

 1

GUI Quick Start Guide:
InstaSPIN UNIVERSAL

Version 1.0.2 Motor Solutions

Overview

A series of MotorWare projects are available to help you evaluate InstaSPIN™-FOC or InstaSPIN™-
MOTION on your desired Piccolo MCU. The InstaSPIN UNIVERSAL GUI allows you to instrument and
interact with these projects over a JTAG connection.

 The InstaSPIN Universal GUI Supports:

- Piccolo InstaSPIN enabled controllers

o LAUNCHXL-F28027F LaunchPad for InstaSPIN-FOC

 Includes on-card XDS100v2 JTAG (isolated)

o TMDSCNCD28027F controlCARD for InstaSPIN-FOC

 Does NOT include on-card emulation or isolation

 Select the XDS100v1 emulator when executing the GUI

o TMDSCNCD28054MISO controlCARD for InstaSPIN-FOC and InstaSPIN-
MOTION

 Includes on-card XDS100v2 JTAG (isolated)

o TMDSCNCD28069MISO controlCARD for InstaSPIN-FOC and InstaSPIN-
MOTION

 Includes on-card XDS100v2 JTAG (isolated)

- Any InstaSPIN enabled Piccolo devices on custom hardware with a JTAG
connection

- GUI Composer Runtime (included in the download), or GUI Composer as installed in
CCSv5.5

o May be able to import into CCSv6

- 3-phase Inverters

o The GUI itself has no dependence on the inverter

o The MotorWare projects are board specific. Be sure to build the MotorWare
binary for the appropriate board/inverter.

o Build a MotorWare based binary for your own custom inverter

 2

Version: 1.0.2

Revision History:

1.0.2 April 23, 2014 Update for F2805x and InstaSPIN-MOTION support

1.0.1 October 30, 2013 First release

 3

Table of Contents

Installation... 5

Hardware Set-up ... 6

Overview of Process for using the GUI .. 6

Create Binary .. 7

GUI Connection .. 8

Running the GUI ... 9

Option 1: Standalone GUI .exe ... 9

Option 2: GUI inside CCStudio IDE .. 10

InstaSPIN-FOC Use Example ... 13

Hardware Set-up ... 14

Software Projects .. 15

Updating software for your motor (user.h) .. 17

Using the GUI ... 22

Start-up Options .. 22

Motor ID ... 23

Motor ID Tips ... 25

Motor ID Sanity Checks ... 26

Update user.h settings ... 28

Controller Tuning .. 29

InstaSPIN-MOTION Use Example .. 31

Hardware Set-up ... 32

Software Projects .. 33

Updating software for your motor (user.h) .. 35

Using the GUI ... 37

Inertia ID ... 37

Inertia ID Tips ... 38

Update user.h Settings... 38

Controller Tuning .. 39

Trajectory Generation ... 42

Next Steps ... 46

 4

 5

Installation
1. Run the UNIVERSAL GUI installation .exe using the latest version from

www.ti.com/tool/instaspinuniversalgui

a. Accept the license agreement

b. Recommended to keep default destination location

2. Install Code Composer Studio v5.5 or v6 from
http://processors.wiki.ti.com/index.php/Download_CCS

http://www.ti.com/tool/instaspinuniversalgui
http://processors.wiki.ti.com/index.php/Download_CCS

 6

Hardware Set-up

1. Please review the quick start and/or hardware guides for your particular controlCARD /
LaunchPad and motor drive kit – available through MotorWare - for details of hardware set-
up, including jumper and switch settings

Overview of Process for using the GUI

1. Create a binary from any MotorWare project using CCStudio

a. For example, you will typically start with proj_lab02a, 2b, or 2c for Motor ID

2. Launch GUI Composer UNIVERSAL GUI using either method:

a. Standalone

b. Inside of CCStudio

http://www.ti.com/tool/motorware

 7

Create a Binary

1. The InstaSPIN Universal GUI allows you to instrument bound variables for each
compiled MotorWare project (.out) on the Piccolo MCU

a. The variables are in the gMotorVars structure

b. Each InstaSPIN MotorWare project will use a subset of these variables

i. Ex: the ability to change the Speed Kp is introduced in proj_lab05b

1. CTRL_setKp(ctrlHandle,CTRL_Type_PID_spd,gMotorVars.Kp_spd);

ii. If you compile and load proj_lab03.c, changing Speed Kp has no effect because
the variable is not used in this project.

c. If you are not sure if a particular variable is used in a project, do a text search for
gMotorVars.xxxx in the project .c file

2. Use CCStudio to compile a MotorWare project into a .out that can be loaded onto the
Piccolo MCU

a. CCS version and compiler version notes

i. CCS (download)

1. CCSv5.5+ is required to run the GUI inside of CCS GUI Composer

ii. Compiler (download or through Help Check for Updates)

1. Recommend 6.2.3+, or if necessary, version 6.1.5

2. Do NOT use compiler versions 6.2.2, 6.2.1, or 6.2.0 as they include
an IQMath compiler bug

3. Select the MotorWare project that meets your application needs. See the InstaSPIN
Projects & Labs User's Guide (in the MotorWare directory) for a list of available
projects.

