CE Radio Test Report

APPLICANT : Texas Instruments Incorporated

EQUIPMENT: CC2564 Bluetooth HCl Module

BRAND NAME : Texas Instruments

MODEL NAME : CC2564MODN

MARKETING NAME : CC2564MODN Bluetooth® Host

Controller Interface (HCI) Module

Report No. : ER741325

STANDARD : ETSI EN 300 328 V2.1.1 (2016-11)

TEST DATE(S) : May 23, 2017 ~ Jun. 11, 2017

The measurement shown in this test report is tested in accordance with the test procedures given in ETSI EN 300 328 V2.1.1 (2016-11).

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 1 of 34 Report Issued Date : Jun. 15, 2017

1190

Report Version : Rev. 01
Report Template No.: BU5-ER328 2024 Version 2.1

TABLE OF CONTENTS

		N HISTORY	
SU	MMAI	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	_
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	
	1.4	Modification of EUT	5
	1.5	Testing Facility	6
	1.6	Applied Standards	6
	1.7	Test Condition	-
2		T CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Descriptions of Test Mode	
	2.2	Connection Diagram of Test System	
	2.3	Supported Unit used in test configuration and system	
	2.4	EUT Operation Test Setup	
3	TRA	NSMITTER PARAMETERS	
	3.1	Maximum Transmit Power	
	3.2	Maximum Equivalent Isotropically Radiated Power (E.I.R.P.) Spectral Density	
	3.3	Occupied Channel Bandwidth	12
	3.4	Frequency Hopping Requirements	
	3.5	Transmitter unwanted emissions in the out-of-band domain	
	3.6	Transmitter spurious emissions	23
4	REC	EIVER PARAMETERS	25
	4.1	Receiver spurious emissions	25
	4.2	Receiver Blocking Test	27
5	ADA	PTIVITY TEST	30
	5.1	Adaptivity	
6	GEO	-LOCATION CAPABILITY	_
	6.1	Geo-location	
7		OF MEASURING EQUIPMENT	
8		ERTAINTY EVALUATION	34
		DIX A. TEST RESULT OF CONDUCTED TEST ITEMS	
		IX B. CONDUCTED SPURIOUS EMISSION PLOTS	
		DIX C. CABINET RADIATION PLOTS	
ΔΡ	PEND	NY D. PHOTOGRAPHS OF RADIATED EMISSION TEST CONFIGURATION	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 2 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No.: ER741325

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
ER741325	Rev. 01	Initial issue of report	Jun. 15, 2017

 ${\it SPORTON\ INTERNATIONAL\ INC.}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 3 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01
Report Template No.: BU5-ER328 2024 Version 2.1

SUMMARY OF TEST RESULT

CLAUSE (EN 300 328) TEST PARAMETER		PASS/FAIL	REMARK				
	Transmitter Parameters						
4.3.1.2 4.3.2.2	Maximum Transmit Power		-				
4.3.2.3	Maximum Equivalent Isotropically Radiated Power (E.I.R.P.) Spectral Density	PASS	Only applicable for modulations other than FHSS				
4.3.1.8 4.3.2.7	Occupied Channel Bandwidth	PASS	-				
4.3.1.4 4.3.1.5	Frequency Hopping Requirements	PASS	Only applicable for FHSS				
4.3.1.9 4.3.2.8	Transmitter sourious emissions in OOR		-				
4.3.1.10 4.3.2.9 Transmitter spurious emissions		PASS	Under limit 12.80 dB at 11880.000 MHz				
	Receiver Paramete	rs					
4.3.1.11 4.3.2.10 Receiver spurious emissions		PASS	Under limit 8.77 dB at 119.880 MHz				
	Adaptive Test Iten	n					
4.3.1.7 4.3.2.6	Adaptivity	Not Required	Only applicable for adaptive equipment				
4.3.1.12 4.3.2.11	Receiver Blocking		Output Power >10dBm				
	Non-Adaptive Test Item						
4.3.1.3 4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Required	Only applicable for non-adaptive equipment				
4.3.1.6 4.3.2.5	Medium Utilisation (MU) factor	Not Required	Output Power >10dBm				

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 4 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No.: ER741325

1 General Description

1.1 Applicant

Texas Instruments Incorporated

12500 TI BLVD., Dallas Texas, 75243

1.2 Manufacturer

Texas Instruments Incorporated

12500 TI BLVD., Dallas Texas, 75243

1.3 Product Feature of Equipment Under Test

1.3.1 Specification of the Equipment under Test

RF General Information						
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate	Power Setting	
2400-2483.5	BR V2.1	2402-2480	0-78 [79]	1 Mbps	0x18	
2400-2483.5	EDR V2.1	2402-2480	0-78 [79]	2 Mbps	0x14	
2400-2483.5	EDR V2.1	2402-2480	0-78 [79]	3 Mbps	0x14	
2400-2483.5	LE V4.1	2402-2480	0-39 [40]	1 Mbps	0x18	

Note 1: Bluetooth BR uses a GFSK modulation

Note 2: Bluetooth EDR uses a combination of /4-DQPSK and 8DPSK.

Note 3: Bluetooth LE (Low energy) uses GFSK modulation.

1.3.2 Antenna Details

	Antenna information					
Brand Antenna Type Model			Model	2.4GHz ~2.5GHz Gain		
1	Mag Layers	Chip	LTA-5320-2G4S3-A1	-1.38		

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

1.5 Testing Facility

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No. 52, Hwa Ya 1st Rd.,Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. : TH05-HY; DFS02-HY

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd., Kwei-Shan District, Tao Yuan City, Taiwan R.O.C. TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.: 05CH05-HY;03CH15-HY			

1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of **ETSI EN 300 328 V2.1.1 (2016-11).**

Note: All test items were verified and recorded according to the standards and without any deviation during the test.

1.7 Test Condition

Normal Voltage	DC 3.6V
Normal Temperature	25 ℃
Extreme Temperature	-30°C and 85°C

Note: The test temperature was between -30° C $\sim 85^{\circ}$ C by manufacturer request.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 6 of 34

Report Issued Date : Jun. 15, 2017

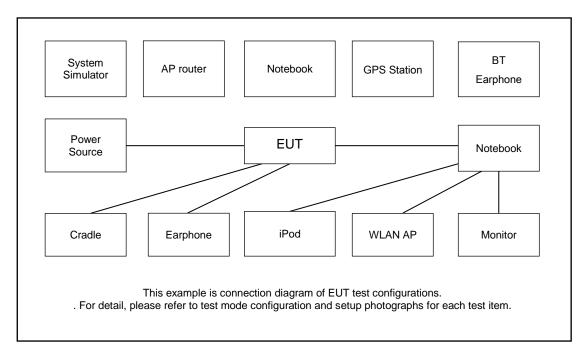
Report Version : Rev. 01

Report No. : ER741325

Test Configuration of Equipment under Test 2

2.1 Descriptions of Test Mode

- During testing, the interface cables and equipment positions were varied according to ETSI EN 300 328 V2.1.1 (2016-11).
- The complete test system included EUT for RF test.
- Preliminary tests were checked in different data rate and recorded worse in the following tables: c.


