
National Semiconductor

The LM9831 and LM9832
USB Interface

Version 1.0
6/26/00

N

LM9831/32 USB Interface Specification

 inter-
ble

er end-
1 General Description

This document describes the host’s view of the USB LM9831, the logic between the LM9831 and the USB
face and any other points specific to the use of the USB interface in LM9831 not described in the Configura
USB Device Adapter documentation.

The device implements one vendor specific USB interface, which consists of the control endpoint plus 3 oth
points.

The last section is addendum documenting the changes between the LM9831 and the LM9832.
National Semiconductor - 6/26/00 2

LM9831/32 USB Interface Specification

ads or

 the
r to be

e same
 read
d data
2 Endpoints

The USB interface supports 4 endpoints.

2.1 Control Endpoint
Endpoint number is 0, maximum packet size is 8 bytes, single buffering is used.

2.1.1 Requests

The default control endpoint supports the required standard requests.

Two additional vendor specific interface requests are available to read and write registers. Each request re
writes a series of registers, beginning at the first register specified.

The WRITE_CONTROL request is patterned after the proposed imaging class specific interface request of
same name. For this request, bmRequestType = 0x41, bRequest = 0x00, wValue = address of first registe
written (0x0000 to 0x00ff), wIndex = 0x0000, and wLength = number of registers to be written (0x0000 to
0x00c0), and data is the data to be written.

The READ_CONTROL request is patterned after the proposed imaging class specific interface request of th
name. For this request, bmRequestType = 0xc1, bRequest = 0x00, wValue = address of first register to be
(0x0000 to 0x00ff), wIndex = 0x0000, and wLength = number of registers to be read (0x0000 to 0x00c0), an
is the data read.

2.1.2 Descriptors

 The device descriptor programmed into the internal ROM specifies the following:
 bLength = 0x12
 bDescriptorType = 0x01 = DEVICE
 bcdUSB[7:0] = 0x00 = 1.00
 bcdUSB[15:8] = 0x01 = 1.00
 bDeviceClass = 0x00 = Independent class interfaces
 bDeviceSubClass = 0x00
 bDeviceProtocol = 0x00
 bMaxPacketSize0 = 0x08
 idVendor[7:0] = 0x00 = National Semiconductor
 idVendor[15:8] = 0x04 = National Semiconductor
 idProduct[7:0] = 0x00
 idProduct[15:8] = 0x10
 bcdDevice[7:0] = 0x00 = 1.00
 bcdDevice[15:8] = 0x01 = 1.00
 iManufacturer = 0x01
 iProduct = 0x02
 iSerialNumber = 0x00 = not specified
 bNumConfigurations = 0x01

 The configuration descriptor programmed into the internal ROM specifies the following:
 bLength = 0x09
 bDescriptorType = 0x02 = CONFIGURATION
 wTotalLength[7:0] = 0x27
 wTotalLength[15:8] = 0x00
National Semiconductor - 6/26/003

LM9831/32 USB Interface Specification
 bNumInterfaces = 0x01
 bConfigurationValue = 0x01
 iConfiguration = 0x00 = not specified
 bmAttributes = 0xa0 = {BusPowered,RemoteWakeup} if self_powered pin is low
 = 0x60 = {SelfPowered,RemoteWakeup} if self_powered pin is high
 MaxPower = 0xfa = 500ma if self_powered pin is low
 = 0x01 = 2ma if self_powered pin is high

 The interface descriptor programmed into the internal ROM specifies the following:
 bLength = 0x09
 bDescriptorType = 0x04 = INTERFACE
 bInterfaceNumber = 0x00
 bAlternateSetting = 0x00
 bNumEndpoints = 0x03
 bInterfaceClass = 0xff = Vendor
 bInterfaceSubClass = 0x00
 bInterfaceProtocol = 0xff = Vendor
 iInterface = 0x00 = not specified

 The endpoint 1 descriptor programmed into the internal ROM specifies the following:
 bLength = 0x07
 bDescriptorType = 0x05 = ENDPOINT
 bEndpointAddress = 0x81 = {IN,1}
 bmAttributes = 0x03 = Interrupt
 wMaxPacketSize[7:0] = 0x01
 wMaxPacketSize[15:8] = 0x00
 bInterval = 0x10 = 16ms

