Introducing TI’s Integrated Development Environment — CCS
(Code Composer Studio) to Expert Engineers

1. Introduction

1.1. Intended Audience - Expert DSP engineer that is new to TI's
Code Composer Studio (CCS)

CCS is Texas Instruments’ Integrated Development Environment (IDE) based on the open source
Eclipse architecture. It is used to build, debug, and run DSP applications as well as other
processor applications.

Tl provides a great amount of CCS training, documentation, and other help that covers all aspect
of CCS. The following section provides links for the training. So who needs this document?

The intended readers of this document are DSP experts who have not yet worked with Tl tools,
yet are very knowledgeable and have worked with other vendors’ tools. So they know what to
expect from tools, understand the logic behind tools, and only need to know the mechanics of
the tools. They may not have patience or time to go through training. Their goal is to jump in
and try to run a test application.

In addition to the CCS tool, Tl provides a great deal of software blocks to facilitate easy
development of applications on TI’s devices, including a set of optimized libraries for standard
Mathematics (MATHLIB), Signal Processing (DSPLIB) and Image Processing (IMGLIB). A DSP
expert would like to use these optimized functions in applications. This document shows an
expert DSP engineer how to develop applications that call optimized library functions.

Steps to take when Start Porting DSP Algorithm into Tl Environments

When porting an existing DSP algorithm that was developed under a different environment into
TI’s Integrated Development Environment CCS, the expert engineer will go through the following
steps:

1. TI's Processor SDK is a comprehensive set of software and firmware tools, utilities and
example modules that supports many Tl processors. Each module has a unit test project
that demonstrates how to use the module. The easy way to understand how to use a library
function is to import the unit test of the said function and run it on some hardware such as
Evaluation Module (EVM). Chapter 2 shows how to import a project from the release, build
it, and run it on standard hardware.

2. The next step is building a new application that utilizes the library function that was used in
the previous step. Chapter 3 shows how to build a new non-trivial (e.g., fairly complex)
project, build it, and run it on standard hardware such as Tl Evaluation Module (EVM).

3. Processor SDK is a uniform release of software blocks that guarantees working together.
Three standard libraries are included in the Processor SDK release: DSPLIB, MATHLIB, and
IMGLIB. In addition, Tl developed a set of optimized libraries that are not part of the
Processor SDK release. These libraries include IQMATH, FASTRTS, VICP, VLIB, FAXLIB and
VOLIB (see http://processors.wiki.ti.com/index.php/Software libraries for more details). In
addition, there are devices that are not supported by the standard Processor SDK, but rather
by their own Software Development Kit (SDK). Chapter 4 shows how to build an example
code (unit test) C674X that is not supported by Processor SDK using a library function from a
dedicated FFTLIB library.

1.2. CCS On-Line Training Resources

The following is a partial list of

e CCSTraining Page contains lots of training materials includes Videos and documents

e TMS320C6000 Optimization Workshop: Chapter 2 discusses CCS (and provides an
introduction to C6000 architecture)

o The Code Composer Studio (CCS) Integrated Development Environment (IDE) is the location
to download CCS. It has links to other CCS information.

e Processor SDK RTOS Setup CCS has a good introduction to using CCS with Processor SDK.
Some of the materials referenced in this document are covered.

e TI's Code Composer e2e Forum is a public forum dedicated to questions and answers about

everything CCS. Almost any issue that you may encounter has probably been discussed
previously in this forum.

If the above list is not what you are looking for, continue through this document.

http://processors.wiki.ti.com/index.php/Software_libraries
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/op6000/op6000_v1.51/op6000_student_guide_v1.51.pdf
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Setup_CCS
https://e2e.ti.com/support/development_tools/code_composer_studio/f/81

Getting Started with CCS

The instructions and the screen shots in this document are taken from CCSv6 (6.1.3). Different
versions of CCS might have slightly different screen shots. This document assumes that the user
has installed CCS already.

CCS puts all the metadata that is associated with its operation in the workspace. There is a
default workspace (usually in c:/users/user_name/workspace_v6 or similar, where user_name is
the user login name) where multiple projects can reside. In addition, the user can define other
locations as workspace for a specific project.

The first time CCS is opened in a new workspace, the display window (see below) provides links
to collateral that provide training and other support documents.

Vs
File Edit View Navigate Project Run Scripts Window Help

‘e R i@ids i P iBE v QuickAccess | % | [CCsEdn)

" (@ Getting Started 32 fay SIS

&
Fi

—ulh New /i Browse —d Import = App
g ;
= m Project @<> Examples (} Project v Center

£ Would you like to use CCS in 'Simple’ mode? © Yes © No
(Recommended for Energia and LaunchPad users)

= 117 Getting Started with Code Composer Studio v6

Projoct

'L" ‘-‘1:":):": o Vidocon Q‘I Traning 2 Wiki

" ﬂ Support

/ B
y (°‘ Videos @ Training
=, Foun | G —

Wiki

: Full License :

Figure 1.2.1: CCS Getting Started Display

1.3. CCS Edit and Debug Perspectives

CCS has two perspectives:

CCS Edit perspective is used for creating projects and building code. To switch to the CCS
Edit perspective, click on Window — Perspective — Open Perspective — CCS Edit.

CCS Debug perspective is used for execution and debugging of code on the customer
EVM. To switch to the CCS Debug perspective, click on Window — Perspective — Open

Perspective — CCS Debug (See Figure 2).

Tl

=
B

=

“i@ids i v iBiE)

File Edit View Navigate Project Run Scripts | Window | Help

New Window
Editor
Hide Toolbar

Show View

Perspective
Navigation

Preferences

Quick Access @‘

=

Open Perspective

Customize Perspective...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

%, CCS Debug

Other...

Figure 1.3.1: Changing the CCS Perspective

The current perspective can be seen in the upper right corner of the CCS window, as shown in
Figure 2. Upon starting CCS, the default perspective is the CCS Edit perspective.

2. Import CCS Project from Release Examples

2.1. Before Importing a Project

Processor SDK has many examples and unit tests within a release that can be imported into a
project. Instructions on how to import a project from a release are provided in this chapter.

Most of the examples in the release are based on the Real Time Software Component (RTSC)
scheme. RTSC enables the system to rebuild drivers and utilities for a user-defined platform
from a configuration file. To achieve that the CCS environment must be aware of the location of
the various building modules in the Processor SDK release, In other words, the user must verify
that CCS “sees” all the modules in the release.

Assume a new release was installed in directory C:\ti\Releases\Release_3_0_0_4\C667X. The
following steps are needed to add or verify that CCS sees the new release.

1. Click the Window tab and select Preferences

B T2 ¥ T T E WP,

File Edit WView Mavigate Project Run Scripts | Window | Help

;Fﬁv IE Tlﬂlﬁvlﬂnv'u' NE’WWiﬂdDW
Editor b
) -
= fﬁ_j Project Explorer 23 | Hide Toolbar
i Bg ¥
: i 3
. 5 exercisel Show View
Perspective k
Navigation k
Preferences

Figure 2.1.1: CCS Edit Perspective: Window Drop-down Menu

2. The Preferences dialog box opens. Navigate to Code Composer Studio - RTSC >

Products.
& bt Icimw
[type filter text | | Products Low v ow
G |
" C:: :rgaeLog Product discovery path:
4 Code Composer Studio CCt Add...
1+ Advanced Tools] C:/Program Files (x86)/ Texas Instruments |7p |
» Build T Ci/tifees v61 3 S e Vel
|- Debug (= C:/tif/Releases/Release_3_0_0_4/K2H | Edit |
1+ Grace (= C/tif/Releases/Release 3.0_0_4 -
a RTSC
Products Installed products:
Energia a4 = CTools Library » || Search Mow...
- Help St 22000 [C:/ti/Releases/Release 2_0_2/AMSTX/RTOS/ ctoolslib_2_2_0_0]
Install/Updat % i) . ; o[
i Insta f_ pdate & 1110 [C/tifReleases/MCSDK_3_01_04_07/cteolslib_1_1_1 0] Install New...
i+ JavaScript 4 = CTools Library
I+ Library Hover s 111,00 [C:/ti/Releases/MCSDK_3_01_04_07/ctoolslib_1_1_1_0] | Uninstall |
[» Remote Development 4 =) DSP/BIOS
- RPM & 542007 [C:/ti/bios_5 42 00_07]
i Run/Debug 4 =), DSPLIB Ch6x
> Team # 3400 [C/tifReleases/Release_3_0_0_4/K2H/dsplib_cb6x_3_4 0_0]
- Terminal 4 =i DSPLIE C674x
i+ Tracing & 3100 [C/tiReleases/C6745DK_02_00_00_00/dsplib_c674x_3_1_0_0]
4 = EDMA3 Low Level Driver
% 2121 [f#i/Relearar /Relsars 2 N 2/AMETY/RTNG/admad lld 2 12 M 221 i
Search fer new products each time Code Composer Studio is started
’Rﬁtore Defauhs] [Apply]
® Show advanced settings I QK I ’ Cancel]

Figure 2.1.2:

3. Inthe Product Discovery Path, make sure that the location of the new release is
specified. If the path is not there, click on the Add tab, add the directory name or
browse to the directory and click OK.

Add Te Discovery Path

Please browse to the directory to be induded when searching for new products.

'1*1

I |

»

Bl Desktop
I» 4 Libraries
4 I» & Katzur, Ran
a8 Computer
4 B 0sDisk (C:)
I> @, SRecycle.Bin
. a_temp
[1 AMST_Build_SD
0 b_temp
= . Boot
[+) 55woe_csl_3.00
= 1 cmake-3.5.2
> @, Documents and Settings
[

m

. Drivers

. found.000

. install

) Intel

. K2G_Build_SDK
. MathlLab

. MinGW

. M50Cache

.. Perflogs

. Program Files
. Program Files (x86)

. ProgramData

v v v W

il

| projects
| Python27?

., RanPrograms

v v v v v v

. Recovery

. 5D Images
. Systemn Velume Information

. temp

N TLIO Dond

Falder: C:\ti\Releases\Release_3_0_0_M\C667X

o) Coma)

CCS will scan the new location and report back what new modules it found. Click Finish. CCS will
add the new module. A dialogue box may ask if the user trust the software and the answer is
Yes, and then restart CCS now.

