
Introducing TI’s Integrated Development Environment – CCS

(Code Composer Studio) to Expert Engineers

1. Introduction

1.1. Intended Audience – Expert DSP engineer that is new to TI’s

Code Composer Studio (CCS)

CCS is Texas Instruments’ Integrated Development Environment (IDE) based on the open source

Eclipse architecture. It is used to build, debug, and run DSP applications as well as other

processor applications.

TI provides a great amount of CCS training, documentation, and other help that covers all aspect

of CCS. The following section provides links for the training. So who needs this document?

The intended readers of this document are DSP experts who have not yet worked with TI tools,

yet are very knowledgeable and have worked with other vendors’ tools. So they know what to

expect from tools, understand the logic behind tools, and only need to know the mechanics of

the tools. They may not have patience or time to go through training. Their goal is to jump in

and try to run a test application.

In addition to the CCS tool, TI provides a great deal of software blocks to facilitate easy

development of applications on TI’s devices, including a set of optimized libraries for standard

Mathematics (MATHLIB), Signal Processing (DSPLIB) and Image Processing (IMGLIB). A DSP

expert would like to use these optimized functions in applications. This document shows an

expert DSP engineer how to develop applications that call optimized library functions.

Steps to take when Start Porting DSP Algorithm into TI Environments

When porting an existing DSP algorithm that was developed under a different environment into

TI’s Integrated Development Environment CCS, the expert engineer will go through the following

steps:

1. TI’s Processor SDK is a comprehensive set of software and firmware tools, utilities and

example modules that supports many TI processors. Each module has a unit test project

that demonstrates how to use the module. The easy way to understand how to use a library

function is to import the unit test of the said function and run it on some hardware such as

Evaluation Module (EVM). Chapter 2 shows how to import a project from the release, build

it, and run it on standard hardware.

2. The next step is building a new application that utilizes the library function that was used in

the previous step. Chapter 3 shows how to build a new non-trivial (e.g., fairly complex)

project, build it, and run it on standard hardware such as TI Evaluation Module (EVM).

3. Processor SDK is a uniform release of software blocks that guarantees working together.

Three standard libraries are included in the Processor SDK release: DSPLIB, MATHLIB, and

IMGLIB. In addition, TI developed a set of optimized libraries that are not part of the

Processor SDK release. These libraries include IQMATH, FASTRTS, VICP, VLIB, FAXLIB and

VOLIB (see http://processors.wiki.ti.com/index.php/Software_libraries for more details). In

addition, there are devices that are not supported by the standard Processor SDK, but rather

by their own Software Development Kit (SDK). Chapter 4 shows how to build an example

code (unit test) C674X that is not supported by Processor SDK using a library function from a

dedicated FFTLIB library.

1.2. CCS On-Line Training Resources

The following is a partial list of

 CCS Training Page contains lots of training materials includes Videos and documents

 TMS320C6000 Optimization Workshop: Chapter 2 discusses CCS (and provides an

introduction to C6000 architecture)

 The Code Composer Studio (CCS) Integrated Development Environment (IDE) is the location

to download CCS. It has links to other CCS information.

 Processor SDK RTOS Setup CCS has a good introduction to using CCS with Processor SDK.

Some of the materials referenced in this document are covered.

 TI’s Code Composer e2e Forum is a public forum dedicated to questions and answers about

everything CCS. Almost any issue that you may encounter has probably been discussed

previously in this forum.

If the above list is not what you are looking for, continue through this document.

http://processors.wiki.ti.com/index.php/Software_libraries
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/op6000/op6000_v1.51/op6000_student_guide_v1.51.pdf
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Setup_CCS
https://e2e.ti.com/support/development_tools/code_composer_studio/f/81

Getting Started with CCS

The instructions and the screen shots in this document are taken from CCSv6 (6.1.3). Different

versions of CCS might have slightly different screen shots. This document assumes that the user

has installed CCS already.

CCS puts all the metadata that is associated with its operation in the workspace. There is a

default workspace (usually in c:/users/user_name/workspace_v6 or similar, where user_name is

the user login name) where multiple projects can reside. In addition, the user can define other

locations as workspace for a specific project.

