

Implementing Photovoltaic Battery Charging System using

C2000 Microcontrollers on Solar Explorer Kit

v 0.1, 1/23/2014 Manish Bhardwaj
 C2000 Systems and Applications Team

ABSTRACT

Energy from renewable sources such as solar and wind, is gaining interest as the world’s power demands increase
and non-renewable resources deplete. Photovoltaic (PV) energy sources are considered an essential element in
gaining independence from non renewable sources. Clean, ubiquitous PV is well suited except for the fact that it’s
only available in day time. Thus energy storage is considered a key factor in enabling increased use of PV for a
variety of systems.

Photovoltaic
Panel

DC-DC Sepic Batt Charging

With MPPT
DC-DC Boost

Battery

LED

String

Fig 1 PV Street Lighting System

PV systems can be classified broadly into DC-DC and DC-AC systems. Adding storage capability in form of
batteries enables PV systems to deliver energy at night time. This guide presents a PV Street Lighting system with
battery charging system software, which implements the key features needed by a PV charger like MPPT, bulk
charging, float charging and boost stage current LED control using C2000 MCU. The guide uses the Solar Explorer
Kit (TMDSSOLARPEXPKIT) platform to illustrate the system with a F28035 control card.

Contents

ABSTRACT .. 1

1 INTRODUCTION ... 3

1.1 SOLAR EXPLORER KIT .. 3
DC-DC Sepic with MPPT ... 4
DC-DC Boost with MPPT .. 5

1.2 PV BATTERY CHARGING AND LED LIGHTING CONTROL DIAGRAM .. 5

2 SOFTWARE & CONTROL DESCRIPTION... 7

2.1 PROJECT FRAMEWORK ... 7
2.2 PROJECT DEPENDENCIES & RESOURCES .. 9
2.3 CONTROL DESCRIPTION ... 9

DC-DC Sepic MPPT Control Software .. 9
DC-DC Boost LED Current Control .. 13

3 HARDWARE PLATFORM SETUP .. 16

3.1 HW SETUP INSTRUCTIONS .. 16
3.2 SOFTWARE SETUP .. 17

4 PV BATTERY CHARGING AND LED DRIVING PROJECT ... 19

1 INTRODUCTION

PV systems use battery storage to deliver power during time when PV energy is not present or the rate of PV
energy available is not the same as the rate of consumption of the load in the system. DC-DC systems such as PV
powered street light and standalone PV inverters (DC-AC) for rural electrification are examples of such
applications. This guide provides a reference framework for such applications and discusses solutions for the key
challenges in PV battery charging using an example of a PV street lighting application.

Lead acid is the predominant rechargeable battery type due to it’s low cost, capability to deliver large load current
and wide used in automobiles which offsets it’s low power density. A 3 step or 2 step charger are typically used
which employ current based or voltage based control depending on the charge state of the battery. The framework
provides a voltage mode and current mode control example which can be applied to different battery type and
charging scheme and profile. A state machine is presented for operation of the street light which can be modified
by the end user easily for a particular application and battery.

1.1 Solar Explorer Kit

Solar Explorer Kit is a low voltage platform to evaluate C2000 microcontroller family of devices for renewable
energy applications. The Solar Explorer kit can be used to implement a PV solar street lighting system by
connecting the power stages as shown in Fig 2. Fig 3 gives a block diagram of different stages present on the
Solar Explorer kit that are used for the PV street lighting system which employs battery charging and led string
control. The input to the solar explorer kit is a 20V DC power supply which powers the controller and the
supporting circuitry. A 50W solar panel can be connected to the board (Typical values Vmpp 17V, Pmax 50W).
However for quick demonstration of the power processing, a PV emulator power stage is integrated on the board
along with other stages that are needed to process power. The control of the PV panel is kept separate from the
control of the other stages. As PV is a light dependent source, the PV panel emulator can be used to test PV
system under different lighting conditions. As the control of PV panel is executed on a separate controller a SPI
link is added from the DIMM100 on the solar explorer to the PV Panel emulator controller. This simplifies the
debug and demonstration. Details on the hardware and power stages present on the board can be found at:

