or video algorithm requires looking at the

data in its native format (i.e. the image or a frame of video).

• Solution:

– The Image Display in CCSv4/5 supports viewing images in many different

formats.

C
C

S
 A

P
P

S

On-Chip Flash Programming

• Problem:

– A separate flash

programming utility is

needed to write/load the

program to flash

• Solution:

– Flash programmer is

tightly integrated with

CCSv4/5

• CCS will automatically

write to flash when loading

a program if the load

address is in flash

• No need to work with a

separate utility to

erase/program flash

C
C

S
 A

P
P

S

IDE Familiarity

• Problem:

– Developers work with a number of different development environments.

Thus needing to become familiar with the work flow of different tools.

• Solution:

– CCSv4/5 is based on the Eclipse open source software framework which is

used by many different embedded development environments:

• ARM Ltd, MontaVista, Enea, WindRiver, QNX…

C
C

S
 A

P
P

S

Licensing

• Problems:

– Mid to large size customers want floating (server) license options

– Free Evaluation Tools and DSK tools are out of date the day they are

created

• Solution:

– Integration of FlexNET licensing allows for a variety of licensing options.

– Full tools, DSK tools, Free tools are all the same image and are kept up to

date via the update manager

C
C

S
 A

P
P

S

Update Delivery

• Problems:

– People are unsure of what updates are needed

– Downloading updates is painful

• Solution:

– CCS will automatically check for updates on startup and indicate if content

is available

– Spectrum Digital & Blackhawk drivers are included in the CCS install

– Service releases will only install content relevant to your installation (i.e.

C2000 users only see C2000 content)

– Much faster file server!!!!!!!!

C
C

S
 A

P
P

S

Code Composer Studio v5

Main Changes from CCSv3

C
C

S
 A

P
P

S

Summary

• A lot of things have changed in v4/5

• We have attempted to preserve compatibility where possible and

provide migration wizards

• The reality is that v4/5 is very different from v3.3 and there are

steps that you will have to go through to adopt v4/5

– Best to align migration with the start of a new project cycle

C
C

S
 A

P
P

S

IDE - Debugger integration

• Debugger is not initialized

when CCS starts

– It needs to be explicitly started

(launch a debug session) and

stopped (Terminate a debug

session)

• Allows for editing/code

development to proceed

without loading any

debugger/driver components

until needed

• Allows scripting/flashing tools

to be used without closing

CCS (just terminate the

debugger and start a script)

C
C

S
 A

P
P

S

View: Debug

• Central window during debugging

that provides “context” to all

other debug views

– User selection in debug view controls

what other debug views display

• Shows all processors and

optionally non-debuggable

devices (e.g. ICEPICK)

• Display call stacks

• Provides execution control

(run/halt/step)

Call stack

Buttons to ‘run, halt, terminate

(debug session), source and

asm stepping, reset CPU,

restart program

Target Configuration

or project

C
C

S
 A

P
P

S

Target Setup

• Change to xml based target configuration

– Existing target configurations are not compatible

– Device and connection are separated

• You can change the emulator type that a configuration uses

• 3P emulator vendors do not need to create import configurations for every device

as you can just choose the emulator and the device

• Setup is integrated into the IDE

• Target configurations can be included in a project so that a project

automatically uses that configuration

C
C

S
 A

P
P

S

Target Setup (CCSv3)

Separate applications for the

CCS debugger and CCS setup

C
C

S
 A

P
P

S

Target Setup (CCSv5)

Setup utility integrated with

main CCS application

Target Configuration

added to project

Device and

Connection

separated

C
C

S
 A

P
P

S

CCS Projects

• CCS .pjt file are replaced by Eclipse projects

– An import wizard is provided that does the conversion

– If someone does not wish to convert due to some team members

still being on CCSv3.x you can use a standard make project and tell

it to build a .pjt file using timake.exe (from 3.3)

• File system based model

– Files that are in the project folder and in the project and will be built

unless excluded

– Create subfolders in a project by creating subfolders in the project

folder

– If you don’t want a source file to be physically in the project folder

you add it to your project using the “link files to project” feature

C
C

S
 A

P
P

S

Eclipse Concept: Projects

• Projects map to directories in the file system

• Files can be added or linked to the project

– Adding file to project

• Copies the file into your project folder

– Linking file to project

• Makes a reference to the file in your project

• File stays in its original location

• CCS 3.x project files used this concept exclusively

• Projects are either open or closed

– Closed Projects:

• Still defined to the workspace, but it cannot be modified by the Workbench

• The resources of a closed project will not appear in the Workbench, but the resources still reside on the local

file system

• Closed projects require less memory and are not scanned during routine activity

• This differs from CCS 3.x, where closed projects do not appear at all in the CCS 3.x project view window.