The first time CCS is opened in a new workspace, the display window (see below) provides links

to collateral that provide training and other support documents.

Figure 1.2.1: CCS Getting Started Display

1.3. CCS Edit and Debug Perspectives

CCS has two perspectives:

 CCS Edit perspective is used for creating projects and building code. To switch to the CCS
Edit perspective, click on Window → Perspective → Open Perspective → CCS Edit.

 CCS Debug perspective is used for execution and debugging of code on the customer
EVM. To switch to the CCS Debug perspective, click on Window → Perspective → Open
Perspective → CCS Debug (See Figure 2).

Figure 1.3.1: Changing the CCS Perspective

The current perspective can be seen in the upper right corner of the CCS window, as shown in
Figure 2. Upon starting CCS, the default perspective is the CCS Edit perspective.

2. Import CCS Project from Release Examples

2.1. Before Importing a Project

Processor SDK has many examples and unit tests within a release that can be imported into a

project. Instructions on how to import a project from a release are provided in this chapter.

Most of the examples in the release are based on the Real Time Software Component (RTSC)

scheme. RTSC enables the system to rebuild drivers and utilities for a user-defined platform

from a configuration file. To achieve that the CCS environment must be aware of the location of

the various building modules in the Processor SDK release, In other words, the user must verify

that CCS “sees” all the modules in the release.

Assume a new release was installed in directory C:\ti\Releases\Release_3_0_0_4\C667X. The

following steps are needed to add or verify that CCS sees the new release.

1. Click the Window tab and select Preferences

Figure 2.1.1: CCS Edit Perspective: Window Drop-down Menu

2. The Preferences dialog box opens. Navigate to Code Composer Studio → RTSC →

Products.

Figure 2.1.2:

3. In the Product Discovery Path, make sure that the location of the new release is

specified. If the path is not there, click on the Add tab, add the directory name or

browse to the directory and click OK.

CCS will scan the new location and report back what new modules it found. Click Finish. CCS will

add the new module. A dialogue box may ask if the user trust the software and the answer is

Yes, and then restart CCS now.

Note – Some releases have issue with multiple NDK releases. If CCS reports error when it loads

NDK the user can un-checks NDK before clicking on Finish.

2.2. Import the FFT Project
In this next section, we will use and FFT project as an example. To get started - left click on the Project

Tab in the CCS EDIT perspective, select import CCS Projects and left click.

Figure 2.2.1:

A dialog box is opened. For the Select search-directory click on Browse and navigate to the

location where the dsplib directory was installed on your system->examples and select OK. CCS

will look for all the examples in this directory. We will work with FFT_sp_Example_66_LE_ELF.

LE stands for little endian format and ELF stands for the standard executable format. The

window will look like the following:

Click on Finish. CCS imports the project but may give some warnings in the problems window.

The problem may refer to Invalid Project Path. This may be the result of different directory

structure between the developer of the project and the user. The next step is to fix these issues.

Clicking in the small arrow next to the project name opens the project explorer. There are three

files, the test source code – fft_example_sp.c, the linker command file lnk.cmd, and an

initialization file macros.ini_initial. Double click on the macros.ini.initial opens the file in the

editor windows. This file defines three locations.

MATHLIB_INSTALL_DIR=c:/ti/mathlib_c66x_3_1_0_0
DSPLIB_INSTALL_DIR=c:/nightlybuilds/dsplib
EXT_ROOT__FFT_SP_EXAMPLE_66_LE_ELF_FFT_SP_EX=.././

 The last location is relative to the example directory and is correct. But the other two point to

locations in the developer system. The user has to change these paths.

