/*
 * main.c
 */
	#include "mymodel.h"
	#include "mymodel_private.h"
	/*
	 * File: mymodel.c
	 *
	 * Code generated for Simulink model 'mymodel'.
	 *
	 * Model version : 1.2
	 * Simulink Coder version : 8.4 (R2013a) 13-Feb-2013
	 * TLC version : 8.4 (Jan 19 2013)
	 * C/C++ source code generated on : Mon Mar 13 13:10:56 2017
	 *
	 * Target selection: ert.tlc
	 * Embedded hardware selection: Texas Instruments->C6000
	 * Code generation objectives:
	 * 1. Execution efficiency
	 * 2. Traceability
	 * 3. RAM efficiency
	 * 4. ROM efficiency
	 * Validation result: Not run
	 */

	/* Block signals (auto storage) */
	B_mymodel_T mymodel_B;

	/* Block states (auto storage) */
	DW_mymodel_T mymodel_DW;

	/* Real-time model */
	RT_MODEL_mymodel_T mymodel_M_;
	RT_MODEL_mymodel_T *const mymodel_M = &mymodel_M_;
	real_T rt_hypotd_snf(real_T u0, real_T u1)
	{
	 real_T y;
	 real_T a;
	 real_T b;
	 a = fabs(u0);
	 b = fabs(u1);
	 if (a < b) {
	 a /= b;
	 y = sqrt(a * a + 1.0) * b;
	 } else if (a > b) {
	 b /= a;
	 y = sqrt(b * b + 1.0) * a;
	 } else if (rtIsNaN(b)) {
	 y = b;
	 } else {
	 y = a * 1.4142135623730951;
	 }

	 return y;
	}

	real_T rt_powd_snf(real_T u0, real_T u1)
	{
	 real_T y;
	 real_T tmp;
	 real_T tmp_0;
	 if (rtIsNaN(u0) || rtIsNaN(u1)) {
	 y = (rtNaN);
	 } else {
	 tmp = fabs(u0);
	 tmp_0 = fabs(u1);
	 if (rtIsInf(u1)) {
	 if (tmp == 1.0) {
	 y = (rtNaN);
	 } else if (tmp > 1.0) {
	 if (u1 > 0.0) {
	 y = (rtInf);
	 } else {
	 y = 0.0;
	 }
	 } else if (u1 > 0.0) {
	 y = 0.0;
	 } else {
	 y = (rtInf);
	 }
	 } else if (tmp_0 == 0.0) {
	 y = 1.0;
	 } else if (tmp_0 == 1.0) {
	 if (u1 > 0.0) {
	 y = u0;
	 } else {
	 y = 1.0 / u0;
	 }
	 } else if (u1 == 2.0) {
	 y = u0 * u0;
	 } else if ((u1 == 0.5) && (u0 >= 0.0)) {
	 y = sqrt(u0);
	 } else if ((u0 < 0.0) && (u1 > floor(u1))) {
	 y = (rtNaN);
	 } else {
	 y = pow(u0, u1);
	 }
	 }

	 return y;
	}

	real_T rt_atan2d_snf(real_T u0, real_T u1)
	{
	 real_T y;
	 int32_T u;
	 int32_T u_0;
	 if (rtIsNaN(u0) || rtIsNaN(u1)) {
	 y = (rtNaN);
	 } else if (rtIsInf(u0) && rtIsInf(u1)) {
	 if (u0 > 0.0) {
	 u = 1;
	 } else {
	 u = -1;
	 }

	 if (u1 > 0.0) {
	 u_0 = 1;
	 } else {
	 u_0 = -1;
	 }

	 y = atan2(u, u_0);
	 } else if (u1 == 0.0) {
	 if (u0 > 0.0) {
	 y = RT_PI / 2.0;
	 } else if (u0 < 0.0) {
	 y = -(RT_PI / 2.0);
	 } else {
	 y = 0.0;
	 }
	 } else {
	 y = atan2(u0, u1);
	 }

	 return y;
	}

	/*
	 * Output and update for action system:
	 * '<S57>/cubic fit'
	 * '<S58>/cubic fit'
	 * '<S59>/cubic fit'
	 * '<S60>/cubic fit'
	 */
	void mymodel_cubicfit(const creal_T rtu_In1[2880], creal_T rty_Out1[2880],
	 P_cubicfit_mymodel_T *localP)
	{
	 int32_T i;
	 boolean_T tmp;
	 real_T rtb_ComplextoMagnitudeAngle2_o;
	 real_T rtb_Sum_k_0;
	 real_T rtb_MagnitudeAngletoComplex_p_r;
	 real_T rtb_MagnitudeAngletoComplex_p_i;
	 real_T rtb_Sum_k_1;

	 /* Math: '<S120>/Math Function' incorporates:
	 * Constant: '<S120>/Constant'
	 */
	 tmp = (localP->Constant_Value > floor(localP->Constant_Value));
	 for (i = 0; i < 2880; i++) {
	 /* Gain: '<S111>/Input Gain1' */
	 rtb_MagnitudeAngletoComplex_p_r = localP->InputGain1_Gain * rtu_In1[i].re;
	 rtb_MagnitudeAngletoComplex_p_i = localP->InputGain1_Gain * rtu_In1[i].im;

	 /* ComplexToMagnitudeAngle: '<S111>/Complex to Magnitude-Angle2' */
	 rtb_ComplextoMagnitudeAngle2_o = rt_hypotd_snf
	 (rtb_MagnitudeAngletoComplex_p_r, rtb_MagnitudeAngletoComplex_p_i);

	 /* Saturate: '<S120>/Saturation I' */
	 if (rtb_ComplextoMagnitudeAngle2_o >= localP->SaturationI_UpperSat) {
	 rtb_Sum_k_0 = localP->SaturationI_UpperSat;
	 } else if (rtb_ComplextoMagnitudeAngle2_o <= localP->SaturationI_LowerSat) {
	 rtb_Sum_k_0 = localP->SaturationI_LowerSat;
	 } else {
	 rtb_Sum_k_0 = rtb_ComplextoMagnitudeAngle2_o;
	 }

	 /* End of Saturate: '<S120>/Saturation I' */

	 /* Sum: '<S120>/Sum' incorporates:
	 * Constant: '<S120>/Constant'
	 * Gain: '<S120>/Gain'
	 * Math: '<S120>/Math Function'
	 */
	 if ((rtb_Sum_k_0 < 0.0) && tmp) {
	 rtb_Sum_k_1 = -rt_powd_snf(-rtb_Sum_k_0, localP->Constant_Value);
	 } else {
	 rtb_Sum_k_1 = rt_powd_snf(rtb_Sum_k_0, localP->Constant_Value);
	 }

	 rtb_Sum_k_0 -= localP->Gain_Gain * rtb_Sum_k_1;

	 /* End of Sum: '<S120>/Sum' */

	 /* Sum: '<S122>/Sum1' incorporates:
	 * Constant: '<S122>/Constant'
	 * Gain: '<S121>/Rescale input for AM//PM lower limit'
	 */
	 rtb_ComplextoMagnitudeAngle2_o = localP->RescaleinputforAMPMlowerlimit_G *
	 rtb_ComplextoMagnitudeAngle2_o + localP->Constant_Value_h;

	 /* Sum: '<S122>/Sum2' incorporates:
	 * Constant: '<S122>/Constant1'
	 * Gain: '<S122>/Gain'
	 * Gain: '<S122>/Scale by R'
	 * Math: '<S122>/Magsq'
	 * Math: '<S122>/log10'
	 *
	 * About '<S122>/Magsq':
	 * Operator: magnitude^2
	 *
	 * About '<S122>/log10':
	 * Operator: log10
	 */
	 rtb_ComplextoMagnitudeAngle2_o = log10(rtb_ComplextoMagnitudeAngle2_o *
	 rtb_ComplextoMagnitudeAngle2_o * localP->ScalebyR_Gain) *
	 localP->Gain_Gain_p + localP->Constant1_Value;

	 /* Saturate: '<S121>/Clip input power to AM-PM upper limit' */
	 if (rtb_ComplextoMagnitudeAngle2_o >=
	 localP->ClipinputpowertoAMPMupperlimit_) {
	 rtb_ComplextoMagnitudeAngle2_o = localP->ClipinputpowertoAMPMupperlimit_;
	 } else {
	 if (rtb_ComplextoMagnitudeAngle2_o <=
	 localP->ClipinputpowertoAMPMupperlimi_j) {
	 rtb_ComplextoMagnitudeAngle2_o = localP->ClipinputpowertoAMPMupperlimi_j;
	 }
	 }

	 /* Sum: '<S111>/Sum' incorporates:
	 * ComplexToMagnitudeAngle: '<S111>/Complex to Magnitude-Angle2'
	 * Gain: '<S121>/Convert dBm to radians'
	 * Saturate: '<S121>/Clip input power to AM-PM upper limit'
	 */
	 rtb_ComplextoMagnitudeAngle2_o = localP->ConvertdBmtoradians_Gain *
	 rtb_ComplextoMagnitudeAngle2_o + rt_atan2d_snf
	 (rtb_MagnitudeAngletoComplex_p_i, rtb_MagnitudeAngletoComplex_p_r);

	 /* Gain: '<S111>/Output Gain1' incorporates:
	 * MagnitudeAngleToComplex: '<S111>/Magnitude-Angle to Complex'
	 */
	 rty_Out1[i].re = rtb_Sum_k_0 * cos(rtb_ComplextoMagnitudeAngle2_o) *
	 localP->OutputGain1_Gain;
	 rty_Out1[i].im = rtb_Sum_k_0 * sin(rtb_ComplextoMagnitudeAngle2_o) *
	 localP->OutputGain1_Gain;
	 }
	}

	/*
	 * Output and update for action system:
	 * '<S57>/tanh fit'
	 * '<S58>/tanh fit'
	 * '<S59>/tanh fit'
	 * '<S60>/tanh fit'
	 */
	void mymodel_tanhfit(const creal_T rtu_In1[2880], creal_T rty_Out1[2880],
	 P_tanhfit_mymodel_T *localP)
	{
	 int32_T i;
	 real_T rtb_Sum2_p_0;
	 real_T rtb_TrigonometricFunction_0;
	 real_T rtb_MagnitudeAngletoComplex_o_r;
	 real_T rtb_MagnitudeAngletoComplex_o_i;
	 for (i = 0; i < 2880; i++) {
	 /* Gain: '<S112>/Input Gain2' */
	 rtb_MagnitudeAngletoComplex_o_r = localP->InputGain2_Gain * rtu_In1[i].re;
	 rtb_MagnitudeAngletoComplex_o_i = localP->InputGain2_Gain * rtu_In1[i].im;

	 /* ComplexToMagnitudeAngle: '<S112>/Complex to Magnitude-Angle2' */
	 rtb_Sum2_p_0 = rt_hypotd_snf(rtb_MagnitudeAngletoComplex_o_r,
	 rtb_MagnitudeAngletoComplex_o_i);

	 /* Trigonometry: '<S125>/Trigonometric Function' */
	 rtb_TrigonometricFunction_0 = tanh(rtb_Sum2_p_0);

	 /* Math: '<S127>/log10' incorporates:
	 * Constant: '<S127>/Constant'
	 * Gain: '<S126>/Rescale input for AM//PM lower limit'
	 * Sum: '<S127>/Sum1'
	 *
	 * About '<S127>/log10':
	 * Operator: log10
	 */
	 rtb_Sum2_p_0 = localP->RescaleinputforAMPMlowerlimit_G * rtb_Sum2_p_0 +
	 localP->Constant_Value;

	 /* Sum: '<S127>/Sum2' incorporates:
	 * Constant: '<S127>/Constant1'
	 * Gain: '<S127>/Gain'
	 * Gain: '<S127>/Scale by R'
	 * Math: '<S127>/log10'
	 *
	 * About '<S127>/log10':
	 * Operator: log10
	 */
	 rtb_Sum2_p_0 = log10(rtb_Sum2_p_0 * rtb_Sum2_p_0 * localP->ScalebyR_Gain) *
	 localP->Gain_Gain + localP->Constant1_Value;

	 /* Saturate: '<S126>/Clip input power to AM-PM upper limit' */
	 if (rtb_Sum2_p_0 >= localP->ClipinputpowertoAMPMupperlimit_) {
	 rtb_Sum2_p_0 = localP->ClipinputpowertoAMPMupperlimit_;
	 } else {
	 if (rtb_Sum2_p_0 <= localP->ClipinputpowertoAMPMupperlimi_o) {
	 rtb_Sum2_p_0 = localP->ClipinputpowertoAMPMupperlimi_o;
	 }
	 }

	 /* Sum: '<S112>/Sum' incorporates:
	 * ComplexToMagnitudeAngle: '<S112>/Complex to Magnitude-Angle2'
	 * Gain: '<S126>/Convert dBm to radians'
	 * Saturate: '<S126>/Clip input power to AM-PM upper limit'
	 */
	 rtb_Sum2_p_0 = localP->ConvertdBmtoradians_Gain * rtb_Sum2_p_0 +
	 rt_atan2d_snf(rtb_MagnitudeAngletoComplex_o_i,
	 rtb_MagnitudeAngletoComplex_o_r);

	 /* Gain: '<S112>/Output Gain2' incorporates:
	 * MagnitudeAngleToComplex: '<S112>/Magnitude-Angle to Complex'
	 */
	 rty_Out1[i].re = rtb_TrigonometricFunction_0 * cos(rtb_Sum2_p_0) *
	 localP->OutputGain2_Gain;
	 rty_Out1[i].im = rtb_TrigonometricFunction_0 * sin(rtb_Sum2_p_0) *
	 localP->OutputGain2_Gain;
	 }
	}

	/*
	 * Output and update for action system:
	 * '<S57>/Saleh Model'
	 * '<S58>/Saleh Model'
	 * '<S59>/Saleh Model'
	 * '<S60>/Saleh Model'
	 */
	void mymodel_SalehModel(const creal_T rtu_In[2880], creal_T rty_Out[2880],
	 P_SalehModel_mymodel_T *localP)
	{
	 int32_T i;
	 real_T rtb_MathFunction_i_0;
	 real_T rtb_Product_0;
	 real_T rtb_MagnitudeAngletoComplex_f_r;
	 real_T rtb_MagnitudeAngletoComplex_f_i;
	 for (i = 0; i < 2880; i++) {
	 /* Gain: '<S110>/Input Gain' */
	 rtb_MagnitudeAngletoComplex_f_r = localP->InputGain_Gain * rtu_In[i].re;
	 rtb_MagnitudeAngletoComplex_f_i = localP->InputGain_Gain * rtu_In[i].im;

	 /* ComplexToMagnitudeAngle: '<S110>/Complex to Magnitude-Angle' */
	 rtb_MathFunction_i_0 = rt_hypotd_snf(rtb_MagnitudeAngletoComplex_f_r,
	 rtb_MagnitudeAngletoComplex_f_i);

	 /* Product: '<S118>/Product2' incorporates:
	 * Constant: '<S118>/Constant1'
	 * Gain: '<S118>/Gain2'
	 * Gain: '<S118>/Gain3'
	 * Math: '<S118>/Math Function'
	 * Sum: '<S118>/Sum1'
	 */
	 rtb_Product_0 = localP->Gain3_Gain * rtb_MathFunction_i_0 /
	 (rtb_MathFunction_i_0 * rtb_MathFunction_i_0 * localP->Gain2_Gain +
	 localP->Constant1_Value);

	 /* Math: '<S119>/Math Function' */
	 rtb_MathFunction_i_0 *= rtb_MathFunction_i_0;

	 /* Sum: '<S110>/Sum' incorporates:
	 * ComplexToMagnitudeAngle: '<S110>/Complex to Magnitude-Angle'
	 * Constant: '<S119>/Constant'
	 * Gain: '<S119>/Gain'
	 * Gain: '<S119>/Gain1'
	 * Product: '<S119>/Product'
	 * Sum: '<S119>/Sum'
	 */
	 rtb_MagnitudeAngletoComplex_f_r = localP->Gain1_Gain * rtb_MathFunction_i_0 /
	 (localP->Gain_Gain * rtb_MathFunction_i_0 + localP->Constant_Value) +
	 rt_atan2d_snf(rtb_MagnitudeAngletoComplex_f_i,
	 rtb_MagnitudeAngletoComplex_f_r);

	 /* Gain: '<S110>/Output Gain' incorporates:
	 * MagnitudeAngleToComplex: '<S110>/Magnitude-Angle to Complex'
	 */
	 rty_Out[i].re = rtb_Product_0 * cos(rtb_MagnitudeAngletoComplex_f_r) *
	 localP->OutputGain_Gain;
	 rty_Out[i].im = rtb_Product_0 * sin(rtb_MagnitudeAngletoComplex_f_r) *
	 localP->OutputGain_Gain;
	 }
	}

	/*
	 * Output and update for action system:
	 * '<S57>/Ghorbani Model'
	 * '<S58>/Ghorbani Model'
	 * '<S59>/Ghorbani Model'
	 * '<S60>/Ghorbani Model'
	 */
	void mymodel_GhorbaniModel(const creal_T rtu_In[2880], creal_T rty_Out[2880],
	 P_GhorbaniModel_mymodel_T *localP)
	{
	 int32_T i;
	 real_T rtb_MathFunction_p_0;
	 real_T rtb_Sum2_ht_0;
	 real_T rtb_Gain_d_0;
	 real_T rtb_MagnitudeAngletoComplex_j_r;
	 real_T rtb_MagnitudeAngletoComplex_j_i;
	 for (i = 0; i < 2880; i++) {
	 /* Gain: '<S108>/Input Gain' */
	 rtb_MagnitudeAngletoComplex_j_r = localP->InputGain_Gain * rtu_In[i].re;
	 rtb_MagnitudeAngletoComplex_j_i = localP->InputGain_Gain * rtu_In[i].im;

	 /* ComplexToMagnitudeAngle: '<S108>/Complex to Magnitude-Angle' */
	 rtb_MathFunction_p_0 = rt_hypotd_snf(rtb_MagnitudeAngletoComplex_j_r,
	 rtb_MagnitudeAngletoComplex_j_i);

	 /* Math: '<S115>/Math Function' incorporates:
	 * Constant: '<S115>/Constant1'
	 */
	 rtb_Sum2_ht_0 = rt_powd_snf(rtb_MathFunction_p_0, localP->Constant1_Value);

	 /* Sum: '<S115>/Sum2' incorporates:
	 * Constant: '<S115>/Constant'
	 * Gain: '<S115>/Gain'
	 * Gain: '<S115>/Gain1'
	 * Gain: '<S115>/Gain2'
	 * Product: '<S115>/Product'
	 * Sum: '<S115>/Sum1'
	 */
	 rtb_Sum2_ht_0 = localP->Gain1_Gain * rtb_Sum2_ht_0 / (localP->Gain2_Gain *
	 rtb_Sum2_ht_0 + localP->Constant_Value) + localP->Gain_Gain *
	 rtb_MathFunction_p_0;

	 /* Gain: '<S116>/Gain' */
	 rtb_Gain_d_0 = localP->Gain_Gain_o * rtb_MathFunction_p_0;

	 /* Math: '<S116>/Math Function' incorporates:
	 * Constant: '<S116>/Constant'
	 */
	 rtb_MathFunction_p_0 = rt_powd_snf(rtb_MathFunction_p_0,
	 localP->Constant_Value_o);

	 /* Sum: '<S108>/Sum' incorporates:
	 * ComplexToMagnitudeAngle: '<S108>/Complex to Magnitude-Angle'
	 * Constant: '<S116>/Constant1'
	 * Gain: '<S116>/Gain1'
	 * Gain: '<S116>/Gain2'
	 * Product: '<S116>/Product'
	 * Sum: '<S116>/Sum1'
	 * Sum: '<S116>/Sum2'
	 */
	 rtb_MagnitudeAngletoComplex_j_r = (localP->Gain1_Gain_c *
	 rtb_MathFunction_p_0 / (localP->Gain2_Gain_d * rtb_MathFunction_p_0 +
	 localP->Constant1_Value_l) + rtb_Gain_d_0) + rt_atan2d_snf
	 (rtb_MagnitudeAngletoComplex_j_i, rtb_MagnitudeAngletoComplex_j_r);

	 /* Gain: '<S108>/Output Gain' incorporates:
	 * MagnitudeAngleToComplex: '<S108>/Magnitude-Angle to Complex'
	 */
	 rty_Out[i].re = rtb_Sum2_ht_0 * cos(rtb_MagnitudeAngletoComplex_j_r) *
	 localP->OutputGain_Gain;
	 rty_Out[i].im = rtb_Sum2_ht_0 * sin(rtb_MagnitudeAngletoComplex_j_r) *
	 localP->OutputGain_Gain;
	 }
	}

	/*
	 * Output and update for action system:
	 * '<S57>/Rapp Model'
	 * '<S58>/Rapp Model'
	 * '<S59>/Rapp Model'
	 * '<S60>/Rapp Model'
	 */
	void mymodel_RappModel(const creal_T rtu_In[2880], creal_T rty_Out[2880],
	 P_RappModel_mymodel_T *localP)
	{
	 int32_T i;
	 boolean_T tmp;
	 boolean_T tmp_0;
	 real_T rtb_Product_0;
	 real_T rtb_MathFunction_0;
	 real_T rtb_MagnitudeAngletoComplex_nv_;
	 real_T rtb_MagnitudeAngletoComplex_n_0;

	 /* Math: '<S117>/Math Function' incorporates:
	 * Constant: '<S117>/Constant1'
	 */
	 tmp = (localP->Constant1_Value > floor(localP->Constant1_Value));

	 /* Math: '<S117>/Math Function1' incorporates:
	 * Constant: '<S117>/Constant3'
	 */
	 tmp_0 = (localP->Constant3_Value > floor(localP->Constant3_Value));
	 for (i = 0; i < 2880; i++) {
	 /* Gain: '<S109>/Input Gain' */
	 rtb_MagnitudeAngletoComplex_nv_ = localP->InputGain_Gain * rtu_In[i].re;
	 rtb_MagnitudeAngletoComplex_n_0 = localP->InputGain_Gain * rtu_In[i].im;

	 /* ComplexToMagnitudeAngle: '<S109>/Complex to Magnitude-Angle' */
	 rtb_Product_0 = rt_hypotd_snf(rtb_MagnitudeAngletoComplex_nv_,
	 rtb_MagnitudeAngletoComplex_n_0);

	 /* Product: '<S117>/Product' incorporates:
	 * Constant: '<S117>/Constant'
	 */
	 rtb_MathFunction_0 = rtb_Product_0 / localP->Constant_Value;

	 /* Math: '<S117>/Math Function' incorporates:
	 * Constant: '<S117>/Constant1'
	 */
	 if ((rtb_MathFunction_0 < 0.0) && tmp) {
	 rtb_MathFunction_0 = -rt_powd_snf(-rtb_MathFunction_0,
	 localP->Constant1_Value);
	 } else {
	 rtb_MathFunction_0 = rt_powd_snf(rtb_MathFunction_0,
	 localP->Constant1_Value);
	 }

	 /* Sum: '<S117>/Sum2' incorporates:
	 * Constant: '<S117>/Constant2'
	 */
	 rtb_MathFunction_0 += localP->Constant2_Value;

	 /* Math: '<S117>/Math Function1' incorporates:
	 * Constant: '<S117>/Constant3'
	 */
	 if ((rtb_MathFunction_0 < 0.0) && tmp_0) {
	 rtb_MathFunction_0 = -rt_powd_snf(-rtb_MathFunction_0,
	 localP->Constant3_Value);
	 } else {
	 rtb_MathFunction_0 = rt_powd_snf(rtb_MathFunction_0,
	 localP->Constant3_Value);
	 }

	 /* Product: '<S117>/Product1' */
	 rtb_Product_0 /= rtb_MathFunction_0;

	 /* ComplexToMagnitudeAngle: '<S109>/Complex to Magnitude-Angle' */
	 rtb_MagnitudeAngletoComplex_nv_ = rt_atan2d_snf
	 (rtb_MagnitudeAngletoComplex_n_0, rtb_MagnitudeAngletoComplex_nv_);

	 /* Gain: '<S109>/Output Gain' incorporates:
	 * MagnitudeAngleToComplex: '<S109>/Magnitude-Angle to Complex'
	 */
	 rty_Out[i].re = rtb_Product_0 * cos(rtb_MagnitudeAngletoComplex_nv_) *
	 localP->OutputGain_Gain;
	 rty_Out[i].im = rtb_Product_0 * sin(rtb_MagnitudeAngletoComplex_nv_) *
	 localP->OutputGain_Gain;
	 }
	}

	/*
	 * Output and update for action system:
	 * '<S6>/No nonlinearity or DPD'
	 * '<S6>/Only nonlinearity'
	 * '<S6>/Nonlinearity with DPD'
	 * '<S6>/No nonlinearity or DPD'
	 * '<S6>/Only nonlinearity'
	 * '<S6>/Nonlinearity with DPD'
	 */
	void mymodel_NononlinearityorDPD(const creal_T rtu_0[2880], creal_T rty_Out1
	 [2880])
	{
	 /* Inport: '<S62>/In1' */
	 memcpy(&rty_Out1[0], &rtu_0[0], 2880U * sizeof(creal_T));
	}

	void RandSrcInitState_U_64(const uint32_T seed[], real_T state[], int32_T nChans)
	{
	 int32_T i;
	 uint32_T j;
	 int32_T k;
	 int32_T n;
	 real_T d;

	 /* InitializeConditions for S-Function (sdsprandsrc2): '<S14>/Random Source' */
	 /* RandSrcInitState_U_64 */
	 for (i = 0; i < nChans; i++) {
	 j = seed[i] != 0U ? seed[i] : 2147483648U;
	 state[35 * i + 34] = j;
	 for (k = 0; k < 32; k++) {
	 d = 0.0;
	 for (n = 0; n < 53; n++) {
	 j ^= j << 13;
	 j ^= j >> 17;
	 j ^= j << 5;
	 d = (real_T)((int32_T)(j >> 19) & 1) + (d + d);
	 }

	 state[35 * i + k] = ldexp(d, -53);
	 }

	 state[35 * i + 32] = 0.0;
	 state[35 * i + 33] = 0.0;
	 }

	 /* End of InitializeConditions for S-Function (sdsprandsrc2): '<S14>/Random Source' */
	}

	void RandSrcInitState_GZ(const uint32_T seed[], uint32_T state[], int32_T nChans)
	{
	 int32_T i;

	 /* InitializeConditions for S-Function (sdsprandsrc2): '<S1>/Random Source' */
	 /* RandSrcInitState_GZ */
	 for (i = 0; i < nChans; i++) {
	 state[i << 1] = 362436069U;
	 state[(i << 1) + 1] = seed[i] == 0U ? 521288629U : seed[i];
	 }

	 /* End of InitializeConditions for S-Function (sdsprandsrc2): '<S1>/Random Source' */
	}

	void RandSrc_U_D(real_T y[], const real_T minVec[], int32_T minLen, const real_T
	 maxVec[], int32_T maxLen, real_T state[], int32_T nChans,
	 int32_T nSamps)
	{
	 int32_T one;
	 int32_T lsw;
	 int8_T (*onePtr)[];
	 int32_T chan;
	 real_T min;
	 real_T max;
	 int32_T samps;
	 real_T d;
	 int32_T i;
	 uint32_T j;

	 /* S-Function (sdsprandsrc2): '<S14>/Random Source' */
	 /* RandSrc_U_D */
	 one = 1;
	 onePtr = (int8_T (*)[])&one;
	 lsw = ((*onePtr)[0U] == 0);
	 for (chan = 0; chan < nChans; chan++) {
	 min = minVec[minLen > 1 ? chan : 0];
	 max = maxVec[maxLen > 1 ? chan : 0];
	 max -= min;
	 i = (int32_T)((uint32_T)state[chan * 35 + 33] & 31U);
	 j = (uint32_T)state[chan * 35 + 34];
	 for (samps = 0; samps < nSamps; samps++) {
	 /* "Subtract with borrow" generator */
	 d = state[((i + 20) & 31) + chan * 35];
	 d -= state[((i + 5) & 31) + chan * 35];
	 d -= state[chan * 35 + 32];
	 if (d >= 0.0) {
	 state[chan * 35 + 32] = 0.0;
	 } else {
	 d++;