Note — Some releases have issue with multiple NDK releases. If CCS reports error when it loads
NDK the user can un-checks NDK before clicking on Finish.

2.2. Import the FFT Project
In this next section, we will use and FFT project as an example. To get started - left click on the Project
Tab in the CCS EDIT perspective, select import CCS Projects and left click.

File Edit Wiew MNavigate | Project
‘- ‘B i@ G NewCCS Project..
ﬁ MNew Energia Sketch...

Run Scripts Window Help

[Project Explorer &2

Examples...

Build all Ctrl+B
Build Configurations k
Build Working Set »
Clean...

Build Automatically
Show Build Settings...

Add Files...

Import CCS Projects...
Import Legacy CCSv3.3 Projects...
Import Energia Sketch...

e D

!’% Import Energia Libraries...

Properties

Figure 2.2.1:

A dialog box is opened. For the Select search-directory click on Browse and navigate to the
location where the dsplib directory was installed on your system->examples and select OK. CCS
will look for all the examples in this directory. We will work with FFT_sp_Example_66_LE_ELF.
LE stands for little endian format and ELF stands for the standard executable format. The

window will look like the following:

&+ Import CCS Eclipse Projects .

Select CCS Projects to Import
Select a directory to search for existing CCS Eclipse projects,

@ Select search-directony: 300 M K2H\dsplib_ch6x_3_4_0_0"examples Browse...

IL

() Select archive file: B

Discovered projects:

DD FFT_Exarmnple_66_BE_COFF [C:\ti\Releases\Release_3_0_0_4\K2H\dsplib_c Select All
DD FFT_Exarnple_66_BE_ELF [C:\ti\Releases\Release_3_0_0_4\K2H\dsplib_chE
DD FFT_Exarmple_66_LE_COFF [C:\ti'Releases\Release_3_0_0_4\K2H\dsplib_c
DD FFT_Exarmnple 66_LE_ELF [C:\ti\Releases\Release_3_0_0_4\K2H\dsplib_cbg Refresh
DD FFT_SP_Example_66_BE_COFF [C:\ti\Releases\Release_3_0_0_4\K2H\dspli
DD FFT_SP_Example_66_BE_ELF [C:\ti\Releases\Release 3_0_0_4\K2H\dsplib_
DD FFT_SP_Example_66_LE_COFF [C:\ti\Releases\Release_3_0_0_4\K2H\dspli
D FFT_SP_Example_66_LE_ELF [C:\ti\Releases\Release_3_0_0_4\K2H\dsplib_
DD QRD_dp_least_squares_Exarmple_66_BE_COFF [C:\ti\Releases\Release 3 (
DD QRD_dp_least_squares_Exarmple_66_BE_ELF [C:\ti\Releases'\Release 3 0 0
DD QRD_dp_least_squares_Exarmple_66_LE_COFF [C:\ti\Releases\Release 3 0
DD QRD_dp_least_squares_Example_66_LE_ELF [C:\ti\Releases\Release 3 0.0
DD SVD_dp_rank_Example_66_BE_COFF [C:\ti\Releases\Release 3_0_0_4\K2H

DD SVD_dp_rank_Example_66_BE_ELF [C:\ti\Relea Release 3_0_0_4\K2H\(7
DD SVD_dp_rank_Example_66_LE_COFF [C:\ti\Releases\Release_3_0_0_4\K2H
DD SVD_dp_rank_Example 66_LE_ELF [C:\th\Releases\Release_3_0_0_4\K2H\c

Deselect All

< | i | 2

[7] Automatically import referenced projects found in same search-directary
[7] Copy projects into workspace

Open the Resource Explorer to browse available example projects...

Cancel

@ [Finish |

Click on Finish. CCS imports the project but may give some warnings in the problems window.
The problem may refer to Invalid Project Path. This may be the result of different directory
structure between the developer of the project and the user. The next step is to fix these issues.

Clicking in the small arrow next to the project name opens the project explorer. There are three
files, the test source code — fft_example_sp.c, the linker command file Ink.cmd, and an
initialization file macros.ini_initial. Double click on the macros.ini.initial opens the file in the
editor windows. This file defines three locations.

MATHLIB_INSTALL_DIR=c:/ti/mathlib_c66x_3_1_0_0
DSPLIB_INSTALL_DIR=c:/nightlybuilds/dsplib
EXT_ROOT__FFT_SP_EXAMPLE_66_LE_ELF_FFT_SP_EX=.././

The last location is relative to the example directory and is correct. But the other two point to
locations in the developer system. The user has to change these paths.

MATHLIB is an optimized library for mathematical functions. It is part of the release. So its
location depends where the user installed the Processor SDK. The screen shots were taken from
a system where the Processor SDK release location is C:\ti\Releases\Release_3_0_0_4\C667X

and the mathlib version is mathlib_c66x_3 1 1 0, thus the first location will be defined as

MATHLIB_INSTALL_DIR=C: \ti\Releases\Release_3 0 0 4\C667X \ mathlib_c66x 3 1 1 0

Similarly, the second location is the location of the DSPLIB. For the same system the location will
be defined as DSPLIB_INSTALL_DIR=
C:\ti\Releases\Release_3_0_0_4\C667X\dsplib_c66x_3_4 0_0. The screen shot shows the

updated locations. As was mentioned before, the user paths depend on the user install directory
of the Processor SDK.

File Edit View Navigate Project Run Scripts Window Help

M RER R IO
I Project Explorer &3 = 8 |=] macros.ini_initial &3
= <}===»> - 1 MATHLIB_INSTALL DIR=C:\ti\Releases\Release 3 @ 8 4\C667X \ mathlib c66x 3 1 1 @
R 2DSPLIB INSTALL DIR= C:\ti\Releases‘\Release 3 8 8 4\C667X\dsplib cBéx 3 4 8 @
r_(($ s _ | D B u p ! I & w
4aF FE—SP—E_“"’“P'e—BB—LE—ELF [Active S EXT_ROOT__FFT_SP_EXAMPLE 66 _LE_ELF FFT SP_EX=.././
+ %3, Binaries a
+ [Includes
. (= Debug

» | fit_example_sp.c
+ | Ink.cnd
=| macros.ini_initial

Save the updated file by either select file->Save or by clicking on the disk icon just below the edit
tab. The user can close the file by clicking on the x next to the file name in the edit window.

Before building the project let’s look at the linker command file Ink.cmd. To open it the user
selects the file and right clicks to open with text editor. In addition to stack size and heap size,

linking a generic library. During the building process the correct library will be linked, depends
on the properties of the project. For little endian ELF format case dsplib.ae66 will be linked. For
little endian COEF format case dsplib.a66 will be linked. The COEF format is an old Tl proprietary
format that is used only in backward compatibility projects. For big endian ELF format case
dsplib.ae66e will be linked. For big endian COEF format case dsplib.a66e will be linked.

Two memory segments are defined for this project, the internal L2 memory and the shared
MSMCRAM memory. The internal L1P and L1D memories are configured as cache. Each section
of memory should be allocated in one of the memory segments; otherwise the linker will
allocate it in a default segment and give warning message.

Last we look at the project properties. Right click on the project and select the last item —

Properties:
D-EHRBR R EIE G D
[Project Explorer 52 = 0O | B Inkemd &2
= <'==={> - 28 /* A PARTICULAR PURPO:
29 /* OWNER OR CONTRIBUT
4 L(-%' FFT_SP_Example_66_LE ELF [Active :!‘-‘ /* GPECTAI FXEMPIARY
: ;g? Binaries T ¥
- [t Includes
- (= Debug Show In 3
- | gy fft_example_s
s WLECMPIESP add Files...
+ | Ink.cmd
= macros.ini_initi =] CoOPY Cirl+C
Paste Cirl+v
H Delete Delete
Refactor »
Source 3
Maove...
Rename... F2
Import 3
vy Export...
Show Build Settings...
Build Project
Clean Project
Rebuild Project
& Refresh F5
Close Project
Make Targets 3
1 LI} Index 3
=% Available Products 2 Build Configurations b
Shows modules on the pag
Debug As 3
RTSC project. This view is ¢ E
because there is no RTSC (] Compare With 4
open. Restore from Local History...
Team 3
Properties Alt+Enter

In the properties dialog box, the optimization should be set to off, and the debug option to full
symbolic debug. Note that library routines that will be called are optimized routines that were
built with full optimization and with no symbolic debug. The user is encouraged to explore the

project properties, and then close the properties window.
Rebuild the project by right clicking the project name and select Rebuild Project. The following
screen shot shows the result of the build:

) Console i3 Gﬁ@” ;ugl_]-%”:‘E'::J':E

DT Build Console [FFT_SP_Example_66_LE_ELF]

‘Finished building: C:/tifReleases/Release_3 8 @ 4/K2H/dsplib_ce6x_3 4 8 8/examples/TTi_sp_ex/tit_example_sp.c’ o

'Building target: FFT_SP_Example_66_LE_ELF.out’

'Invoking: C6@88 Linker'

"Cifti/ces_ve_1_3/ccsve/tools/compiler/c6@@@_7.4.16/bin/cléex” -mv66@@ --abi=eabi -g --define=ti_targets_elf_(66 --diag_wrap=off
--diag_warning=225 --display_error_number --mem_medel:data=far --debug_software_pipeline -k --strip_coff_underscore -z
-m"FFT_SP_Example 66_LE_ELF.map" -i"C:/ti/ccs_v6_1 3/ccsve/tools/compiler/c6@@8_7.4.16/1ib"
-i"C:/tifces_wB_1_3/ccsvé/tools/compiler/c6888_7.4.16/include™ -i"../../ ../ ../ " -i"c:/ti/mathlib_c66x_3_1 @ 8/packages”
-i"ci/nightlybuilds/dsplib™ -i"../../" --reread_libs --diag_wrap=off --display_error_number --warn_sections
--xml_link_info="FFT_SP_Example_66_LE_ELF_linkInfo.xml" --rom_model -c¢ "FFT_SP_Example_66_LE_ELF.out" "./fft_example_sp.obj"
'C:/ti/Releases/Release_3 8 8 4/K2H/dsplib c66x_3 4 8 @/examples/fft_sp_ex/Ink.cmd" -1libc.a

tLinking>

varning #1@349-D: creating output section “.init array™ without a SECTIONS specification. For additional information on this

section, please see the 'Ce@@@ EABI Migration' guide at
1ttp://processors.wiki.ti.com/index.php/C6886_EABI:C6880_EABI_Migration#C6x_ EABI_ Sections
'Finished building target: FFT_SP_Example_66_LE_ELF.out’

F¥*% Build Finished *%**

2.3. Define Target- Emulator

CCS communicates with the board via an emulator. In this example the EVM that is used is
TMS320C6678 Evaluation Modules with a daughter card that is Blackhawk XDS560v2-USB
Mezzanine Emulator so the following instructions will be for this emulator. If a different
emulator or/and different EVM is used, the instructions will be changed accordingly.