MATHLIB is an optimized library for mathematical functions. It is part of the release. So its

location depends where the user installed the Processor SDK. The screen shots were taken from

a system where the Processor SDK release location is C:\ti\Releases\Release_3_0_0_4\C667X

and the mathlib version is mathlib_c66x_3_1_1_0, thus the first location will be defined as

MATHLIB_INSTALL_DIR=C: \ti\Releases\Release_3_0_0_4\C667X \ mathlib_c66x_3_1_1_0

Similarly, the second location is the location of the DSPLIB. For the same system the location will

be defined as DSPLIB_INSTALL_DIR=

C:\ti\Releases\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0. The screen shot shows the

updated locations. As was mentioned before, the user paths depend on the user install directory

of the Processor SDK.

Save the updated file by either select file->Save or by clicking on the disk icon just below the edit

tab. The user can close the file by clicking on the x next to the file name in the edit window.

Before building the project let’s look at the linker command file lnk.cmd. To open it the user

selects the file and right clicks to open with text editor. In addition to stack size and heap size,

linking a generic library. During the building process the correct library will be linked, depends

on the properties of the project. For little endian ELF format case dsplib.ae66 will be linked. For

little endian COEF format case dsplib.a66 will be linked. The COEF format is an old TI proprietary

format that is used only in backward compatibility projects. For big endian ELF format case

dsplib.ae66e will be linked. For big endian COEF format case dsplib.a66e will be linked.

Two memory segments are defined for this project, the internal L2 memory and the shared

MSMCRAM memory. The internal L1P and L1D memories are configured as cache. Each section

of memory should be allocated in one of the memory segments; otherwise the linker will

allocate it in a default segment and give warning message.

Last we look at the project properties. Right click on the project and select the last item –

Properties:

In the properties dialog box, the optimization should be set to off, and the debug option to full

symbolic debug. Note that library routines that will be called are optimized routines that were

built with full optimization and with no symbolic debug. The user is encouraged to explore the

project properties, and then close the properties window.

Rebuild the project by right clicking the project name and select Rebuild Project. The following

screen shot shows the result of the build:

2.3. Define Target- Emulator
CCS communicates with the board via an emulator. In this example the EVM that is used is

TMS320C6678 Evaluation Modules with a daughter card that is Blackhawk XDS560v2-USB

Mezzanine Emulator so the following instructions will be for this emulator. If a different

emulator or/and different EVM is used, the instructions will be changed accordingly.

From the CCS Edit perspective click on View->Target Configurations (see below) . A target

Configuration window will be opened.

In the User-Defined section, the user right-clicks and selects New Target Configuration. In the

opened window give a name. For the purpose of this document the target name is emulator1.

After clicking on Finish, the emulator definition is opened in the editor window.

The first step is to choose the Connection. From the Pull down menu the user selects the

emulator that is used, see the screen shot below.

Next a set of supported boards and devices are in the Board or Device window. A filter can apply

to help find the desired board. For this document TMS320C6678 was chosen. After a board is

chosen the user can save the configuration. If the board or the EVM is powered and the

emulator is linked, the user can test the connection using the Test Connection tab in the middle

of the window.

To initialize the hardware CCS uses a script written in “General Extension Language” or gel.

http://processors.wiki.ti.com/index.php/GEL gives more information about gel files. When a

http://processors.wiki.ti.com/index.php/GEL

target is defined, the user should attach the correct gel file to cores in the target. (Usually it is

enough to connect the gel to core 0, since core 0 does all the system initialization)

At the bottom of the emulator1.ccxml (or whatever name the user gave to the target) window

there is an “Advanced” tab, clicking on this tab will open a display of all the CPUs in the system.

The user selects core 0 and browse for the correct gel file

Gel file are located in the directory where CCS was install in the sub-directory

\ccsv6\ccs_base\emulation\boards\BOARDNAME\gel where BOARDNAME is the board that is

used. For this example evmc6678l is used. After selecting the gel file and clicking the Open tab

at the bottom of the dialog box, the gel location is in the target configuration as seen in the next

screen shot.

The last thing is to save the configuration (clicking on the Save tab). The user can close the

emulator1.ccxml window.

2.4. Connect to the Target and Run the Project
Selecting the target in the target configuration window and right click opens a menu. The user

can set the target as a default target and the user can launch Selected Configuration.