4. The user.h file specifies the settings for your motor. Make sure that the appropriate
settings are selected in the user.h, and that the file is saved before building the
project.

a. Follow the detailed instructions for each project in the InstaSPIN Projects & Labs User's
Guide (in the MotorWare directory)

b. See the “Use Example” section of this document for a quick overview and example

c. Visit the InstaSPIN e2e forum for tips, tricks, and assistance.

http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Compiler_Releases
http://e2e.ti.com/support/microcontrollers/c2000/f/902.aspx

 8

Connect the GUI

1. With the DC bus powered, connect a USB cable from your PC to the controlCARD or
LaunchPad

2. If using the high voltage kit, proceed with connecting to the target before energizing the
high voltage AC input (110-220Vac) or high voltage DC Bus (50-350Vdc)

3. Verify the connection to the FTDI XDS100v2 emulator by checking the Windows Device
Manager for Ports: USB Serial Port (COMxxx) and TI XDS100 Channel A and B

 9

Run the GUI

Option 1: Standalone GUI .exe

1. The InstaSPIN Universal GUI is a web-based application that runs on your PC. The
application and associated files can be found in C:\ti\guicomposer\webapps

a. The differences between the content of these folders is

i. the “.appsetting” file, which assigns the default MCU and emulator, and
points to the .out to be programmed.

1. Default XDS100v2 emulator, F28069/F28054/F28027 MCU,
appProgram.out

b. All other content in the folders is 100% identical

2. Rename the compiled MotorWare project: appProgram.out. Copy the file to the
appropriate webapp folder.

a. The .appsettings file can be modified with a text editor to point at a specific compiled
binary. Search for appProgram.out and replace it with the name of your binary.

b. Use a text editor to update the .appsettings file

3. Run the executable from the webapp folder: InstaSPIN_UNIVERSAL.exe

4. The GUI Composer application will start

5. GUI Composer will initialize, then:

a. Connect to the Piccolo device through the XDS100v2 emulator

b. load \appProgram.out into the memory of the Piccolo device.

i. The connection settings and binary name can be modified using a text editor
by changing the .appsettings file.

 10

c. If using an emulator other than the XDS100v2, the connection will fail

i. Permanently change the default emulator in the .appsettings file, or select
the appropriate emulator from the drop-down menu and then click Initialize

6. The GUI should launch in less than 3 minutes

a. If it takes longer to launch the GUI, disable any software on your PC that could be
redirecting HTTP or browser sockets.

Configuration Tab of a successful GUI Launch

Option 2: Run the GUI in the CCStudio IDE

1. Zip one of the “webapps” folders, ex:

a. C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL

2. In CCSv5.5, VIEW GUI Composer

3. Select Import Project Icon, and point to the Zip file

a.

4. This will create a webapp folder in your CCS workspace

a. Select this workspace location each time you start CCStudio

 11

b. ex: C:\workspace\.GUIComposerWS\InstaSPIN_F2802xF_UNIVERSAL

5. Select the GUI by double clicking on the Projects app.html file:

6. The GUI opens in edit mode. To interact with the GUI, select the Play arrow:

7. Follow these steps to use the GUI in CCS

a. Import an emulation+cpu “Target Configuration”

i. View Target Configurations

ii. Right Click

iii. \sw\ide\ccs\ccs5\targetConfigs\TMS320F28027_xds100v2.ccxml

b. Launch deubg session

i. Right Click on the .ccxml file

c. Connect target

i.

d. Load compiled .out Program (or symbols if program is already in MCU flash)

i.

ii.

 12

iii.

iv.

e. Note, steps a-d are accomplished automatically by using the “Debug” Icon as
described in the InstaSPIN Projects & Labs User’s Guide

f. Enable silicon realtime mode

i.

ii. If asked to enable realtime mode select

g. Run Resume

i.

h. See the MotorWare InstaSPIN Projects and Labs User’s Guide (in the
MotorWare\documents directory) for more details:

8. You can now use the GUI to instrument the code running on the MCU

 13

InstaSPIN-FOC Use Example

Controller: LAUNCHXL-F28027F

Inverter: BOOSTXL-DRV8301

Motor: Anaheim Automation BLY172S-24V-4000: 24V, 8 poles, 4K RPM

 14

Hardware Set-up

 Per the Kit Readme First and HW Guide Documents, set-up hardware

o Example for LAUNCHXL-F28027F and BOOSTXL-DRV8301

o LaunchPad

 Removed JP1, 2, 3 so power can come from BoosterPack

 S1 set to ON-ON-ON to allow JTAG

 S4 set to OFF to allow LaunchPad to drive the BoosterPack Fault LEDs

o BoosterPack

 Motor phase wires connected (order only effects direction of motor)

 DC power with appropriate 6-24V bus and up to 14A peak currents

 15

Software Projects

 In CCS, Projects Import and point to the latest version of the MotorWare “CCS5” directory
for your combination of solution, board, and MCU
Ex: InstaSPIN_FOC, the BoosterPack, F2802xF
C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_foc\boards\boostxldrv8301_rev
B\f28x\f2802xF\projects\ccs5

o You may select any or all of the projects

 Do NOT select to “Copy projects into workspace”. The project will not find
appropriate file references during build. We recommend working directly out of
the C:\ti\motorware\ directory.

 Recommended projects:

 Lab2x – to identify your motor parameters

o 2a or b – for standard motors

o 2c – for high speed or low Ls or low flux motors

 Lab5b – interface to tune the current and speed controllers

 Lab9 – field weakening

 Lab10a – over-modulation

 16

 Lab5a – Torque control with PI tuning, no speed controller

 17

Updating software for your motor (user.h)

 Open the associated src\user.h file in CCS Project Explorer or using a text editor
C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_foc
\boards\boostxldrv8301_revB\f28x\f2802xF\src\user.h

 User.h can look overwhelming, but do not fear!

o Most #define variables should not be modified and many are pre-compile
calculations

 In future MotorWare versions the user.h file will be updated to display only the
most relevant variables. The remaining variables will be accessible if required

o It may be helpful to use the post and spreadsheet on e2e forum to help you update your
user.h file