From the CCS Edit perspective click on View->Target Configurations (see below) . A target

Configuration window will be opened.

m

S Edie - Code Comporer S I

File Edit [‘u"iew Mavigate Project Run Scripts Window Help

ﬁ — W/ Resource Explorer (Examples) [
|-_I>_“I Project [z Grace Snippets
Jnl Getting Started
ST @ CCS App Center
«# GUI Composer™
Applications r
fﬁ_—, Project Explarer
[®: Problems Alt+shift+Q, X
El conscle alt+shift+aQ, ©
g Advice
%5 Debug
ﬂ Memory Browser
MY Registers
i’ Expressions
()= variables Alt+shift+Q, v
== Disassembly
B85 Breakpoints Alt+shift+0, B
Madules

Scripting Console

Target Configurations

Outline Alt+5hift+Q, O
Memory Allocation

@ 0l 77w

Optimizer Assistant
Other... Alt+shift+0, O

In the User-Defined section, the user right-clicks and selects New Target Configuration. In the
opened window give a name. For the purpose of this document the target name is emulatorl.
After clicking on Finish, the emulator definition is opened in the editor window.

The first step is to choose the Connection. From the Pull down menu the user selects the
emulator that is used, see the screen shot below.

[#| emulatorl.coxml 23

Basic
General Setup
This section describes the general configuration about the target.
Connection [Blackhawk XDSS60v2-USE Mezzanine Emulator -
Board or Device Blackhawk USB560 Emulator, 20-pin JTAG Cable -

Blackhawlk USB5G0-BP Emulator

Blackhawlk USB5G0-BP Emulator, 20-pin JTAG Cable

Blackhawlk USB5G0-M Ermulator

Blackhawk USB560-M Emulator, 20-pin JTAG Cable

Elackhawk XD5560v2-LAN System Trace Emulator

Elackhawlk XD5560w2-USE Systemn Trace Emulator

Data Snapshot Viewer

Spectrurn Digital C2000 XD5510LC Emulator

Spectrurn Digital DSK-EVM PLUS onboard USE Emulator

Spectrurn Digital DSK-EVM-efdsp onboard USE Emulator —
Spectrurn Digital X05510 Parallel Pert-PCI Emulator

Spectrum Digital XD5510U5B Emulator

Spectrum Digital XD5510U5B Emulator TI-15C

Spectrum Digital XD556042 5TM LAM Emulator

Spectrurn Digital XD5560W2 STM TRAVELER Emulator

Spectrurn Digital XD5560W2 5TM USE Ernulator

Spectrurn Digital XDSPRO LAM Ernulator i

=

Next a set of supported boards and devices are in the Board or Device window. A filter can apply
to help find the desired board. For this document TMS320C6678 was chosen. After a board is
chosen the user can save the configuration. If the board or the EVM is powered and the
emulator is linked, the user can test the connection using the Test Connection tab in the middle
of the window.

[#] emulatorl.coxml &3
Basic

General Setup
This section describes the general configuration about the target.

Cennection ’BIackhawk XD5560v2-USE Mezzanine Emulator

Board or Device 55}3|

| TMS320C6678

To initialize the hardware CCS uses a script written in “General Extension Language” or gel.
http://processors.wiki.ti.com/index.php/GEL gives more information about gel files. When a

http://processors.wiki.ti.com/index.php/GEL

target is defined, the user should attach the correct gel file to cores in the target. (Usually it is
enough to connect the gel to core 0, since core 0 does all the system initialization)

At the bottom of the emulatorl.ccxml (or whatever name the user gave to the target) window

there is an “Advanced” tab, clicking on this tab will open a display of all the CPUs in the system.
The user selects core 0 and browse for the correct gel file

Al LONNECTIONS

a4 T, Blackhawk XDS560v2-USB Mezzanine Emulator 0
2 B TMS320C6678_0
4 % IcePick D

4 Q subpath_0
G ot D

4 Q subpath_1
G chtet

4 Q subpath_2
44} oo 2

4 Q subpath_3

Delete
Up

Down

Lpu rroperues
Chiec CPU

Set the properties of the selected cpu.

|| Bypass

initialization script
[] Slave Processor

TraceDeviceld 0l

Domain Power Loss Mode

Gel file are located in the directory where CCS was install in the sub-directory
\ccsvb\ccs_base\emulation\boards\BOARDNAME\gel where BOARDNAMIE is the board that is
used. For this example evmc6678I is used. After selecting the gel file and clicking the Open tab
at the bottom of the dialog box, the gel location is in the target configuration as seen in the next

screen shot.

All Connections

4 T, Blackhawk XD5560v2-USE Mezzanine Emulator_0
a #H TMS320C6675_0
4 Q IcePick D
4 b subpath_0
4G co6e0
a Q subpath_1

g e 1

Delete

Cpu Properties
Chbo: CPU

Set the properties of the selected cpu.
[T Bypass

initialization script A \emulation\boards\evmcE6 781 gl evm c6678

[Slave Processor

The last thing is to save the configuration (clicking on the Save tab). The user can close the

emulatorl.ccxml window.

2.4. Connect to the Target and Run the Project
Selecting the target in the target configuration window and right click opens a menu. The user
can set the target as a default target and the user can launch Selected Configuration.

EalzalsalzalcalEalsal

cBT4XEVM. coxml
ernulatp—sseeal
galilec] [Mew Target Configuration
k2gEWVh Import Target Configuration
shanno
channo Delete Delete
ush560 | Rename F2
Qéh Refresh F5
«#» Launch Selected Configuration
Set as Default
Link File To Project r
Properties Alt+Enter

The CCS changes perspective to debug and displays all the CPUs in the system. Next the cores
that are involved in the execution need to be connected. In this case the code runs only on a

single core, so core zero is selected and is connected. This is done by selecting core 0, right click
and select Connect Core. Core 0 will goes through all the initialization steps that are defined in
the gel file, and prints the progress in the Console window. See the screen shot below for the

last printing in the Console.

&l Conscle 33

emulatorl.cooml

Catwx_i8:
Cobwn_8:
Cobwx_@8:
Cobxx_@8:
Cobxx_8:
Cobxx_8:
DDR3 init
Cobxx_8:
Catwx_i8:
Cobwn_8:
Cobwx_@8:
Cobxx_@8:
Cobxx_8:

GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL Output:
GEL OQutput:
GEL Output:

ialization

GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL Output:
GEL OQutput:

PA PLL Setup... Done.
DDR3 PLL (PLL2) Setup
DDR3 PLL Setup... Dane.
DOR begin (1333 auto)
MMC Setup Done

is complete.

DDR done

DDR3 memory test... Started

DDR3 memory test... Passed

PLL and DDR Initialization completed(@)
configsGMIISerdes Setup... Begin

5GMII SERDES has been configured.

Cobxx_8:
Cobxx_8:
Catwx_i8:
Cobwn_8:
Cobwx_@8:
Cobxx_@8:
Cobxx_8:
Cobxx_8:

GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL OQutput:
GEL Output:
GEL OQutput:
GEL Output:

Enabling EDC

L1P error detection logic is enabled.

L2 error detection/correction logic is enabled.
MSMC error detection/correction logic is enabled.
Enabling EDC ...Done

Configuring CPSW ...

Configuring CPSW ...Done

Global Default Setup... Done.

Next the executable is loaded into the core. There are multiple ways to load code (as well as to
Run and other operations) but in this document only one way is described. Core 0 is still
selected, from the RUN menu right click on Load and Load Program. The window that is opened
enables the user to Browse, or Browse only Project. The easiest way is to Browse a project and

go to the Debug directory and select the out file:

PR——
W+ Load Prograf

Pragram file
Code offset

Data offset

-

we Select a program

.:-Elg

4 25 FFT_SP_Example 66_LE_ELF
4 = Debug
FFT_5P_Example_66_LE_ELF.out

Click OK twice, the code is loaded and the main function appears in the edit window.

2.5. Code Execution and measure cycles

Enabling the CCS clock is done from the Run menu. Clicking on Clock Enable (see below) opens
a small clock window with value of 0. Double click on the Cycle count always set the clock to
zero.

[Run| Scripts Window Help

% Connect Target Ctri+Alt+C Iv NORE R &
Disconnect Target Ctri+alt+D
Restore Debug State Alt+E

¥ Load [

0P Resume F8
Suspend Alt+F8

Terminate Ctri+F2
Disconnect

@ GoMain Alt+M

“d% Reset s

4}_!.';. Restart

. Step Into FS

i—L Step Over F&

T Assembly Step Into Ctri+5hift+F5

i~ Assembly Step Over Ctri+shift+F&
Step Return F7
Run to Line Ctri+R
Free Run Ctri+F8
Clock [Enable
Advanced] Disable

%, Debug F11 Show

Hide

Debug History] Reset
Debug As 2 S
Nehus Confieuratinns r

And the clock window looks like the following (right bottom corner of the CCS window)

k

CFull License - LE {20

Next we step through the code using F6 key (or from the Run menu click Step Over). After three
steps the execution is about to execute the DSPF_sp_fftSPxSP routine. At this point the clock is
set (double click) to zero.