controlSUITE\development_kits\

 SolarExplorer_vx.x\~Docs\SolarExplorer_HWGuide.pdf

PV

Emulator

DC-DC

Sepic

MPPT

DC/DC

Boost

Relay

Controlled

using Pic-A

LED

String

Fig 2 PV Inverter using Solar Explorer Kit

DC-DC 1ph Boost MPPT

PWM-3A

BS4

Switch

Current

Panel Current &

Voltage Fdbk
Boost Voltage

Fdbk

DC-DC Sepic Batt Chg MPPT

PWM-4A

Inductor

Current

Panel Current &

Voltage Fdbk
Batt Voltage

Fdbk
BS7

DC-DC Buck Boost Panel EMU

PWM-2A

Input Voltage

Feedback

Panel Output

Voltage &

Current

BS1

PWM-2B

PWM-1B

PWM-1A

Panel Emulator is Controlled by F28027

Power From

DC Power

Entry Macro

PWM-1

C2000 MCU

CAN

UART

I2C

CPU

32 bit

A

B

PWM-2
A

B

PWM-3
A

B

PWM-4
A

B

CAP-1ADC

12 bit

Vref

1

2

3

4

5

16

QEP
3

HOST

3

Battery

LED

String

Fig 3 Solar Explorer Kit Power Stages for a PV Battery Charging and LED String Lighting System

DC-DC Sepic with MPPT

Input to this stage can come from Panel emulator block or externally connected solar panel. Fig 4 shows the
power stage circuit implemented on solar explorer kit for this stage. Inductor L1, L2, MOSFET switch Q1 and

diode D1, together form the sepic stage. Error! Reference source not found. illustrates the control

scheme for the DC-DC sepic stage with MPPT for battery charging.

Vpnl

Ipnl

Vbatt

Q1

PWM4A

L1 D1

Ibattsw

L2
C1

C2

C3

Fig 4 DC DC Sepic stage power circuit

Gv PWM
MPPT

Iref=func(Vpnl, Ipnl)

Vpnl_Ref

Ipnl Vpnl Vpnl

To Plant

Vbatt_ref

Vbat

Gv

Bulk Charging State

Trickle, Over and Float Charging State

Battery Charge State

Determination

Runs in a slow

background task,

not timing critical

-

+

+

-

Fig 5 Control of DC-DC Sepic with MPPT

DC-DC Boost with MPPT

Input to this stage can come from Panel or the Battery output. Fig 6 shows the power stage circuit implemented
on solar explorer kit for this stage. Inductor L1, MOSFET switch Q1 and diode D1, together form the boost circuit.
The boost circuit operates at 100 KHz.

Vpv

Ipv

Vboost

Q1

PWM3A

L1 D1

Iboostsw

iC oC

Fig 6 DC DC Boost stage power circuit

1.2 PV Battery Charging and LED lighting control diagram

Fig 7 illustrates the control scheme for a PV battery charger and LED string current control system. It is clearly
noted that there are two Interrupt Service Routines (ISRs) one for closed loop control of the DC-DC sepic stage
used to charge the battery (50Khz, every alternate switching period) and other for the closed loop control of DC-DC
boost stage used to control the LED string current (50Khz, every alternate switching period).

MPPT

Vpnl_ref =

func(Vpnl, Ipnl)

Ipnl VpnlPhotovoltaic

Panel

DC-DC Sepic Batt Charging

With MPPT

PWM

DC-DC Boost

Isw_ref

Isw

Gi

Vboost_max

Vboost

PWM

Current Control of LED

{using switched current of the boost}Battery

LED

String

Gv
Vpnl_Ref

Vpnl

Vbatt_ref

Vbat

Gv

Bulk Charging State

Trickle, Over and Float Charging StateBattery Charge State

Determination

Runs in a slow

background task,

not timing critical

-

+

+

-

Fig 7 Control of Battery Charging with LED string control

2 Software & Control Description

This section describes the details of control and software for the PV system.