 The endpoint 2 descriptor programmed into the internal ROM specifies the following:
 bLength = 0x07
 bDescriptorType = 0x05 = ENDPOINT
 bEndpointAddress = 0x82 = {IN,2}
 bmAttributes = 0x02 = Bulk TBD: is this bit encoding right?
 wMaxPacketSize[7:0] = 0x40
 wMaxPacketSize[15:8] = 0x00
 bInterval = 0x00

 The endpoint 3 descriptor programmed into the internal ROM specifies the following:
 bLength = 0x07
 bDescriptorType = 0x05 = ENDPOINT
 bEndpointAddress = 0x03 = {OUT,3}
 bmAttributes = 0x02 = Bulk TBD: is this bit encoding right?
 wMaxPacketSize[7:0] = 0x40
 wMaxPacketSize[15:8] = 0x00
 bInterval = 0x00

 String descriptor 0 programmed into the internal ROM specifies the language IDs supported:
 bLength = 0x04
 bDescriptorType = 0x03 = STRING
 LangID[7:0] = 0x09 = Primary Language = English
 LangID[15:8] = 0x04 = Sub Language = US
National Semiconductor - 6/26/00 4

LM9831/32 USB Interface Specification

he corre-
Such
n read the

the bulk

ndpoint,
he mode
least sig-
dicates
 address

 com-
rent
n the

the bulk

the data
, and the
it
e regis-
ach byte

te before
es, reads
nts.
 String descriptor 1 programmed into the internal ROM specifies the manufacturer (in UNICODE):
 bLength = 0x2e
 bDescriptorType = 0x03 = STRING
 string = “National Semiconductor”

 String descriptor 2 programmed into the internal ROM specifies the product (in UNICODE):
 bLength = 0x1e
 bDescriptorType = 0x03 = STRING
 string = “LM9831 Scanner”

2.2 Interrupt Endpoint
Endpoint number is 1, maximum packet size is 1 byte, buffer size is 8 bytes, single buffering is used.

Single data byte packets are returned on this endpoint. When set, each bit of the data byte indicates that t
sponding bit of the miscellaneous I/O status register (0x02) has changed since the register was last read.
packets are only returned when the status bits change. When the host receives such a packet, it should the
status register to determine the current values.

2.3 Bulk In Endpoint
Endpoint number is 2, maximum packet size is 64 bytes, double buffering is used, the buffer is shared with
out endpoint.

Registers may be read via the bulk in endpoint by sending a sequence of command bytes on the bulk out e
then reading the data bytes on the bulk in endpoint. There are 4 command bytes, which, in order, indicate t
of the transfer, the starting address, and the number of bytes to be read (most significant byte, followed by
nificant byte). The mode byte is bit mapped: bit 0 is set to indicate a register read operation; bit 1, if set, in
that each byte will be read from the register at the next higher address that the previous byte (incrementing
mode), if clear, indicates that each byte will be read from the same register; all other bits are cleared.

Because register reads via this endpoint share the bulk out endpoint with register writes, such a write must
plete before such a read is started, or vice versa. Since reads and writes via the control endpoint use diffe
resources, reads or writes on the control endpoint may be performed simultaneously with reads or writes o
bulk endpoints.

2.4 Bulk Out Endpoint
Endpoint number is 3, maximum packet size is 64 bytes, double buffering is used, the buffer is shared with
in endpoint.

Registers may be written via the bulk out endpoint by sending a sequence of command bytes, followed by
bytes. There are 4 command bytes, which, in order, indicate the mode of the transfer, the starting address
number of bytes to be written (most significant byte, followed by least significant byte). The mode byte is b
mapped: bit 0 is cleared to indicate a register write; bit 1, if set, indicates that each byte will be written to th
ter at the next higher address that the previous byte (incrementing address mode), if clear, indicates that e
will be written to the same register; all other bits are cleared.

Because register writes via this endpoint share the endpoint with register writes, such a read must comple
such a write is started, or vice versa. Since reads and writes via the control endpoint use different resourc
or writes on the control endpoint may be performed simultaneously with reads or writes on the bulk endpoi
National Semiconductor - 6/26/005

LM9831/32 USB Interface Specification

ecause

formed
e, thus

terface

end and
 short

the state
wered
s low,
uts with
r. There
ers
 in J state
le the

nd the
t by the
ic
uence,
3 Registers

3.1 Address space
The address space available for register access is 0x00 to 0xbf. 0xc0 to 0xff is not available for registers b
the data transfer interface uses this range to address endpoint pipes.