Before executing the DSPF_sp_fftSPxSP routine let’s look at the parameters for the function. The
document that describes the function and the parameters that are used is TMS320C67x DSP
Library Programmer’s Reference Guide —page 49. The first parameter is the number of elements

must be power of 2 and up to 8K. Note that the twiddle factors that are generated by the
function gen_twiddle_fft should be called with the same value. Next are the pointers to the
input data, the twiddle factors and the output vector. Each of these vectors are of 2*N floating
point size. The bit reversal vector brev is next. According to the documents the brev size is 64
regardless of the FFT size. The next 3 parameters are used to optimize the execution. n_minis 4
if N is power of 4, and 2 otherwise. This value tells the program if it can use all Radix 4
butterflies (4) or must use Radix 2 butterflies, at least once (2). The last two parameters enable
the program to break the FFT into multiple executions so that the data fits into L1D cache. is
TMS320C67x DSP Library Programmer’s Reference Guide explains the concept in great details.

Click F6 one more time, the code progress after the DSPF_sp_fftSPxSP routine and the cycle
counts (the clock) shows ~1513 cycles.

http://www.ti.com/lit/ug/spru657c/spru657c.pdf
http://www.ti.com/lit/ug/spru657c/spru657c.pdf
http://www.ti.com/lit/ug/spru657c/spru657c.pdf

3. Chapter 3 - Build a New CCS Project

The previous chapter shows how to import a project. Each module of Processor SDK including all
functions in the optimized libraries have unit test that shows the user how to use the function. The
next step is to build a new project using the same library function that was used in the previous
chapter.

While different devices may (or may not) have different implementation of library functions, the
interface and the parameter list of the function are the same across different platforms. Thus in this
example we use the TI's EVMK2H evaluation module with the 66AK2H12 processor.

In this example we build a 66AK2H12 project a single C66XX core that generates random numbers as
input, calculates the energy in the sequence, execute FFT function from a library, calculate the
energy in the frequency domain, and printout the difference between the two energies. (Parseval's
theorem implies that the two energies must be equal)

There are multiple ways to use library functions and other software modules that are part of
Processor SDK. The first method is direct usage of libraries and other utilities. The other method is
using RTSC — Real-Time Software Component. While many Tl examples are using RTSC to facilitate
fast and accurate building of projects, the project in this chapter will be created without RTSC
support.

3.1. Create a New Project

Start from the file menu (at the upper left corner);
File > New = CCS Project

A dialogue box is opened. First the user must configure the Target. There is a pull down menu
at the upper right corner of the dialogue window. The target can be a generic processor, a device or
aTlIEVM.

Each target has a set of processors. To illustrate this, the following two screen shots show the
dialogue window when a board called IDK_AM427X is selected and when the device 66AK2H12 is
selected respectively;’

CCS Project

(i) Project name must be specified

Target: <select or type filter text> v |IDK_AM43TX v|
! Connection: [v] | Verify |
G Cortex A[ARM] | | Cortex M [ARM] | . PRU|
Project name:
IUse default location
Location: | C:\Users\al270985. ENT\workspace_vb_try | | Browse... |
Compiler versicn: ’GNU v4.9.3 (Linaro) vl [Maore... l
b Advanced settings
* Project temnplates and examples
| type filter text Creates an empty project fully initialized to -
- run in "non-hosted” mode on the selected
4 Empty PmJECth device. The project will contain an empty
[& Empty Project ‘main.c’ source-file.
[Empty Project (with main.c)
4 S¥S/BIOS
[» GMU Target Examples
[Systemn Analyzer (U14)
@ <Back | MNet> || Finsh | [Cancel

CCS Project
(i) Project name must be specified

Target: =select or type filter text> + |BoAKZH1Z -
Connection: ’ - Verify...
50 Cortex A[ARM] | CB6XX [C000] |

Project name:

Uze default location
Location: | C\Users\al270985.ENT\workspace vb_try Browse...

Compiler version: |TIw1512.2.LTS T] ’ More...

b Advanced settings

= Project ternplates and examples

type filter text Creates an empty project fully initialized for =+
the selected device. The project will contain
an empty 'main.c’ source-file,

4 [=| Empty Projects
[Empty Project
[Empty Project (with main.c)

[Empty Assemnbly-only Project
[& Empty RTSC Project

4 [=| Basic Bxamples
[Hello World

@ < Back Next » Finish

The user who selects IDK_ AM437X can choose one of three programmable processors, either ARM
cortex A (AM437X has Cortex A9), ARM cortex M4 or PRU. 66AK2H12 has two processors to choose
from, either ARM Cortex A (A15) or C66XX DSP. Each processor has its own list of default project’s
templates. All processors have several Empty Projects templates as well as Basic Example (Hello
World) template.

=

R

To start the project we choose Empty Project with main.c. Next the project name should be chosen.
After a Project name (for example “exercisel”) is written in the Project Name Tab, the Finish Tab at
the bottom of the dialogue window is highlighted.

Left Click on the Finish TAB and the new project with main.c file is created. To open Project Explorer
(if it was not opened in the past) the user left-clicks on the View tab, selects Project Explorer and
then left-click. The following two windows show how to enable Project Explorer and the Project
Explorer display. Clicking on the small arrow next to the Project Name opens the project structure:

"+ CCS Edit - exercisel/main.c - Code ComEr SE-

File Edit Navigate Project Run Scripts Window Hel

H i=9 - & Resource Explorer (Examples)

@ N = Grace Snippets
(@ Getting Started
%J CCSApp Center

«# GUI Composer™

Applications »

Project Explorer
Problems Alt+shift+Q, X

[N T - SITR

o EE

Console Alt+shift+Q, C©

Advice

Debug

(=

Memory Browser

Registers

5

Expressions

9= Variables Alt+shift+Q, vV
=2 Disassembly

85 Breakpoints Alt+Shift+Q, B

=i Modules

Scripting Console
[#| Target Configurations
85 outline Alt4shift+Q, O
= Memory Allocation
i3 Optimizer Assistant
Other... Alt+shift+Q, Q

File

-

=

o

Edit View Mavigate Project Run Scripts Window Help

Vi@ F BE I G D
[Project Explorer 52 = O main.c 2
3 Fro) P
ag | i
a = exercisel [Active - Debug] § J_"'alr‘l.c
> [l Includes 4 int main(void) {
= Debug 5
s € main.c B return @;
7}
8

Next we add to files to the project and modified the main.c file. The first file that is added is an
include file called for example exercisel.h. The include file will have all the constants that are
used in the code, as well as all the routines’ prototypes and all standard include files. Since the
project will use random number generation the C standard include file <stdlib.h> must be
included. Since the project will use 1/0 functions like printf, the standard C I/O include file
<stdio.h> must be included. The following is a Pseudo C code for the examplel.h file:

/*
* exercisel.h

Created on: Aug 26, 2016
* Author: 20270985
*/
#ifndef EXAMPLE1_H_
#define EXAMPLE1_H_

#include <stdlib.h>
#tinclude <stdio.h>

#define DATA_SIZE 256
#define MAXIMUM_VALUE 1000

extern void generateFloatingPointInputData (float *p_out, int
numberOfElements);
extern double calculateEnergy (float *p_in, int numberOfElements) ;

#endif /* EXAMPLE1 H_ */

Notice that the include file does not declare the FFT prototype. The FFT function is part of the
DSPLIB library that is part of the release and the prototype is defined in a different include file
that will be added later.

The include file as any other source file can be written using any text editor and then copied into
the project, or it can be written within CCS. To use the later, one should left click on the File
tab;

File->New->Header file and a dialogue window is opened. In the dialogue box one
writes the include file name and click Finish. See the next two screen shots:

File | Edit Wiew Mavigate Project Run Scripts Window Help

Mew Alt+shift+N » | =% CCS Project
Open File... rﬂ Project...
Close Ctrl+w I£|1} Source File
Close All Ctrl+shift+W | [n| Header File
Save Ctri+5 @ Class
Save As._ |_|‘¢' File from Template
Save A Ctrisshiftss | Folder
S [#] Target Configuration File
|s DSP/BIOS v5.x Configuration File
S |& RTSC Configuration File
ET Rename... F2
) Refresh - rﬁ' Other... Ctri+N

File Edit Wiew Mavigate Project Run Scripts Window Help

e D Ri% D P i BIEI G

P =

Eh [75 Project Explorer 52

L ‘eﬁﬁ Mew Header File |ﬂ|
= B
4 [exercisel [Active - Debug] | | Header File 'Y
b @] Includes Create a new header file. h
= Debug =
[@ main.c
Source folder: exercisel Browse...

Header file: examplel.h

Template: Default C++ header template v] [Configure... l

@ | Finish || cancel

., J
-

The include file is opened with the first two lines and the last line:

File Edit Wiew MNavigate Project Run Scripts Window Help

AR SEINEE R SFCEE R SR s~

E“:{:j'vc'l/v

E [75 Project Explorer &3 = B | |g mainc [h examplel.h 53
HoOow 1/*
E'E s = 2 * examplel.h
4 [exercisel [Active - Debug] 3 =
b [l Includes 4 * Created on: Aug 4, 2816
= Debug 5 * Author: a@278985
b [h examplel.h & */
b [g mainc 7

g #ifndef EXAMPLEL H_

o #define EXAMPLEL H_

10

11

12

13

14

15 #tendif /* EXAMPLEL H_ */
16

Adding the body of the examplel.h from above, one can copy and paste from the pseudo code
above to get the following include file:

*examplel.h &% | [c| generateFloatingPointData.c l.c] *calculateEnergy.c L] fft_example_sp.c lg] *

|Exerchelfexan1plel.h
¥ exercizerTm

Created on: Aug 26, 2816
Author: a@278985

= O L Ll R

#ifndef EXAMPLEL H_
#define EXAMPLEL H_

LU=]

]

11 #include <stdlib.h>
12 #include <stdio.h>

1 s I

15 #define DATA_SIZE 256
16 #define MAXIMUM VALUE loea

-

extern void generateFloatingPointInputData (float *p_ocut, int numberOfElements);
extern double calculateEnergy (float *p_in, int numberOfElements) ;

]

[o O L T S R N S
h s L) B R WU S]

& #endif /* EXAMPLEL H */

One advantage of CCSv6 is that the user can assign compilation parameters such as level of
optimization and level of debug-ability for each project and for each source file in the project. This
feature enables the user to compile the main program (say) without optimization and with full
symbolic debugger feature, and compile processing code with high optimization and no symbolic
debug, to make it easier to profile performances of each function and to optimize each function. In
this project two source files will be added, one for generating floating point random number and
one for calculating the energy. The prototype of these function is defined in the include file.