2.1 Project Framework

As shown in Fig 7 PV inverter control requires two real time ISR’s one is the for the closed loop control of the DC-
DC sepic stage and one for boost stage. The C2000 Solar Explorer Kit project makes use of the “C-background/C-
ISR/ASM-ISR” framework. The ISRs (50kHz), controlling DC-DC boost and sepic stage, run in assembly
environment using the Digital Power Library. The PWM base are staggered such that the ISRs do not conflict. The
project uses C-code as the main supporting program for the application, and is responsible for all system
management tasks, decision making, intelligence, and host interaction.

The key framework C files used in the project are:

SolarExplorer-Main.c – this file is used to initialize, run, and manage the application. A 1 Khz isr is defined in this
file for running MPPT and state machine to determine battery operation and led string drive.

SolarExplorer-DevInit_F2803x.c – This file contains all the initialization routines and configuration of IOs and
peripherals for this application. This file also includes functions such as setting up the clocks, PLL, Watchdog etc.
Most of functions in this file are called once during system initialization from SolarExplorer-Main.c.

SolarExplorer-Settings.h – This file contains of setting such as incremental build option and various defines for
PWM frequency, ISR triggers, voltage values for different state machine switches that are used in the project
framework.

SolarExplorer-Includes.h – This file contains of all the header files used by the project.

SolarExplorer-DPL-ISR.asm – This file contains time critical “control type” code. This file has an initialization
section (one time execute) and a run-time section which executes at half the rate (50kHz) as the PWM time-
base(50kHz) used to trigger it. This is used for the fast DC-DC boost closed loop control.

Fig 8 gives the structure of the PV inverter software, with the main background loop, the DC-DC ISR and the DC-
AC ISR.

Initialize Modules –

DCDC Boost – PWM3

DCDC Sepic – PWM4

ADC

Cinit_0

Initialize Module Parameters

2p2z connections, PWM drivers,

ADC drivers, MPPT

Enable Interrupts

Inverter – ADCINT1

Boost – EPWM_INT

BackGround Loop

GUI

DPL ISR

OneKHzISR

(ii) DPL-ISR (50Khz)

Run Battery State Machine

C context save

Run MPPT Task

Run LED Control State Machine

Restore Context

Return

(iii)OneKhzISR(1KHz)

(i) Main Loop

Save contexts and clear int flags

ASM – ISR

(Boost Control)

Run Sepic Control Loop

Run Boost Control loop

Restore Context

Return

Fig 8 PV Battery Charging and LED driving Software structure (i) Main loop (ii) DPL-ISR (iii) OneKHzISR

2.2 Project Dependencies & Resources

Hardware Kit : TMDSSOLARPEXPKIT [R5]
Control Card : F28035

Software IDE : CCSv5.2.1 or later

Control Suite Dependencies

Device Support (F28035 Header Files) : controlSUITE\device_support\f2803x\v125

IQMath Library : controlSUITE\libs\math\IQmath\v160

Digital Power Library : controlSUITE\app_libs\digital_power\f2803x_v3.4

Solar Library : controlSUITE\app_libs\solar\v1.1\IQ

The guide assumes that the user has already read the following documents related to the kit:

controlSUITE\development_kits\SolarExplorer\~Docs\SolarExplorer_HWGuide.pdf

The above documents discuss the kit’s hardware features and power stages.

2.3 Control Description

Fig 7 shows the control of PV battery charging system with LED string control. Following sections gives details of
the software flow for these two modules.

DC-DC Sepic MPPT Control Software

To get the most energy out of the solar panel, panel needs to be operated at its maximum power point. Maximum
power point however is not fixed due to the non linear nature of the PV cell and changes with temperature, light
intensity etc. Thus different techniques are used to track maximum power point of the panel like Perturb and
Observe, incremental conductance algorithms. These techniques try to track the maximum power point of the panel
under given operating conditions and are thus referred to as Maximum Power Point Tracking (MPPT)
techniques/algorithms. The Solar Explorer kit has a front-end sepic converter to charge a battery from the solar
panel input. To charge a battery first the battery voltage is measured. It is then determined if bulk charging or float
charging mode is used. For bulk charging when designing a PV battery system the panel and the battery are
selected such that the battery can sink in the max current possible from the PV cell when at MPP.

