
Report by Garry Anderson
for Robust Firmware Ltd

28th October 2014

I have just found an error in TIʼs LM3S6965 Silicon for the UART1 Peripheral (and it
may exist on UART0 and UART2 as well), but since TI has abandoned support for this
part, they will do nothing to fix the silicon. So, each user must be aware of the bug and
implement the appropriate work-around.

This Report explains what the error is, and when it causes a problem.

I discovered the error when my application occasionally failed to start after Watchdog
Timeout (WDT) Reset. The error occurs infrequently, like about 1 in 10 times, and its
frequency is not repeatable making it hard to capture. After many attempts, I was able
to capture exactly what was going wrong, and verify my findings by implementing my
work-around.

The error manifests itself as a BUSY bit in the Flag Register when the UART is not
busy, like just after WDT Reset. After WDT Reset, the BUSY bit should be zero, which it
is most of the time, however, occasionally the BUSY bit is set to ONE (1) after WDT
Reset. The busy bit does not clear itself if the UARTʼs clocks are not running. Of
course, this is an error since the Flag Register specification states that BUSY is Zero (0)
on Reset (UARTFR, Register 3, page 435, DataSheet DS-LM3S6965-7787), and the
infrequent occurrence of the BUSY bit indicates that it has something to do with a
Restart sequence error. Perhaps the “Reset” bits in the Data Sheet only applies to
Power-On Reset and not WDT Reset, although I donʼt think that is the case. WDT
Reset should behave the same as Power-On Reset:

The error first manifested itself when the UARTConfigSetExpClk() function did not
return, thereby stalling my application from starting. This function is supposed to set the

Report on Texas Instrumentsʼ LM3S6965 Silicon Bug in UART

UART clocks, but before setting the clocks, this function calls the UARTDisable function.
Further investigation showed that the UARTDisable function was stalling while waiting
for not BUSY in the Flag Register. Of course, if BUSY is set, it will not clear if the clocks
are not running, thus the UARTConfigSetExpClk() function SHOULD NOT call
UARTDisable before the UARTʼs clocks are running with this bug in the silicon.

One work-around solution is to edit the UART.C file in the DRIVERLIB library folder, and
comment out the code which calls UARTDisable from the UARTConfigSetExpClk()
function (around line 276), as follows:

void UARTConfigSetExpClk(unsigned long ulBase, unsigned long ulUARTClk,
 unsigned long ulBaud, unsigned long ulConfig)
{
 unsigned long ulDiv;

 //
 // Check the arguments.
 //
 ASSERT(UARTBaseValid(ulBase));
 ASSERT(ulBaud != 0);
 ASSERT(ulUARTClk >= (ulBaud * UART_CLK_DIVIDER));

 //
 // Stop the UART.
 //
 // BUG FIX - UARTDisable may not return if clocks are not running:
 // UARTDisable(ulBase);

 //
 // Is the required baud rate greater than the maximum rate supported
 // without the use of high speed mode?
 //
 if((ulBaud * 16) > ulUARTClk)
 {
 //

Another work-around solution is to edit the UART.C file in the DRIVERLIB library folder,
and comment-out the code which waits for BUSY to be clear in the UARTDisable()
Function (around line 451):

void UARTDisable(unsigned long ulBase)
{
 //
 // Check the arguments.
 //
 ASSERT(UARTBaseValid(ulBase));

 //
 // Wait for end of TX.

Report on Texas Instrumentsʼ LM3S6965 Silicon Bug in UART

 //
// OCCASIONAL HANG-UP AFTER WDOG POR SEQUENCE
// while(HWREG(ulBase + UART_O_FR) & UART_FR_BUSY)
// {
// }

 //
 // Disable the FIFO.
 //
 HWREG(ulBase + UART_O_LCRH) &= ~(UART_LCRH_FEN);

 //
 // Disable the UART.
 //
 HWREG(ulBase + UART_O_CTL) &= ~(UART_CTL_UARTEN | UART_CTL_TXE |
 UART_CTL_RXE);
}

The UARTDisable function works correctly if the hardware works correctly and the
UARTʼs clocks are running, and BUSY is clear as it should be, but, when BUSY is stuck
on, then this function will never return.

Once an application has made a decision to call UARTDisable, there is no reason to
even wait for the TX to become not busy, because any loss of such characters in the
transmitter is irrelevant.

I hope this Report helps other developers who have noticed that their application
occasionally stalls during a re-start sequence, like from WDT.

Hopefully, if Texas Instruments is responsible, it will issue an ERRATA addressing this
bug and presenting the work-around for other developers in the community.

Report on Texas Instrumentsʼ LM3S6965 Silicon Bug in UART