Adding a C source file is similar to adding an include file, namely, from the File Tab, New, Source File.
After developing each file the user can compile each file separately by selecting the file name (left
click on the source file name), right click and Build Selected File(s). Multiple files can be selected
using the Ctrl key. The following is two screen shots from the two files; generateFloatingPointData
and calculateEnergy.c after compilation of each file. The compilation message is at the Console
window usually in the bottom of the CCS window. Pseudo code for the two files are given below, so

the user can copy and paste:

#include "examplel.h"
#define HALF_MAXIMUM_VALUE (MAXIMUM_VALUE /2)

void generateFloatingPointInputData (float *p_out, int numberOfElements)

{

int ri1;
float x1;
int i;
for (i=@; i<numberOfElements;i++)
{
rl = rand() % MAXIMUM_VALUE 5
x1 = (float) (rl - HALF_MAXIMUM VALUE) ;
*p out++ = x1
}
}
/*

* calculateEnergy.c

Created on: Aug 26, 2016
* Author: a@270985
*/

#include "examplel.h"

double calculateEnergy (float *p_in, int numberOfElements)
{

double sum ;

int i ;

float x,y ;

sum = 0.0

for (i=@; i<numberOfElements;i++)

{

X = *p_in++ ;

sum = sum + (double) (x*x) ;

}

return (sum) ;

=4

[Project Explorer 12 =

=i=3

a [exercisel [Active - Debug]
> ! Includes
> = Debug

T Available Products 53
Shows modules on the package path of a
RTSC project. This view is currently empty
because there is no RTSC Configuration File

open,

>

calculateEnergy.c
[h examplel.h
generateFloatingPeointData.c

main.c

[£] main.c [h examplel.h [£] generateFloatingPointData.c 52 | [calculateEnergy.c

1/
2 generateFloatingPointData.c
3
4 * (Created on: Aug 24, 2816
5 Author: a@27@935
6 =
7 Note - The floating point number that are generated are between
8 -HALF_MAXIM \LUE to +HALF_MA E
9
1@
11
gu#inc]ude "examplel.h™
13
14 #define HALF_MAXIMUM_VALUE (MAXIMUM_VALUE /2)
15
16 wvoid generateFloatingPointInputData (float *p_out, int numberOfElements)
17{
18 int rl ;
19 float x1 ;
28 int 1 ;
21 for (i=8; i<numberOfElements;i++)
22 {
23 rl = rand() % MAXIMUM VALUE ;
24 x1 = (float) (rl - HALF_MAXIMUM_VALUE) ;
25 *p_out+ = x1
26 3
27}
28
29
EL|

Fl

= g & Console 2

CDT Build Console [exercizel]

B EEE& BT

**** Build of configuration Debug for project exercisel ****

"Wt ces_ve_1_3N\\cesve\utils\\bin\\gmake” -k generateFloatingPointData.obj
‘Building file: ../generateFloatingPointData.c’

'Invoking: C6@0@ Compiler’

"C:/tifces_v6_1 3/ccsve/tools/compiler/ti-cgt-c6eee_3.1.e/bin/clex”

--include_path="C:/ti/ccs_v6_1_3/ccsve/tools/compiler/ti-cgt-c6@0@_8.1.8/include” -g --diag warning=225 --diag_wrap=off
--display_error_number --preproc_with_compile --preproc_dependency="generateFloatingPointData.d”

"../generateFloatingPointData.c”
'Finished building: ../generateFloatingPeintData.c’

#%* Build Finished ****

le| calculateEnergy.c &2
* calculateEnergy.c

Created on: Aug 26, 2816
Author: a@278985

O 0O) U s R

9 #include "examplel.h”

[

11 double calculateEnergy (float *p_in, int numberOfElements)

12{
13 double sum ;
14 int i ;
515 float x,y 3
16 sum = @.8
17 for (i=8; i<numberOfElements;i+d)
18 !
19 X = Fp_int+ ;
28
21 sum = sum + (double) (x*x) H
22
23 return (sum)
24}
25
26
ray
P
& Console &3 @ﬁ| EQED'&|="E'I=J‘

CDT Build Conzole [exercisel |

*#*** Build of configuration Debug for project exercisel ***%
"CaWhvEiN\ces_we_1 3V\\ccswe\\utils\\bin\\gmake" -k calculateEnergy.obj
"Building file: ../calculateEnergy.c’

"Invoking: Ce@@® Compiler’

"C:ftifces_we 1 3/ccsve/tools/compiler/ti-cgt-c6@@@ 8.1.8/bin/clex”

--include_path="C:/ti/ccs_ve_1_3/ccsve/teols/compiler/ti-cgt-ce@@@_B.1.8/include™ -g --diag_warning=225 --diag_wrap=off
--display_error_number --preproc_with_compile --preproc_dependency="calculateEnergy.d” "../calculateEnergy.c”

"../calculateEnergy.c”, line 15: warning #179-D: variable "y" was declared but never referenced
'Finished building: ../calculateEnergy.c’

*#**%* Build Finished ****

The main function should create the input data (using the generateFloatingPointData function),
then it calculates the energy in the input data, performs FFT and calculates the energy of the
transformed frequency domain data. The FFT function is part of the DSPLIB optimized Tl library
that is part of the release. In this document we use Processor SDK RTOS release 3.0.0.4 with
dsplib_c66x_3 4 0 0. The library contains multiple FFT functions. For this project the single
precision floating point DSPF_sp_fftSPxSP is chosen.

The sub-directory /Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib have
four versions of the dsplib optimized library and four versions of not-optimized version. Library
dsplib.a66 is little endian COFF format, dsplib.a66e is big endian COFF format. COFF format is a
Tl proprietary format that was used for backward compatibility with older projects. The library
dsplib.ae66 is the ELF version of little endian format while dsplinae66e is the big endian version.

The ELF format is a standard format that is currently used. For the purpose of this project the
little endian ELF format is used, that is dsplib.ae66 library

The include file dsplib.h in directory
/Release_3_0_0_4\C667X\dsplib_c66x_3_4 0_0\packages\ti\dsplib includes all dsplib include
functions. This file will be included in the project.

The documentations how to use the library function is in directory
\Release_3_0_0_4\C667X\dsplib_c66x_3_4 0_0\packages\ti\dsplib\docs\doxygen in a chm

format, as well as the TMS320C67x DSP Library Programmer’s Reference Guide —page 49. The

following is a screen shots that shows how to use the function DSPF_sp_fftSPxSP

= DSPLIB
& (x] A B
Hide Locate Back Stop Refresh Home Print Options
Contents 1 Index] Search I Favarites I
[£] DSPLIB API Reference “? TeEXAS INSTRUMENTS Technology for Innovators™
= () Modules
@ Adaptive filering Main Page | Modules | Files
@ Correlation
=) FastFourier Transform
[£] DSPF_dp_fDPXDP DSP
[E] DSPF_dp_iffDPXDP
[DSPF_sp_bitrev_cplx [Fast

[£] DSPF_sp_fiSPXSP
[£] DSPF_sp_fRSPXSP_r2c
[£] DSPF_sp_iftsPXSP
[£] DSPF_sp_iftSPXSP_c2r
2] DSP_fin6x16
[DSP_fitl6x16r
[21 DSP_fit16x16_imre
[£] DSP_fit16x32
[5] DSP_fit3nx32
[DSP_fiaaxazs
[21 DsP_iftiex16
[DsP_ift16x16_imre
[5] DSP_ift16x32
21 DsP_ift32x3z
L3 Filtering and convolution
@ Math
@ Matrix
@ Miscellansous
@ File List
[E1 Globals

Even with the documentations it may not be clear how to use the function. To understand
better how to use the function one can look at the unit test. The unit test main function is called

Collaboration diagram for DSPF_sp_fSPXSP:

Fast Fourier Trans

Detailed Description

void DSPF_sp_fitSPxSP (int N, float *ptr_x, float *ptr_w, float *ptr_y, unsigned char *brev, int n_min, int offset, int n_max)

Function Documentation

void DSPF_sp_fftSPXSP (int N,
float* ptr x,
float * ptr_w,
float* ptr y,
unsigned char * brev,
int n_min,
int offset,
int n_max

)
The benchmark performs a mixed radix forwards .

Parameters:
N length of FFT in complex samples
ptr_x pointer to complex data input
ptr_w pointer to complex twiddle factor
ptr_y pointer to complex output data
brev pointer to bit reverse table containing 64 entries
n_min should be 4 if N can be represented as Power of 4 else, n_min should be 2
offset index in complex samples of sub-fit from start of main fit
n_max size of main fit in complex samples

http://www.ti.com/lit/ug/spru657c/spru657c.pdf

DSPF_sp_fftSPxSP_d.c and is located in directory
\Release_3_0_0_4\C667X\dsplib_c66x_3_4 0_0\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66.

Even though the previous chapter test program was built for a different device, the way to use
the library routines is the same.

From the imported project of the previous chapter we know that the FFT routine needs two
other vectors in addition to the input, the 64-elements bit reversal vector (brev) and the twiddle
factor. The DSPLIB has several twiddle factor generation functions, but they all for fixed point
arithmetic and not for floating point. Thus this project will use the same Twiddle Factor
generation that the developer in the imported project used.