	Test Modes						
RF	Bluetooth 1Mbps	Bluetooth 4.1 - LE					
KF	GFSK	GFSK					
T.,	Bluetooth (1Mbps) CH00 (2402MHz)	Bluetooth 4.1 - LE CH00 (2402MHz)					
Tx	Bluetooth (1Mbps) CH78 (2480MHz)	Bluetooth 4.1 - LE CH39 (2480MHz)					
Rx	Bluetooth (1Mbps) CH78 (2480MHz)	Bluetooth 4.1 - LE CH39 (2480MHz)					

SPORTON INTERNATIONAL INC. : 7 of 34 Page Number Report Issued Date : Jun. 15, 2017 TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Version : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

2.2 Connection Diagram of Test System

2.3 Supported Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	E335	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.4 EUT Operation Test Setup

For Bluetooth test items, an engineering test program (HCITester) was provided and enabled to make EUT contact with Bluetooth base station for continuous transmitting and receiving signals.

For Bluetooth 4.1 – LE test items, an engineering test program (HClTester) was provided and enabled to make EUT continuous transmitting and receiving signals

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 8 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

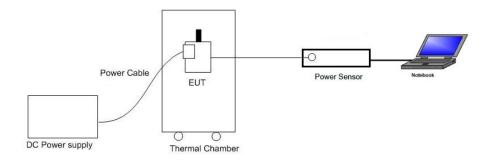
Report No. : ER741325

3 Transmitter Parameters

3.1 Maximum Transmit Power

3.1.1 Limit of Effective Isotropic Radiated Power

SUBCLAUSE 4.3.1.2.3 and 4.3.2.2.3			
TEST CONDITION	LIMIT		
Normal and Extreme Temperature Conditions	20dBm (e.i.r.p)		


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.1.3 Test Procedure

- 1. The measurement procedure follows the clause 5.4.2.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. Placing the EUT in thermal chamber.
- 3. The EUT is connected to external power supply.
- 4. Setting thermal chamber temperature and power supply voltage at suitable values.
- 5. The EIRP = A+G+Y, where A is the power measured, G is the assembly gain of the individual antenna of the EUT in dBi and Y is the additional beamforming gain of the EUT in dB if applicable, here, Y=0.
- 6. The measurement duration is at least 1 second to ensure a minimum number of bursts (at least 10) are captured.

3.1.4 Test Setup

3.1.5 Test Results

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 9 of 34

Report Issued Date : Jun. 15, 2017

Report Version : Rev. 01

Report No. : ER741325

3.2 Maximum Equivalent Isotropically Radiated Power (E.I.R.P.) Spectral Density

3.2.1 Limit of Maximum Power Spectral Density

SUBCLAUSE 4.3.2.3.3			
TEST CONDITION LIMIT			
Normal and Extreme Temperature Conditions	10dBm / MHz		

Remark: Maximum spectral power density is not applicable to FHSS system device.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.2.3 Test Procedure

- 1. The measurement procedure follows the clause 5.4.3.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. These measurements shall only be performed at normal test conditions.
- 3. The measurement shall be repeated for the equipment being configured to operate at the lowest, the middle, and the highest frequency of the stated frequency range.
- 4. The test procedure shall be as follows:

Step 1:

Connect the EUT to the spectrum analyzer and use the following settings:

Start Frequency	2400MHz	
Stop Frequency	2483.5MHz	
Resolution BW	10kHz	
Video BW	30kHz	
Sweep Points	8350	
Detector	RMS	
Trace Mode	Max Hold	
Sweep time	10 sec	

 SPORTON INTERNATIONAL INC.
 Page Number
 : 10 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

Step 2:

Add up the values for amplitude (power) for all the samples in the file.

Normalize the individual values for amplitude so that the sum is equal to the RF Output Power (e.i.r.p.) measured.

Report No. : ER741325

Step 4:

Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

Step 5:

Shift the start point of the samples added up in step 4 by 1 sample and repeat the procedure in step 4 (i.e. sample #2 to #101).

Step 6:

Repeat step 5 until the end of the data set and record the radiated Power Spectral Density values for each of the 1 MHz segments.

From all the recorded results, the highest value is the maximum Power Spectral Density for the EUT. This value shall be recorded in the test report.

3.2.4 Test Setup

3.2.5 Test Results

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

: 11 of 34 Page Number TEL: 886-3-327-3456 Report Issued Date : Jun. 15, 2017 : Rev. 01 FAX: 886-3-328-4978 Report Version Report Template No.: BU5-ER328 2024 Version 2.1

3.3 Occupied Channel Bandwidth

3.3.1 Limit of Occupied Channel Bandwidth

Occupied Channel Bandwidth fall completely within 2.4 GHz - 2.4835 GHz

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.3.3 Test Procedure

- 1. The measurement procedure follows the clause 5.4.7.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. The measurement shall be performed only on the lowest and the highest frequency within the stated frequency range.
- 3. The test procedure shall be as follows:

Step 1:

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	Channel under test
Resolution BW	1 % of the span
Video BW	3 × RBW
Frequency Span	2 x Nominal Channel Bandwidth
Detector	RMS
Trace Mode	Max Hold
Sweep Time	1 s

Step 2:

Wait until the trace is completed.

Find the peak value of the trace and place the analyzer marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyzer to measure the Occupied Channel Bandwidth of the EUT.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 12 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

3.3.4 Test Setup

3.3.5 Test Results

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 13 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No. : ER741325

3.4 Frequency Hopping Requirements

3.4.1 Dwell Time and Minimum Frequency Occupation Time

3.4.1.1 Limit of Dwell Time

SUBCLAUSE 4.3.1.4.3			
TEST CONDITION LIMIT			
Non-Adaptive Frequency Hopping Systems	15 ms within 15ms * hopping frequencies (N)		
Adaptive Frequency Hopping Systems	0.4s within 0.4s * hopping frequencies (N)		

Limit of Minimum Frequency Occupation Time

SUBCLAUSE 4.3.1.4.3		
TEST CONDITION	LIMIT	
Normal Condition	Option1: The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.	

Remark: This test item is not applicable to DSSS/OFDM device.

3.4.1.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 14 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1


3.4.1.3 Test Procedures

- The measurement shall be performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. The results as well as the frequencies on which the test was performed shall be recorded in the test report.
- 2. The measurement procedure follows the clause 5.4.4.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 3. The analyzer shall be set as follows:

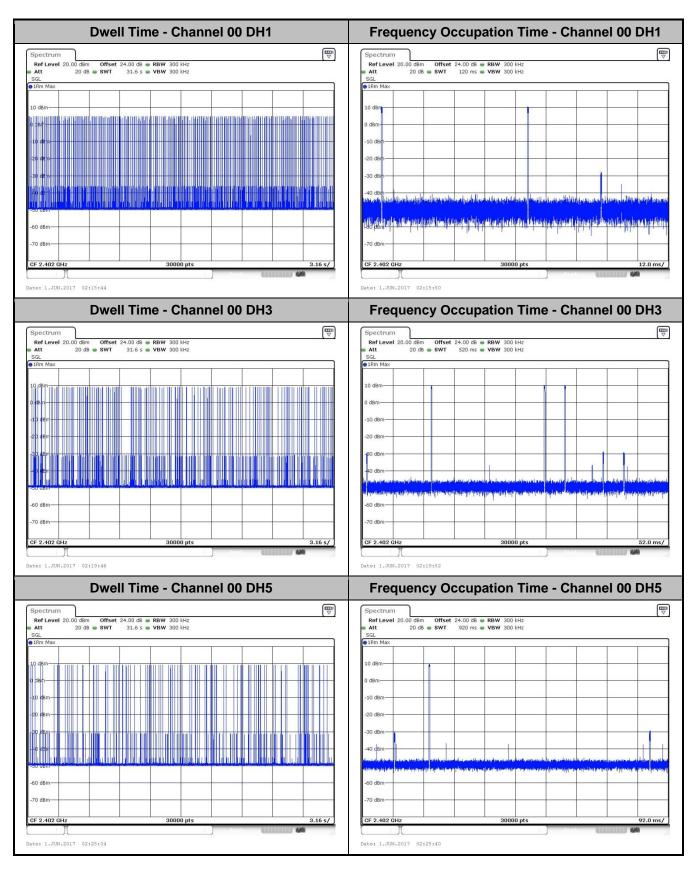
Center Frequency	Channel under test		
Frequency Span	0 Hz		
Resolution BW	300kHz		
Video BW	300kHz		
Detector	RMS		
	Equal to the Dwell Time		
Sweep time	× Minimum number of		
	hopping frequencies (N)		
Number of sweep points	30000		
Trace Mode	Clear / Write		
Trigger	Free Run		

- 4. For accuracy measurement, the sweep time would be zoomed in and verify the dwell time which is from the dwell time per hop across the total number of hopping channel. Then record test result.
- 5. Make the following changes on the analyzer to get Minimum Frequency Occupation Time Sweep time: Equal to 4 x Dwell Time x Actual number of hopping frequencies in use

3.4.1.4 Test Setup

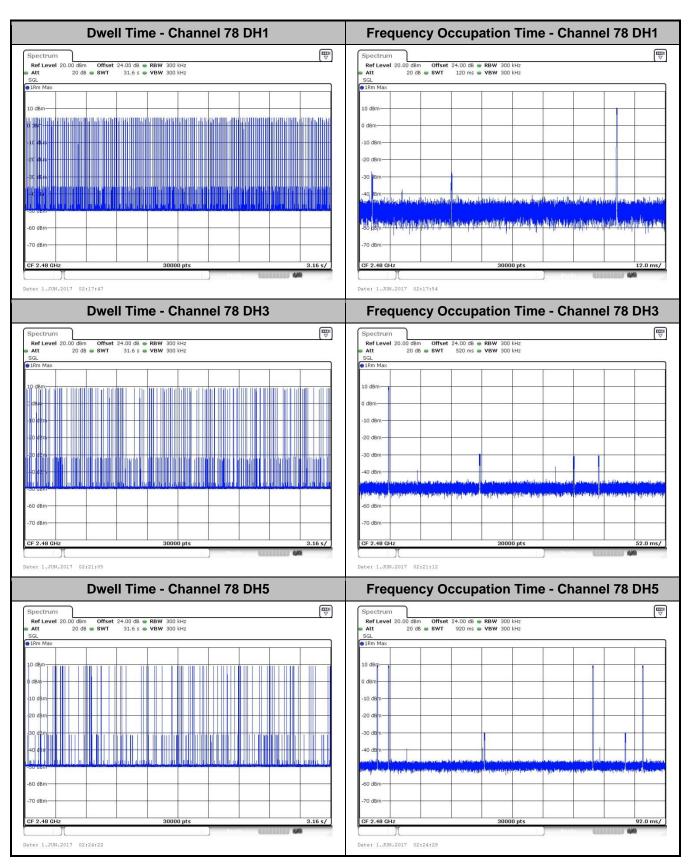
3.4.1.5 Test Results

Please refer to Appendix A.


3.4.1.6 Test Plots

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978


Page Number : 15 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No. : ER741325

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 16 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01
Report Template No.: BU5-ER328 2024 Version 2.1

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 17 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01
Report Template No.: BU5-ER328 2024 Version 2.1

3.4.2 Hopping Sequence

3.4.2.1 Limit of Hopping Sequence

SUBCLAUSE 4.3.1.4.3			
TEST CONDITION LIMIT			
Non-Adaptive Frequency Hopping Systems	N		
Adaptive Frequency Hopping Systems	N Ch 70% of band		

N= 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. **Remark:** Hopping Sequence is not applicable to DSSS/OFDM device.

3.4.2.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.4.2.3 Test Procedures

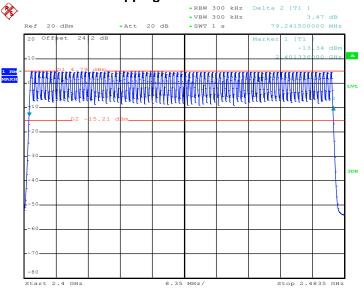
The measurement procedure follows the clause 5.4.4.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).

3.4.2.4 Test Setup

3.4.2.5 Test Results

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.


Page Number TEL: 886-3-327-3456 Report Issued Date : Jun. 15, 2017 FAX: 886-3-328-4978

Report Version : Rev. 01 Report Template No.: BU5-ER328 2024 Version 2.1

: 18 of 34

3.4.2.6 Test Plots

Total Number of Hopping Channel Plot on Channel 00 - 78

Date: 2.JUN.2017 07:42:54

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 19 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No.: ER741325

3.4.3 Hopping Frequency Separation

3.4.3.1 Limit of Hopping Frequency Separation

SUBCLAUSE 4.3.1.5.3.				
TEST CONDITION LIMIT				
Non-Adaptive Frequency Hopping Systems MAX [OBW, 100kHz]				
Adaptive Frequency Hopping Systems 100kHz				

Remark: Hopping Frequency Separation is not applicable to DSSS/OFDM device.

3.4.3.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.4.3.3 Test Procedures

- 1. These measurements shall only be performed at normal test conditions.
- 2. The measurement shall be performed on 2 adjacent hopping frequencies.
- 3. The frequencies on which the test was performed shall be recorded.
- 4. The measurement procedure follows the clause 5.4.5.2.1.3 Option 2 of the ETSI EN 300 328 V2.1.1 (2016-11).