 Update these key user.h variables in each section

o //! \brief CURRENTS AND VOLTAGES

 #define USER_IQ_FULL_SCALE_FREQ_Hz (600.0)

 Set to the highest speed you want to run,
where Hz = RPM * poles / 120

 It is recommended to use a minimum of (500.0), even for low speed
motors that may only run at 50 Hz

 My example

o 4 kRPM 8 pole motor = 267 Hz, but unloaded it will run faster
and I expect to use field weakening to double my speed

o Use (600) Hz as my maximum

 #define USER_IQ_FULL_SCALE_VOLTAGE_V (42.0)

 Typically the same as the Bus Voltage value

 The GUI Variable Overflow Checks will set this value after the flux is
identified

 To maximize variable resolution for very low flux motors, set the value to
as low as half of
#define USER_ADC_FULL_SCALE_VOLTAGE_V (26.314)

 This variable effects the SMALLEST flux value that can be identified

o Ex: 0.002 V/Hz is a very small flux typically seen in high speed
12V hobby motors

o Smallest flux = IQ_FULL_SCALE / Effective Estimation
Frequency / 0.7

 Effective Estimation Frequency is set in the
DECIMATION section below and = PWM_FREQ /

http://e2e.ti.com/support/microcontrollers/c2000/f/902/t/319433.aspx

 18

PWM_TICKS_PER_ISR / ISR_TICKS_PER_CTRL /
EST_TICKS_PER_CTRL

 Ex for 45V and 10 kHz effective estimation, smallest flux
value = 0.0064 V/Hz

 To give some headroom we could solve for 0.0015 V/Hz
* 0.7 / 15 kHz estimation = 15.75 V

 For Motor ID an IQ_FULL_SCALE value of (15) with
estimation frequency of 15 KHz should work

 My example

o Using default of (42.0) to start, may update after ID

o //! \brief CLOCKS & TIMERS

 #define USER_PWM_FREQ_kHz (30.0)

 Very low inductance, high short circuit currrent motors typically require
45-60 kHz

 Most other motors will be in the 8-30 KHz range

 Use lower PWM frequencies when possible to reduce switchign losses

 My example

o Using default of (30.0) KHz

o //! \brief DECIMATION

 Determines rates of the control loops and effects interrupt loading

 ISR = PWM_FREQ / USER_NUM_PWM_TICKS_PER_ISR_TICK

 Uses ePWM 1
st
/2

nd
/3

rd
 event hardware to trigger the ADC start of

conversion; the ADC conversion done interrupt acts as the main ISR for
the control system

 Best if ISR is <= 15 KHz maximum, and <= 10 KHz typical

o If not possible be sure to test using FEM and CPU_USAGE
functions using lab3b

 CTRL = ISR / ISR_TICKS_PER_CTRL

 Insure CTRL is effective <=15 kHz

o Be careful of 15 KHz rates on 60 MHz MCUs, you may over flow
the interrupt as more system code is added, especially during
the motor identification process

o If unsure, test using FEM and CPU_USAGE functions using
lab3b

 CURRENT = CTRL / CTRL_TICKS_PER_CURRENT

 19

o 5-15 KHz typical

 EST = CTRL / CTRL_TICKS_PER_EST

o Whole divisor of CURRENT, 2.5-15 KHz typical

 SPEED = CTRL / CTRL_TICKS_PER_SPEED

o 1 KHz typical

 TRAJ = CTRL / CTRL_TICKS_PER_TRAJ

o Same as speed, 1 KHz typical

 My example

 ISR (3) to get effective 30 kHz / 3 = 10 kHz ISR

 CTRL (1) for 10 kHz

 EST (1) and CURRENT (1) for 10 kHz

 TRAJ (10) and SPEED (10) for 1 kHz

o //! \brief USER MOTOR & ID SETTINGS

 Each motor saved must have a unique enumeration

 #define Anaheim_BLY172S 102

 #define My_Motor 103

 Comment out (//) all but one USER_MOTOR selection

 //#define USER_MOTOR Anaheim_BLY172S

 #define USER_MOTOR My_Motor

 20

 Set-up your motor

 #elif (USER_MOTOR == My_Motor)

 #define USER_MOTOR_TYPE MOTOR_Type_Pm

 #define USER_MOTOR_NUM_POLE_PAIRS (4)

o if # of poles is incorrect it only effects the relationship between
the RPM command (which is coverted to a Hz command based
on the POLE_PAIRS) as well as the Torque calculation; there is
no effect on the quality of control

o If you don’t know your pole pair number exactly you can take a
guess to start, and once motor is identified and running you can
command a multiple of 60 RPM to see if the motor is making the
expected number of revolutions per second (60 RPM = 1
rev/sec; 180 RPM = 3 rev/sec, etc)

 faster than 1 rev/sec then poles should be reduced

 slower than 1 rev/sec then poles should be increased

 #define USER_MOTOR_Rr (NULL)

o ID’d for ACI motors only

 #define USER_MOTOR_MAGNETIZING_CURRENT (NULL)

o ID’d for ACI motors only

 #define USER_MOTOR_Rs (NULL)

o Update after Motor ID

 #define USER_MOTOR_Ls_d (NULL)

o Update after Motor ID

 #define USER_MOTOR_Ls_q (NULL)

o Update after Motor ID

o Set same as Ls_d unless different Ls_d and Ls_q are known by
design; FAST can compensate for this saliency

 #define USER_MOTOR_RATED_FLUX (NULL)

o Update after Motor ID

 #define USER_MOTOR_RES_EST_CURRENT (0.4)

o ~10% of rated current

o Used to ineject current for Rs test AND to start-up motor for
EST_STATE Ramp_Up. For high cogging torque motors
increase RES_EST_CURRENT until the motor spins during
Ramp_Up