The CCS changes perspective to debug and displays all the CPUs in the system. Next the cores

that are involved in the execution need to be connected. In this case the code runs only on a

single core, so core zero is selected and is connected. This is done by selecting core 0, right click

and select Connect Core. Core 0 will goes through all the initialization steps that are defined in

the gel file, and prints the progress in the Console window. See the screen shot below for the

last printing in the Console.

Next the executable is loaded into the core. There are multiple ways to load code (as well as to

Run and other operations) but in this document only one way is described. Core 0 is still

selected, from the RUN menu right click on Load and Load Program. The window that is opened

enables the user to Browse, or Browse only Project. The easiest way is to Browse a project and

go to the Debug directory and select the out file:

Click OK twice, the code is loaded and the main function appears in the edit window.

2.5. Code Execution and measure cycles
Enabling the CCS clock is done from the Run menu. Clicking on Clock Enable (see below) opens

a small clock window with value of 0. Double click on the Cycle count always set the clock to

zero.

And the clock window looks like the following (right bottom corner of the CCS window)

Next we step through the code using F6 key (or from the Run menu click Step Over). After three

steps the execution is about to execute the DSPF_sp_fftSPxSP routine. At this point the clock is

set (double click) to zero.

Before executing the DSPF_sp_fftSPxSP routine let’s look at the parameters for the function. The

document that describes the function and the parameters that are used is TMS320C67x DSP

Library Programmer’s Reference Guide –page 49. The first parameter is the number of elements

must be power of 2 and up to 8K. Note that the twiddle factors that are generated by the

function gen_twiddle_fft should be called with the same value. Next are the pointers to the

input data, the twiddle factors and the output vector. Each of these vectors are of 2*N floating

point size. The bit reversal vector brev is next. According to the documents the brev size is 64

regardless of the FFT size. The next 3 parameters are used to optimize the execution. n_min is 4

if N is power of 4, and 2 otherwise. This value tells the program if it can use all Radix 4

butterflies (4) or must use Radix 2 butterflies, at least once (2). The last two parameters enable

the program to break the FFT into multiple executions so that the data fits into L1D cache. is

TMS320C67x DSP Library Programmer’s Reference Guide explains the concept in great details.

Click F6 one more time, the code progress after the DSPF_sp_fftSPxSP routine and the cycle

counts (the clock) shows ~1513 cycles.

http://www.ti.com/lit/ug/spru657c/spru657c.pdf
http://www.ti.com/lit/ug/spru657c/spru657c.pdf
http://www.ti.com/lit/ug/spru657c/spru657c.pdf

3. Chapter 3 – Build a New CCS Project
The previous chapter shows how to import a project. Each module of Processor SDK including all

functions in the optimized libraries have unit test that shows the user how to use the function. The

next step is to build a new project using the same library function that was used in the previous

chapter.

While different devices may (or may not) have different implementation of library functions, the

interface and the parameter list of the function are the same across different platforms. Thus in this

example we use the TI’s EVMK2H evaluation module with the 66AK2H12 processor.

In this example we build a 66AK2H12 project a single C66XX core that generates random numbers as

input, calculates the energy in the sequence, execute FFT function from a library, calculate the

energy in the frequency domain, and printout the difference between the two energies. (Parseval's

theorem implies that the two energies must be equal)

There are multiple ways to use library functions and other software modules that are part of

Processor SDK. The first method is direct usage of libraries and other utilities. The other method is

using RTSC – Real-Time Software Component. While many TI examples are using RTSC to facilitate

fast and accurate building of projects, the project in this chapter will be created without RTSC

support.

3.1. Create a New Project

Start from the file menu (at the upper left corner);

 File  New  CCS Project

 A dialogue box is opened. First the user must configure the Target. There is a pull down menu
at the upper right corner of the dialogue window. The target can be a generic processor, a device or
a TI EVM.