3.4.3.4 Test Setup

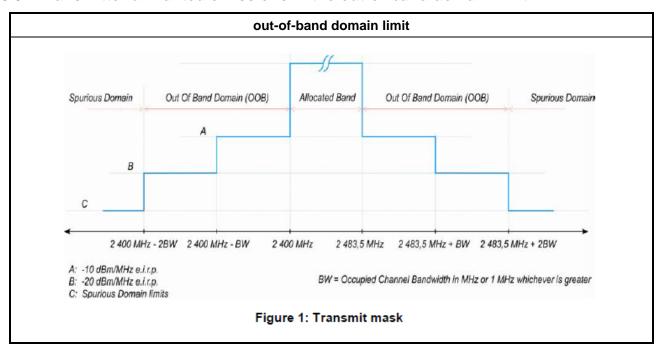
3.4.3.5 Test Results

Please refer to Appendix A.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978

Report Issued Date : Jun. 15, 2017 Report Version : Rev. 01

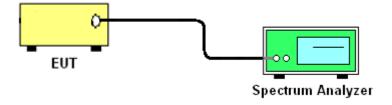

Page Number

Report Template No.: BU5-ER328 2024 Version 2.1

: 20 of 34

3.5 Transmitter unwanted emissions in the out-of-band domain

3.5.1 Transmitter unwanted emissions in the out-of-band domain limit

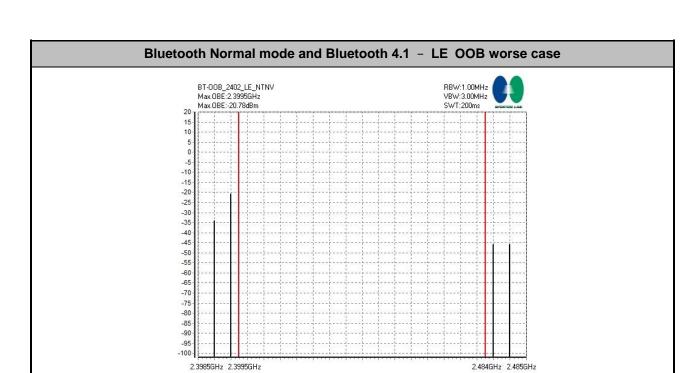

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

3.5.3 Test Procedures

- 1. The measurement procedure follows the clause 5.4.8.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. These measurements shall only be performed at normal test conditions.
- 3. For conducted measurements on devices with multiple transmit chains using the results for each of the transmit chains for the corresponding 1 MHz segments shall be added and compared with the transmit mask limit.

3.5.4 Test Setup


3.5.5 Test Results

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 21 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No. : ER741325

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 22 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No.: ER741325

3.6 Transmitter spurious emissions

3.6.1 Limit of Transmitter spurious emissions

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

Report No. : ER741325

SUBCLAUSE 4.3.1.10.3 and 4.3.2.9.3					
FREQUENCY RANGE	FREQUENCY RANGE MAXIMUM POWER BANDWIDTH				
30 MHz to 47 MHz	-36 dBm	100 kHz			
47 MHz to 74 MHz	-54 dBm	100 kHz			
74 MHz to 87,5 MHz	-36 dBm	100 kHz			
87,5 MHz to 118 MHz	-54 dBm	100 kHz			
118 MHz to 174 MHz	-36 dBm	100 kHz			
174 MHz to 230 MHz	-54 dBm	100 kHz			
230 MHz to 470 MHz	-36 dBm	100 kHz			
470 MHz to 862 MHz	-54 dBm	100 kHz			
862 MHz to 1 GHz	-36 dBm	100 kHz			
1 GHz to 12,75 GHz	-30 dBm	1 MHz			

3.6.2 Measuring Instruments

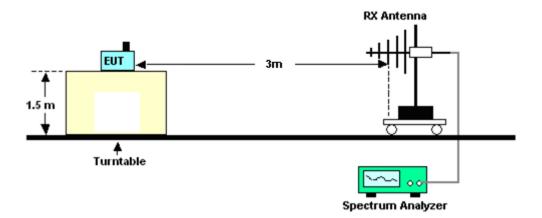
The measuring equipment is listed in the section 8 of this test report.

3.6.3 Test Procedures

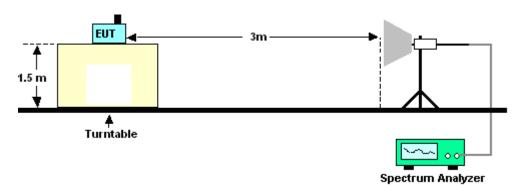
- 1. The measurement procedure follows the clause 5.4.9.2.2 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. The EUT was placed on a turntable with 1.5m height.
- 3. The test distance between the receiving antenna and the EUT is 3meter below 1GHz frequency range, and 3 meter which is in far field test condition for measured frequency above 1GHz, while the receiving (test) antenna is kept at 1.5 meter height.
- 4. Set EUT in continuous transmitting with maximum output power.
- 5. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 6. Repeating step 3 and 4 for each polarization and channel to find the worst emission level.
- 7. The results obtained are compared to the limits in order to prove compliance with the requirement.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 23 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017


 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

 Report Template No.: BU5-ER328 2024 Version 2.1



3.6.4 Test Setup

<Below 1GHz>

<Above 1GHz>

3.6.5 Test Results

Please refer to Appendix B.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

: 24 of 34 Page Number Report Issued Date : Jun. 15, 2017 Report Version : Rev. 01

Report No. : ER741325

4 Receiver Parameters

4.1 Receiver spurious emissions

4.1.1 Limit of Receiver spurious emissions

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

SUBCLAUSE 4.3.1.11.3 and 4.3.2.10.3				
FREQUENCY RANGE MAXIMUM POWER BANDWIDTH				
30 MHz to 1 GHz	100kHz			
1 GHz to 12,75 GHz	1MHz			

4.1.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

4.1.3 Test Procedures

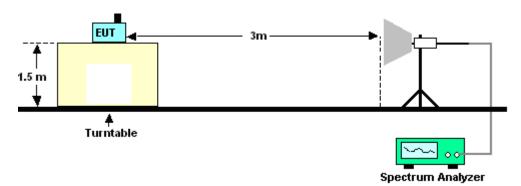
- 1. The measurement procedure follows the clause 5.4.10.2.2 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. The EUT was placed on a turntable with 1.5m height.
- 3. The test distance between the receiving antenna and the EUT is 3meter below 1GHz frequency range, and 3 meter which is in far field test condition for measured frequency above 1GHz, while the receiving (test) antenna is kept at 1.5 meter height.
- 4. Set EUT in receiving mode.
- 5. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 6. Repeating step 3 and 4 for each polarization and channel to find the worst emission level.
- 7. The results obtained are compared to the limits in order to prove compliance with the requirement.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 25 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1



4.1.4 Test Setup

<Below 1GHz>

<Above 1GHz>

4.1.5 Test Results

Please refer to Appendix B.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 26 of 34

Report Issued Date : Jun. 15, 2017

Report Version : Rev. 01

Report No. : ER741325

4.2 Receiver Blocking Test

4.2.1 Limit of Receiver Blocking Test

Receiver category 1

1. Adaptive equipment with maximum RF output power > 10dBm e.i.r.p. (EX: WiFi)

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-53	CW
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	cw

Report No. : ER741325

NOTE 1: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Receiver category 2

- 1. Non-adaptive equipment with MU 1% ~ 10%
- Adaptive equipment with Maximum RF output power < 10dBm e.i.r.p. (EX: Bluetooth)

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-57	CW
P _{min} + 6 dB	2 300 2 583,5	-47	CW

P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

SPORTON INTERNATIONAL INC.