 21

 #define USER_MOTOR_IND_EST_CURRENT (-0.4)

o NEGATIVE ~10% of rated current

o Used to weaken the field during Ls testing

o If having trouble identifying a correct Ls with a large RES_EST
setting required for a high cogging motor, reduce this value for
Ls estimation stability. Ex: (5.0) and (-3.0)

 #define USER_MOTOR_MAX_CURRENT (4.0)

o Rated peak current of motor required to produce maximum
torque. This is HIGHER than the rated current of the motor.

o This is maximum Iq torque command produced by the Speed
controller (PI or SpinTAC), IF using the speed controller

 #define USER_MOTOR_FLUX_EST_FREQ_Hz (30.0)

o ~10% of rated max speed = 267 Hz * 10%

o Important to that this is high enough as we measure the voltage
produced by flux (V/Hz) which will be larger at higher Hz,
especialy for low flux (high speed) motors

o Also note resolution comments in the
USER_IQ_FULL_SCALE_VOLTAGE_V section

 After saving the user.h file, Right Click on and build the appropriate project

 22

 Using the GUI

 For Standalone Mode, follow the instructions in the section above:

Running the GUI Standalone GUI .exe

o Copy the .out just built to the appropriate Webapp folder, and rename to
“appProgram.out” ex:

…\sw\solutions\instaspin_foc\boards\boostxldrv8301_revB\f28x\f2802xF\projects\ccs5\pr
oj_lab05b\Flash\proj_lab05b.out

to the appropriate webapp folder:

C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL\appProgram.out

o Run the executable
C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL\InstaSPIN_UNIVERSAL.e
xe

Start-up Options

RsRecalc

If ENABLED - when Run is enabled - Performs a recalculation of Rs.

If DISABLED – when Run is first enabled – uses the most recent value of Rs.

Rs accuracy is critical for low speed operation. Rs changes as the motor windings heat from high current
usage = high torque demanded from the motor. Loaded washing agitation is a good example. See the
Rs On-line (always running recalibration) feature in MotorWare Lab7 if required.

OffsetCalc

If ENABLED – when Run is enabled - performs a recalculation of the ADC offsets.

Length of this recalibration is adjustable, see the User’s Guide.

Values can be saved and loaded from user.h, bypassing this calculation in the future.

Important Notes:

 If the USER_IQ_FULL_SCALE_VOLTAGE or CURRENT values are changed the saved
offsets must be changed as well.

 If DISABLED the offset values / adcBias will be loaded from user.h settings only. Only ever
DISABLE if the real values are in user.h!!!

 23

ForceAngle

Force Angle can be thought of as trajectory generation for the angle feedback (replacing FAST over a
user set area) to the FOC controller. It creates an estimated angle that rotates at a user set rate (in
user.h).

It should be used whenever FAST is not producing an accurate angle estimate, i.e. at initial start-up and if
trying to operate continuously at very low speeds.

It should typically be ENABLED when first starting

 though it doesn’t have to be, FAST can still start up the motor, but usually not as gracefully

and then DISABLED for normal operation, unless

 you have times where you run at or through very low speeds for long enough that the FAST
estimator drifts and provides poor estimates into the system

o in which case the ForceAngle can help you move out of this area and into a speed where
FAST is providing good feedback

While application/motor/sense/acceleration dependent, once the motor is running you will often continue
to track through zero speed well enough (depending on Bemf and deceleration rate).

Motor ID

To perform a Motor Identification:

 SELECT Enable System

 user.h Params is NOT selected

 Start-up Options

o Recommend keeping OffsetCalc, RsRecal and ForceAngle selected

 SELECT Run

user.h Params

If user.h Params is enabled when Run is selected, the control system will bypass Motor ID and

 Load all settings from user.h, including Offsets and all USER_MOTOR settings

 Do not select until you have updated the user.h fully

 24

 Exception: In the proj_lab2x labs this selection has no effect, project will never load from user.h
and motor ID will always be performed

Motor Identification States

This is fully covered in the User’s Guide Chapter 6. Following is the example for the PM Synchronous
Motor.

 OffsetRecalc is performed before the Motor ID process begins

 EST_State_

o RoverL

 Injects ½ of USER_MOTOR_RES_EST_CURRENT at
USER_R_OVER_L_EST_FREQ_Hz

o Rs

 Injects USER_MOTOR_RES_EST_CURRENT

o RampUp

 Starts motor using current amplitude of USER_MOTOR_RES_EST_CURRENT
at a rate of USER_MAX_ACCEL_EST_Hzps until speed of
USER_MOTOR_FLUX_EST_FREQ_Hz

 Motor must continue spinning – at the RPM of
USER_MOTOR_FLUX_EST_FREQ_Hz -from this point until Idle or ID
results should be considered invalid

o RatedFlux

 Current is minimized while keeping speed to detect Flux

o Ls

 Injects USER_MOTOR_IND_EST_CURRENT into Id (field weakening) to detect
the inductance

o RampDown

 ID process ends and motor slows to 0 speed

o Idle

 While you should insure that the Motor Identified light turns green, this does NOT mean that the
identified parameters are correct, just that the identification state finished without a serious error

o You can start ID without a motor even attached and still get a green light. This only alerts
you to very specific and serious errors

 25

Motor ID Tips

 Scaling of hardware Vph and USER_IQ_FULL_SCALE_VOLTAGE is critical, especially for
low inductance (high speed motors)

 Note that during Motor ID there are wait time time-outs established for each step. These times
may need to be increased for the RampUp especially if you increase the ID speed or decrease
the Estimation Frequency

o See “user.c”

 RoverL

o If RoverL is >= 2000 there is a variable overflow, so you MUST use lab2c to attempt ID
(this happens with low Ls / high speed motors)

 RoverL is provided in the panel for F2805x & F2802x devices which use the
variable ctrl.RoverL

 RoverL is not provided for F2806x as it uses a different variable, found under
controller_obj and then Rover.L

o USER_R_OVER_L_EST_FREQ_Hz is (300) in the DRV83x projects for 1500 Hz high
speed motors. For < 1 KHz motors reduce to (100) and for > 1 KHz change to (200).