Each target has a set of processors. To illustrate this, the following two screen shots show the
dialogue window when a board called IDK_AM427X is selected and when the device 66AK2H12 is
selected respectively;’

The user who selects IDK_ AM437X can choose one of three programmable processors, either ARM
cortex A (AM437X has Cortex A9), ARM cortex M4 or PRU. 66AK2H12 has two processors to choose
from, either ARM Cortex A (A15) or C66XX DSP. Each processor has its own list of default project’s
templates. All processors have several Empty Projects templates as well as Basic Example (Hello
World) template.

To start the project we choose Empty Project with main.c. Next the project name should be chosen.

After a Project name (for example “exercise1”) is written in the Project Name Tab, the Finish Tab at

the bottom of the dialogue window is highlighted.

Left Click on the Finish TAB and the new project with main.c file is created. To open Project Explorer

(if it was not opened in the past) the user left-clicks on the View tab, selects Project Explorer and

then left-click. The following two windows show how to enable Project Explorer and the Project

Explorer display. Clicking on the small arrow next to the Project Name opens the project structure:

Next we add to files to the project and modified the main.c file. The first file that is added is an

include file called for example exercise1.h. The include file will have all the constants that are

used in the code, as well as all the routines’ prototypes and all standard include files. Since the

project will use random number generation the C standard include file <stdlib.h> must be

included. Since the project will use I/O functions like printf, the standard C I/O include file

<stdio.h> must be included. The following is a Pseudo C code for the example1.h file:

/*
 * exercise1.h
 *
 * Created on: Aug 26, 2016
 * Author: a0270985
 */

#ifndef EXAMPLE1_H_
#define EXAMPLE1_H_

#include <stdlib.h>
#include <stdio.h>

#define DATA_SIZE 256
#define MAXIMUM_VALUE 1000

extern void generateFloatingPointInputData (float *p_out, int
numberOfElements);
extern double calculateEnergy (float *p_in, int numberOfElements) ;

#endif /* EXAMPLE1_H_ */

Notice that the include file does not declare the FFT prototype. The FFT function is part of the

DSPLIB library that is part of the release and the prototype is defined in a different include file

that will be added later.

The include file as any other source file can be written using any text editor and then copied into

the project, or it can be written within CCS. To use the later, one should left click on the File

tab;

 File->New->Header file and a dialogue window is opened. In the dialogue box one

writes the include file name and click Finish. See the next two screen shots:

The include file is opened with the first two lines and the last line:

Adding the body of the example1.h from above, one can copy and paste from the pseudo code
above to get the following include file:

One advantage of CCSv6 is that the user can assign compilation parameters such as level of

optimization and level of debug-ability for each project and for each source file in the project. This

feature enables the user to compile the main program (say) without optimization and with full

symbolic debugger feature, and compile processing code with high optimization and no symbolic

debug, to make it easier to profile performances of each function and to optimize each function. In

this project two source files will be added, one for generating floating point random number and

one for calculating the energy. The prototype of these function is defined in the include file.

Adding a C source file is similar to adding an include file, namely, from the File Tab, New, Source File.

After developing each file the user can compile each file separately by selecting the file name (left

click on the source file name), right click and Build Selected File(s). Multiple files can be selected

using the Ctrl key. The following is two screen shots from the two files; generateFloatingPointData

and calculateEnergy.c after compilation of each file. The compilation message is at the Console

window usually in the bottom of the CCS window. Pseudo code for the two files are given below, so

the user can copy and paste:

#include "example1.h"

#define HALF_MAXIMUM_VALUE (MAXIMUM_VALUE /2)

void generateFloatingPointInputData (float *p_out, int numberOfElements)
{
 int r1;
 float x1;
 int i;
 for (i=0; i<numberOfElements;i++)
 {
 r1 = rand() % MAXIMUM_VALUE ;
 x1 = (float) (r1 - HALF_MAXIMUM_VALUE) ;
 *p_out++ = x1 ;
 }
}

/*
 * calculateEnergy.c
 *
 * Created on: Aug 26, 2016
 * Author: a0270985
 */

#include "example1.h"

double calculateEnergy (float *p_in, int numberOfElements)
{
 double sum ;
 int i ;
 float x,y ;
 sum = 0.0 ;
 for (i=0; i<numberOfElements;i++)
 {
 x = *p_in++ ;

 sum = sum + (double) (x*x) ;
 }
 return (sum) ;
}

The main function should create the input data (using the generateFloatingPointData function),

then it calculates the energy in the input data, performs FFT and calculates the energy of the

transformed frequency domain data. The FFT function is part of the DSPLIB optimized TI library

that is part of the release. In this document we use Processor SDK RTOS release 3.0.0.4 with

dsplib_c66x_3_4_0_0. The library contains multiple FFT functions. For this project the single

precision floating point DSPF_sp_fftSPxSP is chosen.