Page Number : 27 of 34 TEL: 886-3-327-3456 Report Issued Date : Jun. 15, 2017 : Rev. 01 FAX: 886-3-328-4978 Report Version Report Template No.: BU5-ER328 2024 Version 2.1

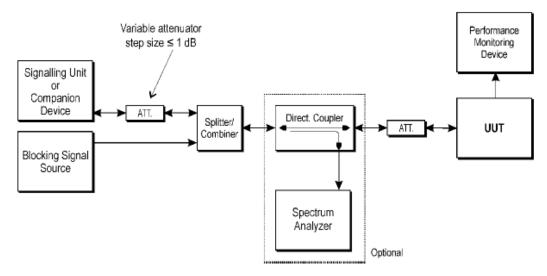
Receiver category 3

- 1. Non-adaptive equipment with MU < 1%
- 2. Adaptive equipment with Maximum RF output power < 0dBm e.i.r.p.

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 12 dB	2 380 2 503,5	-57	CW
P _{min} + 12 dB	2 300 2 583,5	-47	CW

NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.


4.2.2 Measuring Instruments

The measuring equipment is listed in the section 8 of this test report.

4.2.3 Test Procedures

- 1. The measurement procedure follows the clause 5.4.11.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.

4.2.4 Test Setup

Test Set-up for receiver blocking

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 28 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No. : ER741325

4.2.5 Test Results of Receiver Blocking

Pmin = CMW500 burst power - path cable loss - attenuator.

Bluetooth 1Mbps hopping mode								
Wanted signal	Blocking signal	Blocking signal	PER (%)					
From companion	Frequency(MHz)	Power(dBm)						
Pmin + 6dB	2380	-57	0					
Pmin + 6dB	2503.5	-57	0					
Pmin + 6dB	2300	-47	0					
Pmin + 6dB	2583.5	-47	0					
PFR =	PER = 8.76 % when Pmin= -97 dBm before blocker is injected							

Report No. : ER741325

Note:

- 1. Antenna gain is -1.38 dBi.
- 2. Blocking signal power level has offset antenna gain -1.38 dBi.

Bluetooth BLE Channel 00								
Wanted signal	Blocking signal	Blocking signal	PER (%)					
From companion	Frequency(MHz)	Power(dBm)						
Pmin + 6dB	2380	-57	0					
Pmin + 6dB	2503.5	-57	0					
Pmin + 6dB	2300	-47	0					
Pmin + 6dB	2583.5	-47	0					
PER = 4.44 % when Pmin= -95 dBm before blocker is injected.								

Note:

- 1. Antenna gain is -1.38 dBi.
- 2. Blocking signal power level has offset antenna gain -1.38 dBi.

Bluetooth BLE Channel 39								
Wanted signal	Blocking signal	Blocking signal	PER (%)					
From companion	Frequency(MHz)	Power(dBm)						
Pmin + 6dB	2380	-57	0					
Pmin + 6dB	2503.5	-57	0					
Pmin + 6dB	2300	-47	0					
Pmin + 6dB	2583.5	-47	0					
PER =	PER = 5.55 % when Pmin= -95 dBm before blocker is injected.							

Note:

- 1. Antenna gain is -1.38 dBi.
- 2. Blocking signal power level has offset antenna gain -1.38 dBi.

: 29 of 34 SPORTON INTERNATIONAL INC. Page Number Report Issued Date : Jun. 15, 2017 TEL: 886-3-327-3456 FAX: 886-3-328-4978 : Rev. 01 Report Version Report Template No.: BU5-ER328 2024 Version 2.1

5 Adaptivity Test

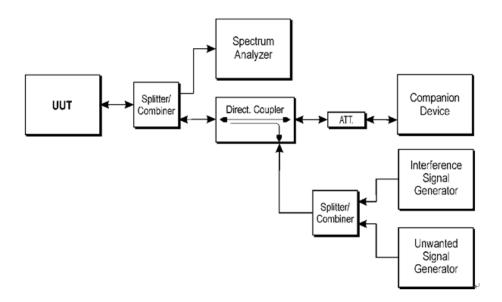
5.1 Adaptivity

5.1.1 Limit of Adaptivity

Only for adaptive systems and RF Output Power > 10 dBm

LBT based Detect and Avoid (Load Based Equipment with spectrum sharing mechanism IEEE Std.): LBT based spectrum sharing mechanism may implement in IEEE Std. 802.11-2012 clauses 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE Std. IEEE 802.15.4-2011, clause 4, clause 5 and clause 8

Short Control Signaling Transmissions shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within an observation period of 50 ms.


5.1.2 Measurement Instruments

The measuring equipment is listed in the section 8 of this test report.

5.1.3 Test Procedures

- 1. The measurement procedure follows the clause 5.4.6.2.1 of the ETSI EN 300 328 V2.1.1 (2016-11).
- 2. For conducted measurements on devices with multiple transmit chains and receive chains. The power splitter/combiner shall be used to combine all the transmit/receive chains (antenna outputs) into a single test point. The insertion loss of the power splitter/combiner shall be taken into account.

5.1.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 30 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No. : ER741325

5.1.5 Support Unit used in test configuration and system

Item	Instrument	Manufacturer	Model No.	Characteristics
1.	WLAN AP	D-LINK	DIR-855	Dual Band AP
2.	Notebook	Lenovo	E335	FTP / LAN

5.1.6 Test Results of Adaptivity Test

Not Applicable.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 31 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

6 Geo-location Capability

6.1 Geo-location

6.1.1 Definition and Requirement

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

The geographical location determined by the equipment shall not be accessible to the user.

6.1.2 Description

This device does not support this capability declared by the manufacturer.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 32 of 34

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 15, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

Report Template No.: BU5-ER328 2024 Version 2.1

7 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Sensor	DARE	RPR3006W	13I00030SN O31	10MHz~6GHz	Sep. 21, 2016	May 23, 2017 ~ Jun. 26, 2017	Sep. 22, 2017	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV 30	100895	9kHz~30GHz	May 02, 2017	May 23, 2017 ~ Jun. 26, 2017	May 01, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jul. 17, 2016	May 23, 2017 ~ Jun. 26, 2017	Jul. 16, 2017	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40℃ ~90℃	Sep. 01, 2016	May 23, 2017 ~ Jun. 26, 2017	Aug. 31, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Agilent	E4445A	MY41000161	3Hz~13.2GHz	Nov. 28,2016	May 23, 2017 ~ May 25, 2017	Nov. 27,2017	Conducted (DFS02-HY)
Base Station	Rohde & Schwarz	CMW500	132247	GSM/GPRS/WC DMA/FD-LTE/TD -LTE/MIMO	Dec. 14, 2016	May 23, 2017 ~ May 25, 2017	Dec. 13, 2017	Conducted (DFS02-HY)
Signal Generator	Agilent	E8247C	MY43321356	CW Signal Generator	Sep. 30, 2016	May 23, 2017 ~ May 25, 2017	Sep. 29, 2017	Conducted (DFS02-HY)
Bilog Antenna	Teseq GmbH	CBL6112D	35379	30MHz~2GHz	Oct. 15, 2016	Jun. 10, 2017	Oct. 14, 2017	Radiation (05CH05-HY)
Double Ridge Horn Antenna	EMCO	3117	00066583	1GHz ~ 18GHz	Jul. 14, 2016	Jun. 10, 2017	Jul. 13, 2017	Radiation (05CH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV 30	101749	10Hz~30GHz	Jan. 04, 2017	Jun. 10, 2017	Jan. 03, 2018	Radiation (05CH05-HY)
Preamplifier	Agilent	8449B	3008A02665	1GHz~26.5GHz	Dec. 27, 2016	Jun. 10, 2017	Dec. 26, 2017	Radiation (05CH05-HY)
Amplifier	EMCI	EMC001830	980191	10MHz~8GHz	Jan. 17, 2017	Jun. 10, 2017	Jan. 16, 2018	Radiation (05CH05-HY)
Antenna Mast	ChainTek	MD-200	1308055	1m~4m	N/A	Jun. 10, 2017	N/A	Radiation (05CH05-HY)
Turn Table	EMEC	TT 2000	N/A	0-360 degree	N/A	Jun. 10, 2017	N/A	Radiation (05CH05-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 23, 2017	Jun. 11, 2017	Mar. 22, 2018	Radiation (03CH15-HY)
BT Base Station	Rohde & Schwarz	CBT	101135	BT 3.0	Sep. 08, 2016	Jun. 11, 2017	Sep. 07 2018	Radiation (03CH15-HY)