 Rs

o Be sure to use 10% of I-rated for USER_MOTOR_RES_EST_CURRENT

o important not to overheat the motor with too high a current

o Only increase in small increments if required to start the motor spinning for the Ramp_Up
Estimation State (see below)

 Ramp_Up

o High Cogging Torque motors may not start-up

 Increase USER_MOTOR_RES_EST_CURRENT in small increments until it does
(0.2 or 0.5 A depending on scale of max current)

o When USER_MOTOR_FLUX_EST_FREQ_Hz is increased (see Ls) the Ramp_Up may
time out

 Increase USER_MAX_ACCEL_EST_Hzps to hit the target speed before time-
out

 Or increase the wait time in user.c
pUserParams->estWaitTime[EST_State_RampUp] = (uint_least32_t)((5.0 +

 Rated_Flux

o If the motor stops spinning increase USER_MOTOR_FLUX_EST_FREQ_Hz

o The smallest flux that can be ID’d =
USER_IQ_FULL_SCALE_VOLTAGE_V / FAST_EST_Hz / 0.7

 26

 For small flux machines (small motors, high speed) lower
USER_IQ_FULL_SCALE_VOLTAGE_V to increase the resolution

 Ls

o If the motor stops spinning or the Ls values are not stable and consistent increase
USER_MOTOR_FLUX_EST_FREQ_Hz

o Possibly change PWM frequency to 15-60 KHz, and use lab2c

o Note that any Ls value < 1e-6 H should be considered invalid and incorrect

Values Returned for this example

Motor ID Sanity Checks

 Rs / Ls

o R/L gives a theoretical limitation of speed with a stable voltage source

 Note: the GUI displays Ls in mH, not H

o ctrl.RoverL (or controller_obj) uses the initial high frequency signals and will be different

o Is this larger than your MAX_Hz? Does it seem reasonable for your motor?

 The 2.5x my rated max frequency is reasonable

 Note that high speed motors are often mis-designed with very low Ls, resulting in
Rs / Ls much larger than MAX_Hz

 Flux / 2pi / Ls = Short Circuit Current = Isc

o Typically 2x+ the rated current and often much larger for small Ls or large Flux machines

o Large Isc = low Ls = high speed, high current

o Larger Isc may require faster PWM (30-60 KHz) and possibly faster current control (15
KHz)

 27

 Overflow / Resolution Checks, adjustment of IQ_VOLTAGE

o Minimize Full Scale Voltage vs. Full Scale Frequency to maximize resolution

 This does a check using the IQ_FULL_SCALE_FREQUENCY which may be
much higher than you actually plan to run your motor. Do a sanity check using
the actual maximum frequency you plan to run (including any field weakening)

 For High flux motors this often means increasing the
IQ_FULL_SCALE_VOLTAGE to support the Bemf voltage at highest speeds

 For example a 1.2 V/Hz motor will produce 1200V at 1KHz!

 For Low flux motors this often means reducing the IQ_FULL_SCALE_VOLTAGE
to improve your resolution (still bounded by the actual hardware scaling of
USER_ADC_FULL_SCALE_VOLTAGE_V for actual resolution)

 For my example, I will update user.h to (24.0)

o FAST Frequency vs. Full Scale Voltage

 Alerts that low flux motors should use a smaller IQ_FULL_SCALE_VOLTAGE to
increase resolution or run the FAST EST_FREQ at a higher rate

 28

Update user.h settings

adcBias (Offsets) for Example Hardware

 Copy and paste the adcBias 0/1/2 values to the I_A/B/C_offset and V_A/B/C_offset #defines

o Note, since I chose to change my IQ_VOLTAGE from (42.0) to (24.0) in previous section
these offsets are no longer valid as they change with your IQ scaling.

o If you change IQ_VOLTAGE or CURRENT, recompile, run, and update the adcBias in
user.h

 Copy and paste the identified motor parameters to the USER_MOTOR #defines

o Note: The GUI displays inductance in mH while the user.h is in H.

o Be sure to paste the GUI Ls_d / Ls_q value with a leading 0.000

 Recompile and use the .out with your GUI if you want to be able to skip Motor ID in the future
(enable the user.h Params in any project_lab03+ before you select Run)

 29

Controller Tuning

InstaSPIN-FOC includes a PI controller for current and speed. To evaluate the InstaSPIN-MOTION
speed and position control features, skip to the next section.

Default Controller Tuning

 Speed Current & Torque

Note that both current and speed controller gains are effected by the IQ scaling variables and
decimation timing, they will need to be changed as well if you update these user.h settings.