	 /* set 1 in LSB */
	 state[chan * 35 + 32] = 1.1102230246251565E-16;
	 }

	 state[chan * 35 + i] = d;
	 i = (i + 1) & 31;

	 /* XOR with shift register sequence */
	 (*(int32_T (*)[])&d)[lsw] ^= j;
	 j ^= j << 13;
	 j ^= j >> 17;
	 j ^= j << 5;
	 (*(int32_T (*)[])&d)[lsw ^ 1] ^= j & 1048575U;
	 y[chan * nSamps + samps] = max * d + min;
	 }

	 state[chan * 35 + 33] = i;
	 state[chan * 35 + 34] = j;
	 }

	 /* End of S-Function (sdsprandsrc2): '<S14>/Random Source' */
	}

	void MWDSPCG_R2BRScramble_OutPlace_ZCin(creal_T y[], const creal_T x[], int32_T
	 nChans, const int32_T nRows)
	{
	 int32_T yIdx;
	 int32_T j;
	 int32_T i;
	 int32_T bit_fftLen;

	 /* S-Function (sdspfft2): '<S13>/IFFT' */
	 /* out of place algorithm */
	 yIdx = 0;
	 while (nChans > 0) {
	 nChans--;
	 j = 0;

	 /* For each element in the source array */
	 for (i = 0; i < nRows - 1; i++) {
	 /* Copy element into bit-rev position */
	 y[j + yIdx] = x[i + yIdx];

	 /* Compute next bit-reversed destination index */
	 bit_fftLen = nRows;
	 do {
	 bit_fftLen = (int32_T)((uint32_T)bit_fftLen >> 1);
	 j ^= bit_fftLen;
	 } while (!((j & bit_fftLen) != 0));
	 }

	 /* Copy final element */
	 y[j + yIdx] = x[i + yIdx];
	 yIdx += nRows;
	 }

	 /* End of S-Function (sdspfft2): '<S13>/IFFT' */
	}

	void MWDSPCG_R2DIT_TBLS_Z(creal_T y[], const int32_T nChans, const int32_T nRows,
	 const int32_T fftLen, const int32_T offset, const real_T tablePtr[], const
	 int32_T twiddleStep, const boolean_T isInverse)
	{
	 int32_T nHalf;
	 real_T twidRe;
	 real_T twidIm;
	 int32_T nQtr;
	 int32_T fwdInvFactor;
	 int32_T iCh;
	 int32_T offsetCh;
	 int32_T idelta;
	 int32_T ix;
	 int32_T k;
	 int32_T kratio;
	 int32_T istart;
	 int32_T i;
	 int32_T j;
	 int32_T i_0;
	 real_T tmp_re;
	 real_T tmp_im;

	 /* S-Function (sdspfft2): '<S13>/IFFT' */
	 /* DSP System Toolbox Decimation in Time FFT */
	 /* Computation performed using table lookup */
	 /* Output type: complex real_T */
	 nHalf = (fftLen >> 1) * twiddleStep;
	 nQtr = nHalf >> 1;
	 fwdInvFactor = isInverse ? -1 : 1;

	 /* For each channel */
	 offsetCh = offset;
	 for (iCh = 0; iCh < nChans; iCh++) {
	 /* Perform butterflies for the first stage, where no multiply is required. */
	 for (ix = offsetCh; ix < (fftLen + offsetCh) - 1; ix += 2) {
	 i_0 = ix + 1;
	 tmp_re = y[i_0].re;
	 tmp_im = y[i_0].im;
	 y[i_0].re = y[ix].re - tmp_re;
	 y[i_0].im = y[ix].im - tmp_im;
	 y[ix].re += tmp_re;
	 y[ix].im += tmp_im;
	 }

	 idelta = 2;
	 k = fftLen >> 2;
	 kratio = k * twiddleStep;
	 while (k > 0) {
	 i = offsetCh;

	 /* Perform the first butterfly in each remaining stage, where no multiply is required. */
	 for (ix = 0; ix < k; ix++) {
	 i_0 = i + idelta;
	 tmp_re = y[i_0].re;
	 tmp_im = y[i_0].im;
	 y[i_0].re = y[i].re - tmp_re;
	 y[i_0].im = y[i].im - tmp_im;
	 y[i].re += tmp_re;
	 y[i].im += tmp_im;
	 i += idelta << 1;
	 }

	 istart = offsetCh;

	 /* Perform remaining butterflies */
	 for (j = kratio; j < nHalf; j += kratio) {
	 i = istart + 1;
	 twidRe = tablePtr[j];
	 twidIm = tablePtr[j + nQtr] * (real_T)fwdInvFactor;
	 for (ix = 0; ix < k; ix++) {
	 i_0 = i + idelta;
	 tmp_re = y[i_0].re * twidRe - y[i_0].im * twidIm;
	 tmp_im = y[i_0].re * twidIm + y[i_0].im * twidRe;
	 y[i_0].re = y[i].re - tmp_re;
	 y[i_0].im = y[i].im - tmp_im;
	 y[i].re += tmp_re;
	 y[i].im += tmp_im;
	 i += idelta << 1;
	 }

	 istart++;
	 }

	 idelta <<= 1;
	 k >>= 1;
	 kratio >>= 1;
	 }

	 /* Point to next channel */
	 offsetCh += nRows;
	 }

	 /* End of S-Function (sdspfft2): '<S13>/IFFT' */
	}

	void LUf_int32_Treal_T(real_T outU[], real_T outP[], const int32_T N)
	{
	 int32_T k;
	 int32_T c;
	 int32_T r;
	 int32_T idx;
	 real_T tmp;
	 int32_T p;
	 real_T mTmp;
	 boolean_T isDiagZero;
	 real_T mAccum;

	 /* S-Function (sdsplu2): '<S71>/LU Factorization' */
	 /* initialize row-pivot indices */
	 for (k = 0; k < N; k++) {
	 outP[k] = (real_T)k + 1.0;
	 }

	 for (k = 0; k < N; k++) {
	 p = k;

	 /* Scan the lower triangular part of this column only. */
	 /* Record row of largest value */
	 idx = k * N;
	 mTmp = outU[idx + k];
	 if (mTmp < 0.0) {
	 mTmp = -mTmp;
	 }

	 for (r = k + 1; r < N; r++) {
	 tmp = outU[idx + r];
	 if (tmp < 0.0) {
	 tmp = -tmp;
	 }

	 if (tmp > mTmp) {
	 p = r;
	 mTmp = tmp;
	 }
	 }

	 /* swap rows if required */
	 if (p != k) {
	 for (c = 0; c < N; c++) {
	 idx = c * N;
	 mTmp = outU[idx + p];
	 tmp = outU[idx + k];
	 outU[idx + p] = tmp;
	 outU[idx + k] = mTmp;
	 }

	 /* swap pivot row indices */
	 tmp = outP[p];
	 outP[p] = outP[k];
	 outP[k] = tmp;
	 }

	 idx = k * N + k;
	 isDiagZero = FALSE;
	 if (outU[idx] == 0.0) {
	 isDiagZero = TRUE;
	 }

	 if (!isDiagZero) {
	 p = k * N;
	 for (r = k + 1; r < N; r++) {
	 mTmp = outU[p + r];
	 tmp = outU[idx];
	 outU[p + r] = mTmp / tmp;
	 }

	 for (c = k + 1; c < N; c++) {
	 idx = c * N;
	 for (r = k + 1; r < N; r++) {
	 mAccum = outU[idx + r];
	 mTmp = outU[p + r];
	 tmp = outU[idx + k] * mTmp;
	 mAccum -= tmp;
	 outU[idx + r] = mAccum;
	 }
	 }
	 }
	 }

	 /* End of S-Function (sdsplu2): '<S71>/LU Factorization' */
	}

	void RandSrc_GZ_Z(creal_T y[], const creal_T mean[], int32_T meanLen, const
	 real_T xstd[], int32_T xstdLen, uint32_T state[], int32_T
	 nChans, int32_T nSamps)
	{
	 real_T (*yy)[];
	 int32_T i;
	 int32_T j;
	 real_T r;
	 real_T x;
	 real_T s;
	 real_T y_0;
	 int32_T chan;
	 real_T std;
	 uint32_T icng;
	 uint32_T jsr;
	 int32_T samp;
	 real_T mean_0[2];
	 static const real_T vt[65] = { 0.340945, 0.4573146, 0.5397793, 0.6062427,
	 0.6631691, 0.7136975, 0.7596125, 0.8020356, 0.8417227, 0.8792102, 0.9148948,
	 0.9490791, 0.9820005, 1.0138492, 1.044781, 1.0749254, 1.1043917, 1.1332738,
	 1.161653, 1.189601, 1.2171815, 1.2444516, 1.2714635, 1.298265, 1.3249008,
	 1.3514125, 1.3778399, 1.4042211, 1.4305929, 1.4569915, 1.4834527, 1.5100122,
	 1.5367061, 1.5635712, 1.5906454, 1.617968, 1.6455802, 1.6735255, 1.7018503,
	 1.7306045, 1.7598422, 1.7896223, 1.8200099, 1.851077, 1.8829044, 1.9155831,
	 1.9492166, 1.9839239, 2.0198431, 2.0571356, 2.095993, 2.136645, 2.1793713,
	 2.2245175, 2.2725186, 2.3239338, 2.3795008, 2.4402218, 2.5075117, 2.5834658,
	 2.6713916, 2.7769942, 2.7769942, 2.7769942, 2.7769942 };

	 /* S-Function (sdsprandsrc2): '<S1>/Random Source' */
	 /* RandSrc_GZ_Z */
	 yy = (real_T (*)[])y;
	 nSamps += nSamps;
	 for (chan = 0; chan < nChans; chan++) {
	 mean_0[0U] = mean[meanLen > 1 ? chan : 0].re;
	 mean_0[1U] = mean[meanLen > 1 ? chan : 0].im;
	 std = xstd[xstdLen > 1 ? chan : 0];
	 icng = state[chan << 1];
	 jsr = state[(chan << 1) + 1];
	 for (samp = 0; samp < nSamps; samp++) {
	 icng = 69069U * icng + 1234567U;
	 jsr ^= jsr << 13;
	 jsr ^= jsr >> 17;
	 jsr ^= jsr << 5;
	 i = (int32_T)(icng + jsr);
	 j = (i & 63) + 1;
	 r = (real_T)i * 4.6566128730773926E-10 * vt[j];
	 if (!(fabs(r) <= vt[j - 1])) {
	 x = (fabs(r) - vt[j - 1]) / (vt[j] - vt[j - 1]);
	 icng = 69069U * icng + 1234567U;
	 jsr ^= jsr << 13;
	 jsr ^= jsr >> 17;
	 jsr ^= jsr << 5;
	 y_0 = (real_T)(int32_T)(icng + jsr) * 2.328306436538696E-10 + 0.5;
	 s = x + y_0;
	 if (s > 1.301198) {
	 r = r < 0.0 ? 0.4878992 * x - 0.4878992 : 0.4878992 - 0.4878992 * x;
	 } else {
	 if (!(s <= 0.9689279)) {
	 x = 0.4878992 - 0.4878992 * x;
	 if (y_0 > 12.67706 - exp(-0.5 * x * x) * 12.37586) {
	 r = r < 0.0 ? -x : x;
	 } else {
	 if (!(exp(-0.5 * vt[j] * vt[j]) + y_0 * 0.01958303 / vt[j] <= exp(
	 -0.5 * r * r))) {
	 do {
	 icng = 69069U * icng + 1234567U;
	 jsr ^= jsr << 13;
	 jsr ^= jsr >> 17;
	 jsr ^= jsr << 5;
	 x = log((real_T)(int32_T)(icng + jsr) * 2.328306436538696E-10
	 + 0.5) / 2.776994;
	 icng = 69069U * icng + 1234567U;
	 jsr ^= jsr << 13;
	 jsr ^= jsr >> 17;
	 jsr ^= jsr << 5;
	 } while (log((real_T)(int32_T)(icng + jsr) *
	 2.328306436538696E-10 + 0.5) * -2.0 <= x * x);

	 r = r < 0.0 ? x - 2.776994 : 2.776994 - x;
	 }
	 }
	 }
	 }
	 }

	 (*yy)[chan * nSamps + samp] = mean_0[samp & 1] + std * r;
	 }

	 state[chan << 1] = icng;
	 state[(chan << 1) + 1] = jsr;
	 }

	 /* End of S-Function (sdsprandsrc2): '<S1>/Random Source' */
	}

	/* Model step function for TID0 */
	void mymodel_step0(void) /* Sample time: [3.5555555555555553E-5s, 0.0s] */
	{
	 /* (no output/update code required) */
	}

	/* Model step function for TID1 */
	void mymodel_step1(void) /* Sample time: [0.00063999999999999994s, 0.0s] */
	{
	 uint8_T tmp;
	 int32_T idxN;
	 int32_T idxN_0;
	 int32_T idxN_1;
	 int32_T idxN_2;
	 int32_T idxN_3;
	 int32_T idxN_4;
	 int32_T idxN_5;
	 int32_T idxN_6;
	 uint32_T count;
	 real_T rtb_DirectLookUpTablenD;
	 real_T rtb_Gain_l;
	 real_T rtb_MathFunction_g;
	 int32_T yIdx;
	 int32_T uIdx;
	 real_T rtb_IntegerDelay;
	 real_T rtb_Sum2;
	 boolean_T rtb_RelationalOperator_g;
	 real_T rtb_BackwardSubstitution[5];
	 real_T rtb_BackwardSubstitution_m[6];
	 real_T rtb_LUFactorization_o2[5];
	 real_T rtb_LUFactorization_o2_p[6];
	 boolean_T prePncOut_it[4096];
	 creal_T rtb_MPSKModulatorBaseband[8];
	 creal_T rtb_SubchannelSelector_o1[96];
	 creal_T rtb_SubchannelSelector_o2[192];
	 creal_T rtb_SubchannelSelector_o3[192];
	 creal_T rtb_SubchannelSelector_o4[192];
	 creal_T rtb_SubchannelSelector_o5[96];
	 creal_T rtb_SubchannelSelector_o6[96];
	 creal_T rtb_SubchannelSelector_o7[192];
	 creal_T rtb_SubchannelSelector_o8[192];
	 creal_T rtb_SubchannelSelector_o9[192];
	 creal_T rtb_SubchannelSelector_o10[96];
	 creal_T rtb_Selecttrainingdata_o1[201];
	 boolean_T rtb_ConvolutionalEncoder[1536];
	 boolean_T rtb_GeneralBlockInterleaver_dm[1536];
	 uint8_T rtb_IntegerInputRSEncoder_gx[256];
	 uint8_T rtb_Reorderparitybytes_h[256];
	 boolean_T rtb_PuncturedConvolutionalEnc_l[3072];
	 boolean_T rtb_GeneralBlockInterleaver_d[3072];
	 uint8_T rtb_IntegerInputRSEncoder_f[320];
	 uint8_T rtb_Reorderparitybytes_kn[320];
	 boolean_T rtb_PuncturedConvolutionalEnc_n[3072];
	 uint8_T rtb_IntegerInputRSEncoder_c[512];
	 uint8_T rtb_Reorderparitybytes_j[512];
	 uint8_T rtb_IntegerInputRSEncoder_o[640];
	 uint8_T rtb_Reorderparitybytes_a[640];
	 uint8_T rtb_IntegerInputRSEncoder_g[864];
	 uint8_T rtb_Reorderparitybytes_k[864];
	 uint8_T rtb_IntegerInputRSEncoder[960];
	 uint8_T rtb_Reorderparitybytes[960];
	 boolean_T rtb_PNSequenceGenerator[8];
	 real_T rtb_LUFactorization_o1[25];
	 real_T rtb_LUFactorization_o1_o[36];
	 boolean_T rtb_SelectBits_m[760];
	 boolean_T rtb_Zeropadtailbyte_m[768];
	 boolean_T rtb_SelectBits_h0[1528];
	 boolean_T rtb_Zeropadtailbyte_lv[1536];
	 uint8_T rtb_BittoIntegerConverter_n[192];
	 boolean_T rtb_IntegertoBitConverter_o[2048];
	 boolean_T rtb_SelectBits_f[2296];
	 boolean_T rtb_Zeropadtailbyte_l[2304];
	 uint8_T rtb_BittoIntegerConverter_or[288];
	 boolean_T rtb_IntegertoBitConverter_b[2560];
	 boolean_T rtb_SelectBits_b[3064];
	 boolean_T rtb_Zeropadtailbyte_k[3072];
	 uint8_T rtb_BittoIntegerConverter_o1[384];
	 boolean_T rtb_IntegertoBitConverter_h[4096];
	 uint8_T rtb_BittoIntegerConverter_o[576];
	 uint8_T rtb_BittoIntegerConverter_j[768];
	 uint8_T rtb_BittoIntegerConverter[864];
	 boolean_T rtb_BPSKDemodulator[1536];
	 boolean_T rtb_MPSKDemodulatorBaseband_p[3072];
	 boolean_T rtb_MPSKDemodulatorBaseband[3072];
	 int32_T i;
	 static const uint8_T tmp_0[256] = { 128U, 129U, 130U, 131U, 132U, 133U, 134U,
	 135U, 136U, 137U, 138U, 139U, 140U, 141U, 142U, 143U, 144U, 145U, 146U, 147U,
	 148U, 149U, 150U, 151U, 152U, 153U, 154U, 155U, 156U, 157U, 158U, 159U, 160U,
	 161U, 162U, 163U, 164U, 165U, 166U, 167U, 168U, 169U, 170U, 171U, 172U, 173U,
	 174U, 175U, 176U, 177U, 178U, 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U,
	 187U, 188U, 189U, 190U, 191U, 192U, 193U, 194U, 195U, 196U, 197U, 198U, 199U,
	 200U, 201U, 202U, 203U, 204U, 205U, 206U, 207U, 208U, 209U, 210U, 211U, 212U,
	 213U, 214U, 215U, 216U, 217U, 218U, 219U, 220U, 221U, 222U, 223U, 224U, 225U,
	 226U, 227U, 228U, 229U, 230U, 231U, 232U, 233U, 234U, 235U, 236U, 237U, 238U,
	 239U, 240U, 241U, 242U, 243U, 244U, 245U, 246U, 247U, 248U, 249U, 250U, 251U,
	 252U, 253U, 254U, MAX_uint8_T, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U,
	 11U, 12U, 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U,
	 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U, 40U,
	 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 52U, 53U, 54U, 55U,
	 56U, 57U, 58U, 59U, 60U, 61U, 62U, 63U, 64U, 65U, 66U, 67U, 68U, 69U, 70U,
	 71U, 72U, 73U, 74U, 75U, 76U, 77U, 78U, 79U, 80U, 81U, 82U, 83U, 84U, 85U,
	 86U, 87U, 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U, 100U,
	 101U, 102U, 103U, 104U, 105U, 106U, 107U, 108U, 109U, 110U, 111U, 112U, 113U,
	 114U, 115U, 116U, 117U, 118U, 119U, 120U, 121U, 122U, 123U, 124U, 125U, 126U,
	 127U };

	 static const uint8_T tmp_1[201] = { 156U, 157U, 158U, 159U, 160U, 161U, 162U,
	 163U, 164U, 165U, 166U, 167U, 168U, 169U, 170U, 171U, 172U, 173U, 174U, 175U,
	 176U, 177U, 178U, 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U, 187U, 188U,
	 189U, 190U, 191U, 192U, 193U, 194U, 195U, 196U, 197U, 198U, 199U, 200U, 201U,
	 202U, 203U, 204U, 205U, 206U, 207U, 208U, 209U, 210U, 211U, 212U, 213U, 214U,
	 215U, 216U, 217U, 218U, 219U, 220U, 221U, 222U, 223U, 224U, 225U, 226U, 227U,
	 228U, 229U, 230U, 231U, 232U, 233U, 234U, 235U, 236U, 237U, 238U, 239U, 240U,
	 241U, 242U, 243U, 244U, 245U, 246U, 247U, 248U, 249U, 250U, 251U, 252U, 253U,
	 254U, MAX_uint8_T, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U,
	 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U, 26U, 27U,
	 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U, 40U, 41U, 42U,
	 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 52U, 53U, 54U, 55U, 56U, 57U,
	 58U, 59U, 60U, 61U, 62U, 63U, 64U, 65U, 66U, 67U, 68U, 69U, 70U, 71U, 72U,
	 73U, 74U, 75U, 76U, 77U, 78U, 79U, 80U, 81U, 82U, 83U, 84U, 85U, 86U, 87U,
	 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U, 100U };

	 static const uint8_T tmp_2[200] = { 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U,
	 10U, 11U, 12U, 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U,
	 25U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U,
	 40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 52U, 53U, 54U,
	 55U, 56U, 57U, 58U, 59U, 60U, 61U, 62U, 63U, 64U, 65U, 66U, 67U, 68U, 69U,
	 70U, 71U, 72U, 73U, 74U, 75U, 76U, 77U, 78U, 79U, 80U, 81U, 82U, 83U, 84U,
	 85U, 86U, 87U, 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U,
	 101U, 102U, 103U, 104U, 105U, 106U, 107U, 108U, 109U, 110U, 111U, 112U, 113U,
	 114U, 115U, 116U, 117U, 118U, 119U, 120U, 121U, 122U, 123U, 124U, 125U, 126U,
	 127U, 128U, 129U, 130U, 131U, 132U, 133U, 134U, 135U, 136U, 137U, 138U, 139U,
	 140U, 141U, 142U, 143U, 144U, 145U, 146U, 147U, 148U, 149U, 150U, 151U, 152U,
	 153U, 154U, 155U, 156U, 157U, 158U, 159U, 160U, 161U, 162U, 163U, 164U, 165U,
	 166U, 167U, 168U, 169U, 170U, 171U, 172U, 173U, 174U, 175U, 176U, 177U, 178U,
	 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U, 187U, 188U, 189U, 190U, 191U,
	 192U, 193U, 194U, 195U, 196U, 197U, 198U, 199U, 200U };

	 static const int8_T tmp_3[200] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7,
	 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17,
	 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26,
	 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36,
	 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45,
	 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55,
	 55, 56, 56, 57, 57, 58, 58, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64,
	 65, 65, 66, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74,
	 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83,
	 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93,
	 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99 };

	 static const int8_T tmp_4[32] = { 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3,
	 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };

	 static const int8_T tmp_5[40] = { 36, 37, 38, 39, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
	 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
	 29, 30, 31, 32, 33, 34, 35 };

	 static const int8_T tmp_6[64] = { 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
	 59, 60, 61, 62, 63, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
	 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
	 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 };

	 static const int8_T tmp_7[80] = { 72, 73, 74, 75, 76, 77, 78, 79, 0, 1, 2, 3,
	 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
	 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
	 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
	 63, 64, 65, 66, 67, 68, 69, 70, 71 };

	 static const int8_T tmp_8[108] = { 96, 97, 98, 99, 100, 101, 102, 103, 104,
	 105, 106, 107, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
	 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
	 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
	 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
	 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
	 94, 95 };

	 static const int8_T tmp_9[120] = { 108, 109, 110, 111, 112, 113, 114, 115, 116,
	 117, 118, 119, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
	 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
	 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
	 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
	 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
	 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107 };

	 static const uint8_T tmp_a[320] = { 192U, 193U, 194U, 195U, 196U, 197U, 198U,
	 199U, 200U, 201U, 202U, 203U, 204U, 205U, 206U, 207U, 208U, 209U, 210U, 211U,
	 212U, 213U, 214U, 215U, 216U, 217U, 218U, 219U, 220U, 221U, 222U, 223U, 224U,
	 225U, 226U, 227U, 228U, 229U, 230U, 231U, 232U, 233U, 234U, 235U, 236U, 237U,
	 238U, 239U, 240U, 241U, 242U, 243U, 244U, 245U, 246U, 247U, 248U, 249U, 250U,
	 251U, 252U, 253U, 254U, MAX_uint8_T, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U,
	 10U, 11U, 12U, 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U,
	 25U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U,
	 40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 52U, 53U, 54U,
	 55U, 56U, 57U, 58U, 59U, 60U, 61U, 62U, 63U, 64U, 65U, 66U, 67U, 68U, 69U,
	 70U, 71U, 72U, 73U, 74U, 75U, 76U, 77U, 78U, 79U, 80U, 81U, 82U, 83U, 84U,
	 85U, 86U, 87U, 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U,
	 100U, 101U, 102U, 103U, 104U, 105U, 106U, 107U, 108U, 109U, 110U, 111U, 112U,
	 113U, 114U, 115U, 116U, 117U, 118U, 119U, 120U, 121U, 122U, 123U, 124U, 125U,
	 126U, 127U, 128U, 129U, 130U, 131U, 132U, 133U, 134U, 135U, 136U, 137U, 138U,
	 139U, 140U, 141U, 142U, 143U, 144U, 145U, 146U, 147U, 148U, 149U, 150U, 151U,
	 152U, 153U, 154U, 155U, 156U, 157U, 158U, 159U, 160U, 161U, 162U, 163U, 164U,
	 165U, 166U, 167U, 168U, 169U, 170U, 171U, 172U, 173U, 174U, 175U, 176U, 177U,
	 178U, 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U, 187U, 188U, 189U, 190U,
	 191U, 192U, 193U, 194U, 195U, 196U, 197U, 198U, 199U, 200U, 201U, 202U, 203U,
	 204U, 205U, 206U, 207U, 208U, 209U, 210U, 211U, 212U, 213U, 214U, 215U, 216U,
	 217U, 218U, 219U, 220U, 221U, 222U, 223U, 224U, 225U, 226U, 227U, 228U, 229U,
	 230U, 231U, 232U, 233U, 234U, 235U, 236U, 237U, 238U, 239U, 240U, 241U, 242U,
	 243U, 244U, 245U, 246U, 247U, 248U, 249U, 250U, 251U, 252U, 253U, 254U,
	 MAX_uint8_T };

	 static const uint8_T tmp_b[100] = { 0U, 2U, 4U, 6U, 8U, 10U, 12U, 14U, 16U,
	 18U, 20U, 22U, 24U, 26U, 28U, 30U, 32U, 34U, 36U, 38U, 40U, 42U, 44U, 46U,
	 48U, 50U, 52U, 54U, 56U, 58U, 60U, 62U, 64U, 66U, 68U, 70U, 72U, 74U, 76U,
	 78U, 80U, 82U, 84U, 86U, 88U, 90U, 92U, 94U, 96U, 98U, 102U, 104U, 106U,
	 108U, 110U, 112U, 114U, 116U, 118U, 120U, 122U, 124U, 126U, 128U, 130U, 132U,
	 134U, 136U, 138U, 140U, 142U, 144U, 146U, 148U, 150U, 152U, 154U, 156U, 158U,
	 160U, 162U, 164U, 166U, 168U, 170U, 172U, 174U, 176U, 178U, 180U, 182U, 184U,
	 186U, 188U, 190U, 192U, 194U, 196U, 198U, 200U };

	 uint8_T rtb_Compare_0;
	 int32_T SelectBits_outAdd_l_idx;
	 int32_T SelectBits_inAdd_f_idx;
	 int32_T SelectBits_outAdd_l_idx_0;
	 int32_T SelectBits_inAdd_f_idx_0;
	 real_T u;
	 creal_T rtb_Gain_0;
	 creal_T rtb_RemoveCyclicPrefix_0;
	 creal_T rtb_Gain_1;