Note: Test equipment calibration is traceable to the procedure of ISO17025.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 33 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01

Report No.: ER741325

8 Uncertainty Evaluation

Test Item	Uncertainty
Occupied Channel Bandwidth	± 0.49 %
RF output power, conducted	±0.61 dB
Power density, conducted	±0.60 dB
Radiated emissions	±2.86 dB
Temperature	±0.8 °C
Humidity	±3 %

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 34 of 34
Report Issued Date : Jun. 15, 2017
Report Version : Rev. 01
Report Template No.: BU5-ER328 2024 Version 2.1

Report Number : ER741325

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Derek Hsu	Temperature:	24~25	°C
Test Date:	2017/05/23~2017/06/06	Relative Humidity:	54~56	%

<u>TEST RESULTS DATA</u> <u>EIRP Power</u>

	Conducted Power (dBm)								
Mod.	Data Rate	NTX	Channe	Freq. (MHz)	Temperature Nomal	Extreme Temperature Low	Extreme Temperature High	Gain (dBi)	
					25 °C	-30 °C	85 °C		
BTNom	1Mbps	1	hop	ping	10.70	10.70	11.20	-1.38	
BTNom	2Mbps	1	hop	ping	8.20	8.20	8.50	-1.38	
BTNom	3Mbps	1	hop	ping	8.20	8.20	8.50	-1.38	
BLE	1Mbps	1	0	2402	10.60	10.50	11.30	-1.38	
BLE	1Mbps	1	19	2440	10.40	10.20	11.10	-1.38	
BLE	1Mbps	1	39	2480	10.30	10.20	11.10	-1.38	

	EIRP Power (dBm)										
Mod.	Data Rate	N⊤x	Channe	Freq. (MHz)	Temperature Nomal	Temperature Low	Temperature High	Limit (dBm)	Pass/Fail		
BTNom	1Mbps	1	hop	ping	9.32	9.32	9.82	20	Pass		
BTNom	2Mbps	1	hop	ping	6.82	6.82	7.12	20	Pass		
BTNom	3Mbps	1	hop	ping	6.82	6.82	7.12	20	Pass		
BLE	1Mbps	1	0	2402	9.22	9.12	9.92	20	Pass		
BLE	1Mbps	1	19	2440	9.02	8.82	9.72	20	Pass		
BLE	1Mbps	1	39	2480	8.92	8.82	9.72	20	Pass		

Report Number : ER741325

TEST RESULTS DATA EIRP Power Density

	Power Density							
Mod.	Data Rate	NTX	Channe	Freq. (MHz)	EIRP Power Density (dBm/MHz)	EIRP Limit (dBm /MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	9.17	10	Pass	
BLE	1Mbps	1	19	2440	8.97	10	Pass	
BLE	1Mbps	1	39	2480	8.87	10	Pass	

Report Number : ER741325

TEST RESULTS DATA 99% Occupied Bandwidth

	Occupied Bandwidth								
Mod.	Data Rate	N⊤x	Channe	Freq. (MHz)	99% Occupied BW (MHz)	Freq. Low (MHz)	Freq. High (MHz)	Limit (Within operating Band)	Pass/Fail
BTNom	1Mbps	1	0	2402	0.83	2401.58	2402.41		Pass
BTNom	1Mbps	1	78	2480	0.83	2479.58	2480.41		Pass
BTNom	2Mbps	1	0	2402	1.19	2401.39	2402.58		Pass
BTNom	2Mbps	1	78	2480	1.19	2479.39	2480.58		Pass
BTNom	3Mbps	1	0	2402	1.17	2401.41	2402.58		Pass
BTNom	3Mbps	1	78	2480	1.17	2479.41	2480.58		Pass
BLE	1Mbps	1	0	2402	1.02	2401.49	2402.51		Pass
BLE	1Mbps	1	39	2480	1.02	2479.49	2480.51		Pass

Report Number : ER741325

TEST RESULTS DATA OOB Emission Level

Mod.	Data Rate	N TX	Channe	Freq. (MHz)	OOB Emission Worst Level (dBm/MHz)	Limit (dBm /MHz)	Pass/Fail
BTNom	1Mbps	1	hop	ping	-28.46	-10,-20	Pass
BTNom	2Mbps	1	hop	ping	-31.34	-10,-20	Pass
BTNom	3Mbps	1	hop	ping	-30.93	-10,-20	Pass
BLE	1Mbps	1	0	2402	-20.78	-10,-20	Pass
BLE	1Mbps	1	39	2480	-34.72	-10,-20	Pass

Report Number : ER741325

TEST RESULTS DATA Bluetooth Test Items

Dwell Time of each Frequency Measurement

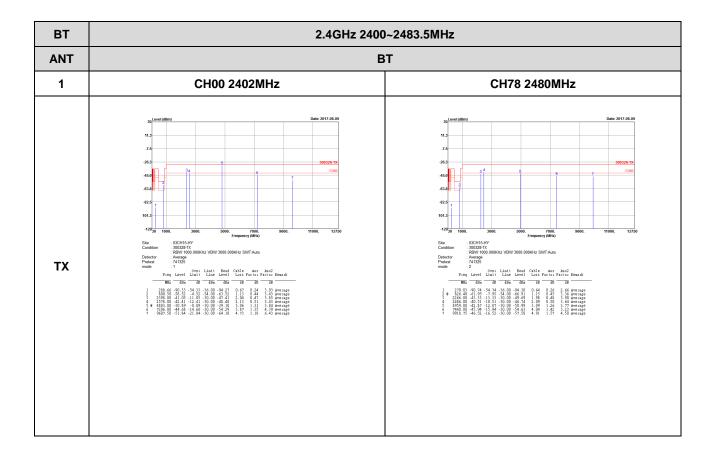
BT (Hopping Mode)		Dwell Time per hop(ms)	Dwell Time(ms)	Dwell Time Max. Limit (ms)		quency upation Time (ms)	Frequency Occupation Time min. Limit (ms)	Pass /Fail
DUI	2402 MHz	0.39	123.77	400	2	0.78	0.39	Pass
DH1	2480 MHz	0.39	123.38	400	1	0.39	0.39	Pass
DH3	2402 MHz	1.65	224.36	400	3	4.95	1.65	Pass
БПЗ	2480 MHz	1.65	251.75	400	1	1.65	1.65	Pass
DH5	2402 MHz	2.90	287.56	400	1	2.90	2.90	Pass
Ы	2480 MHz	2.90	252.80	400	4	11.60	2.90	Pass