The control of the stage is described in Fig 5. To track the MPP, input voltage (Vpnl) and Input Current (Ipnl) are
sensed. The MPPT is realized using panel voltage control loop. The reference and feedback values for the panel
voltage compensator are flipped, as reducing the panel reference means increasing the load on the panel i.e. more
current being drawn i.e greater duty cycle. The MPPT controller is executed at a much slower rate ~ 10Hz.

Duty4A

B0
B1
B2
A1
A2

Dmin
Dmax

Vpnl

P
W
M

PWM4A

PWMDRV_1chUpDwnCntCompl:4:

Duty

Period

Out
Ref

Fdbk

CNTL_2P2Z:1:

Coef

CNTL_2P2Z_CoefStruct
_Vbatt

DBUFF

50Khz

VpnlRef

MATH_EMAVG:2:

InOut

Multiplier

MATH_EMAVG:1:

InOut

Multiplier

Ipnl_EMAVG

Vpnl_EMAVG

OneKhzISR

50Khz

50Khz

50Khz

MPPT PnO / INCC

VbattRef

Duty4A_Zero
VpnlRef

Vbatt

ADC Ch:x:

ADC Ch:y:

ADC Ch:z:

ADC Ch:w:

A
D
C

ADCDRV_4ch:1,2,3,4:

RltPtrA

RltPtrB

RltPtrC

RltPtrD

Isepic

Ipnl

Vpnl

Vbatt

B0
B1
B2
A1
A2

Dmin
Dmax

CNTL_2P2Z_CoefStruct
_Vpnl

MATH_EMAVG:3:

InOut

Multiplier

50Khz

MATH_EMAVG:5:

InOut

Multiplier

50Khz

Isepic_EMAVG

Vbatt_EMAVG

DC-DC Sepic Batt Chg MPPT

PWM-4A

Inductor

Current

Panel Current &

Voltage Fdbk
Batt Voltage

Fdbk

Battery

Panel

Input

Fig 9 DC-DC Sepic with MPPT Software Diagram

Figure above illustrates the control algorithm. Notice the color coding for the software blocks. The blocks in ‘dark
blue’ represent the hardware modules on the C2000 controller. The blocks in ‘blue’ are the software drivers for
these modules. Blocks in ‘yellow’ are the controller blocks for the control loop. Although a 2-pole 2-zero controller is
used here, the controller could very well be a PI/PID, a 3-pole 3-zero or any other controller that can be suitably
implemented for this application. Similarly for MPP tracking, users can choose to use a different algorithm.

The software supports two modes of operations, one is bulk charging when MPPT is enabled and other is float
charging when the constant voltage charging is performed. MPPT is disabled in this case. Below is the state
machine for the battery state determination.

Vbatt <

VBATT_V1

End of Check, repeat

Battery is dead,

discard the battery

BatteryState=0

Yes

Is there

Luminance/ Panel

Voltage

No

No

Check Every One KHz

Wait for the

panel power

BatteryState=0

BatteryState

= ?

Float Charging

Current sinked

in by the battery

will slowly

decrease

Vbatt<

VBATT_V2

0

Bulk Charging

MPPT Enabled

BatteryState=1

Float Charging

MPPT Disabled

BatteryState=2

Vbatt<

VBATT_V2

Yes No
NoYes

Float Charging

MPPT Disabled

BatteryState=2

1

2

Yes

Vbatt

Ib
a

tt

V
B

A
T

T
_

V
1

V
B

A
T

T
_

V
2

V
B

A
T

T
_

R
E

F

Ibatt_max

Battery Is Dead

Cannot charge

Bulk Charging

Float Charging

Typically select a Panel

Imax< Ibatt_max so the

user can freely perform

MPPT

Fig 10 State Machine for Battery State Determination

Code snippet below shows the Input/Output connections between the different blocks used from the Digital Power
Library to implement the DC-DC sepic with MPPT control software, this can directly be related to the control
diagram above.