Current Controllers

 The Iq and Id Current PI controller gains are numerically calculated & initialized

o Kp = ¼ * Bandwidth

 Bandwidth = [Ls / CTRL_FREQ_Hz * IQ_CURRENT / IQ_VOLTAGE]

 This ¼ factor is to soften the controller a bit for better stability

o Ki = CTRL_FREQ_Hz / Ls * Rs

 These can be changed simply through the GUI, which instruments the following user code

o gMotorVars.Kp_Idq = CTRL_getKp(ctrlHandle,CTRL_Type_PID_Id);

o CTRL_setKp(handle,CTRL_Type_PID_Id,gMotorVars.Kp_Idq);

 Some applications may want to do step response testing to meet desired response of
over/undershoot and settling time

 Note, current controllers can only be updated starting in proj_lab5a, previous to this any
changes to those variables in the GUI will have no effect

Speed Controller

 The PI Speed Control cannot be auto tuned based on the motor or system parameters

 30

o Speed control relies on knowledge of inertia, mechanical linkages, and desired response

o Speed Gains are initialized using a “rule of thumb”, which works decently for larger flux
motors

 Kp = 0.02 * MAX_HZ * MAX_CURRENT / IQ_CURRENT

 Ki = 2.0 * CTRL_HZ * MAX_HZ * MAX_CURRENT / IQ_CURRENT

 Experience shows that for low inertia motors a good starting point is to reduce
the default Kp and Ki by /4 to /10. High inertia motors may require gains 4-10x
larger.

 Tuning

o Tune by testing various speeds and loads or tune by step response inputs (most popular)

o May need to “gain stage”, different KpKi sets for different speeds/loads/accelerations

o May be able to empirically calculate if you know inertia (see Labs/UG)

o Zero Speed tuning & experiment

 Disable ForceAngle

 Set 0 speed

 Quickly rotate the motor shaft 90-180 deg and then let go

 Now set Speed Kp to 0.2, Ki to 0.004

o example for Anaheim motor under test

o Notice how the motor shaft behaves like a spring-damper
system, “compressing” as you turn and then “returning” once you
remove the load

 Increase Kp until the spring feeling is gone

 Increase Ki to increase the stiffness of the motor

 At this point the system might be slightly unstable, the following can help
stabilize the system:

o Increase Kp to increase the dampening

o Reduce Ki to reduce oscillations

 These can be changed simply through the GUI, which instruments the following user code

o gMotorVars.Kp_spd = CTRL_getKp(ctrlHandle,CTRL_Type_PID_spd);

o CTRL_setKp(handle,CTRL_Type_PID_spd,gMotorVars.Kp_spd);

 Note, speed controllers can only be updated starting in proj_lab5b, previous to this any
changes to those variables in the GUI will have no effect

 31

InstaSPIN-MOTION Use Example

Controller: TMS320F28069MISO

Inverter: DRV8301-69M-Kit

Motor: Teknic M2310P-LN-04K: 24V, 8 poles, 4 krpm, 1000 line encoder

 32

Hardware Set-up

 Set up the hardware according to the Kit Readme First file and HW Guide Documents

o Example for TMS320F2069MISO and DRV8301-69M-Kit

o DRV8301-69M-Kit

 Motor phase wires connected (order is important for sensored projects)

 DC power with appropriate 12V-48V bus and peak current according to motor

 33

Software Projects

Import the lab projects

 In CCS, Projects Import and point to the latest version of the MotorWare “CCS5” directory
for your combination of solution, board, and MCU

Ex: InstaSPIN_MOTION, the DRV8301, F2806xM
C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_motion\boards\drv8301_revD\f2
8x\f2806xM\projects\ccs5

o You may select any or all of the projects

 Make sure you do NOT select to “Copy projects into workspace” or the project
will not find appropriate file references during build. We recommend working
directly out of the C:\ti\motorware\ directory.

 For sensorless velocity control, import the following labs

 Lab5c –identify system inertia and friction

 Lab5e – interface to tune the current and speed controllers

 Lab6a – advanced speed trajectory generation

 34

 Lab10b – field weaking and over-modulation

 For sensored velocity control, import the following labs

 Lab12a – identify system inertia and friction

 Lab12b – interface to tune the current and speed controllers

 For position control, import the following labs

 Lab12a – identify system inertia and friction

 Lab13a – interface to tun the current and speed+position controllers

 Lab13b – position transition

 35

Updating software for your motor (user.h)

Identify the motor parameters using InstaSPIN-FOC Lab2a or Lab2c.

 In CCS, Projects Import and point to the latest version of the MotorWare “CCS5” directory
for your combination of solution, board, and MCU

Ex: DRV8301, F2806xM, Teknic Motor
C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_foc\boards\drv8301_revD\f28x\f
2806xM\projects\ccs5

Follow the instructions in section X to obtain the motor parameters

Copy the motor parameters from the InstaSPIN-FOC user.h file to the InstaSPIN-MOTION user.h file

 Open the user.h file that was modified as part of InstaSPIN-FOC lab 2a. It is located in
“sw\solutions\instaspin_foc\boards\drv8301_revD\f28x\f2806xF\src”

 Locate the USER_MOTOR settings identified in lab 02a (or in lab 2c). It should be similar to the
following:

 Open the user.h file for InstaSPIN-MOTION. It is located in

“sw\solutions\instaspin_motion\boards\drv8301_revD\f28x\f2806xM\src”

 Copy the USER_MOTOR settings from the InstaSPIN-FOC user.h into the InstaSPIN-MOTION
user.h, The new entry should be similar to the following:

 Notice that there are now four new fields for MY_MOTOR:

o USER_MOTOR_ENCODER_LINES – This should be set to the number of pulses on the
motor’s encoder. If the motor does not have an encoder, set this value to 1.0.

 36

o USER_MOTOR_MAX_SPEED_KRPM – This should be set to the maximum speed of
the motor.

o USER_SYSTEM_INERTIA –This value will be identified as part of lab 5c or lab 12a. Set
it the initial default value to 0.02.

o USER_SYSTEM_FRICTION - This value will be identified as part of lab 5c or lab 12a.
Set the initial default value to 0.01.