Hopping Sequence Measurement

Total Number of Hopping Frequency	20dBc Operating Range (MHz)	Limit of operating range (at least 70% of band) (MHz)	of Adaptive	Limit of hopping frequencies at all times
79	79.2415	58.45	20	15

Hopping Channel Separation Measurement

вт	Separation(MHz)	Limit(MHz)	Pass /Fail
CH 00	0.999	>0.1	Pass
CH 39	0.999	>0.1	Pass
CH 78	0.999	>0.1	Pass


Appendix B. Conducted Spurious Emission Plots BT TX Conducted Spurious Emission Plots

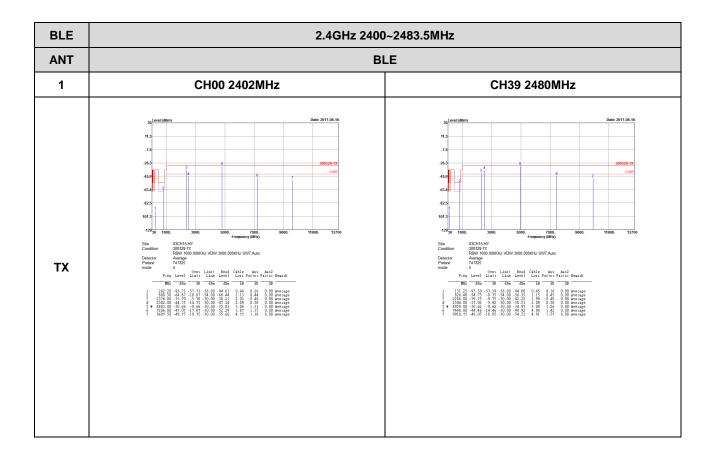
Tost Engineer :	Karl Hou	21~22 ℃
Test Engineer :		Relative Humidity :

Report No. : ER741325

2.4GHz 2400~2483.5MHz

BT

TEL: 886-3-327-3456 WLAN TX FAX: 886-3-328-4978 Page Number : 1 of 1


BLE TX Conducted Spurious Emission Plots

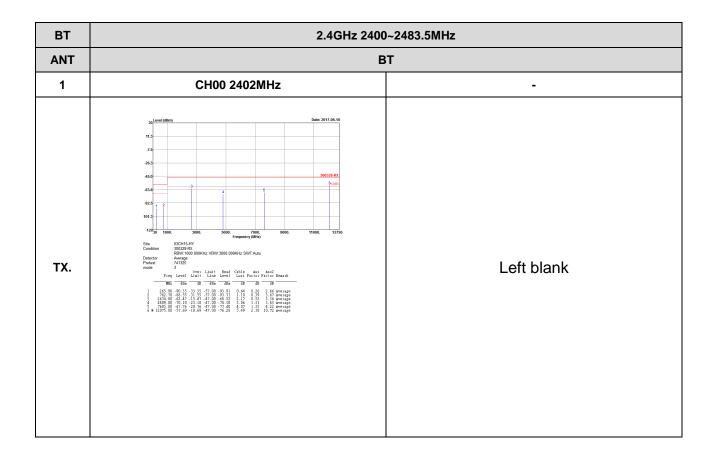
Test Engineer :	Karl Hou		21~22 ℃
rest Engineer.		Relative Humidity :	45~46%

Report No. : ER741325

2.4GHz 2400~2483.5MHz

BLE

TEL: 886-3-327-3456 WLAN TX FAX: 886-3-328-4978 Page Number : 1 of 1


BT RX Conducted Spurious Emission Plots

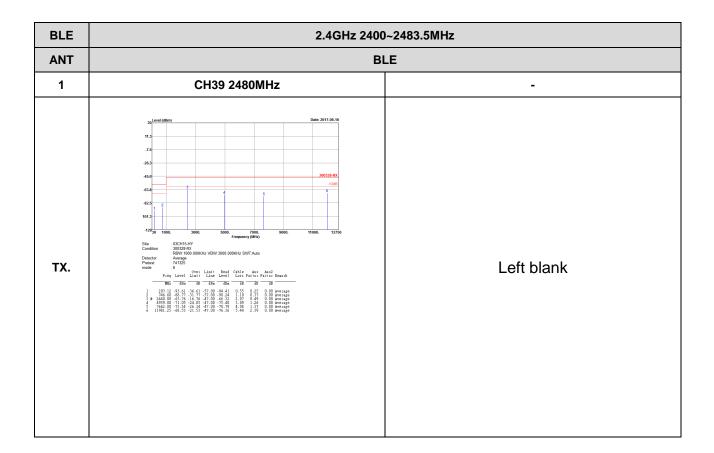
Test Engineer :	Karl Hou	Temperature :	21~22 ℃
		Relative Humidity :	45~46%

Report No. : ER741325

2.4GHz 2400~2483.5MHz

BT

TEL: 886-3-327-3456 WLAN RX FAX: 886-3-328-4978 Page Number : 1 of 1


BLE RX Conducted Spurious Emission Plots

Test Engineer :	Karl Hou	Temperature :	21~22 ℃
		Relative Humidity: 45~46%	45~46%

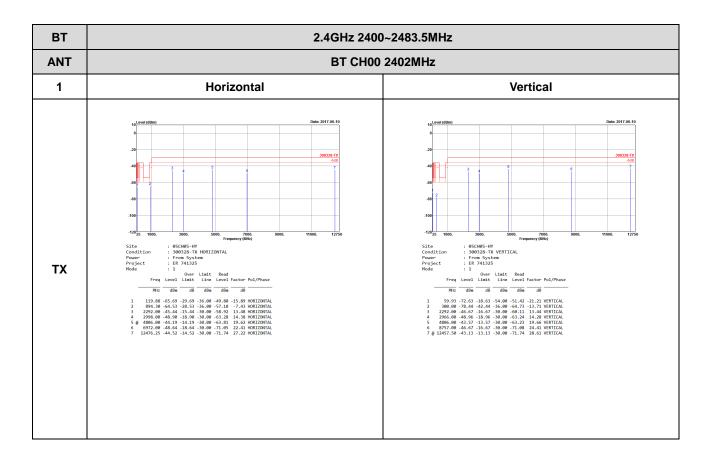
Report No. : ER741325

2.4GHz 2400~2483.5MHz

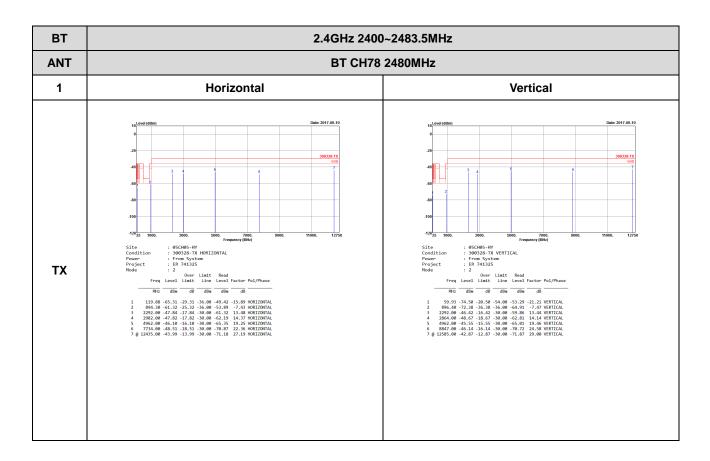
BLE

TEL: 886-3-327-3456 WLAN RX FAX: 886-3-328-4978 Page Number : 1 of 1

Appendix C. Cabinet Radiation Plots


BT TX Radiated Spurious Emission Plots

Test Engineer :	Niels Chang	Temperature :	21~22 ℃
	Nick Chang	Relative Humidity :	45~46%