	 /* Sum: '<S6>/Add' incorporates:
	 * Constant: '<S6>/Select Nonlinearity'
	 * Constant: '<S6>/Select Pre-distortion'
	 */
	 rtb_MathFunction_g = mymodel_P.SelectNonlinearity_Value +
	 mymodel_P.SelectPredistortion_Value;

	 /* Constant: '<S13>/DSP Constant2' */
	 memcpy(&mymodel_B.InsertPreamble[0], &mymodel_P.DSPConstant2_Value[0], 201U *
	 sizeof(creal_T));

	 /* S-Function (sdsprandsrc2): '<S14>/Random Source' */
	 RandSrc_U_D(mymodel_B.RandomSource, &mymodel_P.RandomSource_MinRTP, 1,
	 &mymodel_P.RandomSource_MaxRTP, 1,
	 mymodel_DW.RandomSource_STATE_DWORK, 1, 6912);

	 /* RelationalOperator: '<S14>/Relational Operator' incorporates:
	 * Constant: '<S14>/Constant'
	 */
	 for (i = 0; i < 6912; i++) {
	 mymodel_B.RelationalOperator[i] = (mymodel_B.RandomSource[i] >
	 mymodel_P.Constant_Value[i]);
	 }

	 /* End of RelationalOperator: '<S14>/Relational Operator' */

	 /* Delay: '<S3>/Integer Delay' */
	 rtb_IntegerDelay = mymodel_DW.IntegerDelay_DSTATE;

	 /* Bias: '<S8>/0-based rate' incorporates:
	 * Delay: '<S3>/Integer Delay'
	 */
	 rtb_DirectLookUpTablenD = mymodel_DW.IntegerDelay_DSTATE +
	 mymodel_P.basedrate_Bias;

	 /* Outputs for Enabled SubSystem: '<S8>/RateID0 - BPSK 1//2' incorporates:
	 * EnablePort: '<S199>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn' */
	 if ((rtb_DirectLookUpTablenD == 0.0) > 0) {
	 /* S-Function (sdsppad): '<S199>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims[0];
	 if (mymodel_P.SelectBits_padBefore[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims[0] - mymodel_P.SelectBits_padBefore[0];
	 }

	 if (mymodel_P.SelectBits_padAfter[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore[0];
	 }

	 if (mymodel_P.SelectBits_padBefore[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_SelectBits_m[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims[0];
	 if (mymodel_P.SelectBits_padBefore[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims[0] -
	 mymodel_P.SelectBits_padBefore[0];
	 }

	 if (mymodel_P.SelectBits_padAfter[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore[0]; SelectBits_outAdd_l_idx_0++) {
	 rtb_SelectBits_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter[0]; SelectBits_outAdd_l_idx_0++) {
	 rtb_SelectBits_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims[1];
	 if (mymodel_P.SelectBits_padBefore[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims[1] -
	 mymodel_P.SelectBits_padBefore[1];
	 }

	 if (mymodel_P.SelectBits_padAfter[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore[1]; SelectBits_outAdd_l_idx_0++) {
	 rtb_SelectBits_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter[1]; SelectBits_outAdd_l_idx_0++) {
	 rtb_SelectBits_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S199>/Select Bits' */

	 /* S-Function (sdsppad): '<S199>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims[0] -
	 mymodel_P.Zeropadtailbyte_padBefore[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore[0] < 0) {
	 SelectBits_outAdd_l_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore[0];
	 SelectBits_inAdd_f_idx = 0;
	 } else {
	 SelectBits_outAdd_l_idx_0 = 0;
	 SelectBits_inAdd_f_idx = mymodel_P.Zeropadtailbyte_padBefore[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore[1] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_outAdd_l_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd[0] +
	 SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_inAdd_f_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_Zeropadtailbyte_m[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 rtb_SelectBits_m[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims[0] -
	 mymodel_P.Zeropadtailbyte_padBefore[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore[0]; SelectBits_outAdd_l_idx_0
	 ++) {
	 rtb_Zeropadtailbyte_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter[0]; SelectBits_outAdd_l_idx_0
	 ++) {
	 rtb_Zeropadtailbyte_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims[1] -
	 mymodel_P.Zeropadtailbyte_padBefore[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore[1]; SelectBits_outAdd_l_idx_0
	 ++) {
	 rtb_Zeropadtailbyte_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter[1]; SelectBits_outAdd_l_idx_0
	 ++) {
	 rtb_Zeropadtailbyte_m[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S199>/Zero pad tail byte' */

	 /* S-Function (scomconvenc2): '<S199>/Convolutional Encoder' */
	 mymodel_DW.currState_m = 0U;
	 for (yIdx = 0; yIdx < 768; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)((rtb_Zeropadtailbyte_m[yIdx] << 6) +
	 mymodel_DW.currState_m);
	 mymodel_DW.currState_m = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 rtb_ConvolutionalEncoder[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 rtb_ConvolutionalEncoder[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 /* End of S-Function (scomconvenc2): '<S199>/Convolutional Encoder' */

	 /* S-Function (scominterl): '<S207>/General Block Interleaver' */
	 for (i = 0; i < 1536; i++) {
	 rtb_GeneralBlockInterleaver_dm[i] =
	 rtb_ConvolutionalEncoder[mymodel_ConstP.GeneralBlockInterl[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S207>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S206>/M-PSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 rtb_GeneralBlockInterleaver_dm[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S206>/M-PSK Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn' */
	 /* End of Outputs for SubSystem: '<S8>/RateID0 - BPSK 1//2' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID1 - QPSK 1//2' incorporates:
	 * EnablePort: '<S200>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn1' */
	 if ((rtb_DirectLookUpTablenD == 1.0) > 0) {
	 /* S-Function (sdsppad): '<S200>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_a[0];
	 if (mymodel_P.SelectBits_padBefore_i[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_a[0] -
	 mymodel_P.SelectBits_padBefore_i[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_d[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_d[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_i[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_i[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_i[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_i[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_i[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_i[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_b[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_b[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_f[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_f[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_SelectBits_h0[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_i[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_d[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_a[0];
	 if (mymodel_P.SelectBits_padBefore_i[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_a[0] -
	 mymodel_P.SelectBits_padBefore_i[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_d[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_d[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_a[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_i[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_h0[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_n;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_d[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_h0[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_n;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_i[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_d[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_a[1];
	 if (mymodel_P.SelectBits_padBefore_i[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_a[1] -
	 mymodel_P.SelectBits_padBefore_i[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_d[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_d[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_a[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_a[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_i[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_h0[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_n;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_a[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_d[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_h0[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_n;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_a[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S200>/Select Bits' */

	 /* S-Function (sdsppad): '<S200>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_p[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_l[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_p[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_l[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_k[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_k[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_l[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_l[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_l[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_l[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_l[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_l[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_a[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_a[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_d[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_d[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_Zeropadtailbyte_lv[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx]
	 = rtb_SelectBits_h0[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_l[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_k[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_p[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_l[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_p[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_l[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_k[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_k[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_p[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_l[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_lv[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_p;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_k[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_lv[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_p;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_l[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_k[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_p[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_l[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_p[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_l[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_k[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_k[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_p[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_p[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_l[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_lv[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_p;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_p[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_k[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_lv[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_p;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_p[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S200>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S210>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 192; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= rtb_Zeropadtailbyte_lv[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter_n[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S210>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S210>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD_k[0], 0, 215U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 24;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD_k[SelectBits_inAdd_f_idx + 215] =
	 rtb_BittoIntegerConverter_n[SelectBits_inAdd_f_idx_0 * 24 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B_h[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage_a[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD_k[uIdx];
	 mymodel_DW.firstParity_d[SelectBits_inAdd_f_idx] = mymodel_DW.B_h[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B_h[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B_h[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B_h[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage_a[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity_d[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B_h[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 24;
	 SelectBits_inAdd_f_idx++) {
	 rtb_IntegerInputRSEncoder_gx[(SelectBits_inAdd_f_idx_0 << 5) +
	 SelectBits_inAdd_f_idx] =
	 rtb_BittoIntegerConverter_n[SelectBits_inAdd_f_idx_0 * 24 +
	 SelectBits_inAdd_f_idx];
	 }

	 yIdx = 0;
	 uIdx = SelectBits_inAdd_f_idx_0 << 5;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled26[SelectBits_inAdd_f_idx]) {
	 rtb_IntegerInputRSEncoder_gx[(uIdx + yIdx) + 24] = (uint8_T)
	 mymodel_DW.B_h[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S210>/Integer-Input RS Encoder' */

	 /* Selector: '<S210>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 32;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes_h[SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 5)] = rtb_IntegerInputRSEncoder_gx
	 [(SelectBits_inAdd_f_idx_0 << 5) + tmp_4[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S210>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S210>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 256; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes_h[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 rtb_IntegertoBitConverter_o[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S210>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S200>/Punctured Convolutional Encoder1' */
	 mymodel_DW.currState_b = 0U;
	 for (yIdx = 0; yIdx < 2048; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)((rtb_IntegertoBitConverter_o[yIdx] <<
	 6) + mymodel_DW.currState_b);
	 mymodel_DW.currState_b = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 prePncOut_it[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 prePncOut_it[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 4096;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled27[SelectBits_inAdd_f_idx_0]) {
	 rtb_PuncturedConvolutionalEnc_l[yIdx] =
	 prePncOut_it[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 4) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S200>/Punctured Convolutional Encoder1' */

	 /* S-Function (scominterl): '<S208>/General Block Interleaver' */
	 for (i = 0; i < 3072; i++) {
	 rtb_GeneralBlockInterleaver_d[i] =
	 rtb_PuncturedConvolutionalEnc_l[mymodel_ConstP.pooled21[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S208>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S209>/QPSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 rtb_GeneralBlockInterleaver_d[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 rtb_GeneralBlockInterleaver_d[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S209>/QPSK Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn1' */
	 /* End of Outputs for SubSystem: '<S8>/RateID1 - QPSK 1//2' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID2 - QPSK 3//4' incorporates:
	 * EnablePort: '<S201>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn2' */
	 if ((rtb_DirectLookUpTablenD == 2.0) > 0) {
	 /* S-Function (sdsppad): '<S201>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_m[0];
	 if (mymodel_P.SelectBits_padBefore_j[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_m[0] -
	 mymodel_P.SelectBits_padBefore_j[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_p[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_p[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_j[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_j[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_j[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_j[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_j[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_j[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_m[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_m[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_o[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_o[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_SelectBits_f[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_j[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_p[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_m[0];
	 if (mymodel_P.SelectBits_padBefore_j[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_m[0] -
	 mymodel_P.SelectBits_padBefore_j[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_p[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_p[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_m[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_j[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_f[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_p;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_p[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_f[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_p;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_j[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_p[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_m[1];
	 if (mymodel_P.SelectBits_padBefore_j[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_m[1] -
	 mymodel_P.SelectBits_padBefore_j[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_p[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_p[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_m[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_m[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_j[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_f[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_p;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_m[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_p[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_f[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_p;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_m[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S201>/Select Bits' */

	 /* S-Function (sdsppad): '<S201>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_l[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_f[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_l[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_f[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_l[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_l[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_f[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_f[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_f[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_f[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_f[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_f[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_j[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_j[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_a[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_a[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_Zeropadtailbyte_l[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 rtb_SelectBits_f[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_f[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_l[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_l[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_f[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_l[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_f[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_l[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_l[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_l[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_f[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_l[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_k;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_l[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_l[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_k;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_f[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_l[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_l[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_f[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_l[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_f[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_l[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_l[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_l[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_l[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_f[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_l[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_k;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_l[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_l[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_l[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_k;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_l[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S201>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S213>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 288; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= rtb_Zeropadtailbyte_l[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter_or[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S213>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S213>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD_c[0], 0, 203U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 36;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD_c[SelectBits_inAdd_f_idx + 203] =
	 rtb_BittoIntegerConverter_or[SelectBits_inAdd_f_idx_0 * 36 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B_d[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage_p[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD_c[uIdx];
	 mymodel_DW.firstParity_b[SelectBits_inAdd_f_idx] = mymodel_DW.B_d[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B_d[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B_d[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B_d[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage_p[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity_b[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B_d[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 36;
	 SelectBits_inAdd_f_idx++) {
	 rtb_IntegerInputRSEncoder_f[SelectBits_inAdd_f_idx_0 * 40 +
	 SelectBits_inAdd_f_idx] =
	 rtb_BittoIntegerConverter_or[SelectBits_inAdd_f_idx_0 * 36 +
	 SelectBits_inAdd_f_idx];
	 }

	 yIdx = 0;
	 uIdx = SelectBits_inAdd_f_idx_0 * 40;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.IntegerInputRSEncode[SelectBits_inAdd_f_idx]) {
	 rtb_IntegerInputRSEncoder_f[(uIdx + yIdx) + 36] = (uint8_T)
	 mymodel_DW.B_d[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S213>/Integer-Input RS Encoder' */

	 /* Selector: '<S213>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 40;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes_kn[SelectBits_inAdd_f_idx + 40 *
	 SelectBits_inAdd_f_idx_0] = rtb_IntegerInputRSEncoder_f[40 *
	 SelectBits_inAdd_f_idx_0 + tmp_5[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S213>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S213>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 320; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes_kn[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 rtb_IntegertoBitConverter_b[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S213>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S201>/Punctured Convolutional Encoder2' */
	 mymodel_DW.currState_i = 0U;
	 for (yIdx = 0; yIdx < 2560; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)((rtb_IntegertoBitConverter_b[yIdx] <<
	 6) + mymodel_DW.currState_i);
	 mymodel_DW.currState_i = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 mymodel_DW.prePncOut_k1[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 mymodel_DW.prePncOut_k1[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5120;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled28[SelectBits_inAdd_f_idx_0]) {
	 rtb_PuncturedConvolutionalEnc_n[yIdx] =
	 mymodel_DW.prePncOut_k1[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 10) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S201>/Punctured Convolutional Encoder2' */

	 /* S-Function (scominterl): '<S211>/General Block Interleaver' */
	 for (i = 0; i < 3072; i++) {
	 rtb_GeneralBlockInterleaver_d[i] =
	 rtb_PuncturedConvolutionalEnc_n[mymodel_ConstP.pooled21[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S211>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S212>/QPSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 rtb_GeneralBlockInterleaver_d[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 rtb_GeneralBlockInterleaver_d[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S212>/QPSK Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn2' */
	 /* End of Outputs for SubSystem: '<S8>/RateID2 - QPSK 3//4' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID3 - 16QAM 1//2' incorporates:
	 * EnablePort: '<S202>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn3' */
	 if ((rtb_DirectLookUpTablenD == 3.0) > 0) {
	 /* S-Function (sdsppad): '<S202>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_g[0];
	 if (mymodel_P.SelectBits_padBefore_d[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_g[0] -
	 mymodel_P.SelectBits_padBefore_d[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_dh[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_dh[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_d[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_d[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_d[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_d[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_d[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_d[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_g[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_g[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_n[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_n[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_SelectBits_b[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_d[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_dh[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_g[0];
	 if (mymodel_P.SelectBits_padBefore_d[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_g[0] -
	 mymodel_P.SelectBits_padBefore_d[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_dh[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_dh[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_g[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_d[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_b[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_l;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_dh[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_b[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_l;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_d[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_dh[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_g[1];
	 if (mymodel_P.SelectBits_padBefore_d[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_g[1] -
	 mymodel_P.SelectBits_padBefore_d[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_dh[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_dh[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_g[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_g[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_d[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_b[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_l;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_g[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_dh[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 rtb_SelectBits_b[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_l;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_g[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S202>/Select Bits' */

	 /* S-Function (sdsppad): '<S202>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_pu[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_d[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_pu[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_d[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_ka[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_ka[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_d[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_d[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_d[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_d[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_d[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_d[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_b[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_b[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_f[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_f[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 rtb_Zeropadtailbyte_k[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 rtb_SelectBits_b[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_d[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_ka[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_pu[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_d[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_pu[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_d[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_ka[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_ka[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_pu[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_d[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_k[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_o;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_ka[0];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_k[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_o;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_d[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_ka[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_pu[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_d[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_pu[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_d[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_ka[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_ka[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_pu[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_pu[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_d[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_k[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_o;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_pu[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_ka[1];
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Zeropadtailbyte_k[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_o;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_pu[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S202>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S216>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 384; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= rtb_Zeropadtailbyte_k[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter_o1[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S216>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S216>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD_p2[0], 0, 191U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 48;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD_p2[SelectBits_inAdd_f_idx + 191] =
	 rtb_BittoIntegerConverter_o1[SelectBits_inAdd_f_idx_0 * 48 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B_l[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage_e[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD_p2[uIdx];
	 mymodel_DW.firstParity_h[SelectBits_inAdd_f_idx] = mymodel_DW.B_l[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B_l[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B_l[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B_l[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage_e[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity_h[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B_l[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 48;
	 SelectBits_inAdd_f_idx++) {
	 rtb_IntegerInputRSEncoder_c[(SelectBits_inAdd_f_idx_0 << 6) +
	 SelectBits_inAdd_f_idx] =
	 rtb_BittoIntegerConverter_o1[SelectBits_inAdd_f_idx_0 * 48 +
	 SelectBits_inAdd_f_idx];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 rtb_IntegerInputRSEncoder_c[((SelectBits_inAdd_f_idx_0 << 6) +
	 SelectBits_inAdd_f_idx) + 48] = (uint8_T)
	 mymodel_DW.B_l[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S216>/Integer-Input RS Encoder' */

	 /* Selector: '<S216>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 64;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes_j[SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 6)] = rtb_IntegerInputRSEncoder_c
	 [(SelectBits_inAdd_f_idx_0 << 6) + tmp_6[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S216>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S216>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 512; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes_j[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 rtb_IntegertoBitConverter_h[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S216>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S202>/Punctured Convolutional Encoder3' */
	 mymodel_DW.currState_jd = 0U;
	 for (yIdx = 0; yIdx < 4096; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)((rtb_IntegertoBitConverter_h[yIdx] <<
	 6) + mymodel_DW.currState_jd);
	 mymodel_DW.currState_jd = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 mymodel_DW.prePncOut_i[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 mymodel_DW.prePncOut_i[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 8192;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled27[SelectBits_inAdd_f_idx_0]) {
	 mymodel_B.PuncturedConvolutionalEn_dd[yIdx] =
	 mymodel_DW.prePncOut_i[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 4) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S202>/Punctured Convolutional Encoder3' */

	 /* S-Function (scominterl): '<S215>/General Block Interleaver' */
	 for (i = 0; i < 6144; i++) {
	 mymodel_B.GeneralBlockInterleaver_e[i] =
	 mymodel_B.PuncturedConvolutionalEn_dd[mymodel_ConstP.pooled22[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S215>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S214>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S214>/Rectangular QAM Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn3' */
	 /* End of Outputs for SubSystem: '<S8>/RateID3 - 16QAM 1//2' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID4 - 16 QAM 3//4' incorporates:
	 * EnablePort: '<S203>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn4' */
	 if ((rtb_DirectLookUpTablenD == 4.0) > 0) {
	 /* S-Function (sdsppad): '<S203>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_k[0];
	 if (mymodel_P.SelectBits_padBefore_h[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_k[0] -
	 mymodel_P.SelectBits_padBefore_h[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_o[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_o[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_h[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_h[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_h[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_h[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_h[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_h[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_f[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_f[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_fn[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_fn[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.SelectBits_h[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx]
	 = mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_h[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_o[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_k[0];
	 if (mymodel_P.SelectBits_padBefore_h[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_k[0] -
	 mymodel_P.SelectBits_padBefore_h[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_o[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_o[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_k[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_h[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_h[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_h;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_o[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_h[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_h;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_h[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_o[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_k[1];
	 if (mymodel_P.SelectBits_padBefore_h[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_k[1] -
	 mymodel_P.SelectBits_padBefore_h[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_o[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_o[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_k[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_k[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_h[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_h[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_h;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_k[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_o[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_h[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_h;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_k[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S203>/Select Bits' */

	 /* S-Function (sdsppad): '<S203>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_h[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_n[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_h[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_n[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_n[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_n[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_n[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_n[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_n[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_n[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_n[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_n[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_n[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_n[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_aa[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_aa[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.Zeropadtailbyte_o[SelectBits_inAdd_f_idx_0 +
	 SelectBits_outAdd_l_idx] = mymodel_B.SelectBits_h[uIdx +
	 SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_n[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_n[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_h[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_n[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_h[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_n[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_n[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_n[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_h[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_n[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_o[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_c;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_n[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_o[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_c;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_n[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_n[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_h[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_n[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_h[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_n[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_n[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_n[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_h[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_h[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_n[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_o[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_c;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_h[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_n[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_o[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_c;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_h[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S203>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S219>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 576; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= mymodel_B.Zeropadtailbyte_o[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter_o[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S219>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S219>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD_m[0], 0, 167U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 72;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD_m[SelectBits_inAdd_f_idx + 167] =
	 rtb_BittoIntegerConverter_o[SelectBits_inAdd_f_idx_0 * 72 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B_f[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage_i[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD_m[uIdx];
	 mymodel_DW.firstParity_px[SelectBits_inAdd_f_idx] = mymodel_DW.B_f[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B_f[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B_f[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B_f[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage_i[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity_px[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B_f[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 memcpy(&rtb_IntegerInputRSEncoder_o[SelectBits_inAdd_f_idx_0 * 80],
	 &rtb_BittoIntegerConverter_o[SelectBits_inAdd_f_idx_0 * 72], 72U *
	 sizeof(uint8_T));
	 yIdx = 0;
	 uIdx = SelectBits_inAdd_f_idx_0 * 80;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled26[SelectBits_inAdd_f_idx]) {
	 rtb_IntegerInputRSEncoder_o[(uIdx + yIdx) + 72] = (uint8_T)
	 mymodel_DW.B_f[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S219>/Integer-Input RS Encoder' */

	 /* Selector: '<S219>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 80;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes_a[SelectBits_inAdd_f_idx + 80 *
	 SelectBits_inAdd_f_idx_0] = rtb_IntegerInputRSEncoder_o[80 *
	 SelectBits_inAdd_f_idx_0 + tmp_7[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S219>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S219>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 640; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes_a[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.IntegertoBitConverter_f[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S219>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S203>/Punctured Convolutional Encoder4' */
	 mymodel_DW.currState_a = 0U;
	 for (yIdx = 0; yIdx < 5120; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)
	 ((mymodel_B.IntegertoBitConverter_f[yIdx] << 6) + mymodel_DW.currState_a);
	 mymodel_DW.currState_a = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 mymodel_DW.prePncOut_o[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 mymodel_DW.prePncOut_o[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 10240;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled28[SelectBits_inAdd_f_idx_0]) {
	 mymodel_B.PuncturedConvolutionalEnc_g[yIdx] =
	 mymodel_DW.prePncOut_o[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 10) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S203>/Punctured Convolutional Encoder4' */

	 /* S-Function (scominterl): '<S218>/General Block Interleaver' */
	 for (i = 0; i < 6144; i++) {
	 mymodel_B.GeneralBlockInterleaver_e[i] =
	 mymodel_B.PuncturedConvolutionalEnc_g[mymodel_ConstP.pooled22[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S218>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S217>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_e[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S217>/Rectangular QAM Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn4' */
	 /* End of Outputs for SubSystem: '<S8>/RateID4 - 16 QAM 3//4' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID5 - 64QAM 2//3' incorporates:
	 * EnablePort: '<S204>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn5' */
	 if ((rtb_DirectLookUpTablenD == 5.0) > 0) {
	 /* S-Function (sdsppad): '<S204>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_i[0];
	 if (mymodel_P.SelectBits_padBefore_n[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_i[0] -
	 mymodel_P.SelectBits_padBefore_n[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_b[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_b[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_n[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_n[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_n[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_n[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_n[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_n[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_mv[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_mv[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_fq[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_fq[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.SelectBits_g[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx]
	 = mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_n[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_b[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_i[0];
	 if (mymodel_P.SelectBits_padBefore_n[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_i[0] -
	 mymodel_P.SelectBits_padBefore_n[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_b[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_b[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_i[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_n[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_g[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_g;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_b[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_g[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_g;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_n[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_b[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_i[1];
	 if (mymodel_P.SelectBits_padBefore_n[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_i[1] -
	 mymodel_P.SelectBits_padBefore_n[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_b[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_b[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_i[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_i[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_n[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_g[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_g;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_i[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_b[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits_g[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_g;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_i[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S204>/Select Bits' */

	 /* S-Function (sdsppad): '<S204>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_g[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_m[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_g[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_m[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_g[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_g[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_m[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_m[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_m[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_m[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_m[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_m[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_nx[0]
	 + SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_nx[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_dj[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_dj[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.Zeropadtailbyte_c[SelectBits_inAdd_f_idx_0 +
	 SelectBits_outAdd_l_idx] = mymodel_B.SelectBits_g[uIdx +
	 SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_m[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_g[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_g[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_m[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_g[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_m[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_g[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_g[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_g[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_m[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_c[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_pu;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_g[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_c[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_pu;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_m[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_g[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_g[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_m[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_g[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_m[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_g[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_g[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_g[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_g[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_m[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_c[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_pu;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_g[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_g[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte_c[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_pu;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_g[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S204>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S222>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 768; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= mymodel_B.Zeropadtailbyte_c[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter_j[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S222>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S222>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD_p[0], 0, 143U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 96;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD_p[SelectBits_inAdd_f_idx + 143] =
	 rtb_BittoIntegerConverter_j[SelectBits_inAdd_f_idx_0 * 96 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B_a[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage_l[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD_p[uIdx];
	 mymodel_DW.firstParity_p[SelectBits_inAdd_f_idx] = mymodel_DW.B_a[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B_a[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B_a[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B_a[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage_l[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity_p[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B_a[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 memcpy(&rtb_IntegerInputRSEncoder_g[SelectBits_inAdd_f_idx_0 * 108],
	 &rtb_BittoIntegerConverter_j[SelectBits_inAdd_f_idx_0 * 96], 96U *
	 sizeof(uint8_T));
	 yIdx = 0;
	 uIdx = SelectBits_inAdd_f_idx_0 * 108;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled29[SelectBits_inAdd_f_idx]) {
	 rtb_IntegerInputRSEncoder_g[(uIdx + yIdx) + 96] = (uint8_T)
	 mymodel_DW.B_a[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S222>/Integer-Input RS Encoder' */

	 /* Selector: '<S222>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 108;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes_k[SelectBits_inAdd_f_idx + 108 *
	 SelectBits_inAdd_f_idx_0] = rtb_IntegerInputRSEncoder_g[108 *
	 SelectBits_inAdd_f_idx_0 + tmp_8[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S222>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S222>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 864; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes_k[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.IntegertoBitConverter_p[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S222>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S204>/Punctured Convolutional Encoder5' */
	 mymodel_DW.currState_j = 0U;
	 for (yIdx = 0; yIdx < 6912; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)
	 ((mymodel_B.IntegertoBitConverter_p[yIdx] << 6) + mymodel_DW.currState_j);
	 mymodel_DW.currState_j = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 mymodel_DW.prePncOut_k[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 mymodel_DW.prePncOut_k[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 13824;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.PuncturedConvolutiona[SelectBits_inAdd_f_idx_0]) {
	 mymodel_B.PuncturedConvolutionalEnc_d[yIdx] =
	 mymodel_DW.prePncOut_k[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 6) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S204>/Punctured Convolutional Encoder5' */

	 /* S-Function (scominterl): '<S221>/General Block Interleaver' */
	 for (i = 0; i < 9216; i++) {
	 mymodel_B.GeneralBlockInterleaver_n[i] =
	 mymodel_B.PuncturedConvolutionalEnc_d[mymodel_ConstP.pooled23[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S221>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S220>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 yIdx = 0;
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_n[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 }