 There is an additional new define for InstaSPIN-MOTION,
USER_SYSTEM_BANDWIDTH_SCALE (not included in the picture). This definition represents
the default bandwidth for the SpinTAC controller. This value will be determined in lab 05e or lab
13a. For now, set this parameter to the default value of 1.0

 In addition to the USER_MOTOR settings, it is important that you copy ANY field that was
modified in any of the previous labs or as part of your hardware design process into the
InstaSPIN-MOTION user.h file.

 37

Using the GUI

 For Standalone Mode, follow the instructions in the section above:

Running the GUI Standalone GUI .exe

o Copy the .out just built to the appropriate Webapp folder, and rename to
“appProgram.out” ex:

…\sw\solutions\instaspin_motion\boards\drv8301_revD\f28x\f2806xM\projects\ccs5\proj_l
ab06a\Release\proj_lab06a.out

to the appropriate webapp folder:

C:\ti\guicomposer\webapps\InstaSPIN_F2806xM_UNIVERSAL\appProgram.out

o Run the executable
C:\ti\guicomposer\webapps\InstaSPIN_F2806xM_UNIVERSAL\InstaSPIN_UNIVERSAL.
exe

 In the GUI, there are separate tabs for Velocity control and Position control, make sure you have
selected the tab that is appropriate for your application

Inertia ID (Available in MOTION-Velocity, proj_lab05c & proj_lab12a)

To perform a system Inertia Identification:

 SELECT Enable System

 SELECT Run

 Wait until CTRL_State_OnLine & EST_State_OnLine

 Set the Goal Speed to the maximum speed (without field weakening) of your motor or application

 If the application has large friction, reduce the Ramp Time. This will increase the rate of current
change.

 SELECT Run Identify

 The motor should spin continuously until the test is completed

 When the test is complete, the Inertia and Friction values will be populated

 38

Inertia ID Tips

Common Errors

This table lists the common errors that can occur in the Inertia ID process and how to solve them.

Table 1: List of common errors in the Inertia ID process

Error Code 2003 2004 2006

Meaning
Bad estimation
value

Process timeout
Motor stops during
test

Condition
High friction
system

Motor spins Motor starts slowly High friction system

Solution
Decrease
RampTime

Decrease
GoalSpeed

Increase
OutputTorque

Decrease
RampTime

Update user.h Settings

 Copy the Inertia and Friction values to the Inertia and Friction #defines in the user.h file

o These values will not change if you change the system current or speed scaling, but they
might change if you adjust the PWM frequency or the current loop tuning

o Recompile and use the .out with the GUI in order automatically load in the correct inertia
and friction for future labs

 39

Controller Tuning

Current Controllers

 The Iq and Id Current PI controller gains are numerically calculated & initialized

o Kp = ¼ * Bandwidth

 Bandwidth = [Ls / CTRL_FREQ_Hz * IQ_CURRENT / IQ_VOLTAGE]

 This ¼ factor is to soften the controller a bit for better stability

o Ki = CTRL_FREQ_Hz / Ls * Rs

 These can be changed simply through the GUI, which instruments the following user code

o gMotorVars.Kp_Idq = CTRL_getKp(ctrlHandle,CTRL_Type_PID_Id);

o CTRL_setKp(handle,CTRL_Type_PID_Id,gMotorVars.Kp_Idq);

 Some applications may want to do step response testing to meet desired response of
over/undershoot and settling time

 Note, current controllers will be updated starting in proj_lab5a. In earlier labs, changes to
the current controller variables in the GUI will have no effect

Speed Controller (Available in MOTION-Velocity, proj_lab05e - proj_lab06d)

 InstaSPIN-MOTION includes the SpinTAC speed controller

 This controller works over a wider operating range than a PI controller and reduces the need for
“gain staging”

 This controller is tuned using a single parameter called Bandwidth. The stiffness of the system
increases as this bandwidth is increased.

 There are two suggested ways to tune this controller

o Zero Speed tuning

 Disable ForceAngle

 Set 0 speed

 Quickly rotate the motor shaft 90-180 degrees and then let go

 Increase the bandwidth and feel how the controller is fighting to maintain zero

speed

 40

 Once the controller is suitably holding 0 speed, set the Speed Reference to the
maximum speed in your application to ensure that the controller is stable across
the entire operating range

 If the motor oscillates or vibrates reduce the bandwidth by 10-20%

 Copy the Bandwidth Scale value to the #define in the user.h

o Step response tuning

 If the motor shaft is not accessible, you should conduct step response tuning

 Set the acceleration and jerk to very large values

 Set the curve type to trapezoidal

 Conduct the Step Test

 Set the speed reference to the minimum speed of your application

 Set the speed reference to approximately half of the maximum speed in
your application

 Observe how much overshoot the motor exhibits and how long it takes to settle
to the correct speed

 If you see too much overshoot, increase the bandwidth

 If the motor oscillates for a long time after reaching the faster speed,
decrease the bandwidth

 Repeat the Step Tests and Bandwidth Scale adjustments until the motor exhibits
little/no overshoot and quickly settles to the correct speed.

 After identifying the Bandwidth Scale value, copy it to the #define in the user.h

Position Controller (Available in MOTION-Position, proj_lab13a - proj_lab13e)

 InstaSPIN-MOTION includes the SpinTAC position controller

 This controller is a combined speed & position controller that is tuned using a single parameter,
called Bandwidth. The stiffness of the system increases as this bandwidth is increased.

 The controller works over a wider operating range than a PI controller and reduces the need for
“gain staging”

 There are two suggested ways to tune this controller

 41

o Zero Speed tuning

 Quickly rotate the motor shaft 90-180 degrees and then let go

 Increase the bandwidth and feel how the controller is fighting to maintain zero
speed. Adjust the bandwidth until the controller is suitably holding 0 position.