 PWMDRV_1ch_UpDwnCntCompl_Duty4 = &Duty4A;

 ADCDRV_4ch_RltPtrA=&Isepic;

 ADCDRV_4ch_RltPtrB=&Ipnl;

 ADCDRV_4ch_RltPtrC=&Vpnl;

 ADCDRV_4ch_RltPtrD=&Vbatt;

 MATH_EMAVG_In1=&Ipnl;

 MATH_EMAVG_Out1=&Ipnl_EMAVG;

 MATH_EMAVG_Multiplier1=_IQ30(0.001);

 MATH_EMAVG_In2=&Vpnl;

 MATH_EMAVG_Out2=&Vpnl_EMAVG;

 MATH_EMAVG_Multiplier2=_IQ30(0.001);

 MATH_EMAVG_In3=&Vbatt;

 MATH_EMAVG_Out3=&Vbatt_EMAVG;

 MATH_EMAVG_Multiplier3=_IQ30(0.001);

 MATH_EMAVG_In5=&Isepic;

 MATH_EMAVG_Out5=&Isepic_EMAVG;

 MATH_EMAVG_Multiplier5=_IQ30(0.001);

// For Bulk Charging Mode when MPPT is on

CNTL_2P2Z_Ref1 = &Vpnl;

 CNTL_2P2Z_Fdbk1= &VpnlRef;

 CNTL_2P2Z_Out1 = &Duty4A;

CNTL_2P2Z_Coef1 = &CNTL_2P2Z_CoefStruct_Vpnl.b2;

// For float charge

 CNTL_2P2Z_Ref1 = &VbattRef;

 CNTL_2P2Z_Fdbk1= &Vbatt;

 CNTL_2P2Z_Out1 = &Duty4A;

 CNTL_2P2Z_Coef1 = &CNTL_2P2Z_CoefStruct_Vbatt.b2;

The late of LED2 and LED3 blinking is changed depending upon the state

LED3 Blinking very slowly and LED2 not blinking : State =0
LED3 and LED2 Blinking : State =1
LED3 blinking fast and LED2 not blinking : State=2

DC-DC Boost LED Current Control

The LED string is connected at the output of the boost stage. The average current though the LED string can be
controlled as shown below.

Duty3A
IboostSwRef

P
W
M

PWM3A

PWMDRV_1chUpDwnCntCompl:3:

Duty

Period

Out
Ref

Fdbk

CNTL_2P2Z:1:

Coef
DBUFF

50Khz

MATH_EMAVG:2:

InOut

Multiplier

MATH_EMAVG:1:

InOut

Multiplier

50Khz

50Khz

50Khz

Duty3A_Zero

IboostSw

VboostOut

B0
B1
B2
A1
A2

Dmin
Dmax

CNTL_2P2Z_CoefStruct
_Iboost

IboostSw_EMAVG ADC Ch:x:
A
D
C

ADCDRV_1ch:7:

Rlt

ADC Ch:x:
A
D
C

ADCDRV_1ch:8:

RltVboostOut_EMAVG

DC-DC 1ph Boost MPPT

PWM-3A

BS4

Switch

Current

Battery Current

& Voltage Fdbk
Boost Voltage

Fdbk

LED

String
Battery

Input

Fig 11 DC-DC Boost LED Current Control

The internal comparator is also used to trip the PWM of the boost stage in case of over voltage to avoid damage to
the LED strings. The decision to turn on the LED string is based on the state machine below:

Sense Ambient

Light

End of Check, repeat

There is light, don’t

turn on the LED

string

LED State=0

Ambient

Light > 0

Check Battery Voltage Is

Vbatt>

VBATT_MIN_LEDDRIVING

Ambient

Light ==0

No

Check Every One KHz

Battery Does not

have power

cannot turn on

the LED

LED State=0

Turn on the

LED

LED State=1

Yes

Fig 12 LED State Machine

Code snippet below shows the Input/Output connections between the different blocks used from the Digital Power
Library to implement the DC-DC boost current control for LED driving, this can directly be related to the control
diagram above.