Report No. : ER741325

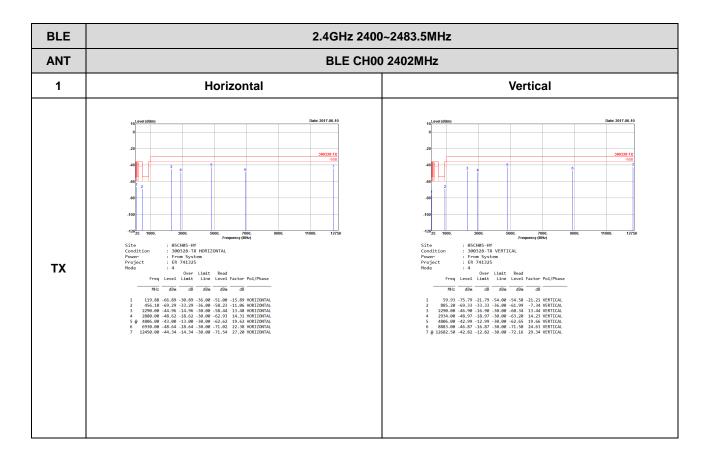
2.4GHz 2400~2483.5MHz

BT

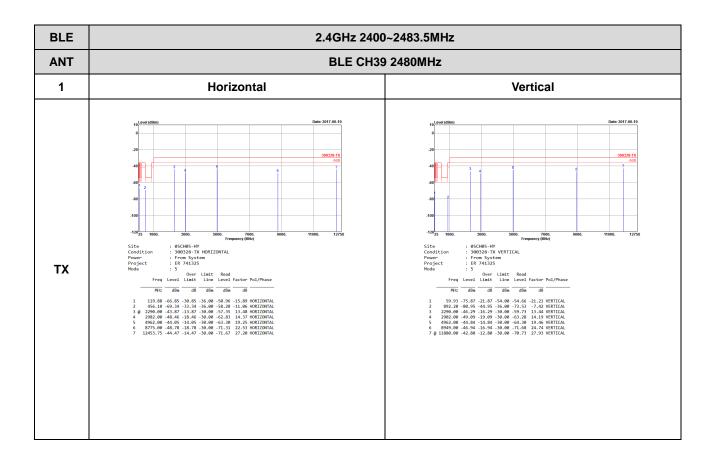
TEL: 886-3-327-3456 BT TX FAX: 886-3-328-4978 Page Number : 1 of 2

Report No. : ER741325

TEL: 886-3-327-3456 BT TX FAX: 886-3-328-4978 Page Number : 2 of 2


BLE TX Radiated Spurious Emission Plots

Test Engineer :	Nick Chang	Temperature :	21~22 ℃
		Relative Humidity :	45~46%


Report No. : ER741325

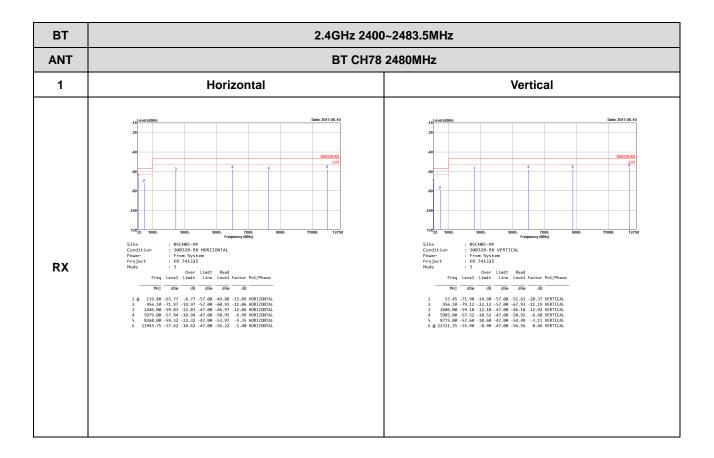
2.4GHz 2400~2483.5MHz

BLE

TEL: 886-3-327-3456 BLE TX FAX: 886-3-328-4978 Page Number : 1 of 2

Report No. : ER741325

TEL: 886-3-327-3456 BLE TX FAX: 886-3-328-4978 Page Number : 2 of 2


BT RX Radiated Spurious Emission Plots

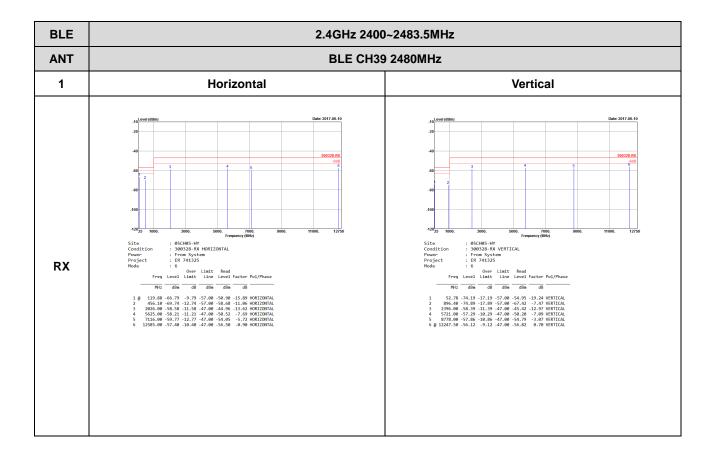
Test Engineer :	Nick Chang Temperature: Relative Humidity	Temperature :	21~22 ℃
		Relative Humidity :	45~46%

Report No. : ER741325

2.4GHz 2400~2483.5MHz

BT

TEL: 886-3-327-3456 BT RX FAX: 886-3-328-4978 Page Number : 1 of 1


BLE RX Radiated Spurious Emission Plots

Test Engineer :	Nick Chang	Temperature :	21~22 ℃
		Relative Humidity :	45~46%

Report No. : ER741325

2.4GHz 2400~2483.5MHz

BLE

TEL: 886-3-327-3456 BLE RX FAX: 886-3-328-4978 Page Number : 1 of 1

Appendix D. Photographs of Radiated Emission Test

Configuration

TEL: 886-3-327-3456 FAX: 886-3-328-4978 **Report No. : ER741325**