3.2 Operational registers
LM9831’s existing registers are mapped directly into the 0x00 to 0x7f address range.

Non-blocking flow control is implemented on accesses to register 0x00 (Pixel Data). If a read cannot be per
on this register because data is not available in the buffer, a retry status will be returned to the USB interfac
enabling other endpoints to read/write other registers.

Accesses to all other registers use blocking flow control. An acknowledgement is not returned to the USB in
until the data has been accepted or provided by LM9831.

3.3 Diagnostic registers
The following registers are available for diagnostic and production test purposes.

0xb6, frame0_diag, r/w, resets to 0x00, controls short frame test mode used for speeding up testing of susp
resume timing, 0x00 enables normal frame timer length of 36015 cycles of the 12MHz clock, 0x01 enables
frame timer length of 2223 cycles of the 12MHz clock.

0xb7, mac0_diag, r/o, provides visibility to various mac states

0xb8, mac1_diag, r/o, provides visibility to various mac states

0xb9, mac2_diag, r/o, provides visibility to various mac states

0xba, mac3_diag, r/o, provides visibility to various mac states

0xbb, phy0_diag, r/o, provides visibility to various phy states

0xbc, xcvr0_diag, r/o, receiver test register, bit 0 samples the state of the differential receiver, bit 1 samples
of the D- single ended receiver, bit 2 samples the state of the D+ single ended receiver. When the self_po
strap input is high, these bits reflect the current state of the receivers. When the self powered strap input i
these bits are latched. To test the receivers, with the self_powered strap input high, drive the D+ and D- inp
the desired levels; take the self_powered pin low to latch the sample; do a USB transfer to read this registe
are two sets of receivers, differential receivers which are active in the operational states, and CMOS receiv
which are active in suspend state. Be careful not to allow the USB interface to enter the suspend state (bus
for 3ms or longer) when testing the differential receivers. Note that the clock need not be running to samp
receiver states.

0xbd, xcvr1_diag, r/w, resets to 0x00, transmitter D+ test sequence, see description below

0xbe, xcvr2_diag, r/w, resets to 0x00, transmitter D- test sequence, see description below

0xbf, xcvr3_diag, r/w, resets to 0x00, transmitter enable test sequence, when any bit of xcvr3_diag is set, a
self_powered strap input is high, the transmitter test mode is entered. In this mode, an 8 bit pattern is sen
D+ and D- transmitters. For the first bit, xcvr1_diag[0] sets the D+ logic level, xcvr2_diag[0] sets the D- log
level, and xcvr3_diag[0], if set, enables both transmitters. For the second through eigth bits of the test seq
bits 1 to 7 of these registers are likewise used. The sequence will repeat as long as self_powered is high.
National Semiconductor - 6/26/00 6

LM9831/32 USB Interface Specification

ble to the
 resis-

 device
ce may

it of this
e will be
e of the
abled,
4 Power management

The USB bus state and device state control the bus power consumed by the device. Both states are availa
LM9831 logic. If the USB is suspended, the device will draw no more than 500uA from the USB (the pullup
tor consumes 200uA of this, nominally). If the USB is not suspended, but the device is not configured, the
will draw no more than 100mA from the USB. If the USB is not suspended and is configured, then the devi
draw up to 500mA from the USB.

The miscellaneous I/O status register (0x02) forms the basis for initiating remote resume requests. If any b
register has changed since the last time the register was read, and the USB is suspended, a remote resum
done. This logic is asynchronous to permit a remote resume to be initiated while the clock is stopped. Som
logic may be shared with the interrupt endpoint logic. If the device remote wakeup enable feature is not en
the USB interface will not propagate the resume request onto the USB.
National Semiconductor - 6/26/007

LM9831/32 USB Interface Specification

the recip-
. Since
c
TI does
 So, in
P),

 from the
he code
lues and

OL and
ard of

 of the

ges were
and
5 LM9832 Addendum

5.1 USB Interface ROM Changes from LM9831 to LM9832
There are two sets of changes. The first set adds support for vendor defined requests with the "device" as
ient. The first ROM was coded to support vendor defined requests with only the "interface" as the recipient
then, Microsoft has released its Still Image interface (STI) for device drivers, which supports vendor specifi
requests with the "device" as the recipient, but not with the "interface" as the recipient. Furthermore, the S
not even support the standard USB requests that enable and disable the device's remote wakeup feature.
order to support the READ_CONTROL, WRITE_CONTROL, SET_FEATURE(DEVICE_REMOTE_WAKEU
and SET_FEATURE(DEVICE_REMOTE_WAKEUP) requests, vendor specific "device" versions of these
requests were added to the ROM.