The sub-directory /Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib have

four versions of the dsplib optimized library and four versions of not-optimized version. Library

dsplib.a66 is little endian COFF format, dsplib.a66e is big endian COFF format. COFF format is a

TI proprietary format that was used for backward compatibility with older projects. The library

dsplib.ae66 is the ELF version of little endian format while dsplinae66e is the big endian version.

The ELF format is a standard format that is currently used. For the purpose of this project the

little endian ELF format is used, that is dsplib.ae66 library

The include file dsplib.h in directory

/Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib includes all dsplib include

functions. This file will be included in the project.

The documentations how to use the library function is in directory

\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\docs\doxygen in a chm

format, as well as the TMS320C67x DSP Library Programmer’s Reference Guide –page 49. The

following is a screen shots that shows how to use the function DSPF_sp_fftSPxSP

Even with the documentations it may not be clear how to use the function. To understand

better how to use the function one can look at the unit test. The unit test main function is called

http://www.ti.com/lit/ug/spru657c/spru657c.pdf

DSPF_sp_fftSPxSP_d.c and is located in directory

\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66.

Even though the previous chapter test program was built for a different device, the way to use

the library routines is the same.

From the imported project of the previous chapter we know that the FFT routine needs two

other vectors in addition to the input, the 64-elements bit reversal vector (brev) and the twiddle

factor. The DSPLIB has several twiddle factor generation functions, but they all for fixed point

arithmetic and not for floating point. Thus this project will use the same Twiddle Factor

generation that the developer in the imported project used.

In addition just like the imported test project from the previous Chapter, we add two include

files DSPF_sp_fftSPxSP.h for the function that the code uses , and math.h. The main source code

looks like the following:

#include "example1.h"
#include <math.h>

#include "DSPF_sp_fftSPxSP.h"

#pragma DATA_ALIGN(inputVector, 8);
float inputVector[2*DATA_SIZE] ; // complex vector
#pragma DATA_ALIGN(outputVector, 8);
float outputVector[2* DATA_SIZE] ;
#pragma DATA_ALIGN(twiddleFactors, 8);
float twiddleFactors[2* DATA_SIZE] ;

void gen_twiddle_fft_sp (float *w, int n)
{
 int i, j, k;
 double x_t, y_t, theta1, theta2, theta3;
 const double PI = 3.141592654;

 for (j = 1, k = 0; j <= n >> 2; j = j << 2)
 {
 for (i = 0; i < n >> 2; i += j)
 {
 theta1 = 2 * PI * i / n;
 x_t = cos (theta1);
 y_t = sin (theta1);
 w[k] = (float) x_t;
 w[k + 1] = (float) y_t;

 theta2 = 4 * PI * i / n;
 x_t = cos (theta2);
 y_t = sin (theta2);
 w[k + 2] = (float) x_t;
 w[k + 3] = (float) y_t;

 theta3 = 6 * PI * i / n;
 x_t = cos (theta3);

 y_t = sin (theta3);
 w[k + 4] = (float) x_t;
 w[k + 5] = (float) y_t;
 k += 6;
 }
 }
}

unsigned char brev[64] = {
 0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,
 0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,
 0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,
 0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,
 0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,
 0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,
 0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,
 0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f
};

int main(void)
{
 double sumInput, sumOutput ;
 int i,j ;

 generateFloatingPointInputData (inputVector, 2*DATA_SIZE);
 sumInput = calculateEnergy (inputVector, 2* DATA_SIZE) ;

 gen_twiddle_fft_sp (twiddleFactors, DATA_SIZE) ;