	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S220>/Rectangular QAM Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn5' */
	 /* End of Outputs for SubSystem: '<S8>/RateID5 - 64QAM 2//3' */

	 /* Outputs for Enabled SubSystem: '<S8>/RateID6 - 64QAM 3//4' incorporates:
	 * EnablePort: '<S205>/Enable'
	 */
	 /* Fcn: '<S8>/Fcn6' */
	 if ((rtb_DirectLookUpTablenD == 6.0) > 0) {
	 /* S-Function (sdsppad): '<S205>/Select Bits' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.SelectBits_outDims_p[0];
	 if (mymodel_P.SelectBits_padBefore_k[0U] > 0) {
	 yIdx = mymodel_P.SelectBits_outDims_p[0] -
	 mymodel_P.SelectBits_padBefore_k[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_h[0U] > 0) {
	 yIdx -= mymodel_P.SelectBits_padAfter_h[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.SelectBits_padBefore_k[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.SelectBits_padBefore_k[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.SelectBits_padBefore_k[0];
	 }

	 if (mymodel_P.SelectBits_padBefore_k[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.SelectBits_padBefore_k[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.SelectBits_padBefore_k[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.SelectBits_inWorkAdd_c[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.SelectBits_inWorkAdd_c[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.SelectBits_outWorkAdd_g[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.SelectBits_outWorkAdd_g[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.SelectBits[SelectBits_inAdd_f_idx_0 + SelectBits_outAdd_l_idx] =
	 mymodel_B.RelationalOperator[uIdx + SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.SelectBits_padBefore_k[0] > 0) ||
	 (mymodel_P.SelectBits_padAfter_h[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_p[0];
	 if (mymodel_P.SelectBits_padBefore_k[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_p[0] -
	 mymodel_P.SelectBits_padBefore_k[0];
	 }

	 if (mymodel_P.SelectBits_padAfter_h[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_h[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.SelectBits_outDims_p[1]; SelectBits_outAdd_l_idx++) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_k[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_i;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_h[0]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_i;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.SelectBits_padBefore_k[1] > 0) ||
	 (mymodel_P.SelectBits_padAfter_h[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_p[1];
	 if (mymodel_P.SelectBits_padBefore_k[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.SelectBits_outDims_p[1] -
	 mymodel_P.SelectBits_padBefore_k[1];
	 }

	 if (mymodel_P.SelectBits_padAfter_h[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.SelectBits_padAfter_h[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.SelectBits_outDims_p[0];
	 for (i = 0; i < mymodel_P.SelectBits_outDims_p[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padBefore_k[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_i;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_p[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.SelectBits_padAfter_h[1]; SelectBits_outAdd_l_idx_0++)
	 {
	 mymodel_B.SelectBits[SelectBits_inAdd_f_idx] =
	 mymodel_P.SelectBits_PadValue_i;
	 SelectBits_inAdd_f_idx += mymodel_P.SelectBits_outDims_p[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S205>/Select Bits' */

	 /* S-Function (sdsppad): '<S205>/Zero pad tail byte' */
	 /* Length of input columns to copy. Start with output column length and adjust. */
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_o[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_i[0U] > 0) {
	 yIdx = mymodel_P.Zeropadtailbyte_outDims_o[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_i[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_e[0U] > 0) {
	 yIdx -= mymodel_P.Zeropadtailbyte_padAfter_e[0];
	 }

	 /* Compute initial column start addresses in both input and output arrays. */
	 if (mymodel_P.Zeropadtailbyte_padBefore_i[0] < 0) {
	 SelectBits_inAdd_f_idx_0 = -mymodel_P.Zeropadtailbyte_padBefore_i[0];
	 SelectBits_outAdd_l_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 SelectBits_outAdd_l_idx_0 = mymodel_P.Zeropadtailbyte_padBefore_i[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padBefore_i[1] < 0) {
	 SelectBits_inAdd_f_idx = -mymodel_P.Zeropadtailbyte_padBefore_i[1];
	 SelectBits_outAdd_l_idx = 0;
	 } else {
	 SelectBits_inAdd_f_idx = 0;
	 SelectBits_outAdd_l_idx = mymodel_P.Zeropadtailbyte_padBefore_i[1];
	 }

	 /* Copy all needed input columns to the output array. */
	 /* Compute starting address of next column to copy. */
	 uIdx = SelectBits_inAdd_f_idx_0 * mymodel_P.Zeropadtailbyte_inWorkAdd_h[0] +
	 SelectBits_inAdd_f_idx * mymodel_P.Zeropadtailbyte_inWorkAdd_h[1];
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx_0 *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_i[0] + SelectBits_outAdd_l_idx *
	 mymodel_P.Zeropadtailbyte_outWorkAdd_i[1];

	 /* Copy a column from input to output array. */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < yIdx;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.Zeropadtailbyte[SelectBits_inAdd_f_idx_0 +
	 SelectBits_outAdd_l_idx] = mymodel_B.SelectBits[uIdx +
	 SelectBits_outAdd_l_idx];
	 }

	 /* Increment the column starting address. */
	 /* end CopyInToOut. */
	 if ((mymodel_P.Zeropadtailbyte_padBefore_i[0] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_e[0] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_o[0];
	 if (mymodel_P.Zeropadtailbyte_padBefore_i[0] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_o[0] -
	 mymodel_P.Zeropadtailbyte_padBefore_i[0];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_e[0] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_e[0];
	 }

	 i = 0;
	 while (i < 1) {
	 SelectBits_inAdd_f_idx = uIdx;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_P.Zeropadtailbyte_outDims_o[1]; SelectBits_outAdd_l_idx++)
	 {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_i[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_b;
	 SelectBits_inAdd_f_idx++;
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_e[0];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_b;
	 SelectBits_inAdd_f_idx++;
	 }
	 }

	 uIdx++;
	 i = 1;
	 }
	 }

	 if ((mymodel_P.Zeropadtailbyte_padBefore_i[1] > 0) ||
	 (mymodel_P.Zeropadtailbyte_padAfter_e[1] > 0)) {
	 uIdx = 0;
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_o[1];
	 if (mymodel_P.Zeropadtailbyte_padBefore_i[1] > 0) {
	 SelectBits_inAdd_f_idx_0 = mymodel_P.Zeropadtailbyte_outDims_o[1] -
	 mymodel_P.Zeropadtailbyte_padBefore_i[1];
	 }

	 if (mymodel_P.Zeropadtailbyte_padAfter_e[1] > 0) {
	 SelectBits_inAdd_f_idx_0 -= mymodel_P.Zeropadtailbyte_padAfter_e[1];
	 }

	 SelectBits_inAdd_f_idx_0 *= mymodel_P.Zeropadtailbyte_outDims_o[0];
	 for (i = 0; i < mymodel_P.Zeropadtailbyte_outDims_o[0]; i++) {
	 SelectBits_inAdd_f_idx = uIdx;
	 SelectBits_outAdd_l_idx = 0;
	 while (SelectBits_outAdd_l_idx < 1) {
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padBefore_i[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_b;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_o[0];
	 }

	 SelectBits_inAdd_f_idx += SelectBits_inAdd_f_idx_0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 <
	 mymodel_P.Zeropadtailbyte_padAfter_e[1];
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.Zeropadtailbyte[SelectBits_inAdd_f_idx] =
	 mymodel_P.Zeropadtailbyte_PadValue_b;
	 SelectBits_inAdd_f_idx += mymodel_P.Zeropadtailbyte_outDims_o[0];
	 }

	 SelectBits_outAdd_l_idx = 1;
	 }

	 uIdx++;
	 }
	 }

	 /* End of S-Function (sdsppad): '<S205>/Zero pad tail byte' */

	 /* S-Function (scominttobit): '<S225>/Bit to Integer Converter' */
	 /* Bit to Integer Conversion */
	 uIdx = 0;
	 for (i = 0; i < 864; i++) {
	 count = 0U;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 /* Input bit order is MSB first */
	 count <<= 1U;
	 count |= mymodel_B.Zeropadtailbyte[uIdx];
	 uIdx++;
	 }

	 rtb_BittoIntegerConverter[i] = (uint8_T)count;
	 }

	 /* End of S-Function (scominttobit): '<S225>/Bit to Integer Converter' */

	 /* S-Function (scombchrsencoder): '<S225>/Integer-Input RS Encoder' */
	 memset(&mymodel_DW.MessagePAD[0], 0, 131U * sizeof(int32_T));
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 108;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.MessagePAD[SelectBits_inAdd_f_idx + 131] =
	 rtb_BittoIntegerConverter[SelectBits_inAdd_f_idx_0 * 108 +
	 SelectBits_inAdd_f_idx];
	 }

	 memset(&mymodel_DW.B[0], 0, sizeof(int32_T) << 4U);
	 for (uIdx = 0; uIdx < 239; uIdx++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.currentMessage[SelectBits_inAdd_f_idx] =
	 mymodel_DW.MessagePAD[uIdx];
	 mymodel_DW.firstParity[SelectBits_inAdd_f_idx] = mymodel_DW.B[0];
	 }

	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_DW.B[SelectBits_inAdd_f_idx] =
	 mymodel_DW.B[SelectBits_inAdd_f_idx + 1];
	 }

	 mymodel_DW.B[15U] = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 yIdx = mymodel_DW.currentMessage[SelectBits_inAdd_f_idx] ^
	 mymodel_DW.firstParity[SelectBits_inAdd_f_idx];
	 if ((yIdx == 0) || (mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx] ==
	 0)) {
	 yIdx = 0;
	 } else {
	 yIdx = (mymodel_ConstP.pooled19[yIdx - 1] +
	 mymodel_ConstP.pooled19[mymodel_ConstP.pooled20[SelectBits_inAdd_f_idx]
	 - 1]) % 255;
	 if (yIdx == 0) {
	 yIdx = 255;
	 }

	 yIdx = mymodel_ConstP.pooled18[yIdx - 1];
	 }

	 mymodel_DW.B[SelectBits_inAdd_f_idx] ^= yIdx;
	 }
	 }

	 memcpy(&rtb_IntegerInputRSEncoder[SelectBits_inAdd_f_idx_0 * 120],
	 &rtb_BittoIntegerConverter[SelectBits_inAdd_f_idx_0 * 108], 108U *
	 sizeof(uint8_T));
	 yIdx = 0;
	 uIdx = SelectBits_inAdd_f_idx_0 * 120;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 16;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled29[SelectBits_inAdd_f_idx]) {
	 rtb_IntegerInputRSEncoder[(uIdx + yIdx) + 108] = (uint8_T)
	 mymodel_DW.B[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }
	 }
	 }

	 /* End of S-Function (scombchrsencoder): '<S225>/Integer-Input RS Encoder' */

	 /* Selector: '<S225>/Reorder parity bytes' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 120;
	 SelectBits_inAdd_f_idx++) {
	 rtb_Reorderparitybytes[SelectBits_inAdd_f_idx + 120 *
	 SelectBits_inAdd_f_idx_0] = rtb_IntegerInputRSEncoder[120 *
	 SelectBits_inAdd_f_idx_0 + tmp_9[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S225>/Reorder parity bytes' */

	 /* S-Function (scominttobit): '<S225>/Integer to Bit Converter' */
	 /* Integer to Bit Conversion */
	 for (i = 0; i < 960; i++) {
	 uIdx = (i + 1) << 3;
	 count = rtb_Reorderparitybytes[i];
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 8;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.IntegertoBitConverter[uIdx - 1] = ((count & 1U) != 0U);
	 count >>= 1;
	 uIdx--;
	 }
	 }

	 /* End of S-Function (scominttobit): '<S225>/Integer to Bit Converter' */

	 /* S-Function (scomconvenc2): '<S205>/Punctured Convolutional Encoder6' */
	 mymodel_DW.currState = 0U;
	 for (yIdx = 0; yIdx < 7680; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)((mymodel_B.IntegertoBitConverter[yIdx]
	 << 6) + mymodel_DW.currState);
	 mymodel_DW.currState = mymodel_ConstP.pooled24[SelectBits_inAdd_f_idx_0];
	 mymodel_DW.prePncOut[(yIdx << 1) + 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] & 1U) != 0U);
	 mymodel_DW.prePncOut[yIdx << 1] =
	 ((mymodel_ConstP.pooled25[SelectBits_inAdd_f_idx_0] >> 1U & 1U) != 0U);
	 }

	 yIdx = 0;
	 SelectBits_inAdd_f_idx_0 = 0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 15360;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_ConstP.pooled28[SelectBits_inAdd_f_idx_0]) {
	 mymodel_B.PuncturedConvolutionalEncod[yIdx] =
	 mymodel_DW.prePncOut[SelectBits_inAdd_f_idx];
	 yIdx++;
	 }

	 SelectBits_inAdd_f_idx_0++;
	 if (SelectBits_inAdd_f_idx_0 >= 10) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }
	 }

	 /* End of S-Function (scomconvenc2): '<S205>/Punctured Convolutional Encoder6' */

	 /* S-Function (scominterl): '<S224>/General Block Interleaver' */
	 for (i = 0; i < 9216; i++) {
	 mymodel_B.GeneralBlockInterleaver_n[i] =
	 mymodel_B.PuncturedConvolutionalEncod[mymodel_ConstP.pooled23[i] - 1];
	 }

	 /* End of S-Function (scominterl): '<S224>/General Block Interleaver' */

	 /* S-Function (scomapskmod4): '<S223>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 yIdx = 0;
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.GeneralBlockInterleaver_n[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 }

	 mymodel_B.Merge1[uIdx].re = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1)];
	 mymodel_B.Merge1[uIdx].im = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S223>/Rectangular QAM Modulator Baseband' */
	 }

	 /* End of Fcn: '<S8>/Fcn6' */
	 /* End of Outputs for SubSystem: '<S8>/RateID6 - 64QAM 3//4' */

	 /* S-Function (sdspmultiportsel): '<S9>/Subchannel Selector' */
	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o1[12 * yIdx], &mymodel_B.Merge1[192 * yIdx],
	 12U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o2[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 12], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o3[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 36], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o4[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 60], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o5[12 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 84], 12U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o6[12 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 96], 12U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o7[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 108], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o8[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 132], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o9[24 * yIdx], &mymodel_B.Merge1[192 * yIdx +
	 156], 24U * sizeof(creal_T));
	 }

	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&rtb_SubchannelSelector_o10[12 * yIdx], &mymodel_B.Merge1[192 * yIdx
	 + 180], 12U * sizeof(creal_T));
	 }

	 /* End of S-Function (sdspmultiportsel): '<S9>/Subchannel Selector' */

	 /* S-Function (scompnseq2): '<S226>/PN Sequence Generator' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_Compare_0 = 0U;
	 for (i = 0; i < 11; i++) {
	 rtb_Compare_0 += (uint32_T)(uint8_T)((uint32_T)
	 mymodel_ConstP.PNSequenceGenerator_[i + 1] * mymodel_DW.shiftReg[i]);
	 }

	 rtb_Compare_0 &= 1;
	 tmp = 0U;
	 for (i = 0; i < 11; i++) {
	 tmp += (uint32_T)(uint8_T)(mymodel_DW.shiftReg[i] * (uint32_T)
	 mymodel_ConstP.PNSequenceGenerato_o[i]);
	 }

	 rtb_PNSequenceGenerator[SelectBits_inAdd_f_idx_0] = ((tmp & 1) != 0);
	 for (i = 9; i >= 0; i += -1) {
	 mymodel_DW.shiftReg[i + 1] = mymodel_DW.shiftReg[i];
	 }

	 mymodel_DW.shiftReg[0U] = rtb_Compare_0;
	 }

	 /* End of S-Function (scompnseq2): '<S226>/PN Sequence Generator' */

	 /* S-Function (scomapskmod4): '<S227>/M-PSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 8; i++) {
	 rtb_RelationalOperator_g = rtb_PNSequenceGenerator[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 rtb_MPSKModulatorBaseband[uIdx].re = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1)];
	 rtb_MPSKModulatorBaseband[uIdx].im = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S227>/M-PSK Modulator Baseband' */

	 /* Concatenate: '<S9>/Input Packing' incorporates:
	 * Constant: '<S9>/DSP Constant1'
	 * Gain: '<S9>/Gain'
	 * Gain: '<S9>/Gain1'
	 * Gain: '<S9>/Gain3'
	 * Gain: '<S9>/Gain4'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0],
	 &rtb_SubchannelSelector_o1[12 * SelectBits_inAdd_f_idx_0], 12U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[12 + 201 * SelectBits_inAdd_f_idx_0] =
	 rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0];
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 13],
	 &rtb_SubchannelSelector_o2[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[37 + 201 * SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.Gain1_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .re;
	 mymodel_B.Selecttrainingdata_o2[37 + 201 * SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.Gain1_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .im;
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 38],
	 &rtb_SubchannelSelector_o3[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[62 + 201 * SelectBits_inAdd_f_idx_0] =
	 rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0];
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 63],
	 &rtb_SubchannelSelector_o4[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[87 + 201 * SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.Gain_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0].
	 re;
	 mymodel_B.Selecttrainingdata_o2[87 + 201 * SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.Gain_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0].
	 im;
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 88],
	 &rtb_SubchannelSelector_o5[12 * SelectBits_inAdd_f_idx_0], 12U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[100 + 201 * SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.DSPConstant1_Value[SelectBits_inAdd_f_idx_0];
	 mymodel_B.Selecttrainingdata_o2[100 + 201 * SelectBits_inAdd_f_idx_0].im =
	 0.0;
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 101],
	 &rtb_SubchannelSelector_o6[12 * SelectBits_inAdd_f_idx_0], 12U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[113 + 201 * SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.Gain3_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .re;
	 mymodel_B.Selecttrainingdata_o2[113 + 201 * SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.Gain3_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .im;
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 114],
	 &rtb_SubchannelSelector_o7[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[138 + 201 * SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.Gain4_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .re;
	 mymodel_B.Selecttrainingdata_o2[138 + 201 * SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.Gain4_Gain * rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0]
	 .im;
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 139],
	 &rtb_SubchannelSelector_o8[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[163 + 201 * SelectBits_inAdd_f_idx_0] =
	 rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0];
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 164],
	 &rtb_SubchannelSelector_o9[24 * SelectBits_inAdd_f_idx_0], 24U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Selecttrainingdata_o2[188 + 201 * SelectBits_inAdd_f_idx_0] =
	 rtb_MPSKModulatorBaseband[SelectBits_inAdd_f_idx_0];
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 + 189],
	 &rtb_SubchannelSelector_o10[12 * SelectBits_inAdd_f_idx_0], 12U *
	 sizeof(creal_T));
	 }

	 /* End of Concatenate: '<S9>/Input Packing' */

	 /* S-Function (scomostbcenc): '<S15>/OSTBC Encoder' */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 201;
	 SelectBits_outAdd_l_idx++) {
	 for (i = 0; i < 4; i++) {
	 SelectBits_inAdd_f_idx = (i << 1) * 201 + SelectBits_outAdd_l_idx;
	 uIdx = (i << 1) * 201 + SelectBits_outAdd_l_idx;
	 mymodel_B.OSTBCEncoder[uIdx] =
	 mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx];
	 mymodel_B.OSTBCEncoder[uIdx + 1809].re =
	 mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx].re;
	 mymodel_B.OSTBCEncoder[uIdx + 1809].im =
	 -mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx].im;
	 SelectBits_inAdd_f_idx += 201;
	 mymodel_B.OSTBCEncoder[uIdx + 1608] =
	 mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx];
	 mymodel_B.OSTBCEncoder[uIdx + 201].re =
	 -mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx].re;
	 mymodel_B.OSTBCEncoder[uIdx + 201].im =
	 -(-mymodel_B.Selecttrainingdata_o2[SelectBits_inAdd_f_idx].im);
	 }
	 }

	 /* End of S-Function (scomostbcenc): '<S15>/OSTBC Encoder' */

	 /* Selector: '<S15>/Tx2' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.rtb_OSTBCEncoder_c[201 * SelectBits_inAdd_f_idx_0],
	 &mymodel_B.OSTBCEncoder[201 * SelectBits_inAdd_f_idx_0 + 1608], 201U *
	 sizeof(creal_T));
	 }

	 memcpy(&mymodel_B.InsertPreamble[201], &mymodel_B.rtb_OSTBCEncoder_c[0], 1608U
	 * sizeof(creal_T));

	 /* End of Selector: '<S15>/Tx2' */

	 /* Concatenate: '<S13>/Add Guard Bands' incorporates:
	 * Constant: '<S13>/DSP Constant3'
	 * Constant: '<S13>/DSP Constant7'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 28;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx + (SelectBits_inAdd_f_idx_0 << 8)].
	 re = mymodel_P.DSPConstant7_Value[28 * SelectBits_inAdd_f_idx_0 +
	 SelectBits_inAdd_f_idx];
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx + (SelectBits_inAdd_f_idx_0 << 8)].
	 im = 0.0;
	 }
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.Gain2[(SelectBits_inAdd_f_idx_0 << 8) + 28],
	 &mymodel_B.InsertPreamble[201 * SelectBits_inAdd_f_idx_0], 201U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 27;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.Gain2[(SelectBits_inAdd_f_idx + (SelectBits_inAdd_f_idx_0 << 8))
	 + 229].re = mymodel_P.DSPConstant3_Value[27 * SelectBits_inAdd_f_idx_0 +
	 SelectBits_inAdd_f_idx];
	 mymodel_B.Gain2[(SelectBits_inAdd_f_idx + (SelectBits_inAdd_f_idx_0 << 8))
	 + 229].im = 0.0;
	 }
	 }

	 /* End of Concatenate: '<S13>/Add Guard Bands' */

	 /* Selector: '<S13>/Reorder [0,...,Fs]' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 256;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 8)] = mymodel_B.Gain2
	 [(SelectBits_inAdd_f_idx_0 << 8) + tmp_0[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S13>/Reorder [0,...,Fs]' */

	 /* S-Function (sdspfft2): '<S13>/IFFT' */
	 MWDSPCG_R2BRScramble_OutPlace_ZCin(&mymodel_B.Gain2[0U],
	 &mymodel_B.RemoveCyclicPrefix[0U], 9, 256);
	 MWDSPCG_R2DIT_TBLS_Z(&mymodel_B.Gain2[0U], 9, 256, 256, 0,
	 mymodel_ConstP.pooled7, 1, TRUE);

	 /* Scale inverse transformation */
	 for (i = 0; i < 2304; i++) {
	 u = mymodel_B.Gain2[i].im;
	 mymodel_B.Gain2[i].re /= 256.0;
	 mymodel_B.Gain2[i].im = u / 256.0;
	 }

	 /* End of S-Function (sdspfft2): '<S13>/IFFT' */

	 /* Gain: '<S13>/Gain5' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2304;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_Gain_0.re = mymodel_P.Gain5_Gain *
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0].re;
	 rtb_Gain_0.im = mymodel_P.Gain5_Gain *
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0].im;
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0] = rtb_Gain_0;
	 }

	 /* End of Gain: '<S13>/Gain5' */

	 /* Selector: '<S13>/Add Cyclic Prefix' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 320;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx + 320 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.Gain2[(SelectBits_inAdd_f_idx_0 <<
	 8) + tmp_a[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* Gain: '<S6>/Scale Signal before Nonlinearity' incorporates:
	 * Selector: '<S13>/Add Cyclic Prefix'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.ScaleSignalbeforeNonlineari[SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.ScaleSignalbeforeNonlinearity_G *
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx_0].re;
	 mymodel_B.ScaleSignalbeforeNonlineari[SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.ScaleSignalbeforeNonlinearity_G *
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx_0].im;
	 }

	 /* End of Gain: '<S6>/Scale Signal before Nonlinearity' */

	 /* Gain: '<S57>/Gain' */
	 u = mymodel_P.Gain_Gain_a * mymodel_B.Probe;

	 /* SwitchCase: '<S57>/Switch Case' */
	 if (u < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(u);
	 } else {
	 rtb_DirectLookUpTablenD = floor(u);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 1:
	 /* Outputs for IfAction SubSystem: '<S57>/cubic fit' incorporates:
	 * ActionPort: '<S111>/Action Port'
	 */
	 mymodel_cubicfit(mymodel_B.ScaleSignalbeforeNonlineari, mymodel_B.Merge,
	 (P_cubicfit_mymodel_T *)&mymodel_P.cubicfit);

	 /* End of Outputs for SubSystem: '<S57>/cubic fit' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S57>/tanh fit' incorporates:
	 * ActionPort: '<S112>/Action Port'
	 */
	 mymodel_tanhfit(mymodel_B.ScaleSignalbeforeNonlineari, mymodel_B.Merge,
	 (P_tanhfit_mymodel_T *)&mymodel_P.tanhfit);

	 /* End of Outputs for SubSystem: '<S57>/tanh fit' */
	 break;

	 case 3:
	 /* Outputs for IfAction SubSystem: '<S57>/Saleh Model' incorporates:
	 * ActionPort: '<S110>/Action Port'
	 */
	 mymodel_SalehModel(mymodel_B.ScaleSignalbeforeNonlineari, mymodel_B.Merge,
	 (P_SalehModel_mymodel_T *)&mymodel_P.SalehModel);

	 /* End of Outputs for SubSystem: '<S57>/Saleh Model' */
	 break;

	 case 4:
	 /* Outputs for IfAction SubSystem: '<S57>/Ghorbani Model' incorporates:
	 * ActionPort: '<S108>/Action Port'
	 */
	 mymodel_GhorbaniModel(mymodel_B.ScaleSignalbeforeNonlineari, mymodel_B.Merge,
	 (P_GhorbaniModel_mymodel_T *)&mymodel_P.GhorbaniModel);

	 /* End of Outputs for SubSystem: '<S57>/Ghorbani Model' */
	 break;

	 case 5:
	 /* Outputs for IfAction SubSystem: '<S57>/Rapp Model' incorporates:
	 * ActionPort: '<S109>/Action Port'
	 */
	 mymodel_RappModel(mymodel_B.ScaleSignalbeforeNonlineari, mymodel_B.Merge,
	 (P_RappModel_mymodel_T *)&mymodel_P.RappModel);

	 /* End of Outputs for SubSystem: '<S57>/Rapp Model' */
	 break;
	 }

	 /* End of SwitchCase: '<S57>/Switch Case' */

	 /* Gain: '<S58>/Gain' */
	 rtb_Gain_l = mymodel_P.Gain_Gain_l * mymodel_B.Probe_p;
	 for (i = 0; i < 2880; i++) {
	 /* ComplexToMagnitudeAngle: '<S67>/Complex to Magnitude-Angle1' */
	 u = rt_hypotd_snf(mymodel_B.ScaleSignalbeforeNonlineari[i].re,
	 mymodel_B.ScaleSignalbeforeNonlineari[i].im);
	 mymodel_B.PredistortedAmplitude[i] = rt_atan2d_snf
	 (mymodel_B.ScaleSignalbeforeNonlineari[i].im,
	 mymodel_B.ScaleSignalbeforeNonlineari[i].re);

	 /* SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In1' */
	 mymodel_B.MatrixConcatenate1[i] = u;

	 /* Product: '<S69>/Product6' */
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] = u * u;

	 /* ComplexToMagnitudeAngle: '<S67>/Complex to Magnitude-Angle1' */
	 mymodel_B.Product3_p[i] = u;
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1[i + 2880] =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i];

	 /* Product: '<S69>/Product7' incorporates:
	 * SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In2'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] *= mymodel_B.Product3_p[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1[i + 5760] =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i];

	 /* Product: '<S69>/Product8' incorporates:
	 * SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] *= mymodel_B.Product3_p[i];
	 }

	 /* SignalConversion: '<S69>/ConcatBufferAtMatrix Concatenate1In4' */
	 memcpy(&mymodel_B.MatrixConcatenate1[8640],
	 &mymodel_B.ComplextoMagnitudeAngle1_o2[0], 2880U * sizeof(real_T));
	 for (i = 0; i < 2880; i++) {
	 /* Product: '<S69>/Product9' */
	 mymodel_B.MatrixConcatenate1[i + 11520] =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] * mymodel_B.Product3_p[i];