In addition just like the imported test project from the previous Chapter, we add two include
files DSPF_sp_fftSPxSP.h for the function that the code uses, and math.h. The main source code
looks like the following:

#include "examplel.h"
#include <math.h>
#include "DSPF_sp_fftSPxSP.h"

#pragma DATA_ALIGN(inputVector, 8);

float inputVector[2*DATA_SIZE] ; // complex vector
#pragma DATA_ALIGN(outputVector, 8);

float outputVector[2* DATA_SIZE] ;

#pragma DATA ALIGN(twiddleFactors, 8);

float twiddleFactors[2* DATA SIZE] ;

void gen_twiddle_fft_sp (float *w, int n)

{
int i, j, k;
double x_t, y_t, thetal, theta2, theta3;
const double PI = 3.141592654;

for (j =1, k =0; j<=n > 2; j=7<<2)
{
for (i =0; i<n > 2; 1i+=3)
{
thetal = 2 * PI * i / n;
x_t = cos (thetal);
y_t = sin (thetal);
w[k] = (float) x_t;
wlk + 1] = (float) y_t;

theta2 = 4 * PI * i / n;

x_t = cos (theta2);
y_t = sin (theta2);
wlk + 2] = (float) x_t;
wlk + 3] = (float) y_t;

theta3 = 6 * PI * i / n;
x_t = cos (theta3);

y t = sin (theta3);

wlk + 4] = (float) x_t;
w[k + 5] = (float) y_t;
k += 6;

unsigned char brev[64] = {
ox0, 0x20, 0x10, 0x30, Ox8, 0Ox28, 0x18, 0x38,
ox4, 0x24, ox14, ox34, Oxc, Ox2c, Oxlc, ©x3c,
Ox2, ©Ox22, 0x12, ©x32, Oxa, 0Ox2a, Oxla, ©x3a,
0x6, 0x26, Ox16, Ox36, Oxe, Ox2e, Oxle, 0Ox3e,
ox1, Ox21, ox11l, ox31, ©Ox9, ox29, 0x19, ox39,
0x5, 0x25, ©x15, ox35, oxd, ox2d, oxld, ©x3d,
ox3, 0x23, 0x13, ox33, oxb, Ox2b, oxlb, ©x3b,
ox7, ©0x27, 0x17, ox37, oxf, ox2f, oxlf, ox3f

s

int main(void)

{
double sumInput, sumOutput ;

int i,j K

generateFloatingPointInputData (inputVector, 2*DATA SIZE);
sumInput = calculateEnergy (inputVector, 2* DATA SIZE) ;

gen_twiddle_fft_sp (twiddleFactors, DATA _SIZE) ;

DSPF_sp_ fftSPxSP(DATA_SIZE, inputVector, twiddleFactors, outputVector,
brev, 4, @, DATA SIZE);
sumOutput = calculateEnergy (outputVector, 2* DATA_SIZE) ;

printf(" input energy %e output energy %e difference %e \n",
sumInput, sumOutput, sumInput-sumOutput) ;

return 9;

Note: The include file in the imported project was ti\dsplib\dsplib.h. This is a generic include file that
includes ALL the include files in the DSPLIB release. This include file is generic, so for functions that were
optimized for a certain architecture, the user must provide the device name. For the C66 architecture,
the device name is _TMS320C6600. Adding device name to a project is done from properties-> Advanced
Options ->Predefined Symbols lower window (Pre-define NAME)

3.2. Building the New Project
Right click on the project name and select Rebuild Project. After the build the following error
message is displayed in the Console window:

OOt vees_wB_1_3\\cosve\\utils\\bin\\gmake" -k all

'Building file: ../calculateEnergy.c’

'Inveoking: C6@@@ Compiler’

"Cr/tifccs_wB_1_3/ccsvé/tools/compiler/ti-cgt-c6@@@_8.1.8/bin/cléx”
--include_path="C:/ti/ccs_v6_1_3/ccsvb/tools/compiler/ti-cgt-c6@08_8.1.8/include”
--include_path="C:/ti/Releases/Release_3_@_8_4/K2H/dsplib_c66x_3_4 @_@/packages"” -g --define=_TM532@C668@ --diag_warning=225
--diag_wrap=off --display_error_number --preproc_with_compile --preproc_dependency="calculateEnergy.d” "../calculateEnergy.c”
"../calculateEnergy.c”, line 15: warning #179-D: variable "y" was declared but never referenced

'Finished building: ../calculateEnergy.c’

'Building file: ../generateFloatingPointData.c’

'Invoking: C6@@@ Compiler’

"Cr/tifces_we_1_3/ccsve/tools/compiler/ti-cgt-ce@e@_8.1.8/bin/clex”
--include_path="C:/ti/ccs_v6_1_3/ccsve/tools/compiler/ti-cgt-c6@08_8.1.8/include”
--include_path="C:/ti/Releases/Release_3_@_0_4/K2H/dsplib_c66x_3_4 @_8/packages"” -g --define=_TMS5320(660@ --diag_warning=225
--diag_wrap=off --display_error_number --preproc_with_compile --preproc_dependency="generateFloatingPointData.d"”
"../generateFloatingPointData.c”

'Finished building: ../generateFloatingPointData.c’

'Building file: ../main.c’

'Invoking: C6@@@ Compiler’

"Cr/tifces_we_1_3/ccsve/tools/compiler/ti-cgt-ce@ed_8.1.8/bin/clex”

--include_path="C:/ti/ccs_v6_1 3/ccsve/tools/compiler/ti-cgt-c6@0@_8.1.8/include”
--include_path="C:/ti/Releases/Release_3 @ @ 4/K2H/dsplib c66x_3 4 @ @/packages"” -g --define=_TM5320(660@ --diag_warning=225
--diag wrap=off --display error_number --preproc_with_compile --preproc_dependency="main.d” "../main.c”
»» Compilation failure

subdir_rules.mk:21: recipe for target 'main.obj’ failed

"../main.c”, line 7: fatal error #1965: cannot open source file "DSPF_sp_ fftSPxSP.h

1 catastrophic error detected in the compilation of "../main.c”.

Compilation terminated.

gmake: *** [main.obj] Error 1
gmake: Target 'all’ not remade because of errors.

#%% guild Finished ****

The project does not find the include file DSPF_sp_fftSPxSP.h. We need to add the path to it.
Searching in the release the file DSPF_sp_fftSPxSP.h is in directory

INSTALL_DIR\ dsplib_c66x_3_4 0 O\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66 where
INSTALL_DIR is the directory name where the user installed Processor SDK. Adding the path to
ti\dsplib is done from the properties windows. Right clock on the Project name and select

Properties (this is the last item in the list). In the properties window select Include Options .

uﬁj Properties for exercisel

|t)‘F'Eﬁ|tEFtE’¢ Include Options =R A= A
|» Resource
General
4 Build Configuration: lDehug [Active] '] ’Manage Configulations...]
4 06000 Compiler
Processor Optiens
Optimization
Include Options Specify a preinclude file (--preinclude) & w) J &l L
Performance Advisor
I» Advanced Options
[» CB000 Linker
6000 Hex Utility [Disabled]
Debug
Add dir to #Finclude search path (--include_path, -I) & w B 'ﬁ| I@|
"$ICG_TOOL_ROOTYinclude"
® Show advanced settings I OK I [Cancel]

The upper window enables the user to add a pre-include file. The lower window is used
to add a path. Click on the green plus sign (+) and add the path to the ti\dsplib\dsplib.h.
In the system that is used here it looks like the following:

w+ Properties for exercisel

type filter text

. Resource
General
4 Build

Include Options

Configuration: | Debug [Active]

4 CB000 Compiler
Processor Options

Optimization -
Include Opticns
Performance Advisg
> Advanced Options

- CH000 Linker 3se_3_0_0_MK2H dsplib_cbbx_3_4_0_0\packagesitidsplib\src\DSPF_sp_fftSPxSPYchi
CH000 Hex Utility [Disa

Debug

«+ Add directory path &

Directory:

Workspace... H Variables... H Browse...

| ok || Cancel

Click OK twice and try to rebuild the project again. This time compilation went through, but

there are few issues with linking the program, see the screen shot below:

"./generateFloatingPointData.obj™ "./main.cbj" -1llibc.a

<Linking>

warning #18247-D:
warning #18247-D:
warning #18247-D:
warning #18247-D:
warning #18247-D:

warning #18247-D:

creating output section ".text™ without a SECTIONS specification
creating output section ".const™ without a SECTIONS specification
creating output section “.fardata" without a SECTIONS specification
creating output section ".cinit™ without a SECTIONS specification
creating output section ".stack™ without a SECTIONS specification

creating output section ".sysmem” without a SECTIONS specification

»» Compilation failure
makefile:141: recipe for target 'exercisel.out' failed

warning #18247-D:
warning #18247-D:
warning #18247-D:
warning #1821@-D:
warning #18218-D:

undefined
symbol

creating output section ".far™ without a SECTIONS specification

creating output section ".switch™ without a SECTIONS specification

creating output section ".cio™ without a SECTIONS specification

creating ".stack” section with default size of @x48@; use the -stack option to change the default size
creating ".sysmem" section with default size of @x488; use the -heap option to change the default size

first referenced
in file

DSPF_sp fTESPxSP ./main.cbj

error #18234-D: unresolved symbols remain

error #18818: errors encountered during linking; "exercisel.out™ not built
gmake: *** [exercisel.out] Error 1

gmake: Target 'all’ not remade because of errors.

#%%* Build Finished ****

The error tells us that the library function DSPF_sp_fftSPxSP that is called by main was not found, but in
addition it gives us warning that there are no section specifications. Indeed the project does not have a
linker command file that defines what memories are used and what sections are used. As a starting

point we will copy the linker command file from the imported project into the new project. Later on the

I”

user can modified the linker command file for the “real” application. For example, the linker command

file that was used in the imported project does not include the external memory DDR which usually is
used in real applications. The linker command file of the imported projects Ink.cmd is the following:

-heap 0x8000
-stack 0xCeo0
-1../../../../packages/ti/dsplib/1lib/dsplib.1ib

MEMORY

{
L2SRAM (RWX) : org = 0Ox800000, len = 0x100000
MSMCSRAM (RWX) : org = Oxc000000, len = 0x200000

}

SECTIONS

{
.text: load >> L2SRAM
.text:touch: load >> L2SRAM

GROUP (NEAR_DP)
{

.neardata
.rodata

.bss

} load > L2SRAM

.far: load >> L2SRAM

.fardata: load >> L2SRAM

.data: load >> L2SRAM

.switch: load >> L2SRAM

.stack: load > L2SRAM

.args: load > L2SRAM align = 0x4, fill = @ {_argsize = 0x200; }
.sysmem: load > L2SRAM

.cinit: load > L2SRAM

.const: load > L2SRAM START(const_start) SIZE(const_size)
.pinit: load > L2SRAM

.cio: load >> L2SRAM

xdc.meta: load >> L2SRAM, type = COPY

Next we add the DSPF_sp_fftSPxSP function library. A complete set of the entire DSPLIB libraries are in
directory INSTALL_DIRECTORY\ dsplib_c66x_3_4 0_0\packages\ti\dsplib\lib. In addition, each DSPLIB

function has its own small library. This is the library that is going to be used in this project.