 DSPF_sp_fftSPxSP(DATA_SIZE, inputVector, twiddleFactors, outputVector,
brev, 4, 0, DATA_SIZE);
 sumOutput = calculateEnergy (outputVector, 2* DATA_SIZE) ;

 printf(" input energy %e output energy %e difference %e \n",
sumInput, sumOutput, sumInput-sumOutput) ;

 return 0;
}

Note: The include file in the imported project was ti\dsplib\dsplib.h. This is a generic include file that

includes ALL the include files in the DSPLIB release. This include file is generic, so for functions that were

optimized for a certain architecture, the user must provide the device name. For the C66 architecture,

the device name is _TMS320C6600. Adding device name to a project is done from properties-> Advanced

Options ->Predefined Symbols lower window (Pre-define NAME)

3.2. Building the New Project
Right click on the project name and select Rebuild Project. After the build the following error

message is displayed in the Console window:

The project does not find the include file DSPF_sp_fftSPxSP.h. We need to add the path to it.

Searching in the release the file DSPF_sp_fftSPxSP.h is in directory

INSTALL_DIR\ dsplib_c66x_3_4_0_0\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66 where

INSTALL_DIR is the directory name where the user installed Processor SDK. Adding the path to

ti\dsplib is done from the properties windows. Right clock on the Project name and select

Properties (this is the last item in the list). In the properties window select Include Options .

The upper window enables the user to add a pre-include file. The lower window is used

to add a path. Click on the green plus sign (+) and add the path to the ti\dsplib\dsplib.h.

In the system that is used here it looks like the following:

Click OK twice and try to rebuild the project again. This time compilation went through, but

there are few issues with linking the program, see the screen shot below:

The error tells us that the library function DSPF_sp_fftSPxSP that is called by main was not found, but in

addition it gives us warning that there are no section specifications. Indeed the project does not have a

linker command file that defines what memories are used and what sections are used. As a starting

point we will copy the linker command file from the imported project into the new project. Later on the

user can modified the linker command file for the “real” application. For example, the linker command

file that was used in the imported project does not include the external memory DDR which usually is

used in real applications. The linker command file of the imported projects lnk.cmd is the following:

-heap 0x8000
-stack 0xC000
-l../../../../packages/ti/dsplib/lib/dsplib.lib

MEMORY
{
 L2SRAM (RWX) : org = 0x800000, len = 0x100000
 MSMCSRAM (RWX) : org = 0xc000000, len = 0x200000
}

SECTIONS
{
 .text: load >> L2SRAM
 .text:touch: load >> L2SRAM

 GROUP (NEAR_DP)
 {
 .neardata
 .rodata
 .bss
 } load > L2SRAM

 .far: load >> L2SRAM
 .fardata: load >> L2SRAM
 .data: load >> L2SRAM
 .switch: load >> L2SRAM
 .stack: load > L2SRAM
 .args: load > L2SRAM align = 0x4, fill = 0 {_argsize = 0x200; }
 .sysmem: load > L2SRAM
 .cinit: load > L2SRAM
 .const: load > L2SRAM START(const_start) SIZE(const_size)
 .pinit: load > L2SRAM
 .cio: load >> L2SRAM
 xdc.meta: load >> L2SRAM, type = COPY
}

Next we add the DSPF_sp_fftSPxSP function library. A complete set of the entire DSPLIB libraries are in

directory INSTALL_DIRECTORY\ dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib. In addition, each DSPLIB

function has its own small library. This is the library that is going to be used in this project.

From the comment of type of libraries in chapter 2.2, and building this project as little endian and ELF

format, the library that is used is dsplib.ae66 in directory

 INSTALL_DIRECTORY\ \dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib

To add the library and a path to the library to the project the user must go to

 Properties->C6000 Linker ->File Search Path, see the screen shot:

The upper window should have the library name, while the lower window has the path to the library.