	 /* ComplexToMagnitudeAngle: '<S68>/Complex to Magnitude-Angle' */
	 u = rt_hypotd_snf(mymodel_B.ScaleSignalbeforeNonlineari[i].re,
	 mymodel_B.ScaleSignalbeforeNonlineari[i].im);

	 /* ComplexToMagnitudeAngle: '<S68>/Complex to Magnitude-Angle1' */
	 rtb_Sum2 = rt_hypotd_snf(mymodel_B.Merge[i].re, mymodel_B.Merge[i].im);
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] = rt_atan2d_snf(mymodel_B.Merge[i].
	 im, mymodel_B.Merge[i].re);

	 /* Product: '<S74>/Product4' incorporates:
	 * Constant: '<S84>/Constant'
	 * RelationalOperator: '<S84>/Compare'
	 */
	 rtb_DirectLookUpTablenD = (real_T)(u >= mymodel_P.Constant_Value_a) *
	 rtb_Sum2;

	 /* DataTypeConversion: '<S74>/Data Type Conversion' */
	 mymodel_B.MatrixConcatenate1_f[i] = rtb_DirectLookUpTablenD;

	 /* Product: '<S74>/Product' */
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] = rtb_DirectLookUpTablenD *
	 rtb_DirectLookUpTablenD;

	 /* ComplexToMagnitudeAngle: '<S68>/Complex to Magnitude-Angle1' */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] = rtb_Sum2;

	 /* Product: '<S74>/Product4' */
	 mymodel_B.Unwrap[i] = rtb_DirectLookUpTablenD;

	 /* ComplexToMagnitudeAngle: '<S68>/Complex to Magnitude-Angle' */
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] = u;
	 mymodel_B.Product3_p[i] = rt_atan2d_snf
	 (mymodel_B.ScaleSignalbeforeNonlineari[i].im,
	 mymodel_B.ScaleSignalbeforeNonlineari[i].re);
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S74>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1_f[i + 2880] =
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];

	 /* Product: '<S74>/Product2' incorporates:
	 * SignalConversion: '<S74>/ConcatBufferAtMatrix Concatenate1In2'
	 */
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] *= mymodel_B.Unwrap[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S74>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1_f[i + 5760] =
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];

	 /* Product: '<S74>/Product3' incorporates:
	 * SignalConversion: '<S74>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] *= mymodel_B.Unwrap[i];
	 }

	 /* SignalConversion: '<S74>/ConcatBufferAtMatrix Concatenate1In4' */
	 memcpy(&mymodel_B.MatrixConcatenate1_f[8640],
	 &mymodel_B.ComplextoMagnitudeAngle_o1[0], 2880U * sizeof(real_T));

	 /* Product: '<S74>/Product5' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.MatrixConcatenate1_f[i + 11520] =
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] * mymodel_B.Unwrap[i];
	 }

	 /* End of Product: '<S74>/Product5' */

	 /* Math: '<S76>/Math Function' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MathFunction_d[SelectBits_inAdd_f_idx + 5 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.MatrixConcatenate1_f[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 /* End of Math: '<S76>/Math Function' */

	 /* Product: '<S70>/Matrix Multiply4' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 5;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.DigitalFilter3[SelectBits_inAdd_f_idx_0 + 5 *
	 SelectBits_inAdd_f_idx] = 0.0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2880;
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.DigitalFilter3[SelectBits_inAdd_f_idx_0 + 5 *
	 SelectBits_inAdd_f_idx] += mymodel_B.MathFunction_d[5 *
	 SelectBits_outAdd_l_idx_0 + SelectBits_inAdd_f_idx_0] *
	 mymodel_B.MatrixConcatenate1_f[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_outAdd_l_idx_0];
	 }
	 }
	 }

	 /* End of Product: '<S70>/Matrix Multiply4' */

	 /* S-Function (sdspfilter2): '<S70>/Digital Filter3' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 25;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.DigitalFilter3[yIdx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter3_CIRCBUFFIDX;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter3_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter3_CIRCBUFFIDX; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter3_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN = mymodel_DW.DigitalFilter3_CIRCBUFFIDX - 1;
	 if (idxN < 0) {
	 idxN = 48;
	 }

	 mymodel_DW.DigitalFilter3_FILT_STATES[uIdx + idxN] =
	 mymodel_B.DigitalFilter3[yIdx];
	 mymodel_B.MatrixMultiply4[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter3_CIRCBUFFIDX = idxN;

	 /* End of S-Function (sdspfilter2): '<S70>/Digital Filter3' */

	 /* S-Function (sdsplu2): '<S71>/LU Factorization' */
	 memcpy(&rtb_LUFactorization_o1[0], &mymodel_B.MatrixMultiply4[0], 25U * sizeof
	 (real_T));
	 LUf_int32_Treal_T(rtb_LUFactorization_o1, rtb_BackwardSubstitution, 5);

	 /* Product: '<S70>/Matrix Multiply3' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 5;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.DigitalFilter2[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 2880;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.DigitalFilter2[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MathFunction_d[5 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] *
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S70>/Matrix Multiply3' */

	 /* S-Function (sdspfilter2): '<S70>/Digital Filter2' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 5;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.DigitalFilter2[yIdx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter2_CIRCBUFFIDX;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter2_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter2_CIRCBUFFIDX; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter2_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_0 = mymodel_DW.DigitalFilter2_CIRCBUFFIDX - 1;
	 if (idxN_0 < 0) {
	 idxN_0 = 48;
	 }

	 mymodel_DW.DigitalFilter2_FILT_STATES[uIdx + idxN_0] =
	 mymodel_B.DigitalFilter2[yIdx];
	 mymodel_B.MatrixMultiply3[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter2_CIRCBUFFIDX = idxN_0;

	 /* End of S-Function (sdspfilter2): '<S70>/Digital Filter2' */

	 /* S-Function (sdspperm2): '<S71>/Permute Matrix' */
	 for (yIdx = 0; yIdx < 5; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)floor(rtb_BackwardSubstitution[yIdx] -
	 1.0);
	 if (SelectBits_inAdd_f_idx_0 < 0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 if (SelectBits_inAdd_f_idx_0 >= 5) {
	 SelectBits_inAdd_f_idx_0 = 4;
	 }
	 }

	 rtb_LUFactorization_o2[yIdx] =
	 mymodel_B.MatrixMultiply3[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of S-Function (sdspperm2): '<S71>/Permute Matrix' */

	 /* S-Function (sdspfbsub2): '<S71>/Forward Substitution' */
	 yIdx = 1;
	 rtb_Sum2 = rtb_LUFactorization_o2[1];
	 SelectBits_outAdd_l_idx_0 = 0;
	 while (SelectBits_outAdd_l_idx_0 < 1) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] * rtb_LUFactorization_o2[0];
	 yIdx += 5;
	 SelectBits_outAdd_l_idx_0 = 1;
	 }

	 rtb_LUFactorization_o2[1] = rtb_Sum2;
	 yIdx = 2;
	 rtb_Sum2 = rtb_LUFactorization_o2[2];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 rtb_LUFactorization_o2[2] = rtb_Sum2;
	 yIdx = 3;
	 rtb_Sum2 = rtb_LUFactorization_o2[3];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 3;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 rtb_LUFactorization_o2[3] = rtb_Sum2;
	 yIdx = 4;
	 rtb_Sum2 = rtb_LUFactorization_o2[4];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 4;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 /* S-Function (sdspfbsub2): '<S71>/Backward Substitution' incorporates:
	 * S-Function (sdspfbsub2): '<S71>/Forward Substitution'
	 */
	 rtb_LUFactorization_o2[4] = rtb_Sum2 / rtb_LUFactorization_o1[24];
	 yIdx = 23;
	 rtb_Sum2 = rtb_LUFactorization_o2[3];
	 while (SelectBits_outAdd_l_idx_0 > 3) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] * rtb_LUFactorization_o2[4];
	 yIdx -= 5;
	 SelectBits_outAdd_l_idx_0 = 3;
	 }

	 rtb_LUFactorization_o2[3] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 22;
	 rtb_Sum2 = rtb_LUFactorization_o2[2];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 2;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_LUFactorization_o2[2] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 21;
	 rtb_Sum2 = rtb_LUFactorization_o2[1];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 1;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_LUFactorization_o2[1] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 20;
	 rtb_Sum2 = rtb_LUFactorization_o2[0];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 0;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_LUFactorization_o2[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_LUFactorization_o2[0] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];

	 /* End of S-Function (sdspfbsub2): '<S71>/Backward Substitution' */

	 /* Constant: '<S67>/Constant1' */
	 memcpy(&mymodel_B.MatrixConcatenate1_i[0], &mymodel_P.Constant1_Value[0],
	 2880U * sizeof(real_T));

	 /* SignalConversion: '<S67>/ConcatBufferAtMatrix Concatenate1In2' */
	 memcpy(&mymodel_B.MatrixConcatenate1_i[2880], &mymodel_B.MatrixConcatenate1[0],
	 14400U * sizeof(real_T));
	 for (i = 0; i < 2880; i++) {
	 /* RelationalOperator: '<S83>/Compare' incorporates:
	 * Constant: '<S83>/Constant'
	 */
	 rtb_Compare_0 = (uint8_T)(mymodel_B.ComplextoMagnitudeAngle1_o2[i] >=
	 mymodel_P.Constant_Value_d);

	 /* DataTypeConversion: '<S73>/Data Type Conversion' */
	 mymodel_B.MatrixConcatenate1_g[i] = rtb_Compare_0;

	 /* Product: '<S73>/Product4' */
	 mymodel_B.Unwrap[i] = (real_T)rtb_Compare_0 *
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1_g[i + 2880] = mymodel_B.Unwrap[i];

	 /* Product: '<S73>/Product' */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] = mymodel_B.Unwrap[i] *
	 mymodel_B.Unwrap[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1_g[i + 5760] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];

	 /* Product: '<S73>/Product2' incorporates:
	 * SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] *= mymodel_B.Unwrap[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In4' */
	 mymodel_B.MatrixConcatenate1_g[i + 8640] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];

	 /* Product: '<S73>/Product3' incorporates:
	 * SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In4'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] *= mymodel_B.Unwrap[i];
	 }

	 /* SignalConversion: '<S73>/ConcatBufferAtMatrix Concatenate1In5' */
	 memcpy(&mymodel_B.MatrixConcatenate1_g[11520],
	 &mymodel_B.ComplextoMagnitudeAngle1__f[0], 2880U * sizeof(real_T));

	 /* Product: '<S73>/Product5' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.MatrixConcatenate1_g[i + 14400] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] * mymodel_B.Unwrap[i];
	 }

	 /* End of Product: '<S73>/Product5' */

	 /* Math: '<S75>/Math Function' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MathFunction_l[SelectBits_inAdd_f_idx + 6 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.MatrixConcatenate1_g[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 /* End of Math: '<S75>/Math Function' */

	 /* Product: '<S70>/Matrix Multiply1' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.DigitalFilter[SelectBits_inAdd_f_idx_0 + 6 *
	 SelectBits_inAdd_f_idx] = 0.0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2880;
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.DigitalFilter[SelectBits_inAdd_f_idx_0 + 6 *
	 SelectBits_inAdd_f_idx] += mymodel_B.MathFunction_l[6 *
	 SelectBits_outAdd_l_idx_0 + SelectBits_inAdd_f_idx_0] *
	 mymodel_B.MatrixConcatenate1_g[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_outAdd_l_idx_0];
	 }
	 }
	 }

	 /* End of Product: '<S70>/Matrix Multiply1' */

	 /* S-Function (sdspfilter2): '<S70>/Digital Filter' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 36;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.DigitalFilter[yIdx] *
	 mymodel_P.DigitalFilter_RTP1COEFF[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter_CIRCBUFFIDX;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter_CIRCBUFFIDX; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_1 = mymodel_DW.DigitalFilter_CIRCBUFFIDX - 1;
	 if (idxN_1 < 0) {
	 idxN_1 = 48;
	 }

	 mymodel_DW.DigitalFilter_FILT_STATES[uIdx + idxN_1] =
	 mymodel_B.DigitalFilter[yIdx];
	 mymodel_B.MatrixMultiply1[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter_CIRCBUFFIDX = idxN_1;

	 /* End of S-Function (sdspfilter2): '<S70>/Digital Filter' */

	 /* S-Function (sdsplu2): '<S72>/LU Factorization' */
	 memcpy(&rtb_LUFactorization_o1_o[0], &mymodel_B.MatrixMultiply1[0], 36U *
	 sizeof(real_T));
	 LUf_int32_Treal_T(rtb_LUFactorization_o1_o, rtb_BackwardSubstitution_m, 6);

	 /* Sum: '<S70>/Add' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0] =
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_inAdd_f_idx_0] -
	 mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of Sum: '<S70>/Add' */

	 /* S-Function (sdspunwrap2): '<S70>/Unwrap' */
	 if (mymodel_DW.Unwrap_FirstStep) {
	 mymodel_DW.Unwrap_Prev = mymodel_B.Product3_p[0];
	 mymodel_DW.Unwrap_FirstStep = FALSE;
	 }

	 u = mymodel_DW.Unwrap_Cumsum;
	 rtb_Sum2 = mymodel_DW.Unwrap_Prev;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 2880;
	 SelectBits_outAdd_l_idx++) {
	 rtb_DirectLookUpTablenD = mymodel_B.Product3_p[SelectBits_outAdd_l_idx] -
	 rtb_Sum2;
	 rtb_Sum2 = (rtb_DirectLookUpTablenD + 3.1415926535897931) /
	 6.2831853071795862;
	 rtb_Sum2 = rtb_DirectLookUpTablenD - 6.2831853071795862 * floor(rtb_Sum2);
	 if ((rtb_Sum2 == -3.1415926535897931) && (rtb_DirectLookUpTablenD > 0.0)) {
	 rtb_Sum2 = 3.1415926535897931;
	 }

	 rtb_Sum2 -= rtb_DirectLookUpTablenD;
	 if (fabs(rtb_Sum2) > 3.1415926535897931) {
	 u += rtb_Sum2;
	 }

	 rtb_Sum2 = mymodel_B.Product3_p[SelectBits_outAdd_l_idx];
	 mymodel_B.Product3_p[SelectBits_outAdd_l_idx] += u;
	 }

	 mymodel_DW.Unwrap_Prev = rtb_Sum2;
	 mymodel_DW.Unwrap_Cumsum = u;

	 /* End of S-Function (sdspunwrap2): '<S70>/Unwrap' */

	 /* Product: '<S70>/Matrix Multiply2' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.DigitalFilter1[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 2880;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.DigitalFilter1[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MathFunction_l[6 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] * mymodel_B.Product3_p[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S70>/Matrix Multiply2' */

	 /* S-Function (sdspfilter2): '<S70>/Digital Filter1' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 6;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.DigitalFilter1[yIdx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter1_CIRCBUFFIDX;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter1_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter1_CIRCBUFFIDX; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter1_FILT_STATES[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_2 = mymodel_DW.DigitalFilter1_CIRCBUFFIDX - 1;
	 if (idxN_2 < 0) {
	 idxN_2 = 48;
	 }

	 mymodel_DW.DigitalFilter1_FILT_STATES[uIdx + idxN_2] =
	 mymodel_B.DigitalFilter1[yIdx];
	 mymodel_B.MatrixMultiply2[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter1_CIRCBUFFIDX = idxN_2;

	 /* End of S-Function (sdspfilter2): '<S70>/Digital Filter1' */

	 /* S-Function (sdspperm2): '<S72>/Permute Matrix' */
	 for (yIdx = 0; yIdx < 6; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)floor(rtb_BackwardSubstitution_m[yIdx] -
	 1.0);
	 if (SelectBits_inAdd_f_idx_0 < 0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 if (SelectBits_inAdd_f_idx_0 >= 6) {
	 SelectBits_inAdd_f_idx_0 = 5;
	 }
	 }

	 rtb_LUFactorization_o2_p[yIdx] =
	 mymodel_B.MatrixMultiply2[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of S-Function (sdspperm2): '<S72>/Permute Matrix' */

	 /* S-Function (sdspfbsub2): '<S72>/Forward Substitution' */
	 for (i = 0; i < 5; i++) {
	 yIdx = i + 1;
	 uIdx = i + 1;
	 rtb_Sum2 = rtb_LUFactorization_o2_p[uIdx];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < i + 1;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1_o[yIdx] *
	 rtb_LUFactorization_o2_p[SelectBits_outAdd_l_idx_0];
	 yIdx += 6;
	 }

	 rtb_LUFactorization_o2_p[uIdx] = rtb_Sum2;
	 }

	 /* End of S-Function (sdspfbsub2): '<S72>/Forward Substitution' */

	 /* S-Function (sdspfbsub2): '<S72>/Backward Substitution' */
	 rtb_LUFactorization_o2_p[5] /= rtb_LUFactorization_o1_o[35];
	 for (i = 4; i >= 0; i += -1) {
	 yIdx = 30 + i;
	 rtb_Sum2 = rtb_LUFactorization_o2_p[i];
	 for (SelectBits_outAdd_l_idx_0 = 5; SelectBits_outAdd_l_idx_0 > i;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1_o[yIdx] *
	 rtb_LUFactorization_o2_p[SelectBits_outAdd_l_idx_0];
	 yIdx -= 6;
	 }

	 rtb_LUFactorization_o2_p[i] = rtb_Sum2 / rtb_LUFactorization_o1_o[yIdx];
	 }

	 /* End of S-Function (sdspfbsub2): '<S72>/Backward Substitution' */

	 /* Sum: '<S67>/Add' incorporates:
	 * MagnitudeAngleToComplex: '<S67>/Magnitude-Angle to Complex'
	 * Product: '<S67>/Product5'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_DirectLookUpTablenD = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 rtb_DirectLookUpTablenD += mymodel_B.MatrixConcatenate1_i[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0] *
	 rtb_LUFactorization_o2_p[SelectBits_inAdd_f_idx];
	 }

	 mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0] =
	 mymodel_B.PredistortedAmplitude[SelectBits_inAdd_f_idx_0] -
	 rtb_DirectLookUpTablenD;
	 }

	 /* End of Sum: '<S67>/Add' */

	 /* Product: '<S67>/Product3' incorporates:
	 * MagnitudeAngleToComplex: '<S67>/Magnitude-Angle to Complex'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MatrixConcatenate1[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] *
	 rtb_LUFactorization_o2[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S67>/Product3' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 /* MagnitudeAngleToComplex: '<S67>/Magnitude-Angle to Complex' incorporates:
	 * Product: '<S67>/Product5'
	 */
	 mymodel_B.MagnitudeAngletoComplex[SelectBits_inAdd_f_idx_0].re =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] * cos
	 (mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0]);
	 mymodel_B.MagnitudeAngletoComplex[SelectBits_inAdd_f_idx_0].im =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] * sin
	 (mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0]);
	 }

	 /* SwitchCase: '<S58>/Switch Case' */
	 if (rtb_Gain_l < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(rtb_Gain_l);
	 } else {
	 rtb_DirectLookUpTablenD = floor(rtb_Gain_l);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 1:
	 /* Outputs for IfAction SubSystem: '<S58>/cubic fit' incorporates:
	 * ActionPort: '<S134>/Action Port'
	 */
	 mymodel_cubicfit(mymodel_B.MagnitudeAngletoComplex, mymodel_B.Merge_a,
	 (P_cubicfit_mymodel_T *)&mymodel_P.cubicfit_h);

	 /* End of Outputs for SubSystem: '<S58>/cubic fit' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S58>/tanh fit' incorporates:
	 * ActionPort: '<S135>/Action Port'
	 */
	 mymodel_tanhfit(mymodel_B.MagnitudeAngletoComplex, mymodel_B.Merge_a,
	 (P_tanhfit_mymodel_T *)&mymodel_P.tanhfit_a);

	 /* End of Outputs for SubSystem: '<S58>/tanh fit' */
	 break;

	 case 3:
	 /* Outputs for IfAction SubSystem: '<S58>/Saleh Model' incorporates:
	 * ActionPort: '<S133>/Action Port'
	 */
	 mymodel_SalehModel(mymodel_B.MagnitudeAngletoComplex, mymodel_B.Merge_a,
	 (P_SalehModel_mymodel_T *)&mymodel_P.SalehModel_i);

	 /* End of Outputs for SubSystem: '<S58>/Saleh Model' */
	 break;

	 case 4:
	 /* Outputs for IfAction SubSystem: '<S58>/Ghorbani Model' incorporates:
	 * ActionPort: '<S131>/Action Port'
	 */
	 mymodel_GhorbaniModel(mymodel_B.MagnitudeAngletoComplex, mymodel_B.Merge_a,
	 (P_GhorbaniModel_mymodel_T *)
	 &mymodel_P.GhorbaniModel_m);

	 /* End of Outputs for SubSystem: '<S58>/Ghorbani Model' */
	 break;

	 case 5:
	 /* Outputs for IfAction SubSystem: '<S58>/Rapp Model' incorporates:
	 * ActionPort: '<S132>/Action Port'
	 */
	 mymodel_RappModel(mymodel_B.MagnitudeAngletoComplex, mymodel_B.Merge_a,
	 (P_RappModel_mymodel_T *)&mymodel_P.RappModel_a);

	 /* End of Outputs for SubSystem: '<S58>/Rapp Model' */
	 break;
	 }

	 /* End of SwitchCase: '<S58>/Switch Case' */

	 /* SwitchCase: '<S6>/Switch Case1' */
	 if (rtb_MathFunction_g < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(rtb_MathFunction_g);
	 } else {
	 rtb_DirectLookUpTablenD = floor(rtb_MathFunction_g);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 0:
	 /* Outputs for IfAction SubSystem: '<S6>/No nonlinearity or DPD' incorporates:
	 * ActionPort: '<S62>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.ScaleSignalbeforeNonlineari,
	 mymodel_B.Merge_k);

	 /* End of Outputs for SubSystem: '<S6>/No nonlinearity or DPD' */
	 break;

	 case 1:
	 /* Outputs for IfAction SubSystem: '<S6>/Only nonlinearity' incorporates:
	 * ActionPort: '<S66>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.Merge, mymodel_B.Merge_k);

	 /* End of Outputs for SubSystem: '<S6>/Only nonlinearity' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S6>/Nonlinearity with DPD' incorporates:
	 * ActionPort: '<S64>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.Merge_a, mymodel_B.Merge_k);

	 /* End of Outputs for SubSystem: '<S6>/Nonlinearity with DPD' */
	 break;
	 }

	 /* End of SwitchCase: '<S6>/Switch Case1' */

	 /* Constant: '<S12>/DSP Constant4' */
	 memcpy(&mymodel_B.Removeguardsreorder[0], &mymodel_P.DSPConstant4_Value[0],
	 201U * sizeof(creal_T));

	 /* Selector: '<S15>/Tx1' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.rtb_OSTBCEncoder_c[201 * SelectBits_inAdd_f_idx_0],
	 &mymodel_B.OSTBCEncoder[201 * SelectBits_inAdd_f_idx_0], 201U *
	 sizeof(creal_T));
	 }

	 memcpy(&mymodel_B.Removeguardsreorder[201], &mymodel_B.rtb_OSTBCEncoder_c[0],
	 1608U * sizeof(creal_T));

	 /* End of Selector: '<S15>/Tx1' */

	 /* Concatenate: '<S12>/Add Guard Bands' incorporates:
	 * Constant: '<S12>/DSP Constant5'
	 * Constant: '<S12>/DSP Constant6'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 28;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 8)].re = mymodel_P.DSPConstant6_Value[28 *
	 SelectBits_inAdd_f_idx_0 + SelectBits_inAdd_f_idx];
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 8)].im = 0.0;
	 }
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.RemoveCyclicPrefix[(SelectBits_inAdd_f_idx_0 << 8) + 28],
	 &mymodel_B.Removeguardsreorder[201 * SelectBits_inAdd_f_idx_0], 201U *
	 sizeof(creal_T));
	 }

	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 27;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.RemoveCyclicPrefix[(SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 8)) + 229].re =
	 mymodel_P.DSPConstant5_Value[27 * SelectBits_inAdd_f_idx_0 +
	 SelectBits_inAdd_f_idx];
	 mymodel_B.RemoveCyclicPrefix[(SelectBits_inAdd_f_idx +
	 (SelectBits_inAdd_f_idx_0 << 8)) + 229].im = 0.0;
	 }
	 }

	 /* End of Concatenate: '<S12>/Add Guard Bands' */

	 /* Selector: '<S12>/Reorder [0,...,Fs]' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 256;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx + (SelectBits_inAdd_f_idx_0 << 8)] =
	 mymodel_B.RemoveCyclicPrefix[(SelectBits_inAdd_f_idx_0 << 8) +
	 tmp_0[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S12>/Reorder [0,...,Fs]' */

	 /* S-Function (sdspfft2): '<S12>/IFFT' */
	 MWDSPCG_R2BRScramble_OutPlace_ZCin(&mymodel_B.RemoveCyclicPrefix[0U],
	 &mymodel_B.Gain2[0U], 9, 256);
	 MWDSPCG_R2DIT_TBLS_Z(&mymodel_B.RemoveCyclicPrefix[0U], 9, 256, 256, 0,
	 mymodel_ConstP.pooled7, 1, TRUE);

	 /* Scale inverse transformation */
	 for (i = 0; i < 2304; i++) {
	 u = mymodel_B.RemoveCyclicPrefix[i].im;
	 mymodel_B.RemoveCyclicPrefix[i].re /= 256.0;
	 mymodel_B.RemoveCyclicPrefix[i].im = u / 256.0;
	 }

	 /* End of S-Function (sdspfft2): '<S12>/IFFT' */

	 /* Gain: '<S12>/Gain2' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2304;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_RemoveCyclicPrefix_0.re = mymodel_P.Gain2_Gain *
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx_0].re;
	 rtb_RemoveCyclicPrefix_0.im = mymodel_P.Gain2_Gain *
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx_0].im;
	 mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx_0] =
	 rtb_RemoveCyclicPrefix_0;
	 }

	 /* End of Gain: '<S12>/Gain2' */

	 /* Selector: '<S12>/Add Cyclic Prefix' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 320;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx + 320 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.RemoveCyclicPrefix
	 [(SelectBits_inAdd_f_idx_0 << 8) + tmp_a[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* Gain: '<S6>/Scale Signal before Nonlinearity1' incorporates:
	 * Selector: '<S12>/Add Cyclic Prefix'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.ScaleSignalbeforeNonlinea_i[SelectBits_inAdd_f_idx_0].re =
	 mymodel_P.ScaleSignalbeforeNonlinearity1_ *
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx_0].re;
	 mymodel_B.ScaleSignalbeforeNonlinea_i[SelectBits_inAdd_f_idx_0].im =
	 mymodel_P.ScaleSignalbeforeNonlinearity1_ *
	 mymodel_B.rtb_Gain2_m[SelectBits_inAdd_f_idx_0].im;
	 }

	 /* End of Gain: '<S6>/Scale Signal before Nonlinearity1' */

	 /* Gain: '<S59>/Gain' */
	 u = mymodel_P.Gain_Gain_l4 * mymodel_B.Probe_j;

	 /* SwitchCase: '<S59>/Switch Case' */
	 if (u < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(u);
	 } else {
	 rtb_DirectLookUpTablenD = floor(u);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 1:
	 /* Outputs for IfAction SubSystem: '<S59>/cubic fit' incorporates:
	 * ActionPort: '<S157>/Action Port'
	 */
	 mymodel_cubicfit(mymodel_B.ScaleSignalbeforeNonlinea_i, mymodel_B.Merge_o,
	 (P_cubicfit_mymodel_T *)&mymodel_P.cubicfit_hv);