From the comment of type of libraries in chapter 2.2, and building this project as little endian and ELF
format, the library that is used is dsplib.ae66 in directory
INSTALL_DIRECTORY\ \dsplib_c66x_3 4 0 O\packages\ti\dsplib\lib

To add the library and a path to the library to the project the user must go to

Properties->C6000 Linker ->File Search Path, see the screen shot:

¥+ Properties for exercisel = 2|
type filter text File Search Path bvp v -
I» Resource
General
4 Build Configuration: |Debug [Active] 'l ’Manage Configurations...l

a CB000 Compiler
Processor Options
Optimization
Include Options
Performance Advisor

|» Advanced Options

a (6000 Linker
Basic Options
File Search Path

[» Advanced Options
6000 Hex Utility [Disabled]
Debug

Include library file or cornmand file as input (--library, -1) & & &8 58

€8 84 3

Add <dir> to library search path (--search_path, -i)

"${CG_TOOL_ROOTY/lib"
"§{CG_TOOL_ROOTYinclude

Reread libraries; resolve backward references (--reread_libs, -x)
[] search libraries in priority order (--priority, -priority)
["] Disable autematic RTS selection (--disable_auto_rts)

@ Show advanced settings

[ok [coence |

The upper window should have the library name, while the lower window has the path to the library.

Select the green + sign at the top window opens a dialogue box where we enter the library name:

++ Add file path

2]

File:

dsplib.aes6|

Workspace... ” Variables... ” Browse...

QK Cancel

And in the lower window we add the path to the library:

W+ Properties for exercisel

| type filter text

File Search Path

» Resource
General
4 Build
4 6000 Compiler
Processor Options

v

Configuration: |Debug [Active]

v] [Manage Configuratiom...]

Include Options
Performance Advise
> Advanced Options
4 6000 Linker
Basic Options
File Search Path
> Advanced Options
6000 Hex Utility [Disall|
Debug

Optimization ~

5 Add directory Path s S cms—"———— —

S

Directory:

Cti\Releases\Release_3_0_0_4\K2H\dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib|

Workspace... | | Variables.. || Browse.. |

88 8 4L

€& 8 5l

Reread libraries; resolve backward references (--reread_libs, -x)
[] Search libraries in priority order (--priority, -priority)
[Disable automatic RTS selection (--disable_auto_rts)

® Show advanced settings

oK Cancel |

Click OK three times, one for the library, one for the Path and one for the Properties and rebuild the
project. This time the project was built and the Console shows the following:

Bl Console 52 &ﬁ| ,EQED-EN|=‘EY;=J7:

CDT Build Console [exercisel]

--include_path="C:/ti/Releases/Release_3_8_©_4/K2H/dsplib_c66x_3 4 @ @/packages”
--include_path="C:/ti/Releases/Release_3_@ B_4/K2H/dsplib_ce6x_3_4 @_8/packages/ti/dsplib/src/DSPF_sp_fTtSPxSP/ceE” -g
--define=_TMS328(6688 --diag warning=225 --diag_wrap=off --display_error_number --preproc_with_compile
--preproc_dependency="generateFloatingPointData.d” "../generateFleatingPointData.c”

'Finished building: ../generateFloatingPointData.c’

'Building file: ../main.c’

"Invoking: 6000 Compiler’
"C:ftifccs_ve_1_3/ccsve/tools/compiler/ti-cgt-c6@@8_8.1.8/bin/clex”
--include_path="C:/tifccs_v6_1 3/ccsvé/tools/compiler/ti-cgt-ced@e_B8.1.8/include”
--include_path="C:/ti/Releases/Release_3_B_8_4/K2H/dsplib_cG6x_3 4 @ 8/packages”

--include_path="C:/ti/Releases/Release_3_@ B_4/K2H/dsplib cB6x_3 4 8_8/packages/ti/dsplib/src/DSPF_sp_fTtSPxSP/c6E" -g
--define= TM5328C6688 --diag_warning=225 --diag_wrap=off --display_error_number --preproc_with_compile
--preproc_dependency="main.d" "../main.c"

"../main.c"”, line 66: warning #179-D: variable "i" was declared but never referenced

"../main.c"”, line 66: warning #179-D: variable "j" was declared but never referenced

'Finished building: ../main.c’

'Building target: exercisel.out’

"Invoking: C6@@@ Linker'

"C:ftifces_v6_1_3/ccsve/tools/compiler/ti-cgt-c6@@e_5.1.8/bin/clex” -g --define=_TMS328(660@ --diag_warning=225 --diag_wrap=off
--display_error_number -z -m"exercisel.map” -i"C:/ti/ccs_w6_1_3/ccsv6/tools/compiler/ti-cgt-c6eee_s.1.8/1ib"
-i"C:/ti/Releases/Release_3_@_@_4/K2H/dsplib_c66x_3_4 @_@/packages/ti/dsplib/1ib"
-i"Ciftifces_w6_1_3/ccsve/tools/compiler/ti-cgt-c6eea_8.1.8/include” --reread_libs --diag_wrap=off --display_error_number
--warn_sections --xml_link_info="exercisel linkInfo.xml" --rom_model -o “exercisel.out" "./calculateEnergy.obj”
"./generateFloatingPointData.obj” "./main.obj"
"C:/ti/Releases/Release_3_0_@_4/K2H/dsplib_ce6x_3_4 @ _@/examples/fft_sp_ex/Ink.cmd”™ -1libc.a -ldsplib.ae6e

<Linking>

warning #18349-D: creating output section ".init_array™ without a SECTIONS specification. For additional information on this
section, please see the 'C6@@@ EABI Migration' guide at
http://processors.wiki.ti.com/index.php/C6@@@_EABI:(6@88_EABI_Migration#(6x_EABI_Sections

"Finished building target: exercisel.out’

##% guild Finished ****

There are some warnings that the user can easily eliminate, but the executable exercisel.out was built
and is in the Debug directory.

3.3. Code Execution understanding the results
Repeat the steps in Chapter 2.5 to launch the target, connect core 0 and load the code of exercisel
(Run->load _> Load Program and from the dialogue box choose Browse Project and then choose
exercisel->Debug->Exercisel.out and then OK and OK)

Step through the code. The last instruction prints the following on the Console:
input energy 4.216463e+07 output energy 1.079414e+10 difference -1.075198e+10

So the input energy is not equal to the output energy. | leave it to the user to understand what my
mistake is, | will just give a hint. If the following two lines are added to the code:

sumInput = sumInput * (float) DATA SIZE ;
printf(" input energy %e output energy %e difference %e \n

sumOutput, sumInput-sumOutput) ;

, sumInput,

Then the second printf gives the following results, (error of about e-8)

input energy 1.079415e+10 output energy 1.079414e+10 difference 4.998233e+02

4. Import Function from Library that is not Part of Processor SDK

4.1. Import an Example from FFTLIB (C674X version)

In chapter 2 there are instructions how to import a project. In Chapter 3 there are instructions how to
build a new project. In both cases the build process was relatively easy and simple.

Processor SDK supports many Tl digital devices and covers many building blocks. However, there are
some devices that are not supported (currently) by Processor SDK. There are TI’s Libraries that are not
part of Processor SDK.

Importing and building examples in a library that is not part of Processor SDK requires more
configurations since the example project is un-aware of the software environment.

In addition, in the previous examples the projects were not RTSC projects. RTSC requires some
additional considerations. Chapter 2.1 — Before Importing a Project describes how to verify that RTSC
system sees all the software modules that it may require.

Chapter 4 imports a project that has some build issues, and shows how to debug and fix these issues.
The techniques that are demonstrated here can be used for other projects with similar issues.

The software tools that are used are CCS V6.1.3, and the library that is used is a FFTLIB for floating point
devices. The library can be loaded from

http://software-dl.ti.com/libs/fftlib/2.0.0/2 0 0 2/index FDS.html

This library supports C674X devices which are not supported by Processor SDK but by set of tools for
C674X. Download page for the C674X set of software tools is in http://software-
dl.ti.com/dsps/dsps public sw/c6000/web/bios c6sdk/latest/index FDS.html

Following the process from 2.2 in directory INSTALL_DIRECTORY\fftlib_2_0_0_2\ packages\ti\fftlib\src
where INSTALL_DIRECTORY is the directory where FFTLIB was installed. We choose the second function
in the following list, fft_dp_1d_c2c_batch. This function calculates FFT of double precision values (and
the calculation is double precision) and one dimension complex FFT on multiple vectors (thus the batch).
See the location of the example in the following screen shut:

http://software-dl.ti.com/libs/fftlib/2.0.0/2_0_0_2/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html

Browse For Folder

Select root directory of the projects to import

4 | ffthb_2 0.0_2
* . components
») docs
| eclipse
| package
4 || packages
4 1)t
4 fftlib
> docs
> | package
4) src
» | common
s fft_dp 1d_c2c
») fft_dp_1d_c2c_batch
s fft_dp 1d_r2c
= fft_dp_1d_r2c_batch
= fft_dp_2d_clc
s fft_dp_2d_r2c
> fft_dp_3d_clc
») fit_dp_3d_ric
s fft_omp_dp 1d_c2c
») fft_omp_dp 1d_r2c
s fft_omp_dp_2d_c2c
s fft_omp_dp_2d_r2c
») fft_omp_dp_3d_c2c
s fft_omp_dp_3d_r2c
») fft_omp_sp_1d_c2c

File Edit WView Mavigate Project Run

O~ BiIR-iQitprig

L5 Project Explorer 3 = O
S-S
4 'f% fft_dp_1d_c2c_batch_k1_66_LE ELF |
» ;:;? Binaries
+ [a Includes
¢ = Debug
» [Release

- |€} fft_cB678_config.c
> @ fft_commaon.c
. @ fft_dp_1d_c2c_batch_d.c
- g fft_dp_ld_c2c_batch.c
- |€} fft_dp_mixed_bs.c
> @ fft_dp_plan_1d_c2c_batch.c
» |48 Ink.cmd
4y fcConfig.cfg
= macros.ini_initial

=

First notice the small exclamation mark next to the project name. This means that the project needs
adjust its properties before it can be built. And indeed, if | click on Rebuild Project, this is the result:

'Building file: C:/ti/libraries/fftlib_2_@_8_2/packages/ti/fftlib/src/fft_dp_1d_c2c_batch/fft_dp_plan_1d_c2c_batch.c’
'Invoking: (6008 Compiler'

"C:/ftifccs_w6_1 3/ccsve/tools/compiler/c6@@@_7.4.16/bin/cléx” -mv66B@ --abi=eabi -g
--include_path="C:/ti/ccs_v6_1_3/ccsv6/tools/compiler/c6@88_7.4.16/include” --include_path="../../../../ ../ /"
--include_path="../../../../commen” --include_path="../../../" --include_path="../../../../commen/fft"
--include_path="../../../../commen/nonmp” --define=ti targets_elf_c66 --define=50C_C6678 --diag_wrap=off --diag_warning=225
--display_error_number --mem_model:data=far --debug_software_pipeline -k --preproc_with_compile
--preproc_dependency="fft_dp_plan_1d_c2c_batch.d" --cmd_file="configPkg/compiler.opt”

"C:/tiflibraries/fftlib_2 @ @ 2/packages/ti/fftlib/src/fft_dp_1d_c2c_batch/fft_dp_plan_ld_c2c_batch.c”

»>» Compilation failure

subdir_rules.mk:52: recipe for target 'fft_dp_plan_1d_c2c_batch.obj" failed

"C:/ti/libraries/fftlib 2 @ @_2/packages/ti/fftlib/src/fft_dp_ld_c2c_batch/fft_dp_plan_ld_c2c_batch.c”, line 44: fatal error #5:
could not open source file "ti/csl/csl_cacheAux.h™

1 fatal error detected in the compilation of
"C:iftiflibraries/fftlib_2_@_@_2/packages/ti/fftlib/src/fft_dp_1d_c2c_batch/fft_dp_plan_ld_c2c_batch.c”.

Compilation terminated.

gmake: *** [Fft_dp_plan_1d_c2c_batch.obj] Error 1

gmake: Target 'all' not remade because of errors.

When an include file is not recognize by the system, the project properties must be checked. For RTSC
projects, verifying that all the RTSC projects are well define is essential. To look at the RTSC definition
right click on the project name and select Properties (the last item in the pull down menu). RTSC
definitions are in the General ->RTSC tab:

«'v Properties for fft_dp_1d_c2c_batch k1 66 _LE ELF [= ﬂ_hj
t}"pEf”tEl’tEX‘t General <::I - - v
> Resource
General
4 Build Configuration: [DEbUg [Active] "] ’Manage Configurations...

4 CH000 Compiler
Processor Options

Optimization E RTsC
Debug Cptions
Include Options XDCtools version: [3.32.0.06_core v]
Performance Advisor
> Advanced Options = Products and Repositories | % Order
> C6000 Linker -
C6000 Hex Utility [Disabled] > [C]=h CTools Library o
 Y¥DCtools > [= CTools Library |E‘ _
Debug 4 [7] =) DSPLIB C66x L Edit...
[& 3400 Remove

#3111 [3400]
+ [] =i\ DSPLIB C674x

» [7] = Dense Linear Algebra Library Eelecidl
> [C] =i EDMA3 Low Level Driver Deselect Al

4 =, Framework Components

[0 5 3.40.207 <
Target: ti.targets.elf. C66
Platform: ti.platforms.evmB678

4 P I I

Build-profile: release

@ Show advanced settings [oK] [Cancel

If one of the needed element is not available, or has the wrong address, the system will flag it out.
Going through all RTSFC elements (see the next two screen shots) one of the additional depositories has
a small exclamation mark next to it. (second screen shot)

General

Configuration: ’ Debug [Active]

= mrsc

KDCtools version: ’332.0.05_::0[&

=l Products and Repositories T Order

=l CTools Library
=i, CTools Library
=i, DSPLIB Cobx
= 3400
] g5 3111 [3.4.0.0]
=i, DSPLIB C674x
=i, Dense Linear Algebra Library
=i EDMA3 Low Level Driver
=i Framework Components
it 340207
i 340.1.04
£ 330006 [3.40.2.07]
=i IMGLIE Codx+
=i, IMGLIB Coix
=i, IPC
=i Keystone? PDK
=i Library Architecture and Framework
=i, MATHLIB Cébx
=i, MATHLIB C674x
= MCSDK
=i MSP430ware
=i, NDK
=i, OpenMP Runtime 2.x library
=) SALLD

B e e ———

k T 7

k w7 W7 7

A A v v L v v e v

b [=k OpenMP Runtime 2.x library
b =) SALLD
4 [7] = SYS/BIOS

[] 4% 6.451.29

[&% 6.41.4.54

Ji‘} 637020 [6.451.29]

[£ 633125
B[] = Systemn Analyzer (ULA Target)
4 [7] =) XDAIS

s 7.24.0.04
B[] =l am5Toc POK
b [7] = <667 PDK

1'5 Chvti\Releases\Release_2_0_3\CB6TX\pdk_ch67x_2_0_1\packages

[Cti\Releases\Release 2_0_2\C66T7X\framework_components_3_40_01_04'\packages
[Cti\Releases\Release_2_0_2\C66TX\framework_components_3_40_01_04'examples
[CAti\Releazes\Release_2_0_MC667X\edma3_lld_2 12 01_23packages

Target: ti.targets.elf.Co6

Platform: ti.platforms. evmBGTE

Build-profile: release

And indeed, if one search for pdk_c667x_2_0_1\packages, it is found at

c:\ti\Releases\release_2_0_2\C667X\. To fix the error one should select the repository (left click) and

click on the Edit tab at the right side of the window. A dialogue box is opened:

’
w+ Edit Repository Location ﬂ

Please browse to a repository location in the file-system. This repository will automatically be registered for
future use,

k:"\ti"aﬁ‘.el eases\Release_2_0_3WC667X0\ pdlk_cb67x_2_0_1\packages Browse...

Fixing the path to the correct one and then click OK and OK remedies the problem. Then if the user
rebuilds the project again the build process finished and generates executable;

DT Build Conzole [fft dp 1d_c2c_batch_k1_66_LE_ELF]

TTLMNLLUUE pPALTS .. of wad w e IIIIRATT TTLNLLIUUE PALTTS aaf . o TTLNLLUUE PALIS waf e o/ aaf oo LAMBUTIS LT L

--include_path=". .f.-f--f-.fcommonfnonmp --define=ti targets elf_c66 --define=50C_C6678 --diag wrap=off --diag_warning=225
--display_error_number --mem_mcdel:data=far --debug_software_pipeline -k ——preproc_w1th_comp11e
--preproc_dependency="fft_dp_mixed_bs.d" --cmd_file="configPkg/compiler.opt”
"Ciftiflibraries/fftlib_2 8 @ 2/packages/ti/fftlib/src/common/fft/fft_dp mixed bs.c”

'Finished building: C:/ti/libraries/fftlib 2_@_@_2/packages/ti/fftlib/src/commen/fft/fft_dp_mixed_bs.c’

'Building file: C:/ti/flibraries/fftlib_2 @ @_2/packages/ti/fftlib/src/fft_dp_1d_c2c_batch/fft_dp_plan_1d_c2c_batch.c’
'Invoking: C6@0@ Compiler’

"Ciftifces_v6_1 3/ccsve/tools/compiler/c6@08_7.4.16/bin/cl6x” -mv6688 --abi=eabi -g
--include_path="C:/ti/ccs_v6_1_3/ccsv6/tools/compiler/c6@88_7.4.16/include” --include_path="../../../ ../ ../ ../ ../"
--include_path="../../../../common™ --include_path="../../../" --include_path="../../../../common/fft"
--include_path="../../../../common/nonmp" --define=ti_targets_elf_c66 --define=50C_(6678 --diag_wrap=off --diag_warning=225
--display error_number --mem model:data=far --debug_software_pipeline -k --preproc_with_compile
--preproc_dependency="fft_dp_plan_ld_c2c_batch.d" --cmd_file="configPkg/compiler.opt”
"Ciftiflibraries/fftlib_2_e_e_2/packages/ti/fftlib/src/fft_dp_ld_c2c_batch/fft_dp_plan_1d_c2c_batch.c”

'Finished building: C:/ti/libraries/fftlib_2 @_8_2/packages/ti/fftlib/src/fft_dp_1d_c2c_batch/fft_dp_plan_1d_c2c_batch.c’

'Building target: fft_dp_1d_c2c_batch_kl_66_LE_ELF.out’

'Invoking: (6888 Linker'

"C:ftifces_ve_1_3/ccsve/tools/compiler/ce@@d@_7.4.16/bin/clex” -mv66@@ --abi=eabi -g --define=ti_targets_elf_c66
--define=50C_C6678 --diag_wrap=off --diag_warning=225 --display_error_number --mem_model:data=far --debug software_pipeline -k -z
-m"fft_dp_1d_c2c_batch_kl_66_LE_ELF.map" -i"C:/ti/Releases/Release_2 @ 2/C667X/edma3_lld_2 12 @1 23/packages/ti/sdo/edma3/rm"
-1"C: ftlfccs_vﬁ_l_BfccsvGftoolsfcompllerchBBB_? 4.16/include”™ -i"C: Htlfccs_vﬁ_l_BfccsVGftoolsfcompller{cﬁﬁﬁﬁ_? 4.16/1ib™
--reread_libs --diag_wrap=off --display_error_number --warn_sections
--xml_link_info="fft_dp_1ld_c2c_batch_kl_66_LE_ELF_linkInfo.xml" --rom_model -o "fft_dp_ld_c2c_batch_kl 66_LE_ELF.out™
".ffft_c6678_config.obj" "./fft_common.obj™ "./fft_dp_1d_c2c_batch.obj" "./fft_dp_ld_c2c_batch_d.obj" "./fft_dp_mixed_bs.obj"
" ffft_dp_plan_1d_c2c_batch.obhj" "C:/ti/libraries/fftlib 2 @ @ 2/packages/ti/fftlib/src/common/nonmp/lnk.cmd™
-1"configPkg/linker.cmd" -1libc.a

<Linking>

'Finished building target: fft_dp_1d_c2c_batch_kl_66_LE_ELF.out’

FE#* Build Finished *%%*

Note: RTSC projects encapsulate the used modules in the RTSC window. Most of the build error is due to
the wrong definition of RTSC module or the path to a repository.