 Do a couple position transitions (see the next section), to check the motor’s
response and stability.

 If the motor oscillates or vibrates reduce the bandwidth by 10-20%

o Step response tuning

 If the motor shaft is not accessible, you should conduct step response tuning

 Set the velocity, acceleration, deceleration, and jerk to very large values

 Set the curve type to trapezoidal

 Set the Position Step Integer to 1 mechanical revolution and Run the Position
Profile

 Observe how much overshoot the motor exhibits and how long it takes to settle
to the correct position

 If you see too much overshoot, increase the bandwidth

 If the motor oscillates for a long time after reaching the position setpoint,
decrease the bandwidth

 Repeat the Step Tests and Bandwidth Scale adjustments until the motor exhibits
little/no overshoot and quickly settles to the correct speed.

 After identifying the Bandwidth Scale value, copy it to the #define in the user.h

 42

Trajectory Generation

Speed Trajectories (Available in MOTION-Velocity, proj_lab06a - proj_lab06d)

 SpinTAC Move provides the trajectory generation functions for InstaSPIN-MOTION

 SpinTAC Move is a constraint based profile generator. Users provide the limits for the profile and
SpinTAC will generate the fastest possible curve to meet those limits.

 Configuring a profile

o Curve Type Options

 Trapezoid (Fixed Acceleration)

 s-Curve (Fixed Jerk)

 st-Curve (Continuous Jerk)

o Acceleration

 Rate of change of speed

o Jerk

 Rate of change of acceleration

 Set low for smoother motion, high for fast transitions

 Running a profile

o Change the speed setpoint

 The amount of time the profile will take is calculated and provided

 The LED indicates if SpinTAC Move is generating a profile

 Velocity profiles will be interrupted if the controller receives a new setpoint.

Position Trajectories (Available in MOTION-Position, proj_lab13b - proj_lab13e)

 SpinTAC Move provides the trajectory generation functions for InstaSPIN-MOTION

 SpinTAC Move is a constraint based profile generator. Users provide the limits for the profile and
SpinTAC will generate the fastest possible curve to meet those limits.

 Configuring a profile

o Curve Type Options

 43

 Trapezoid (Fixed Acceleration)

 s-Curve (Fixed Jerk)

 st-Curve (Continuous Jerk)

o Velocity

 Maximum speed in the profile

o Acceleration

 Rate of change of speed

o Deceleration

 Rate of change of speed

o Jerk

 Rate of change of acceleration

 Set low for smoother motion, high for fast transitions

 Running a profile

o Set a position step

 Set Position Step Integer for full revolutions

 Set Position Step Fractional for partial revolutions

o Select Run Position Profile

 The amount of time the profile will take is calculated and provided

 The LED indicates when SpinTAC Move is generating a profile.

 Position profiles cannot be interrupted with a new setpoint. The controller will complete the
current position profile, and then move to the next setpoint.

 44

Motion Sequencing

Speed Motion Sequences (Available in MOTION-Velocity, proj_lab06b - proj_lab06d)

 InstaSPIN-MOTION features SpinTAC Plan, a configurable motion sequence engine

 To start the motion sequence, set the command to ST_PLAN_START

o ST_PLAN_STOP will stop the current plan and return the controller to the idle state

o ST_PLAN_PAUSE will pause the current plan until ST_PLAN_START is selected again

 Each lab has a different pre-configured motion sequence.

o proj_lab06b is a simple A->B->C motion sequence. The GUI indicates the state.

o proj_lab06c is a Washing Machine motion sequence example. The GUI indicates the
state and drum water level

o proj_lab06d includes three different selectable sequences: Test Pattern, Grocery
Conveyor, or Garage Door

 The motion sequence can be changed when status is ST_PLAN_IDLE

 Test Pattern

 Sequence of motions designed to test the motor

 Current state indicated

 Grocery Conveyor motion profile simulates a conveyor belt at a grocery store

 The GUI indicates current state and provides
instrumentation

o Turns on conveyor

o Simulates proximity switch

 Garage Door motion profile simulates a garage door

 45

 The GUI indicates current state and provides
instrumentation

o Operation button to start motion

o Up sensor (user to select)

o Down sensor (user to select)

Position Motion Sequences (Available in MOTION-Position, proj_lab13c - proj_lab13e)

 InstaSPIN-MOTION features SpinTAC Plan, a configurable motion sequence engine

 To start the motion sequence set the command to ST_PLAN_START

o ST_PLAN_STOP will stop the current plan and return the controller to the idle state

o ST_PLAN_PAUSE will pause the current plan until ST_PLAN_START is selected again

 Each lab has a different pre-configured motion sequence.

o proj_lab13c is a simple A->B->C motion sequence. The GUI indicates the state:

o proj_lab13d is a Vending Machine motion sequence example

 The GUI indicates the current state and

the available item The GUI also provides
instrumentation:

 Button to select a new item

 Button to reduce the item inventory

 46

Next Steps

 Continue to follow the InstaSPIN Projects & Labs User's Guide in MotorWare

 Read through the User’s Guide on relevant topics for your application

 For details on how to customize this GUI, create your own, or export for standalone use please
see the GUI Composer Wiki Site.

 Ask questions on the InstaSPIN e2e forum

 WARNING

Do not close the GUI until the drive has been stopped. Failure to do so will leave the
program running or put the processor into an unknown state, causing the system to
continue to draw current, possibly damaging the controlCARD, board, host computer,
motor and posing a fire hazard. After proper shut-down always disconnect the power
supplies and remember that capacitors are charged and will take time to dissipate!

http://processors.wiki.ti.com/index.php/Category:Gui_Composer
http://e2e.ti.com/support/microcontrollers/c2000/f/902.aspx