PWMDRV_1ch_UpDwnCntCompl_Duty3 = &Duty3A;

ADCDRV_1ch_Rlt7=&IboostSw;

ADCDRV_1ch_Rlt8=&VboostOut;

MATH_EMAVG_In4=&VboostOut;

MATH_EMAVG_Out4=&VboostOut_EMAVG;

MATH_EMAVG_Multiplier4=_IQ30(0.001);

MATH_EMAVG_In6=&IboostSw;

MATH_EMAVG_Out6=&IboostSw_EMAVG;

MATH_EMAVG_Multiplier6=_IQ30(0.001);

CNTL_2P2Z_Ref2 = &IboostSwRef;

CNTL_2P2Z_Fdbk2= &IboostSw;

CNTL_2P2Z_Out2 = &Duty3A;

CNTL_2P2Z_Coef2 = &CNTL_2P2Z_CoefStruct_Iboost.b2;

Note that the Ambient Light value used for both the BatteryState and LED State determination can be taken from
either the CCS watch window (while debugging) or from the Light sensor on the board. The switch between the two
options is done by commenting/ un-commenting out the following section in task A1. Only two levels are used for
repeatability when using the light sensor.

// To use the light sensor on the board uncomment the lines below

// Otherwise enter LightCommand value in the watch window

if(Gui_LightRatio>_IQ13(0.5))

 Gui_LightCommand=_IQ13(0.2);

else

Gui_LightCommand=_IQ13(0.0);

3 Hardware Platform Setup

3.1 HW Setup Instructions

Note: Do not power up the board before you have verified these settings!
Before starting the labs the user must make sure the following settings are correct.

1) Make sure nothing is connected to the board, and no power is being supplied to the board.

2) Insert the controlCARD into the [Main]-J1 controlCARD connector if it is not already installed.

3) Do the following switch settings on the controlCARD:
a. Control Card SW1 is in the OFF position
b. Control Card SW2, Position 1 = ON, Position 2 = ON

4) The guide assumes that the TMS320F28027 microcontroller present in the M4 macro is pre-flashed with the
panel emulator code with which the kit is shipped.

5) Connect a banana cable between [Main]-BS1 and [Main]-BS3

[Main]-J1,

J2, J3

[M7]-J4 Banana cable

[Main]-BS1 to

[Main]-BS3

[M6]-J1

[Main]-J4

[M7]-JP1 USB

Cable to Host

[M6]-JP1 DC

Power Jack

[M6]-SW1 in ON

position

LED String

Connected

Here

Battery

Connected

Here

Fig 13 Hardware setting Solar Explorer Kit

6) Verify that a LED string is connected at the output of the boost stage i.e. between [Main]-BS4 and [Main]-BS6

7) Make sure the [Main]-J1, [Main]-J2, [Main]-J3, [Main]-J4, [M6]-J1 and [M7]-J4 jumpers are populated. Verify

[M6]-SW1 is in on position.

8) Connect a USB cable (B to A Cable) from [M7]-JP1 to the host computer. [M7]-LD1 will light up indicating that
the USB is powered.

9) Now connect the DC power supply shipped with the kit to [M6]-JP1, and turn on [M6]-SW2. [M5]-LD2 will start
blinking indicating the PV emulator code is running on the emulator. Turn off [M6]-SW2.

3.2 Software Setup

Installing Code Composer and controlSUITE

1. If not already installed, please install Code Composer v5.x

2. Go to http://www.ti.com/controlsuite and run the controlSUITE installer. Select to install the “SolarExplorer”
software and allow the installer to also download all automatically checked software.

Setup Code Composer Studio to Work with SolarExplorer kit

3. Open “Code Composer Studio”.

4. Once Code Composer Studio opens, the workspace launcher may appear that would ask to select a workspace
location,: (please note workspace is a location on the hard drive where all the user settings for the IDE i.e.
which projects are open, what configuration is selected etc. are saved, this can be anywhere on the disk, the
location mentioned below is just for reference. Also note that if this is not your first-time running Code
Composer this dialog may not appear)

 Click the “Browse…” button

 Create the path below by making new folders as necessary.

 “C:\Documents and Settings\My Documents \ProjectWorkspace”

 Uncheck the box that says “Use this as the default and do not ask again”.

 Click “OK”.