Incoming requests are interpreted by a progressive decision tree coded into the ROM. As each byte is read
receive buffer, it is tested against several values. When a value matches, program execution branches to t
which further services that byte value. The new requests are supported by adding tests for the new byte va
adding corresponding code. Because only the first 2 bytes differ between the old and new READ_CONTR
WRITE_CONTROL requests, this code merges back together, and the same code services byte 3 and onw
both the old and new requests.

The second set of changes consists of updates to the descriptors to indicate the new product, new revision
USB specification, and use of vendor defined requests with the "device" as the recipient.

These changes were first coded into an external EEPROM and tested with several PC systems. The chan
then made to the uprog_sti.u file and compiled with the uasm script to produce a file for Verilog simulation
another file for ROM generation.

5.2 New Vendor-Specific Device Requests
--

bmReqTyp bRequest wValue wIndex wLength Data Description

-------- -------- ------ ------ ------- ---- -----------

40 04 00xx 0001 0001 yy CLEAR_FEATURE(DEVICE_REMOTE_WAKEUP)

40 0C 00xx 0001 0001 yy CLEAR_FEATURE(DEVICE_REMOTE_WAKEUP)

40 04 00xx 0003 0001 yy SET_FEATURE(DEVICE_REMOTE_WAKEUP)

40 0C 00xx 0003 0001 yy SET_FEATURE(DEVICE_REMOTE_WAKEUP)

40 04 offset 0000 length data WRITE_CONTROL(register_offset,data)

40 0C offset 0000 length data WRITE_CONTROL(register_offset,data)

C0 04 offset 0000 length data READ_CONTROL(register_offset)

C0 0C offset 0000 length data READ_CONTROL(register_offset)

xx = ignored (recommend setting to 01 to indicate DEVICE_REMOTE_WAKEUP feature selector)

yy = ignored, 1 byte
National Semiconductor - 6/26/00 8

LM9831/32 USB Interface Specification

ld
 of this
pecifi-
5.3 Changed Device Descriptor
--

 bcdUSB: from: 0x0100 = "1.0" to: 0x0101 = "1.1"

 bDeviceClass: from: 0x00 = Independent Class Interfaces to: 0xff = Vendor Specific

 bDeviceProtocol: from: 0x00 to: 0xff = Vendor Specific

 idProduct: from: 0x1000 to: 0x1001

5.4 Changed Product String Descriptor
--

 from: "Merlin Scanner" to: "LM9832 42 Bit Scanner"

5.5 Additional Notes
--

With USB 1.1, bit 7 of the bmAttributes byte of the Configuration Descriptor is now a reserved bit, and shou
always be set to 1. However, this change did not make it into this ROM, which uses the USB 1.0 definition
bit, which indicates BusPowered capability. Future revisions of the ROM should implement this change. S
cally, this involves making the following change in uprog.u:

 from: GetDescConfig1: xmiti(0x60); // bmAttributes = {SelfPowered,RemoteWakeup}

 to: GetDescConfig1: xmiti(0xe0); // bmAttributes = {SelfPowered,RemoteWakeup}
National Semiconductor - 6/26/009

LM9831/32 USB Interface Specification
National Semiconductor - 6/26/00 10

	1 General Description
	2 Endpoints
	2.1 Control Endpoint
	2.1.1 Requests
	2.1.2 Descriptors

	2.2 Interrupt Endpoint
	2.3 Bulk In Endpoint
	2.4 Bulk Out Endpoint

	3 Registers
	3.1 Address space
	3.2 Operational registers
	3.3 Diagnostic registers

	4 Power management
	5 LM9832 Addendum
	5.1 USB Interface ROM Changes from LM9831 to LM9832
	5.2 New Vendor-Specific Device Requests
	5.3 Changed Device Descriptor
	5.4 Changed Product String Descriptor
	5.5 Additional Notes