	 /* End of Outputs for SubSystem: '<S59>/cubic fit' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S59>/tanh fit' incorporates:
	 * ActionPort: '<S158>/Action Port'
	 */
	 mymodel_tanhfit(mymodel_B.ScaleSignalbeforeNonlinea_i, mymodel_B.Merge_o,
	 (P_tanhfit_mymodel_T *)&mymodel_P.tanhfit_k);

	 /* End of Outputs for SubSystem: '<S59>/tanh fit' */
	 break;

	 case 3:
	 /* Outputs for IfAction SubSystem: '<S59>/Saleh Model' incorporates:
	 * ActionPort: '<S156>/Action Port'
	 */
	 mymodel_SalehModel(mymodel_B.ScaleSignalbeforeNonlinea_i, mymodel_B.Merge_o,
	 (P_SalehModel_mymodel_T *)&mymodel_P.SalehModel_h);

	 /* End of Outputs for SubSystem: '<S59>/Saleh Model' */
	 break;

	 case 4:
	 /* Outputs for IfAction SubSystem: '<S59>/Ghorbani Model' incorporates:
	 * ActionPort: '<S154>/Action Port'
	 */
	 mymodel_GhorbaniModel(mymodel_B.ScaleSignalbeforeNonlinea_i,
	 mymodel_B.Merge_o, (P_GhorbaniModel_mymodel_T *)
	 &mymodel_P.GhorbaniModel_f);

	 /* End of Outputs for SubSystem: '<S59>/Ghorbani Model' */
	 break;

	 case 5:
	 /* Outputs for IfAction SubSystem: '<S59>/Rapp Model' incorporates:
	 * ActionPort: '<S155>/Action Port'
	 */
	 mymodel_RappModel(mymodel_B.ScaleSignalbeforeNonlinea_i, mymodel_B.Merge_o,
	 (P_RappModel_mymodel_T *)&mymodel_P.RappModel_at);

	 /* End of Outputs for SubSystem: '<S59>/Rapp Model' */
	 break;
	 }

	 /* End of SwitchCase: '<S59>/Switch Case' */

	 /* Gain: '<S60>/Gain' */
	 rtb_Gain_l = mymodel_P.Gain_Gain_b * mymodel_B.Probe_pa;
	 for (i = 0; i < 2880; i++) {
	 /* ComplexToMagnitudeAngle: '<S85>/Complex to Magnitude-Angle1' */
	 u = rt_hypotd_snf(mymodel_B.ScaleSignalbeforeNonlinea_i[i].re,
	 mymodel_B.ScaleSignalbeforeNonlinea_i[i].im);
	 mymodel_B.Unwrap[i] = rt_atan2d_snf(mymodel_B.ScaleSignalbeforeNonlinea_i[i]
	 .im, mymodel_B.ScaleSignalbeforeNonlinea_i[i].re);

	 /* SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In1' */
	 mymodel_B.MatrixConcatenate1[i] = u;

	 /* Product: '<S87>/Product6' */
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] = u * u;

	 /* ComplexToMagnitudeAngle: '<S85>/Complex to Magnitude-Angle1' */
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] = u;
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1[i + 2880] =
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i];

	 /* Product: '<S87>/Product7' incorporates:
	 * SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In2'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] *=
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1[i + 5760] =
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i];

	 /* Product: '<S87>/Product8' incorporates:
	 * SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] *=
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 /* SignalConversion: '<S87>/ConcatBufferAtMatrix Concatenate1In4' */
	 memcpy(&mymodel_B.MatrixConcatenate1[8640],
	 &mymodel_B.ComplextoMagnitudeAngle1_o1[0], 2880U * sizeof(real_T));
	 for (i = 0; i < 2880; i++) {
	 /* Product: '<S87>/Product9' */
	 mymodel_B.MatrixConcatenate1[i + 11520] =
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] *
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];

	 /* ComplexToMagnitudeAngle: '<S86>/Complex to Magnitude-Angle' */
	 u = rt_hypotd_snf(mymodel_B.ScaleSignalbeforeNonlinea_i[i].re,
	 mymodel_B.ScaleSignalbeforeNonlinea_i[i].im);

	 /* ComplexToMagnitudeAngle: '<S86>/Complex to Magnitude-Angle1' */
	 rtb_Sum2 = rt_hypotd_snf(mymodel_B.Merge_o[i].re, mymodel_B.Merge_o[i].im);
	 mymodel_B.ComplextoMagnitudeAngle1_o2[i] = rt_atan2d_snf(mymodel_B.Merge_o[i]
	 .im, mymodel_B.Merge_o[i].re);

	 /* Product: '<S92>/Product4' incorporates:
	 * Constant: '<S102>/Constant'
	 * RelationalOperator: '<S102>/Compare'
	 */
	 rtb_DirectLookUpTablenD = (real_T)(u >= mymodel_P.Constant_Value_e) *
	 rtb_Sum2;

	 /* DataTypeConversion: '<S92>/Data Type Conversion' */
	 mymodel_B.MatrixConcatenate1_f[i] = rtb_DirectLookUpTablenD;

	 /* Product: '<S92>/Product' */
	 mymodel_B.Product3_p[i] = rtb_DirectLookUpTablenD * rtb_DirectLookUpTablenD;

	 /* ComplexToMagnitudeAngle: '<S86>/Complex to Magnitude-Angle1' */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] = rtb_Sum2;

	 /* Product: '<S92>/Product4' */
	 mymodel_B.PredistortedAmplitude[i] = rtb_DirectLookUpTablenD;

	 /* ComplexToMagnitudeAngle: '<S86>/Complex to Magnitude-Angle' */
	 mymodel_B.ComplextoMagnitudeAngle1_o1[i] = rt_atan2d_snf
	 (mymodel_B.ScaleSignalbeforeNonlinea_i[i].im,
	 mymodel_B.ScaleSignalbeforeNonlinea_i[i].re);
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] = u;
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S92>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1_f[i + 2880] = mymodel_B.Product3_p[i];

	 /* Product: '<S92>/Product2' incorporates:
	 * SignalConversion: '<S92>/ConcatBufferAtMatrix Concatenate1In2'
	 */
	 mymodel_B.Product3_p[i] *= mymodel_B.PredistortedAmplitude[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S92>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1_f[i + 5760] = mymodel_B.Product3_p[i];

	 /* Product: '<S92>/Product3' incorporates:
	 * SignalConversion: '<S92>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.Product3_p[i] *= mymodel_B.PredistortedAmplitude[i];
	 }

	 /* SignalConversion: '<S92>/ConcatBufferAtMatrix Concatenate1In4' */
	 memcpy(&mymodel_B.MatrixConcatenate1_f[8640], &mymodel_B.Product3_p[0], 2880U *
	 sizeof(real_T));

	 /* Product: '<S92>/Product5' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.MatrixConcatenate1_f[i + 11520] = mymodel_B.Product3_p[i] *
	 mymodel_B.PredistortedAmplitude[i];
	 }

	 /* End of Product: '<S92>/Product5' */

	 /* Math: '<S94>/Math Function' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MathFunction_d[SelectBits_inAdd_f_idx + 5 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.MatrixConcatenate1_f[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 /* End of Math: '<S94>/Math Function' */

	 /* Product: '<S88>/Matrix Multiply4' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 5;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MatrixMultiply4[SelectBits_inAdd_f_idx_0 + 5 *
	 SelectBits_inAdd_f_idx] = 0.0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2880;
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.MatrixMultiply4[SelectBits_inAdd_f_idx_0 + 5 *
	 SelectBits_inAdd_f_idx] += mymodel_B.MathFunction_d[5 *
	 SelectBits_outAdd_l_idx_0 + SelectBits_inAdd_f_idx_0] *
	 mymodel_B.MatrixConcatenate1_f[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_outAdd_l_idx_0];
	 }
	 }
	 }

	 /* End of Product: '<S88>/Matrix Multiply4' */

	 /* S-Function (sdspfilter2): '<S88>/Digital Filter3' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 25;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.MatrixMultiply4[yIdx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF_d[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter3_CIRCBUFFIDX_p;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter3_FILT_STATES_c[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF_d[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter3_CIRCBUFFIDX_p; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter3_FILT_STATES_c[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter3_RTP1COEFF_d[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_3 = mymodel_DW.DigitalFilter3_CIRCBUFFIDX_p - 1;
	 if (idxN_3 < 0) {
	 idxN_3 = 48;
	 }

	 mymodel_DW.DigitalFilter3_FILT_STATES_c[uIdx + idxN_3] =
	 mymodel_B.MatrixMultiply4[yIdx];
	 mymodel_B.DigitalFilter3[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter3_CIRCBUFFIDX_p = idxN_3;

	 /* End of S-Function (sdspfilter2): '<S88>/Digital Filter3' */

	 /* S-Function (sdsplu2): '<S89>/LU Factorization' */
	 memcpy(&rtb_LUFactorization_o1[0], &mymodel_B.DigitalFilter3[0], 25U * sizeof
	 (real_T));
	 LUf_int32_Treal_T(rtb_LUFactorization_o1, rtb_LUFactorization_o2, 5);

	 /* Product: '<S88>/Matrix Multiply3' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 5;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.MatrixMultiply3[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 2880;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MatrixMultiply3[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MathFunction_d[5 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] *
	 mymodel_B.ComplextoMagnitudeAngle_o1[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S88>/Matrix Multiply3' */

	 /* S-Function (sdspfilter2): '<S88>/Digital Filter2' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 5;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.MatrixMultiply3[yIdx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF_o[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter2_CIRCBUFFIDX_n;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter2_FILT_STATES_d[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF_o[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter2_CIRCBUFFIDX_n; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter2_FILT_STATES_d[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter2_RTP1COEFF_o[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_4 = mymodel_DW.DigitalFilter2_CIRCBUFFIDX_n - 1;
	 if (idxN_4 < 0) {
	 idxN_4 = 48;
	 }

	 mymodel_DW.DigitalFilter2_FILT_STATES_d[uIdx + idxN_4] =
	 mymodel_B.MatrixMultiply3[yIdx];
	 mymodel_B.DigitalFilter2[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter2_CIRCBUFFIDX_n = idxN_4;

	 /* End of S-Function (sdspfilter2): '<S88>/Digital Filter2' */

	 /* S-Function (sdspperm2): '<S89>/Permute Matrix' */
	 for (yIdx = 0; yIdx < 5; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)floor(rtb_LUFactorization_o2[yIdx] - 1.0);
	 if (SelectBits_inAdd_f_idx_0 < 0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 if (SelectBits_inAdd_f_idx_0 >= 5) {
	 SelectBits_inAdd_f_idx_0 = 4;
	 }
	 }

	 rtb_BackwardSubstitution[yIdx] =
	 mymodel_B.DigitalFilter2[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of S-Function (sdspperm2): '<S89>/Permute Matrix' */

	 /* S-Function (sdspfbsub2): '<S89>/Forward Substitution' */
	 yIdx = 1;
	 rtb_Sum2 = rtb_BackwardSubstitution[1];
	 SelectBits_outAdd_l_idx_0 = 0;
	 while (SelectBits_outAdd_l_idx_0 < 1) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] * rtb_BackwardSubstitution[0];
	 yIdx += 5;
	 SelectBits_outAdd_l_idx_0 = 1;
	 }

	 rtb_BackwardSubstitution[1] = rtb_Sum2;
	 yIdx = 2;
	 rtb_Sum2 = rtb_BackwardSubstitution[2];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 rtb_BackwardSubstitution[2] = rtb_Sum2;
	 yIdx = 3;
	 rtb_Sum2 = rtb_BackwardSubstitution[3];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 3;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 rtb_BackwardSubstitution[3] = rtb_Sum2;
	 yIdx = 4;
	 rtb_Sum2 = rtb_BackwardSubstitution[4];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 4;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx += 5;
	 }

	 /* S-Function (sdspfbsub2): '<S89>/Backward Substitution' incorporates:
	 * S-Function (sdspfbsub2): '<S89>/Forward Substitution'
	 */
	 rtb_BackwardSubstitution[4] = rtb_Sum2 / rtb_LUFactorization_o1[24];
	 yIdx = 23;
	 rtb_Sum2 = rtb_BackwardSubstitution[3];
	 while (SelectBits_outAdd_l_idx_0 > 3) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] * rtb_BackwardSubstitution[4];
	 yIdx -= 5;
	 SelectBits_outAdd_l_idx_0 = 3;
	 }

	 rtb_BackwardSubstitution[3] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 22;
	 rtb_Sum2 = rtb_BackwardSubstitution[2];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 2;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_BackwardSubstitution[2] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 21;
	 rtb_Sum2 = rtb_BackwardSubstitution[1];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 1;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_BackwardSubstitution[1] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];
	 yIdx = 20;
	 rtb_Sum2 = rtb_BackwardSubstitution[0];
	 for (SelectBits_outAdd_l_idx_0 = 4; SelectBits_outAdd_l_idx_0 > 0;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1[yIdx] *
	 rtb_BackwardSubstitution[SelectBits_outAdd_l_idx_0];
	 yIdx -= 5;
	 }

	 rtb_BackwardSubstitution[0] = rtb_Sum2 / rtb_LUFactorization_o1[yIdx];

	 /* End of S-Function (sdspfbsub2): '<S89>/Backward Substitution' */

	 /* Constant: '<S85>/Constant' */
	 memcpy(&mymodel_B.MatrixConcatenate1_fd[0], &mymodel_P.Constant_Value_n[0],
	 2880U * sizeof(real_T));

	 /* SignalConversion: '<S85>/ConcatBufferAtMatrix Concatenate1In2' */
	 memcpy(&mymodel_B.MatrixConcatenate1_fd[2880], &mymodel_B.MatrixConcatenate1[0],
	 14400U * sizeof(real_T));
	 for (i = 0; i < 2880; i++) {
	 /* RelationalOperator: '<S101>/Compare' incorporates:
	 * Constant: '<S101>/Constant'
	 */
	 rtb_Compare_0 = (uint8_T)(mymodel_B.ComplextoMagnitudeAngle_o1[i] >=
	 mymodel_P.Constant_Value_a2);

	 /* DataTypeConversion: '<S91>/Data Type Conversion' */
	 mymodel_B.MatrixConcatenate1_i[i] = rtb_Compare_0;

	 /* Product: '<S91>/Product4' */
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] = (real_T)rtb_Compare_0 *
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In2' */
	 mymodel_B.MatrixConcatenate1_i[i + 2880] =
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];

	 /* Product: '<S91>/Product' */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] =
	 mymodel_B.ComplextoMagnitudeAngle_o1[i] *
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In3' */
	 mymodel_B.MatrixConcatenate1_i[i + 5760] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];

	 /* Product: '<S91>/Product2' incorporates:
	 * SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In3'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] *=
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 for (i = 0; i < 2880; i++) {
	 /* SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In4' */
	 mymodel_B.MatrixConcatenate1_i[i + 8640] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i];

	 /* Product: '<S91>/Product3' incorporates:
	 * SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In4'
	 */
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] *=
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 /* SignalConversion: '<S91>/ConcatBufferAtMatrix Concatenate1In5' */
	 memcpy(&mymodel_B.MatrixConcatenate1_i[11520],
	 &mymodel_B.ComplextoMagnitudeAngle1__f[0], 2880U * sizeof(real_T));

	 /* Product: '<S91>/Product5' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.MatrixConcatenate1_i[i + 14400] =
	 mymodel_B.ComplextoMagnitudeAngle1__f[i] *
	 mymodel_B.ComplextoMagnitudeAngle_o1[i];
	 }

	 /* End of Product: '<S91>/Product5' */

	 /* Math: '<S93>/Math Function' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MathFunction_l[SelectBits_inAdd_f_idx + 6 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.MatrixConcatenate1_i[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 /* End of Math: '<S93>/Math Function' */

	 /* Product: '<S88>/Matrix Multiply1' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MatrixMultiply1[SelectBits_inAdd_f_idx_0 + 6 *
	 SelectBits_inAdd_f_idx] = 0.0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 2880;
	 SelectBits_outAdd_l_idx_0++) {
	 mymodel_B.MatrixMultiply1[SelectBits_inAdd_f_idx_0 + 6 *
	 SelectBits_inAdd_f_idx] += mymodel_B.MathFunction_l[6 *
	 SelectBits_outAdd_l_idx_0 + SelectBits_inAdd_f_idx_0] *
	 mymodel_B.MatrixConcatenate1_i[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_outAdd_l_idx_0];
	 }
	 }
	 }

	 /* End of Product: '<S88>/Matrix Multiply1' */

	 /* S-Function (sdspfilter2): '<S88>/Digital Filter' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 36;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.MatrixMultiply1[yIdx] *
	 mymodel_P.DigitalFilter_RTP1COEFF_f[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter_CIRCBUFFIDX_o;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter_FILT_STATES_n[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter_RTP1COEFF_f[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter_CIRCBUFFIDX_o; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter_FILT_STATES_n[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter_RTP1COEFF_f[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_5 = mymodel_DW.DigitalFilter_CIRCBUFFIDX_o - 1;
	 if (idxN_5 < 0) {
	 idxN_5 = 48;
	 }

	 mymodel_DW.DigitalFilter_FILT_STATES_n[uIdx + idxN_5] =
	 mymodel_B.MatrixMultiply1[yIdx];
	 mymodel_B.DigitalFilter[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter_CIRCBUFFIDX_o = idxN_5;

	 /* End of S-Function (sdspfilter2): '<S88>/Digital Filter' */

	 /* S-Function (sdsplu2): '<S90>/LU Factorization' */
	 memcpy(&rtb_LUFactorization_o1_o[0], &mymodel_B.DigitalFilter[0], 36U * sizeof
	 (real_T));
	 LUf_int32_Treal_T(rtb_LUFactorization_o1_o, rtb_LUFactorization_o2_p, 6);

	 /* Sum: '<S88>/Add' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_inAdd_f_idx_0] =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] -
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of Sum: '<S88>/Add' */

	 /* S-Function (sdspunwrap2): '<S88>/Unwrap' */
	 if (mymodel_DW.Unwrap_FirstStep_e) {
	 mymodel_DW.Unwrap_Prev_n = mymodel_B.ComplextoMagnitudeAngle1_o1[0];
	 mymodel_DW.Unwrap_FirstStep_e = FALSE;
	 }

	 u = mymodel_DW.Unwrap_Cumsum_h;
	 rtb_Sum2 = mymodel_DW.Unwrap_Prev_n;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 2880;
	 SelectBits_outAdd_l_idx++) {
	 rtb_DirectLookUpTablenD =
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_outAdd_l_idx] - rtb_Sum2;
	 rtb_Sum2 = (rtb_DirectLookUpTablenD + 3.1415926535897931) /
	 6.2831853071795862;
	 rtb_Sum2 = rtb_DirectLookUpTablenD - 6.2831853071795862 * floor(rtb_Sum2);
	 if ((rtb_Sum2 == -3.1415926535897931) && (rtb_DirectLookUpTablenD > 0.0)) {
	 rtb_Sum2 = 3.1415926535897931;
	 }

	 rtb_Sum2 -= rtb_DirectLookUpTablenD;
	 if (fabs(rtb_Sum2) > 3.1415926535897931) {
	 u += rtb_Sum2;
	 }

	 rtb_Sum2 = mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_outAdd_l_idx];
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_outAdd_l_idx] += u;
	 }

	 mymodel_DW.Unwrap_Prev_n = rtb_Sum2;
	 mymodel_DW.Unwrap_Cumsum_h = u;

	 /* End of S-Function (sdspunwrap2): '<S88>/Unwrap' */

	 /* Product: '<S88>/Matrix Multiply2' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.MatrixMultiply2[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 2880;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.MatrixMultiply2[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MathFunction_l[6 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] *
	 mymodel_B.ComplextoMagnitudeAngle1_o1[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S88>/Matrix Multiply2' */

	 /* S-Function (sdspfilter2): '<S88>/Digital Filter1' */
	 yIdx = 0;
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < 6;
	 SelectBits_outAdd_l_idx_0++) {
	 uIdx = SelectBits_outAdd_l_idx_0 * 50;
	 rtb_Sum2 = mymodel_B.MatrixMultiply2[yIdx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF_g[0];
	 SelectBits_inAdd_f_idx_0 = 1;
	 for (SelectBits_outAdd_l_idx = mymodel_DW.DigitalFilter1_CIRCBUFFIDX_h;
	 SelectBits_outAdd_l_idx < 49; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter1_FILT_STATES_b[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF_g[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx <
	 mymodel_DW.DigitalFilter1_CIRCBUFFIDX_h; SelectBits_outAdd_l_idx++) {
	 rtb_Sum2 += mymodel_DW.DigitalFilter1_FILT_STATES_b[uIdx +
	 SelectBits_outAdd_l_idx] *
	 mymodel_P.DigitalFilter1_RTP1COEFF_g[SelectBits_inAdd_f_idx_0];
	 SelectBits_inAdd_f_idx_0++;
	 }

	 idxN_6 = mymodel_DW.DigitalFilter1_CIRCBUFFIDX_h - 1;
	 if (idxN_6 < 0) {
	 idxN_6 = 48;
	 }

	 mymodel_DW.DigitalFilter1_FILT_STATES_b[uIdx + idxN_6] =
	 mymodel_B.MatrixMultiply2[yIdx];
	 mymodel_B.DigitalFilter1[yIdx] = rtb_Sum2;
	 yIdx++;
	 }

	 mymodel_DW.DigitalFilter1_CIRCBUFFIDX_h = idxN_6;

	 /* End of S-Function (sdspfilter2): '<S88>/Digital Filter1' */

	 /* S-Function (sdspperm2): '<S90>/Permute Matrix' */
	 for (yIdx = 0; yIdx < 6; yIdx++) {
	 SelectBits_inAdd_f_idx_0 = (int32_T)floor(rtb_LUFactorization_o2_p[yIdx] -
	 1.0);
	 if (SelectBits_inAdd_f_idx_0 < 0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 if (SelectBits_inAdd_f_idx_0 >= 6) {
	 SelectBits_inAdd_f_idx_0 = 5;
	 }
	 }

	 rtb_BackwardSubstitution_m[yIdx] =
	 mymodel_B.DigitalFilter1[SelectBits_inAdd_f_idx_0];
	 }

	 /* End of S-Function (sdspperm2): '<S90>/Permute Matrix' */

	 /* S-Function (sdspfbsub2): '<S90>/Forward Substitution' */
	 for (i = 0; i < 5; i++) {
	 yIdx = i + 1;
	 uIdx = i + 1;
	 rtb_Sum2 = rtb_BackwardSubstitution_m[uIdx];
	 for (SelectBits_outAdd_l_idx_0 = 0; SelectBits_outAdd_l_idx_0 < i + 1;
	 SelectBits_outAdd_l_idx_0++) {
	 rtb_Sum2 -= rtb_LUFactorization_o1_o[yIdx] *
	 rtb_BackwardSubstitution_m[SelectBits_outAdd_l_idx_0];
	 yIdx += 6;
	 }

	 rtb_BackwardSubstitution_m[uIdx] = rtb_Sum2;
	 }

	 /* End of S-Function (sdspfbsub2): '<S90>/Forward Substitution' */

	 /* S-Function (sdspfbsub2): '<S90>/Backward Substitution' */
	 rtb_BackwardSubstitution_m[5] /= rtb_LUFactorization_o1_o[35];
	 for (i = 4; i >= 0; i += -1) {
	 yIdx = 30 + i;
	 rtb_Sum2 = rtb_BackwardSubstitution_m[i];
	 for (SelectBits_outAdd_l_idx_0 = 5; SelectBits_outAdd_l_idx_0 > i;
	 SelectBits_outAdd_l_idx_0--) {
	 rtb_Sum2 -= rtb_LUFactorization_o1_o[yIdx] *
	 rtb_BackwardSubstitution_m[SelectBits_outAdd_l_idx_0];
	 yIdx -= 6;
	 }

	 rtb_BackwardSubstitution_m[i] = rtb_Sum2 / rtb_LUFactorization_o1_o[yIdx];
	 }

	 /* End of S-Function (sdspfbsub2): '<S90>/Backward Substitution' */

	 /* Sum: '<S85>/Add' incorporates:
	 * MagnitudeAngleToComplex: '<S85>/Magnitude-Angle to Complex'
	 * Product: '<S85>/Product5'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_DirectLookUpTablenD = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 6;
	 SelectBits_inAdd_f_idx++) {
	 rtb_DirectLookUpTablenD += mymodel_B.MatrixConcatenate1_fd[2880 *
	 SelectBits_inAdd_f_idx + SelectBits_inAdd_f_idx_0] *
	 rtb_BackwardSubstitution_m[SelectBits_inAdd_f_idx];
	 }

	 mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0] =
	 mymodel_B.Unwrap[SelectBits_inAdd_f_idx_0] - rtb_DirectLookUpTablenD;
	 }

	 /* End of Sum: '<S85>/Add' */

	 /* Product: '<S85>/Product3' incorporates:
	 * MagnitudeAngleToComplex: '<S85>/Magnitude-Angle to Complex'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] = 0.0;
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 5;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] +=
	 mymodel_B.MatrixConcatenate1[2880 * SelectBits_inAdd_f_idx +
	 SelectBits_inAdd_f_idx_0] *
	 rtb_BackwardSubstitution[SelectBits_inAdd_f_idx];
	 }
	 }

	 /* End of Product: '<S85>/Product3' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2880;
	 SelectBits_inAdd_f_idx_0++) {
	 /* MagnitudeAngleToComplex: '<S85>/Magnitude-Angle to Complex' incorporates:
	 * Product: '<S85>/Product5'
	 */
	 mymodel_B.MagnitudeAngletoComplex_n[SelectBits_inAdd_f_idx_0].re =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] * cos
	 (mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0]);
	 mymodel_B.MagnitudeAngletoComplex_n[SelectBits_inAdd_f_idx_0].im =
	 mymodel_B.ComplextoMagnitudeAngle1_o2[SelectBits_inAdd_f_idx_0] * sin
	 (mymodel_B.Product3_p[SelectBits_inAdd_f_idx_0]);
	 }

	 /* SwitchCase: '<S60>/Switch Case' */
	 if (rtb_Gain_l < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(rtb_Gain_l);
	 } else {
	 rtb_DirectLookUpTablenD = floor(rtb_Gain_l);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 1:
	 /* Outputs for IfAction SubSystem: '<S60>/cubic fit' incorporates:
	 * ActionPort: '<S180>/Action Port'
	 */
	 mymodel_cubicfit(mymodel_B.MagnitudeAngletoComplex_n, mymodel_B.Merge_g,
	 (P_cubicfit_mymodel_T *)&mymodel_P.cubicfit_l);

	 /* End of Outputs for SubSystem: '<S60>/cubic fit' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S60>/tanh fit' incorporates:
	 * ActionPort: '<S181>/Action Port'
	 */
	 mymodel_tanhfit(mymodel_B.MagnitudeAngletoComplex_n, mymodel_B.Merge_g,
	 (P_tanhfit_mymodel_T *)&mymodel_P.tanhfit_m);

	 /* End of Outputs for SubSystem: '<S60>/tanh fit' */
	 break;

	 case 3:
	 /* Outputs for IfAction SubSystem: '<S60>/Saleh Model' incorporates:
	 * ActionPort: '<S179>/Action Port'
	 */
	 mymodel_SalehModel(mymodel_B.MagnitudeAngletoComplex_n, mymodel_B.Merge_g,
	 (P_SalehModel_mymodel_T *)&mymodel_P.SalehModel_m);