5. Add the project into your current workspace by clicking “Project->Import Existing CCS/CCE Eclipse Project”.

 Select the root directory of the SolarExplorer. This will be:
“\controlSUITE\development_kits\SolarExplorer_vx.x\SolarExplorer_PVBattChg_F2803x”

 Click Finish, this would copy all the projects relevant for the kit into the workspace. If you want only a
particular project to be copied uncheck the box next to the other project names.

Configuring a Project

6. Expand the file structure of the project you would like to run from the C/C++ Projects tab. Right-click on this
project’s name and select “Set as Active Project”, if this is not already the case.

http://www.ti.com/controlsuite

7. Assuming this is your first time using Code Composer, the xds100-F28035 should have been set as the default
target configuration. Do verify this by viewing the xds100-f28035.ccxml file in the expanded project structure
and a [Active/Default] written next to it. By going to “View-> Target Configurations” you may edit existing target
configurations or change the default or active configuration. You can also link a target configuration to a project
in the workspace by right clicking on the Target configuration name and selecting Link to Project.

8. Fig 14 shows the project in the CCSv4 C/C++ Project tab, it shows all the key files used in the project.

Fig 14 PV Inverter project in C/C++ tab

4 PV Battery Charging and LED Driving Project

The project simply run the control code described above. First, uncomment the following lines in the task A1 to enter
ambient light value through the watch window.

 // To use the light sensor on the board uncomment the lines below

 // Otherwise enter LightCommand value in the watch window

 /*if(Gui_LightRatio>_IQ13(0.5))

 Gui_LightCommand=_IQ13(0.2);

 else

 Gui_LightCommand=_IQ13(0.0);

 */

Build and Load the Project

1. Click Project  “Rebuild All” button and watch the tools run in the build window.
2. Click Target  ”Debug Active Project”. The program will be loaded into the flash. You should now be at the start of

Main().
3. Now add variables to the expression view by first opening the scripting console through View->Scripting Console.

Then on the scripting console window, select “open command file” option at the top right corner and select the
“BattChrgSlrExp_WatchVariables.js” from the project folder. This will populate the Expression Window with
appropriate variables needed to debug the system and the appropriate Q formats.

Using Real-time Emulation

Real-time emulation is a special emulation feature that allows the windows within Code Composer Studio to be updated
at a rate up to 10 Hz while the MCU is running. This not only allows graphs and watch views to update, but also allows
the user to change values in watch or memory windows, and see the effect of these changes in the system. This is very
useful when tuning control law parameters on-the-fly.

4. Enable real-time mode by hovering your mouse on the buttons on the horizontal toolbar and clicking button

 .

5. A message box may appear. If so, select YES to enable debug events. This will set bit 1 (DGBM bit) of status
register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit. When the DGBM bit is set to “0”, memory and
register values can be passed to the host processor for updating the debugger windows.

6. Click on Continuous Refresh buttons for the watch view.

Run the Code

7. Run the project,

8. Run using the Run button on the toolbar, or using Target-> Run on the menu bar. The expressions view will keep on
refreshing with values as shown below.

Fig 15 Expressions window to watch variables

9. Now, as the battery has not been connected and the LightCommand is zero, nothing will happen.

10. Connect a 12V battery that can take a max of 2 Amps current at the output of the sepic stage on the terminal block

[Main]-TB2. You can see the battery voltage value now reflected in the watch view. As Light command is zero, the
LED state machine will detect this and start the LED driving and you can see the LED string light up. (You must
select a LED string capable of handling ~30V at the terminal.)

11. Now change the LightCommand Value to 0.2 and see that the battery state machine will kick in and start charging

the battery. The LED string state machine will detect the light and switch off the LEDs.

12. Depending on what level of battery charge is there the battery can use MPPT or not. User can play with different

light command value, and vary other parameters to see the effect and can modify the state machine to suit their
needs.

13. Write 0 to LightCommand Value. Now, halt the processor by using the Halt button on the toolbar , or by using

Target  Halt. Then take the MCU out of real-time mode by clicking on . Finally reset the MCU . You can
not disconnect the battery.

End of Exercise