Select the green + sign at the top window opens a dialogue box where we enter the library name:

And in the lower window we add the path to the library:

Click OK three times, one for the library, one for the Path and one for the Properties and rebuild the

project. This time the project was built and the Console shows the following:

 There are some warnings that the user can easily eliminate, but the executable exercise1.out was built

and is in the Debug directory.

3.3. Code Execution understanding the results
Repeat the steps in Chapter 2.5 to launch the target, connect core 0 and load the code of exercise1

(Run->load _> Load Program and from the dialogue box choose Browse Project and then choose

exercise1->Debug->Exercise1.out and then OK and OK)

Step through the code. The last instruction prints the following on the Console:

input energy 4.216463e+07 output energy 1.079414e+10 difference -1.075198e+10

So the input energy is not equal to the output energy. I leave it to the user to understand what my

mistake is, I will just give a hint. If the following two lines are added to the code:

 sumInput = sumInput * (float) DATA_SIZE ;
 printf(" input energy %e output energy %e difference %e \n", sumInput,

sumOutput, sumInput-sumOutput) ;

Then the second printf gives the following results, (error of about e-8)

input energy 1.079415e+10 output energy 1.079414e+10 difference 4.998233e+02

4. Import Function from Library that is not Part of Processor SDK

4.1. Import an Example from FFTLIB (C674X version)

In chapter 2 there are instructions how to import a project. In Chapter 3 there are instructions how to

build a new project. In both cases the build process was relatively easy and simple.

Processor SDK supports many TI digital devices and covers many building blocks. However, there are

some devices that are not supported (currently) by Processor SDK. There are TI’s Libraries that are not

part of Processor SDK.

Importing and building examples in a library that is not part of Processor SDK requires more

configurations since the example project is un-aware of the software environment.

In addition, in the previous examples the projects were not RTSC projects. RTSC requires some

additional considerations. Chapter 2.1 – Before Importing a Project describes how to verify that RTSC

system sees all the software modules that it may require.

Chapter 4 imports a project that has some build issues, and shows how to debug and fix these issues.

The techniques that are demonstrated here can be used for other projects with similar issues.

The software tools that are used are CCS V6.1.3, and the library that is used is a FFTLIB for floating point

devices. The library can be loaded from

http://software-dl.ti.com/libs/fftlib/2.0.0/2_0_0_2/index_FDS.html

This library supports C674X devices which are not supported by Processor SDK but by set of tools for

C674X. Download page for the C674X set of software tools is in http://software-

dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html

Following the process from 2.2 in directory INSTALL_DIRECTORY\fftlib_2_0_0_2\ packages\ti\fftlib\src

where INSTALL_DIRECTORY is the directory where FFTLIB was installed. We choose the second function

in the following list, fft_dp_1d_c2c_batch. This function calculates FFT of double precision values (and

the calculation is double precision) and one dimension complex FFT on multiple vectors (thus the batch).

See the location of the example in the following screen shut:

http://software-dl.ti.com/libs/fftlib/2.0.0/2_0_0_2/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html

First notice the small exclamation mark next to the project name. This means that the project needs

adjust its properties before it can be built. And indeed, if I click on Rebuild Project, this is the result:

When an include file is not recognize by the system, the project properties must be checked. For RTSC

projects, verifying that all the RTSC projects are well define is essential. To look at the RTSC definition

right click on the project name and select Properties (the last item in the pull down menu). RTSC

definitions are in the General ->RTSC tab:

If one of the needed element is not available, or has the wrong address, the system will flag it out.

Going through all RTSFC elements (see the next two screen shots) one of the additional depositories has

a small exclamation mark next to it. (second screen shot)

And indeed, if one search for pdk_c667x_2_0_1\packages , it is found at

c:\ti\Releases\release_2_0_2\C667X\. To fix the error one should select the repository (left click) and

click on the Edit tab at the right side of the window. A dialogue box is opened:

Fixing the path to the correct one and then click OK and OK remedies the problem. Then if the user

rebuilds the project again the build process finished and generates executable;

Note: RTSC projects encapsulate the used modules in the RTSC window. Most of the build error is due to

the wrong definition of RTSC module or the path to a repository.