	 /* End of Outputs for SubSystem: '<S60>/Saleh Model' */
	 break;

	 case 4:
	 /* Outputs for IfAction SubSystem: '<S60>/Ghorbani Model' incorporates:
	 * ActionPort: '<S177>/Action Port'
	 */
	 mymodel_GhorbaniModel(mymodel_B.MagnitudeAngletoComplex_n, mymodel_B.Merge_g,
	 (P_GhorbaniModel_mymodel_T *)
	 &mymodel_P.GhorbaniModel_n);

	 /* End of Outputs for SubSystem: '<S60>/Ghorbani Model' */
	 break;

	 case 5:
	 /* Outputs for IfAction SubSystem: '<S60>/Rapp Model' incorporates:
	 * ActionPort: '<S178>/Action Port'
	 */
	 mymodel_RappModel(mymodel_B.MagnitudeAngletoComplex_n, mymodel_B.Merge_g,
	 (P_RappModel_mymodel_T *)&mymodel_P.RappModel_p);

	 /* End of Outputs for SubSystem: '<S60>/Rapp Model' */
	 break;
	 }

	 /* End of SwitchCase: '<S60>/Switch Case' */

	 /* SwitchCase: '<S6>/Switch Case2' */
	 if (rtb_MathFunction_g < 0.0) {
	 rtb_DirectLookUpTablenD = ceil(rtb_MathFunction_g);
	 } else {
	 rtb_DirectLookUpTablenD = floor(rtb_MathFunction_g);
	 }

	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 switch (rtb_DirectLookUpTablenD < 0.0 ? -(int32_T)(uint32_T)
	 -rtb_DirectLookUpTablenD : (int32_T)(uint32_T)rtb_DirectLookUpTablenD)
	 {
	 case 0:
	 /* Outputs for IfAction SubSystem: '<S6>/No nonlinearity or DPD' incorporates:
	 * ActionPort: '<S61>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.ScaleSignalbeforeNonlinea_i,
	 mymodel_B.Merge1_m);

	 /* End of Outputs for SubSystem: '<S6>/No nonlinearity or DPD' */
	 break;

	 case 1:
	 /* Outputs for IfAction SubSystem: '<S6>/Only nonlinearity' incorporates:
	 * ActionPort: '<S65>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.Merge_o, mymodel_B.Merge1_m);

	 /* End of Outputs for SubSystem: '<S6>/Only nonlinearity' */
	 break;

	 case 2:
	 /* Outputs for IfAction SubSystem: '<S6>/Nonlinearity with DPD' incorporates:
	 * ActionPort: '<S63>/Action Port'
	 */
	 mymodel_NononlinearityorDPD(mymodel_B.Merge_g, mymodel_B.Merge1_m);

	 /* End of Outputs for SubSystem: '<S6>/Nonlinearity with DPD' */
	 break;
	 }

	 /* End of SwitchCase: '<S6>/Switch Case2' */

	 /* Product: '<S17>/Product' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.Product[i].re = mymodel_B.Merge1_m[i].re * mymodel_B.Merge_k[i].re
	 - mymodel_B.Merge1_m[i].im * mymodel_B.Merge_k[i].im;
	 mymodel_B.Product[i].im = mymodel_B.Merge1_m[i].re * mymodel_B.Merge_k[i].im
	 + mymodel_B.Merge1_m[i].im * mymodel_B.Merge_k[i].re;
	 }

	 /* End of Product: '<S17>/Product' */

	 /* S-Function (sdsprandsrc2): '<S1>/Random Source' */
	 RandSrc_GZ_Z(mymodel_B.Product_g, &mymodel_P.RandomSource_MeanRTP, 1,
	 &mymodel_P.RandomSource_VarianceRTP, 1,
	 mymodel_DW.RandomSource_STATE_DWORK_h, 1, 2880);

	 /* S-Function (scomawgnchan2): '<S1>/Dynamic AWGN' */
	 SelectBits_outAdd_l_idx_0 = 0;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 2880;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.DynamicAWGN[SelectBits_outAdd_l_idx_0].re = mymodel_DW.STDDEV *
	 mymodel_B.Product_g[SelectBits_outAdd_l_idx_0].re;
	 mymodel_B.DynamicAWGN[SelectBits_outAdd_l_idx_0].im = mymodel_DW.STDDEV *
	 mymodel_B.Product_g[SelectBits_outAdd_l_idx_0].im;
	 mymodel_B.DynamicAWGN[SelectBits_outAdd_l_idx_0].re +=
	 mymodel_B.Product[SelectBits_outAdd_l_idx_0].re;
	 mymodel_B.DynamicAWGN[SelectBits_outAdd_l_idx_0].im +=
	 mymodel_B.Product[SelectBits_outAdd_l_idx_0].im;
	 SelectBits_outAdd_l_idx_0++;
	 }

	 /* End of S-Function (scomawgnchan2): '<S1>/Dynamic AWGN' */

	 /* S-Function (sdsprandsrc2): '<S2>/Random Source' */
	 RandSrc_GZ_Z(mymodel_B.Product_g, &mymodel_P.RandomSource_MeanRTP_o, 1,
	 &mymodel_P.RandomSource_VarianceRTP_h, 1,
	 mymodel_DW.RandomSource_STATE_DWORK_j, 1, 2880);

	 /* S-Function (scomawgnchan2): '<S2>/Dynamic AWGN' */
	 SelectBits_outAdd_l_idx_0 = 0;
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 2880;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_B.DynamicAWGN_l[SelectBits_outAdd_l_idx_0].re = mymodel_DW.STDDEV_j *
	 mymodel_B.Product_g[SelectBits_outAdd_l_idx_0].re;
	 mymodel_B.DynamicAWGN_l[SelectBits_outAdd_l_idx_0].im = mymodel_DW.STDDEV_j *
	 mymodel_B.Product_g[SelectBits_outAdd_l_idx_0].im;
	 mymodel_B.DynamicAWGN_l[SelectBits_outAdd_l_idx_0].re +=
	 mymodel_B.Product[SelectBits_outAdd_l_idx_0].re;
	 mymodel_B.DynamicAWGN_l[SelectBits_outAdd_l_idx_0].im +=
	 mymodel_B.Product[SelectBits_outAdd_l_idx_0].im;
	 SelectBits_outAdd_l_idx_0++;
	 }

	 /* End of S-Function (scomawgnchan2): '<S2>/Dynamic AWGN' */

	 /* Product: '<Root>/Product' */
	 for (i = 0; i < 2880; i++) {
	 mymodel_B.Product_g[i].re = mymodel_B.DynamicAWGN[i].re *
	 mymodel_B.DynamicAWGN_l[i].re - mymodel_B.DynamicAWGN[i].im *
	 mymodel_B.DynamicAWGN_l[i].im;
	 mymodel_B.Product_g[i].im = mymodel_B.DynamicAWGN[i].re *
	 mymodel_B.DynamicAWGN_l[i].im + mymodel_B.DynamicAWGN[i].im *
	 mymodel_B.DynamicAWGN_l[i].re;
	 }

	 /* End of Product: '<Root>/Product' */

	 /* Selector: '<S11>/Remove Cyclic Prefix' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 memcpy(&mymodel_B.RemoveCyclicPrefix[SelectBits_inAdd_f_idx_0 << 8],
	 &mymodel_B.Product_g[320 * SelectBits_inAdd_f_idx_0 + 64], sizeof
	 (creal_T) << 8U);
	 }

	 /* End of Selector: '<S11>/Remove Cyclic Prefix' */

	 /* S-Function (sdspfft2): '<S11>/FFT' */
	 MWDSPCG_R2BRScramble_OutPlace_ZCin(&mymodel_B.Gain2[0U],
	 &mymodel_B.RemoveCyclicPrefix[0U], 9, 256);
	 MWDSPCG_R2DIT_TBLS_Z(&mymodel_B.Gain2[0U], 9, 256, 256, 0,
	 mymodel_ConstP.pooled7, 1, FALSE);

	 /* Gain: '<S11>/Gain2' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 2304;
	 SelectBits_inAdd_f_idx_0++) {
	 rtb_Gain_1.re = mymodel_P.Gain2_Gain_l *
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0].re;
	 rtb_Gain_1.im = mymodel_P.Gain2_Gain_l *
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0].im;
	 mymodel_B.Gain2[SelectBits_inAdd_f_idx_0] = rtb_Gain_1;
	 }

	 /* End of Gain: '<S11>/Gain2' */

	 /* Selector: '<S11>/Remove guards & reorder' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 9;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 201;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.Removeguardsreorder[SelectBits_inAdd_f_idx + 201 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.Gain2[(SelectBits_inAdd_f_idx_0 <<
	 8) + tmp_1[SelectBits_inAdd_f_idx]];
	 }
	 }

	 /* End of Selector: '<S11>/Remove guards & reorder' */

	 /* S-Function (sdspmultiportsel): '<S232>/Select training//data' */
	 memcpy(&rtb_Selecttrainingdata_o1[0], &mymodel_B.Removeguardsreorder[0], 201U *
	 sizeof(creal_T));
	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 memcpy(&mymodel_B.Selecttrainingdata_o2[201 * yIdx],
	 &mymodel_B.Removeguardsreorder[(1 + yIdx) * 201], 201U * sizeof
	 (creal_T));
	 }

	 /* End of S-Function (sdspmultiportsel): '<S232>/Select training//data' */

	 /* Selector: '<S232>/Remove DC ' */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 200;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.RemoveDC[SelectBits_inAdd_f_idx + 200 * SelectBits_inAdd_f_idx_0]
	 = mymodel_B.Selecttrainingdata_o2[201 * SelectBits_inAdd_f_idx_0 +
	 tmp_2[SelectBits_inAdd_f_idx]];
	 }
	 }

	 for (i = 0; i < 100; i++) {
	 /* Product: '<S232>/Product1' incorporates:
	 * Constant: '<S16>/Even Preamble'
	 * Selector: '<S232>/Remove zero components'
	 */
	 if (mymodel_P.EvenPreamble_Value[tmp_b[i]].im == 0.0) {
	 rtb_Sum2 = 1.0 / mymodel_P.EvenPreamble_Value[tmp_b[i]].re;
	 u = 0.0;
	 } else if (mymodel_P.EvenPreamble_Value[tmp_b[i]].re == 0.0) {
	 rtb_Sum2 = 0.0;
	 u = -(1.0 / mymodel_P.EvenPreamble_Value[tmp_b[i]].im);
	 } else {
	 rtb_Gain_l = fabs(mymodel_P.EvenPreamble_Value[tmp_b[i]].re);
	 u = fabs(mymodel_P.EvenPreamble_Value[tmp_b[i]].im);
	 if (rtb_Gain_l > u) {
	 u = mymodel_P.EvenPreamble_Value[tmp_b[i]].im /
	 mymodel_P.EvenPreamble_Value[tmp_b[i]].re;
	 rtb_DirectLookUpTablenD = u * mymodel_P.EvenPreamble_Value[tmp_b[i]].im
	 + mymodel_P.EvenPreamble_Value[tmp_b[i]].re;
	 rtb_Sum2 = 1.0 / rtb_DirectLookUpTablenD;
	 u = -(u / rtb_DirectLookUpTablenD);
	 } else if (u == rtb_Gain_l) {
	 rtb_Sum2 = (mymodel_P.EvenPreamble_Value[tmp_b[i]].re > 0.0 ? 0.5 : -0.5)
	 / rtb_Gain_l;
	 u = -(mymodel_P.EvenPreamble_Value[tmp_b[i]].im > 0.0 ? 0.5 : -0.5) /
	 rtb_Gain_l;
	 } else {
	 u = mymodel_P.EvenPreamble_Value[tmp_b[i]].re /
	 mymodel_P.EvenPreamble_Value[tmp_b[i]].im;
	 rtb_DirectLookUpTablenD = u * mymodel_P.EvenPreamble_Value[tmp_b[i]].re
	 + mymodel_P.EvenPreamble_Value[tmp_b[i]].im;
	 rtb_Sum2 = u / rtb_DirectLookUpTablenD;
	 u = -(1.0 / rtb_DirectLookUpTablenD);
	 }
	 }

	 /* Math: '<S235>/Math Function' incorporates:
	 * Product: '<S232>/Product1'
	 * Selector: '<S232>/Matching Rx components'
	 */
	 mymodel_B.MathFunction[i].re = rtb_Sum2 * rtb_Selecttrainingdata_o1[tmp_b[i]]
	 .re - u * rtb_Selecttrainingdata_o1[tmp_b[i]].im;
	 mymodel_B.MathFunction[i].im = rtb_Sum2 * rtb_Selecttrainingdata_o1[tmp_b[i]]
	 .im + u * rtb_Selecttrainingdata_o1[tmp_b[i]].re;
	 }

	 /* End of Selector: '<S232>/Remove DC ' */

	 /* S-Function (sdspupsamp2): '<S233>/Repeat' */
	 yIdx = 0;
	 for (uIdx = 0; uIdx < 100; uIdx++) {
	 for (i = 0; i < 8; i++) {
	 mymodel_B.Repeat1[yIdx] = mymodel_B.MathFunction[uIdx];
	 yIdx++;
	 }
	 }

	 /* End of S-Function (sdspupsamp2): '<S233>/Repeat' */

	 /* Selector: '<S233>/Repeat Gains2' incorporates:
	 * Math: '<S236>/Math Function'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 200;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.rtb_Repeat1_k[SelectBits_inAdd_f_idx + 200 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.Repeat1
	 [(tmp_3[SelectBits_inAdd_f_idx] << 3) + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 memcpy(&mymodel_B.Concatenate[0], &mymodel_B.rtb_Repeat1_k[0], 1600U * sizeof
	 (creal_T));
	 for (yIdx = 0; yIdx < 100; yIdx++) {
	 /* Product: '<S232>/Product3' incorporates:
	 * Constant: '<S16>/Odd Preamble'
	 * Selector: '<S232>/Matching Rx components1'
	 * Selector: '<S232>/Remove zero components1'
	 */
	 if (mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im == 0.0) {
	 if (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im == 0.0) {
	 rtb_Sum2 = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 u = 0.0;
	 } else if (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re == 0.0) {
	 rtb_Sum2 = 0.0;
	 u = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 } else {
	 rtb_Sum2 = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 u = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 }
	 } else if (mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re == 0.0) {
	 if (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re == 0.0) {
	 rtb_Sum2 = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im;
	 u = 0.0;
	 } else if (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im == 0.0) {
	 rtb_Sum2 = 0.0;
	 u = -(rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im);
	 } else {
	 rtb_Sum2 = rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im;
	 u = -(rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im);
	 }
	 } else {
	 rtb_Gain_l = fabs(mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re);
	 u = fabs(mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im);
	 if (rtb_Gain_l > u) {
	 u = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 rtb_DirectLookUpTablenD = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].
	 im * u + mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re;
	 rtb_Sum2 = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im * u +
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re) /
	 rtb_DirectLookUpTablenD;
	 u = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im -
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re * u) /
	 rtb_DirectLookUpTablenD;
	 } else if (u == rtb_Gain_l) {
	 u = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re > 0.0 ? 0.5 : -0.5;
	 rtb_DirectLookUpTablenD = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].
	 im > 0.0 ? 0.5 : -0.5;
	 rtb_Sum2 = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re * u +
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im *
	 rtb_DirectLookUpTablenD) / rtb_Gain_l;
	 u = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im * u -
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re *
	 rtb_DirectLookUpTablenD) / rtb_Gain_l;
	 } else {
	 u = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].re /
	 mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im;
	 rtb_DirectLookUpTablenD = mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].
	 re * u + mymodel_P.OddPreamble_Value[(yIdx << 1) + 1].im;
	 rtb_Sum2 = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re * u +
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im) /
	 rtb_DirectLookUpTablenD;
	 u = (rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].im * u -
	 rtb_Selecttrainingdata_o1[(yIdx << 1) + 1].re) /
	 rtb_DirectLookUpTablenD;
	 }
	 }

	 /* Math: '<S237>/Math Function' incorporates:
	 * Product: '<S232>/Product3'
	 */
	 mymodel_B.MathFunction_e[yIdx].re = rtb_Sum2;
	 mymodel_B.MathFunction_e[yIdx].im = u;
	 }

	 /* End of Selector: '<S233>/Repeat Gains2' */

	 /* S-Function (sdspupsamp2): '<S234>/Repeat1' */
	 yIdx = 0;
	 for (uIdx = 0; uIdx < 100; uIdx++) {
	 for (i = 0; i < 8; i++) {
	 mymodel_B.Repeat1[yIdx] = mymodel_B.MathFunction_e[uIdx];
	 yIdx++;
	 }
	 }

	 /* End of S-Function (sdspupsamp2): '<S234>/Repeat1' */

	 /* Selector: '<S234>/Repeat' incorporates:
	 * Math: '<S238>/Math Function'
	 */
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 8;
	 SelectBits_inAdd_f_idx_0++) {
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 200;
	 SelectBits_inAdd_f_idx++) {
	 mymodel_B.rtb_Repeat1_k[SelectBits_inAdd_f_idx + 200 *
	 SelectBits_inAdd_f_idx_0] = mymodel_B.Repeat1
	 [(tmp_3[SelectBits_inAdd_f_idx] << 3) + SelectBits_inAdd_f_idx_0];
	 }
	 }

	 memcpy(&mymodel_B.Concatenate[1600], &mymodel_B.rtb_Repeat1_k[0], 1600U *
	 sizeof(creal_T));

	 /* End of Selector: '<S234>/Repeat' */

	 /* S-Function (scomostbccomb): '<S232>/OSTBC Combiner' */
	 for (SelectBits_outAdd_l_idx = 0; SelectBits_outAdd_l_idx < 200;
	 SelectBits_outAdd_l_idx++) {
	 for (i = 0; i < 4; i++) {
	 yIdx = (i << 1) * 200 + SelectBits_outAdd_l_idx;
	 uIdx = (i << 1) * 200 + SelectBits_outAdd_l_idx;
	 rtb_Gain_l = mymodel_B.Concatenate[yIdx].re * mymodel_B.RemoveDC[uIdx].re
	 - -mymodel_B.Concatenate[yIdx].im * mymodel_B.RemoveDC[uIdx].im;
	 rtb_MathFunction_g = mymodel_B.Concatenate[yIdx].re *
	 mymodel_B.RemoveDC[uIdx].im + -mymodel_B.Concatenate[yIdx].im *
	 mymodel_B.RemoveDC[uIdx].re;
	 u = mymodel_B.Concatenate[yIdx].re * mymodel_B.Concatenate[yIdx].re -
	 -mymodel_B.Concatenate[yIdx].im * mymodel_B.Concatenate[yIdx].im;
	 yIdx += 1600;
	 uIdx += 200;
	 rtb_Gain_l += mymodel_B.Concatenate[yIdx].re * mymodel_B.RemoveDC[uIdx].re
	 - mymodel_B.Concatenate[yIdx].im * -mymodel_B.RemoveDC[uIdx].im;
	 rtb_MathFunction_g += mymodel_B.Concatenate[yIdx].re *
	 -mymodel_B.RemoveDC[uIdx].im + mymodel_B.Concatenate[yIdx].im *
	 mymodel_B.RemoveDC[uIdx].re;
	 u += mymodel_B.Concatenate[yIdx].re * mymodel_B.Concatenate[yIdx].re -
	 -mymodel_B.Concatenate[yIdx].im * mymodel_B.Concatenate[yIdx].im;
	 uIdx -= 200;
	 rtb_DirectLookUpTablenD = mymodel_B.Concatenate[yIdx].re *
	 mymodel_B.RemoveDC[uIdx].re - -mymodel_B.Concatenate[yIdx].im *
	 mymodel_B.RemoveDC[uIdx].im;
	 rtb_Sum2 = mymodel_B.Concatenate[yIdx].re * mymodel_B.RemoveDC[uIdx].im +
	 -mymodel_B.Concatenate[yIdx].im * mymodel_B.RemoveDC[uIdx].re;
	 yIdx -= 1600;
	 uIdx += 200;
	 rtb_DirectLookUpTablenD -= mymodel_B.Concatenate[yIdx].re *
	 mymodel_B.RemoveDC[uIdx].re - mymodel_B.Concatenate[yIdx].im *
	 -mymodel_B.RemoveDC[uIdx].im;
	 rtb_Sum2 -= mymodel_B.Concatenate[yIdx].re * -mymodel_B.RemoveDC[uIdx].im
	 + mymodel_B.Concatenate[yIdx].im * mymodel_B.RemoveDC[uIdx].re;
	 uIdx = (i << 1) * 200 + SelectBits_outAdd_l_idx;
	 mymodel_B.OSTBCCombiner[uIdx].re = rtb_Gain_l / u;
	 mymodel_B.OSTBCCombiner[uIdx].im = rtb_MathFunction_g / u;
	 mymodel_B.OSTBCCombiner[uIdx + 200].re = rtb_DirectLookUpTablenD / u;
	 mymodel_B.OSTBCCombiner[uIdx + 200].im = rtb_Sum2 / u;
	 }
	 }

	 /* End of S-Function (scomostbccomb): '<S232>/OSTBC Combiner' */

	 /* S-Function (sdspmultiportsel): '<S7>/Separate Data & Pilots' */
	 for (yIdx = 0; yIdx < 8; yIdx++) {
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 192;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.SeparateDataPilots_o1[192 * yIdx + SelectBits_inAdd_f_idx_0] =
	 mymodel_B.OSTBCCombiner[200 * yIdx +
	 mymodel_ConstP.SeparateDataPilots_[SelectBits_inAdd_f_idx_0]];
	 }
	 }

	 /* End of S-Function (sdspmultiportsel): '<S7>/Separate Data & Pilots' */

	 /* Bias: '<S5>/0-based rate' */
	 rtb_DirectLookUpTablenD = rtb_IntegerDelay + mymodel_P.basedrate_Bias_j;

	 /* Outputs for Enabled SubSystem: '<S5>/RateID0 - BPSK 1//2' incorporates:
	 * EnablePort: '<S21>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn' */
	 if ((rtb_DirectLookUpTablenD == 0.0) > 0) {
	 if (!mymodel_DW.RateID0BPSK12_MODE) {
	 mymodel_DW.RateID0BPSK12_MODE = TRUE;
	 }

	 /* S-Function (scompskdemod): '<S21>/BPSK Demodulator' */
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 1536;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re > 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re <
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 1;
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im ==
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 1;
	 }

	 rtb_BPSKDemodulator[SelectBits_inAdd_f_idx] = (SelectBits_inAdd_f_idx_0 %
	 2 != 0);
	 }

	 /* End of S-Function (scompskdemod): '<S21>/BPSK Demodulator' */

	 /* S-Function (scomapskmod4): '<S28>/M-PSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g = rtb_BPSKDemodulator[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 mymodel_B.MPSKModulatorBaseband_h[uIdx].re = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1)];
	 mymodel_B.MPSKModulatorBaseband_h[uIdx].im = mymodel_ConstP.pooled1
	 [(rtb_RelationalOperator_g << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S28>/M-PSK Modulator Baseband' */

	 /* Sum: '<S21>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_pe[i].re = mymodel_B.MPSKModulatorBaseband_h[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_pe[i].im = mymodel_B.MPSKModulatorBaseband_h[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S21>/Sum' */
	 } else {
	 if (mymodel_DW.RateID0BPSK12_MODE) {
	 /* Disable for Outport: '<S21>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_pe[i].re = mymodel_P.symerr_Y0;
	 mymodel_B.Sum_pe[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S21>/symerr' */
	 mymodel_DW.RateID0BPSK12_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn' */
	 /* End of Outputs for SubSystem: '<S5>/RateID0 - BPSK 1//2' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID1 - QPSK 1//2' incorporates:
	 * EnablePort: '<S22>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn1' */
	 if ((rtb_DirectLookUpTablenD == 1.0) > 0) {
	 if (!mymodel_DW.RateID1QPSK12_MODE) {
	 mymodel_DW.RateID1QPSK12_MODE = TRUE;
	 }

	 /* S-Function (scompskdemod): '<S31>/M-PSK Demodulator Baseband' */
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 1536;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re > 0.0) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im >= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 3;
	 }
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re <
	 0.0) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 2;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 1;
	 }
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im <
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 3;
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im >
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 1;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }

	 rtb_MPSKDemodulatorBaseband_p[(SelectBits_inAdd_f_idx << 1) + 1] =
	 (mymodel_ConstP.pooled12[SelectBits_inAdd_f_idx_0] % 2 != 0);
	 rtb_MPSKDemodulatorBaseband_p[SelectBits_inAdd_f_idx << 1] =
	 ((mymodel_ConstP.pooled12[SelectBits_inAdd_f_idx_0] >> 1) % 2 != 0);
	 }

	 /* End of S-Function (scompskdemod): '<S31>/M-PSK Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S32>/QPSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 rtb_MPSKDemodulatorBaseband_p[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 rtb_MPSKDemodulatorBaseband_p[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.QPSKModulatorBaseband_a[uIdx].re = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1)];
	 mymodel_B.QPSKModulatorBaseband_a[uIdx].im = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S32>/QPSK Modulator Baseband' */

	 /* Sum: '<S22>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_d[i].re = mymodel_B.QPSKModulatorBaseband_a[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_d[i].im = mymodel_B.QPSKModulatorBaseband_a[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S22>/Sum' */
	 } else {
	 if (mymodel_DW.RateID1QPSK12_MODE) {
	 /* Disable for Outport: '<S22>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_d[i].re = mymodel_P.symerr_Y0_e;
	 mymodel_B.Sum_d[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S22>/symerr' */
	 mymodel_DW.RateID1QPSK12_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn1' */
	 /* End of Outputs for SubSystem: '<S5>/RateID1 - QPSK 1//2' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID2 - QPSK 3//4' incorporates:
	 * EnablePort: '<S23>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn2' */
	 if ((rtb_DirectLookUpTablenD == 2.0) > 0) {
	 if (!mymodel_DW.RateID2QPSK34_MODE) {
	 mymodel_DW.RateID2QPSK34_MODE = TRUE;
	 }

	 /* S-Function (scompskdemod): '<S35>/M-PSK Demodulator Baseband' */
	 for (SelectBits_inAdd_f_idx = 0; SelectBits_inAdd_f_idx < 1536;
	 SelectBits_inAdd_f_idx++) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re > 0.0) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im >= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 3;
	 }
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].re <
	 0.0) {
	 if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 2;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 1;
	 }
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im <
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 3;
	 } else if (mymodel_B.SeparateDataPilots_o1[SelectBits_inAdd_f_idx].im >
	 0.0) {
	 SelectBits_inAdd_f_idx_0 = 1;
	 } else {
	 SelectBits_inAdd_f_idx_0 = 0;
	 }

	 rtb_MPSKDemodulatorBaseband[(SelectBits_inAdd_f_idx << 1) + 1] =
	 (mymodel_ConstP.pooled12[SelectBits_inAdd_f_idx_0] % 2 != 0);
	 rtb_MPSKDemodulatorBaseband[SelectBits_inAdd_f_idx << 1] =
	 ((mymodel_ConstP.pooled12[SelectBits_inAdd_f_idx_0] >> 1) % 2 != 0);
	 }

	 /* End of S-Function (scompskdemod): '<S35>/M-PSK Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S36>/QPSK Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 rtb_MPSKDemodulatorBaseband[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 rtb_MPSKDemodulatorBaseband[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.QPSKModulatorBaseband[uIdx].re = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1)];
	 mymodel_B.QPSKModulatorBaseband[uIdx].im = mymodel_ConstP.pooled2
	 [(mymodel_ConstP.pooled13[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S36>/QPSK Modulator Baseband' */