• Projects that are not part of the workspace must be imported into the active

workspace before they can be opened

– Both CCSv4/5, CCE projects and legacy CCSv3 projects can be imported into the workspace

http://processors.wiki.ti.com/index.php/Importing_CCSv3_Projects_into_CCSv4

C
C

S
 A

P
P

S

View: Project Explorer

• Displays all projects defined in the active workspace

• The view is mostly a representation of the file system of the project folder

– Linked files are marked with a special link graphic in the icon

• Use filters to hide various file types to reduce clutter in the view

– Default is to filter CCS generated project files (.*)

C
C

S
 A

P
P

S

New Project Wizard
• Device Variant selection

– When you select the device variant it

impacts the build options used for

run-time models and the default rts

library selection, linker command file

selection…

– Selecting a Connection type also will

generate a target configuration file for

the project

• Specify a compiler version

– Expand the ‘Advanced settings’

section to specify a specific compiler

version to use for the project

• Project Templates

– Generates “ready to build” example

projects

C
C

S
 A

P
P

S

Compilers

• CCS supports building

with and debugging the

output of many different

versions of TI compilers

• Within a project you can

specify the version of the

compiler to use for a

particular project

C
C

S
 A

P
P

S

Workspaces

• CCSv3.x workspaces are NOT compatible with CCSv4/5

• CCSv4/5 workspaces are the default location for projects and CCS

user settings

– E.g. of user settings stored in workspace

• Perspective customizations

• Window layout

• user modified options/preferences

• User can switch between CCS v4/5 workspaces by going to File-

>Switch Workspace menu

C
C

S
 A

P
P

S

Automation

• GEL

– GEL is still present in CCSv4/5

– Functions that map to GUI related items such as opening a window or

building a project are not available

• New Scripting Environment (Debug Server Scripting)

– JAVA APIs

• Default supported language is JavaScript

– Perl, TCL, Python has also been used with DSS

– Debug Server Scripting will be the main feature used for automation as it

allows access to the functionality of the debugger

– No support for project management

• Scripting Console

– Window within CCS that provides access to the scripting environment as

well as command driven operation of CCS

C
C

S
 A

P
P

S

GEL

• Startup Files
– Can still be GEL based and specified in Setup

• Automation
– Most scripts will still work fine but it is recommended that you move

regression test type activities to Debug Server Scripting

• GEL Expressions
– Can still be used as conditions on breakpoints or start addresses or in the

watch window

– GEL is still the expression evaluator in the debugger

– GEL hotmenus and dialogs are supported

• Unsupported GEL functions
– GEL_WatchAdd(), project related functions

• Mostly used by people to create peripheral register windows in the watch window.
This should be migrated to register xml files

– Project Build commands

– GEL GUI actions

C
C

S
 A

P
P

S

GEL Menus

• Appear on the main menu under “Scripts”

• GEL created menu items appear under Scripts menu only when

Debugger has been started

– GEL engine is part of debugger

• Debug view controls which script menu’s are available

– Only scripts applicable to currently selected processor are available

C
C

S
 A

P
P

S

View: Modules
• CCSv4/5 equivalent of the “Symbol Browser” in v3

• Provides information on all loaded symbol files

• ‘View -> Other… -> Debug -> Modules’

C
C

S
 A

P
P

S

Emulation Vendors

• Both CCSv3.x and CCSv4/5 use the same GTI driver interface

• Most of our current 3rd party emulation partners have updated

their drivers to conform to the CCSv4/5 directory structure

• Spectrum Digital & Blackhawk drivers are provided in a base

CCSv4/5 installation

C
C

S
 A

P
P

S

CCS Plug-ins

• CCSv3.x plug-ins are NOT compatible with CCSv4/5

• Any existing plug-ins will need to be re-written to work with

CCSv4/5

• Thousands of Eclipse plug-ins available that can be used with

CCSv4/5

– CCSv5 has improved compatibility vs CCSv4 with regards to Eclipse plug-

ins due to CCSv5 using ‘stock’ Eclipse

C
C

S
 A

P
P

S

DSP/BIOS

• Build

– Supported for BIOS5 and BIOS6

• Graphical Configuration

– New graphical configuration tool for BIOS6

– Old gtconf tool is launched for BIOS5

• Kernel Object Viewer -> Runtime Object View

– Works for BIOS6.x and BIOS5.4

– Does not work with earlier versions of BIOS

• Real-time Analysis

– Works for BIOS6.x and BIOS5.4

– Does not work with earlier versions of BIOS

• In summary if you want to use BIOS5 and need advanced BIOS debug

capabilities such as ROV or RTA then you will need to move to BIOS5.4.

– BIOS5.4 is being developed for exactly this purpose.

C
C

S
 A

P
P

S

Register Definitions

• CCSv3.3 and CCSv4/5 support register definition files

– You can reuse your files from CCSv3.3, some device level files may require

modification to correctly include the scan path information

• Using the Alias feature via GEL_WatchAdd()

– Some people used GEL files to create custom watch windows that are really

peripheral register windows (instead of creating xml register files).

• This does not work in CCSv4/5 - GEL_WatchAdd() is not available

– Replaced by CCSv4/5 Scripting Console command ‘expAdd’

Questions?