	 /* Sum: '<S23>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_k[i].re = mymodel_B.QPSKModulatorBaseband[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_k[i].im = mymodel_B.QPSKModulatorBaseband[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S23>/Sum' */
	 } else {
	 if (mymodel_DW.RateID2QPSK34_MODE) {
	 /* Disable for Outport: '<S23>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_k[i].re = mymodel_P.symerr_Y0_p;
	 mymodel_B.Sum_k[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S23>/symerr' */
	 mymodel_DW.RateID2QPSK34_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn2' */
	 /* End of Outputs for SubSystem: '<S5>/RateID2 - QPSK 3//4' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID3 - 16QAM 1//2' incorporates:
	 * EnablePort: '<S24>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn3' */
	 if ((rtb_DirectLookUpTablenD == 3.0) > 0) {
	 if (!mymodel_DW.RateID316QAM12_MODE) {
	 mymodel_DW.RateID316QAM12_MODE = TRUE;
	 }

	 /* S-Function (scomqamdemod): '<S38>/Rectangular QAM Demodulator Baseband' */
	 for (i = 0; i < 1536; i++) {
	 rtb_Gain_l = (3.1622776601683791 * mymodel_B.SeparateDataPilots_o1[i].re +
	 3.0) / 2.0;
	 rtb_MathFunction_g = (3.1622776601683791 *
	 mymodel_B.SeparateDataPilots_o1[i].im + 3.0) / 2.0;
	 if (rtb_Gain_l < 0.0) {
	 rtb_Sum2 = ceil(rtb_Gain_l - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_Gain_l + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 3) {
	 yIdx = 3;
	 } else if (rtb_Sum2 <= 0.0) {
	 yIdx = 0;
	 } else {
	 yIdx = (int32_T)rtb_Sum2;
	 }

	 if (rtb_MathFunction_g < 0.0) {
	 rtb_Sum2 = ceil(rtb_MathFunction_g - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_MathFunction_g + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 3) {
	 SelectBits_inAdd_f_idx_0 = 3;
	 } else if (rtb_Sum2 <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = (int32_T)rtb_Sum2;
	 }

	 yIdx = mymodel_ConstP.pooled14[((yIdx << 2) - SelectBits_inAdd_f_idx_0) +
	 3];
	 mymodel_B.RectangularQAMDemodulator_i[(i << 2) + 3] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_i[(i << 2) + 2] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_i[(i << 2) + 1] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_i[i << 2] = (yIdx % 2 != 0);
	 }

	 /* End of S-Function (scomqamdemod): '<S38>/Rectangular QAM Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S39>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_i[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_i[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_i[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_i[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.RectangularQAMModulatorBa_c[uIdx].re = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1)];
	 mymodel_B.RectangularQAMModulatorBa_c[uIdx].im = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S39>/Rectangular QAM Modulator Baseband' */

	 /* Sum: '<S24>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_l[i].re = mymodel_B.RectangularQAMModulatorBa_c[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_l[i].im = mymodel_B.RectangularQAMModulatorBa_c[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S24>/Sum' */
	 } else {
	 if (mymodel_DW.RateID316QAM12_MODE) {
	 /* Disable for Outport: '<S24>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_l[i].re = mymodel_P.symerr_Y0_i;
	 mymodel_B.Sum_l[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S24>/symerr' */
	 mymodel_DW.RateID316QAM12_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn3' */
	 /* End of Outputs for SubSystem: '<S5>/RateID3 - 16QAM 1//2' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID4 - 16QAM 3//4' incorporates:
	 * EnablePort: '<S25>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn4' */
	 if ((rtb_DirectLookUpTablenD == 4.0) > 0) {
	 if (!mymodel_DW.RateID416QAM34_MODE) {
	 mymodel_DW.RateID416QAM34_MODE = TRUE;
	 }

	 /* S-Function (scomqamdemod): '<S42>/Rectangular QAM Demodulator Baseband' */
	 for (i = 0; i < 1536; i++) {
	 rtb_Gain_l = (3.1622776601683791 * mymodel_B.SeparateDataPilots_o1[i].re +
	 3.0) / 2.0;
	 rtb_MathFunction_g = (3.1622776601683791 *
	 mymodel_B.SeparateDataPilots_o1[i].im + 3.0) / 2.0;
	 if (rtb_Gain_l < 0.0) {
	 rtb_Sum2 = ceil(rtb_Gain_l - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_Gain_l + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 3) {
	 yIdx = 3;
	 } else if (rtb_Sum2 <= 0.0) {
	 yIdx = 0;
	 } else {
	 yIdx = (int32_T)rtb_Sum2;
	 }

	 if (rtb_MathFunction_g < 0.0) {
	 rtb_Sum2 = ceil(rtb_MathFunction_g - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_MathFunction_g + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 3) {
	 SelectBits_inAdd_f_idx_0 = 3;
	 } else if (rtb_Sum2 <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = (int32_T)rtb_Sum2;
	 }

	 yIdx = mymodel_ConstP.pooled14[((yIdx << 2) - SelectBits_inAdd_f_idx_0) +
	 3];
	 mymodel_B.RectangularQAMDemodulator_l[(i << 2) + 3] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_l[(i << 2) + 2] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_l[(i << 2) + 1] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 mymodel_B.RectangularQAMDemodulator_l[i << 2] = (yIdx % 2 != 0);
	 }

	 /* End of S-Function (scomqamdemod): '<S42>/Rectangular QAM Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S43>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_l[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx = rtb_RelationalOperator_g << 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_l[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_l[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_l[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 mymodel_B.RectangularQAMModulatorBa_o[uIdx].re = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1)];
	 mymodel_B.RectangularQAMModulatorBa_o[uIdx].im = mymodel_ConstP.pooled4
	 [(mymodel_ConstP.pooled15[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S43>/Rectangular QAM Modulator Baseband' */

	 /* Sum: '<S25>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_p[i].re = mymodel_B.RectangularQAMModulatorBa_o[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_p[i].im = mymodel_B.RectangularQAMModulatorBa_o[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S25>/Sum' */
	 } else {
	 if (mymodel_DW.RateID416QAM34_MODE) {
	 /* Disable for Outport: '<S25>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_p[i].re = mymodel_P.symerr_Y0_h;
	 mymodel_B.Sum_p[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S25>/symerr' */
	 mymodel_DW.RateID416QAM34_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn4' */
	 /* End of Outputs for SubSystem: '<S5>/RateID4 - 16QAM 3//4' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID5 - 64QAM 2//3' incorporates:
	 * EnablePort: '<S26>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn5' */
	 if ((rtb_DirectLookUpTablenD == 5.0) > 0) {
	 if (!mymodel_DW.RateID564QAM23_MODE) {
	 mymodel_DW.RateID564QAM23_MODE = TRUE;
	 }

	 /* S-Function (scomqamdemod): '<S46>/Rectangular QAM Demodulator Baseband' */
	 for (i = 0; i < 1536; i++) {
	 rtb_Gain_l = (6.48074069840786 * mymodel_B.SeparateDataPilots_o1[i].re +
	 7.0) / 2.0;
	 rtb_MathFunction_g = (6.48074069840786 * mymodel_B.SeparateDataPilots_o1[i]
	 .im + 7.0) / 2.0;
	 if (rtb_Gain_l < 0.0) {
	 rtb_Sum2 = ceil(rtb_Gain_l - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_Gain_l + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 7) {
	 yIdx = 7;
	 } else if (rtb_Sum2 <= 0.0) {
	 yIdx = 0;
	 } else {
	 yIdx = (int32_T)rtb_Sum2;
	 }

	 if (rtb_MathFunction_g < 0.0) {
	 rtb_Sum2 = ceil(rtb_MathFunction_g - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_MathFunction_g + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 7) {
	 SelectBits_inAdd_f_idx_0 = 7;
	 } else if (rtb_Sum2 <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = (int32_T)rtb_Sum2;
	 }

	 yIdx = mymodel_ConstP.pooled16[((yIdx << 3) - SelectBits_inAdd_f_idx_0) +
	 7];
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.RectangularQAMDemodulator_o[(i * 6 - SelectBits_inAdd_f_idx_0)
	 + 5] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 }
	 }

	 /* End of S-Function (scomqamdemod): '<S46>/Rectangular QAM Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S47>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 yIdx = 0;
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulator_o[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 }

	 mymodel_B.RectangularQAMModulatorBa_g[uIdx].re = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1)];
	 mymodel_B.RectangularQAMModulatorBa_g[uIdx].im = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S47>/Rectangular QAM Modulator Baseband' */

	 /* Sum: '<S26>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_i[i].re = mymodel_B.RectangularQAMModulatorBa_g[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum_i[i].im = mymodel_B.RectangularQAMModulatorBa_g[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S26>/Sum' */
	 } else {
	 if (mymodel_DW.RateID564QAM23_MODE) {
	 /* Disable for Outport: '<S26>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum_i[i].re = mymodel_P.symerr_Y0_j;
	 mymodel_B.Sum_i[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S26>/symerr' */
	 mymodel_DW.RateID564QAM23_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn5' */
	 /* End of Outputs for SubSystem: '<S5>/RateID5 - 64QAM 2//3' */

	 /* Outputs for Enabled SubSystem: '<S5>/RateID6 - 64QAM 3//4' incorporates:
	 * EnablePort: '<S27>/Enable'
	 */
	 /* Fcn: '<S5>/Fcn6' */
	 if ((rtb_DirectLookUpTablenD == 6.0) > 0) {
	 if (!mymodel_DW.RateID664QAM34_MODE) {
	 mymodel_DW.RateID664QAM34_MODE = TRUE;
	 }

	 /* S-Function (scomqamdemod): '<S50>/Rectangular QAM Demodulator Baseband' */
	 for (i = 0; i < 1536; i++) {
	 rtb_Gain_l = (6.48074069840786 * mymodel_B.SeparateDataPilots_o1[i].re +
	 7.0) / 2.0;
	 rtb_MathFunction_g = (6.48074069840786 * mymodel_B.SeparateDataPilots_o1[i]
	 .im + 7.0) / 2.0;
	 if (rtb_Gain_l < 0.0) {
	 rtb_Sum2 = ceil(rtb_Gain_l - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_Gain_l + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 7) {
	 yIdx = 7;
	 } else if (rtb_Sum2 <= 0.0) {
	 yIdx = 0;
	 } else {
	 yIdx = (int32_T)rtb_Sum2;
	 }

	 if (rtb_MathFunction_g < 0.0) {
	 rtb_Sum2 = ceil(rtb_MathFunction_g - 0.5);
	 } else {
	 rtb_Sum2 = floor(rtb_MathFunction_g + 0.5);
	 }

	 if ((int32_T)rtb_Sum2 >= 7) {
	 SelectBits_inAdd_f_idx_0 = 7;
	 } else if (rtb_Sum2 <= 0.0) {
	 SelectBits_inAdd_f_idx_0 = 0;
	 } else {
	 SelectBits_inAdd_f_idx_0 = (int32_T)rtb_Sum2;
	 }

	 yIdx = mymodel_ConstP.pooled16[((yIdx << 3) - SelectBits_inAdd_f_idx_0) +
	 7];
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 mymodel_B.RectangularQAMDemodulatorBa[(i * 6 - SelectBits_inAdd_f_idx_0)
	 + 5] = (yIdx % 2 != 0);
	 yIdx >>= 1;
	 }
	 }

	 /* End of S-Function (scomqamdemod): '<S50>/Rectangular QAM Demodulator Baseband' */

	 /* S-Function (scomapskmod4): '<S51>/Rectangular QAM Modulator Baseband' */
	 SelectBits_inAdd_f_idx = 0;
	 uIdx = 0;
	 for (i = 0; i < 1536; i++) {
	 yIdx = 0;
	 for (SelectBits_inAdd_f_idx_0 = 0; SelectBits_inAdd_f_idx_0 < 6;
	 SelectBits_inAdd_f_idx_0++) {
	 yIdx <<= 1;
	 rtb_RelationalOperator_g =
	 mymodel_B.RectangularQAMDemodulatorBa[SelectBits_inAdd_f_idx];
	 SelectBits_inAdd_f_idx++;
	 yIdx += rtb_RelationalOperator_g;
	 }

	 mymodel_B.RectangularQAMModulatorBase[uIdx].re = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1)];
	 mymodel_B.RectangularQAMModulatorBase[uIdx].im = mymodel_ConstP.pooled6
	 [(mymodel_ConstP.pooled17[yIdx] << 1) + 1];
	 uIdx++;
	 }

	 /* End of S-Function (scomapskmod4): '<S51>/Rectangular QAM Modulator Baseband' */

	 /* Sum: '<S27>/Sum' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum[i].re = mymodel_B.RectangularQAMModulatorBase[i].re -
	 mymodel_B.SeparateDataPilots_o1[i].re;
	 mymodel_B.Sum[i].im = mymodel_B.RectangularQAMModulatorBase[i].im -
	 mymodel_B.SeparateDataPilots_o1[i].im;
	 }

	 /* End of Sum: '<S27>/Sum' */
	 } else {
	 if (mymodel_DW.RateID664QAM34_MODE) {
	 /* Disable for Outport: '<S27>/symerr' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Sum[i].re = mymodel_P.symerr_Y0_d;
	 mymodel_B.Sum[i].im = 0.0;
	 }

	 /* End of Disable for Outport: '<S27>/symerr' */
	 mymodel_DW.RateID664QAM34_MODE = FALSE;
	 }
	 }

	 /* End of Fcn: '<S5>/Fcn6' */
	 /* End of Outputs for SubSystem: '<S5>/RateID6 - 64QAM 3//4' */

	 /* MultiPortSwitch: '<S5>/Multiport Switch1' */
	 switch ((int32_T)rtb_IntegerDelay) {
	 case 1:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_pe[0], 1536U *
	 sizeof(creal_T));
	 break;

	 case 2:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_d[0], 1536U *
	 sizeof(creal_T));
	 break;

	 case 3:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_k[0], 1536U *
	 sizeof(creal_T));
	 break;

	 case 4:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_l[0], 1536U *
	 sizeof(creal_T));
	 break;

	 case 5:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_p[0], 1536U *
	 sizeof(creal_T));
	 break;

	 case 6:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum_i[0], 1536U *
	 sizeof(creal_T));
	 break;

	 default:
	 memcpy(&mymodel_B.MPSKModulatorBaseband_h[0], &mymodel_B.Sum[0], 1536U *
	 sizeof(creal_T));
	 break;
	 }

	 /* End of MultiPortSwitch: '<S5>/Multiport Switch1' */

	 /* Abs: '<S5>/Abs' */
	 for (i = 0; i < 1536; i++) {
	 mymodel_B.Abs[i] = rt_hypotd_snf(mymodel_B.MPSKModulatorBaseband_h[i].re,
	 mymodel_B.MPSKModulatorBaseband_h[i].im);
	 }

	 /* End of Abs: '<S5>/Abs' */

	 /* S-Function (sdspstatfcns): '<S10>/RMS' */
	 for (i = 0; i < 1536; i += 1536) {
	 for (SelectBits_outAdd_l_idx = i; SelectBits_outAdd_l_idx < i + 1;
	 SelectBits_outAdd_l_idx++) {
	 mymodel_DW.RMS_SqData = mymodel_B.Abs[SelectBits_outAdd_l_idx] *
	 mymodel_B.Abs[SelectBits_outAdd_l_idx];
	 yIdx = 1;
	 for (uIdx = 1534; uIdx >= 0; uIdx += -1) {
	 SelectBits_inAdd_f_idx_0 = SelectBits_outAdd_l_idx + yIdx;
	 mymodel_DW.RMS_SqData += mymodel_B.Abs[SelectBits_inAdd_f_idx_0] *
	 mymodel_B.Abs[SelectBits_inAdd_f_idx_0];
	 yIdx++;
	 }

	 rtb_DirectLookUpTablenD = sqrt(mymodel_DW.RMS_SqData / 1536.0);
	 }
	 }

	 /* End of S-Function (sdspstatfcns): '<S10>/RMS' */

	 /* Sum: '<S229>/Sum1' incorporates:
	 * Constant: '<S229>/Constant'
	 * Math: '<S10>/Math Function2'
	 * Math: '<S228>/Math Function'
	 * Product: '<S228>/Product'
	 *
	 * About '<S10>/Math Function2':
	 * Operator: reciprocal
	 */
	 rtb_Sum2 = 1.0 / (rtb_DirectLookUpTablenD * rtb_DirectLookUpTablenD) +
	 mymodel_P.Constant_Value_c;

	 /* Math: '<S229>/log10'
	 *
	 * About '<S229>/log10':
	 * Operator: log10
	 */
	 rtb_Sum2 = log10(rtb_Sum2);

	 /* Sum: '<S229>/Sum2' incorporates:
	 * Constant: '<S229>/Constant1'
	 * Gain: '<S229>/Gain'
	 */
	 rtb_Sum2 = mymodel_P.Gain_Gain_p * rtb_Sum2 + mymodel_P.Constant1_Value_m;

	 /* Bias: '<S19>/0-based' */
	 u = rtb_IntegerDelay + mymodel_P.based_Bias;

	 /* LookupNDDirect: '<S19>/Direct Look-Up Table (n-D)'
	 *
	 * About '<S19>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 */
	 if (u >= 6.0) {
	 u = 6.0;
	 } else {
	 if (u <= 0.0) {
	 u = 0.0;
	 }
	 }

	 rtb_DirectLookUpTablenD = floor(u);

	 /* Bias: '<S18>/0-based' */
	 u = rtb_IntegerDelay + mymodel_P.based_Bias_j;

	 /* LookupNDDirect: '<S18>/Direct Look-Up Table (n-D)'
	 *
	 * About '<S18>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 */
	 if (u >= 6.0) {
	 u = 6.0;
	 } else {
	 if (u <= 0.0) {
	 u = 0.0;
	 }
	 }

	 u = floor(u);

	 /* LookupNDDirect: '<S19>/Direct Look-Up Table (n-D)'
	 *
	 * About '<S19>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 */
	 if (rtIsNaN(rtb_DirectLookUpTablenD) || rtIsInf(rtb_DirectLookUpTablenD)) {
	 rtb_DirectLookUpTablenD = 0.0;
	 } else {
	 rtb_DirectLookUpTablenD = fmod(rtb_DirectLookUpTablenD, 4.294967296E+9);
	 }

	 /* LookupNDDirect: '<S18>/Direct Look-Up Table (n-D)'
	 *
	 * About '<S18>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 */
	 if (rtIsNaN(u) || rtIsInf(u)) {
	 u = 0.0;
	 } else {
	 u = fmod(u, 4.294967296E+9);
	 }

	 /* Update for Delay: '<S3>/Integer Delay' incorporates:
	 * LookupNDDirect: '<S18>/Direct Look-Up Table (n-D)'
	 * LookupNDDirect: '<S19>/Direct Look-Up Table (n-D)'
	 * RelationalOperator: '<S3>/Relational Operator'
	 * RelationalOperator: '<S3>/Relational Operator1'
	 * Sum: '<S3>/Add1'
	 *
	 * About '<S18>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 *
	 * About '<S19>/Direct Look-Up Table (n-D)':
	 * 1-dimensional Direct Look-Up returning a Scalar
	 */
	 mymodel_DW.IntegerDelay_DSTATE = ((real_T)(rtb_Sum2 >
	 mymodel_P.DirectLookUpTablenD_table[(uint32_T)rtb_DirectLookUpTablenD]) -
	 (real_T)(rtb_Sum2 <= mymodel_P.DirectLookUpTablenD_table_l[(uint32_T)u])) +
	 rtb_IntegerDelay;
	}

	/* Model initialize function */
	void mymodel_initialize(void)
	{
	 /* Registration code */

	 /* initialize non-finites */
	 rt_InitInfAndNaN(sizeof(real_T));

	 /* non-finite (run-time) assignments */
	 mymodel_P.DirectLookUpTablenD_table[6] = rtInf;
	 mymodel_P.DirectLookUpTablenD_table_l[0] = rtMinusInf;
	 mymodel_P.tanhfit_m.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.cubicfit_l.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.tanhfit_k.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.cubicfit_hv.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.tanhfit_a.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.cubicfit_h.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.tanhfit.ClipinputpowertoAMPMupperlimit_ = rtInf;
	 mymodel_P.cubicfit.ClipinputpowertoAMPMupperlimit_ = rtInf;

	 /* initialize error status */
	 rtmSetErrorStatus(mymodel_M, (NULL));

	 /* block I/O */
	 (void) memset(((void *) &mymodel_B), 0,
	 sizeof(B_mymodel_T));

	 /* states (dwork) */
	 (void) memset((void *)&mymodel_DW, 0,
	 sizeof(DW_mymodel_T));

	 {
	 int32_T i;

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID0 - BPSK 1//2' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S199>/Convolutional Encoder' */
	 mymodel_DW.currState_m = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID0 - BPSK 1//2' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID1 - QPSK 1//2' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S200>/Punctured Convolutional Encoder1' */
	 mymodel_DW.currState_b = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID1 - QPSK 1//2' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID2 - QPSK 3//4' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S201>/Punctured Convolutional Encoder2' */
	 mymodel_DW.currState_i = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID2 - QPSK 3//4' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID3 - 16QAM 1//2' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S202>/Punctured Convolutional Encoder3' */
	 mymodel_DW.currState_jd = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID3 - 16QAM 1//2' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID4 - 16 QAM 3//4' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S203>/Punctured Convolutional Encoder4' */
	 mymodel_DW.currState_a = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID4 - 16 QAM 3//4' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID5 - 64QAM 2//3' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S204>/Punctured Convolutional Encoder5' */
	 mymodel_DW.currState_j = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID5 - 64QAM 2//3' */

	 /* InitializeConditions for Enabled SubSystem: '<S8>/RateID6 - 64QAM 3//4' */
	 /* InitializeConditions for S-Function (scomconvenc2): '<S205>/Punctured Convolutional Encoder6' */
	 mymodel_DW.currState = 0U;

	 /* End of InitializeConditions for SubSystem: '<S8>/RateID6 - 64QAM 3//4' */

	 /* Start for Probe: '<S57>/Probe' */
	 mymodel_B.Probe = 1.0;

	 /* Start for Probe: '<S58>/Probe' */
	 mymodel_B.Probe_p = 1.0;

	 /* Start for Probe: '<S59>/Probe' */
	 mymodel_B.Probe_j = 1.0;

	 /* Start for Probe: '<S60>/Probe' */
	 mymodel_B.Probe_pa = 1.0;

	 /* Start for Enabled SubSystem: '<S5>/RateID0 - BPSK 1//2' */
	 /* Start for Enabled SubSystem: '<S5>/RateID1 - QPSK 1//2' */
	 /* Start for Enabled SubSystem: '<S5>/RateID2 - QPSK 3//4' */
	 /* Start for Enabled SubSystem: '<S5>/RateID3 - 16QAM 1//2' */
	 /* Start for Enabled SubSystem: '<S5>/RateID4 - 16QAM 3//4' */
	 /* Start for Enabled SubSystem: '<S5>/RateID5 - 64QAM 2//3' */
	 /* Start for Enabled SubSystem: '<S5>/RateID6 - 64QAM 3//4' */
	 for (i = 0; i < 1536; i++) {
	 /* VirtualOutportStart for Outport: '<S21>/symerr' */
	 mymodel_B.Sum_pe[i].re = mymodel_P.symerr_Y0;
	 mymodel_B.Sum_pe[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S22>/symerr' */
	 mymodel_B.Sum_d[i].re = mymodel_P.symerr_Y0_e;
	 mymodel_B.Sum_d[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S23>/symerr' */
	 mymodel_B.Sum_k[i].re = mymodel_P.symerr_Y0_p;
	 mymodel_B.Sum_k[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S24>/symerr' */
	 mymodel_B.Sum_l[i].re = mymodel_P.symerr_Y0_i;
	 mymodel_B.Sum_l[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S25>/symerr' */
	 mymodel_B.Sum_p[i].re = mymodel_P.symerr_Y0_h;
	 mymodel_B.Sum_p[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S26>/symerr' */
	 mymodel_B.Sum_i[i].re = mymodel_P.symerr_Y0_j;
	 mymodel_B.Sum_i[i].im = 0.0;

	 /* VirtualOutportStart for Outport: '<S27>/symerr' */
	 mymodel_B.Sum[i].re = mymodel_P.symerr_Y0_d;
	 mymodel_B.Sum[i].im = 0.0;
	 }

	 /* End of Start for SubSystem: '<S5>/RateID6 - 64QAM 3//4' */
	 /* End of Start for SubSystem: '<S5>/RateID5 - 64QAM 2//3' */
	 /* End of Start for SubSystem: '<S5>/RateID4 - 16QAM 3//4' */
	 /* End of Start for SubSystem: '<S5>/RateID3 - 16QAM 1//2' */
	 /* End of Start for SubSystem: '<S5>/RateID2 - QPSK 3//4' */
	 /* End of Start for SubSystem: '<S5>/RateID1 - QPSK 1//2' */
	 /* End of Start for SubSystem: '<S5>/RateID0 - BPSK 1//2' */
	 }

	 {
	 int32_T idx;
	 real_T tmp;

	 /* InitializeConditions for S-Function (sdsprandsrc2): '<S14>/Random Source' */
	 mymodel_DW.RandomSource_SEED_DWORK = mymodel_P.RandomSource_InitSeed;
	 RandSrcInitState_U_64(&mymodel_DW.RandomSource_SEED_DWORK,
	 mymodel_DW.RandomSource_STATE_DWORK, 1);

	 /* InitializeConditions for Delay: '<S3>/Integer Delay' */
	 mymodel_DW.IntegerDelay_DSTATE = mymodel_P.IntegerDelay_InitialCondition;

	 /* InitializeConditions for S-Function (scompnseq2): '<S226>/PN Sequence Generator' */
	 for (idx = 0; idx < 11; idx++) {
	 mymodel_DW.shiftReg[idx] = 1U;
	 }

	 /* End of InitializeConditions for S-Function (scompnseq2): '<S226>/PN Sequence Generator' */

	 /* InitializeConditions for S-Function (sdspunwrap2): '<S70>/Unwrap' */
	 mymodel_DW.Unwrap_FirstStep = TRUE;
	 mymodel_DW.Unwrap_Cumsum = 0.0;

	 /* InitializeConditions for S-Function (sdspunwrap2): '<S88>/Unwrap' */
	 mymodel_DW.Unwrap_FirstStep_e = TRUE;
	 mymodel_DW.Unwrap_Cumsum_h = 0.0;

	 /* InitializeConditions for S-Function (sdsprandsrc2): '<S1>/Random Source' */
	 mymodel_DW.RandomSource_SEED_DWORK_a = mymodel_P.RandomSource_InitSeed_g;
	 RandSrcInitState_GZ(&mymodel_DW.RandomSource_SEED_DWORK_a,
	 mymodel_DW.RandomSource_STATE_DWORK_h, 1);

	 /* InitializeConditions for S-Function (scomawgnchan2): '<S1>/Dynamic AWGN' */
	 tmp = mymodel_P.DynamicAWGN_SPOW / (rt_powd_snf(10.0,
	 mymodel_P.DynamicAWGN_EBNO / 10.0) * 2.2222222222222219E-7);
	 mymodel_DW.STDDEV = sqrt(tmp);

	 /* InitializeConditions for S-Function (sdsprandsrc2): '<S2>/Random Source' */
	 mymodel_DW.RandomSource_SEED_DWORK_k = mymodel_P.RandomSource_InitSeed_gx;
	 RandSrcInitState_GZ(&mymodel_DW.RandomSource_SEED_DWORK_k,
	 mymodel_DW.RandomSource_STATE_DWORK_j, 1);

	 /* InitializeConditions for S-Function (scomawgnchan2): '<S2>/Dynamic AWGN' */
	 tmp = mymodel_P.DynamicAWGN_SPOW_k / (rt_powd_snf(10.0,
	 mymodel_P.DynamicAWGN_EBNO_h / 10.0) * 2.2222222222222219E-7);
	 mymodel_DW.STDDEV_j = sqrt(tmp);
	 }
	}

	/* Model terminate function */
	void mymodel_terminate(void)
	{
	 /* (no terminate code required) */
	}

	/*
	 * File trailer for generated code.
	 *
	 * [EOF]
	 */

