INTERFACING A WATER FLOW-METER SENSOR TO TDC1000-TDC7200EVM

Ultrasonic flow-meters are gaining wide usage in commercial, industrial and medical applications. Major benefits of utilizing this type of flow meter are; higher accuracy, low maintenance (no moving parts), non-invasive flow measurement, and the ability to diagnose the meter's health regularly. A major advantage of using TI's ultrasonic sensing is the ultralow power consumption which allows metering companies to use the same battery for a very long time.

This article is intended as an introduction to ultrasonic flow sensing and describes demonstration a setup to measure velocity of flow in a pipe using an ultrasonic water flow-meter sensor, TDC1000 ultrasonic analog-front-end (UAFE) and TDC7200 precision time interval timer.

Background: Transient-time Ultrasonic Flow-meters

In Figure 1, a typical ultrasonic flow sensor is shown. The sensor consist of a pipe with nominal diameter of "D" and two piezoelectric transducers placed at fixed distance "L" from each other. The transducers are mounted in a protective housing. The housing and the transducers are inserted in the holes in the pipe, exposing the inner cover to the fluid in the pipe. Two reflection mirrors in the pipe direct the ultrasonic signals from one transducer to the other one in the opposite location.

Figure 1. ultrasonic water flow-meter pipe.

The single path sensor of Figure 1 is used for flow applications where the diameter of the pipe is small. For larger diameter pipes sensors with multiple paths are used. Other types of ultrasonic flow sensors are available with clamped-on transducers. In this article we have limited the discussion to reflective-type single path sensors such as one shown in Figure 1.

Measurement sequence

Referring to Figure 2, the measurement sequence starts by exciting one of the transducer, i.e. "A", by applying a burst of given number of pulses (in Figure 2, three TX pulses) to the transducer. The frequency of excitation signal must be equal to the resonance frequency of the transducer. For water flow applications, transducers with resonant frequency of one to three MHz are used.

Figure 2. ultrasonic signal measurement sequence.

The transducer generates ultrasonic pressure pulses that are directed towards the second transducer, in this case B, by means of the reflectors in the pipe. At the same time that the first pulse is being applied to the transducer, a "START" signal is generated to mark the beginning of the "time-of-flight" measurement.

On the receiver side, the electronic circuits in the path condition the received signal and generate a "STOP" pulse to mark the time the ultrasonic pulse is received at the other end. The time taken for the ultrasound wave to travel from one sensor to the other is referred as the "Time-Of-Flight" (TOF). A stop watch is needed to measure the time internal between the "START" and "STOP", in this case TOF_{AB} .

The direction of the transmit/receive sequence is switched and next the TOF_{BA} is measured. The difference between TOF_{AB} and TOF_{BA} is proportional to the velocity of the flow of the medium in the pipe.

Volumetric flow calculations:

The expressions for calculating the TOF between two transducers is given as:

$$\mathsf{TOF} = \frac{Distance\ between\ the\ transduceres}{speed\ of\ sound}$$

Referring to Figure 1, the expressions for TOF for downstream (TOF_{AB}) and upstream (TOF_{BA}) are:

$$TOF_{AB} = \frac{1}{C} \measuredangle + \frac{L}{C+V} + \frac{1}{C} \measuredangle$$
(1)

$$TOF_{BA} = \frac{1}{c} \measuredangle + \frac{L}{c-v} + \frac{1}{c} \measuredangle$$
(2)

$$\Delta T = TOF_{BA} - TOF_{AB}$$

Where:

 $\mathcal{L} = \frac{D}{2}$; *D* is the inner diameter of the pipe C = Speed of sound in the medium

V = Average velocity of the medium (fluid/gas) in the pipe

(3)

Rearranging the terms and solving for V:

$$\Delta TOF = \left(\frac{D}{C} + \frac{L}{C-V}\right) - \left(\frac{D}{C} + \frac{L}{C+V}\right)$$
$$= \frac{L2}{C-V} - \frac{L2}{C+V}$$
$$= \frac{(C+V)L - (C-V)L}{C^2 - V^2}$$
$$\Delta T (C^2 - V^2) = 2 * L * V$$
Since $C \gg V$

$$(C^2 - V^2) \sim C^2$$

And

$$\Delta T * C^{2} = 2 * L * V$$
$$V = \frac{\Delta T * C^{2}}{2}$$

$$V = \frac{\Delta V C}{2L} \tag{4}$$

Calculation of Volumetric Flow rate, Q

The relationship for calculate the volumetric flow rate is:

$$Q = K * V * A$$

Where:

K = Pipe calibration factor depending on the sensor

V = Average velocity though of the fluid in the pipe.

A = The cross-sectional area of the meter pipe.

TDC 1000 uses a common approach known as "zero-crossing" method to generate the "START" and "STOP". At low flow rates, the difference between TOF_{AB} and TOF_{BA} is very small, for this reason a highly accurate timer such as TDC7200 with picoseconds resolution is required.

Zero Flow Measurement Setup

In this document, we describe interfacing of TDC1000 and TDC7200 integrated circuits. The block diagram of the setup is shown in Figure 3. MSP430 microcontroller is used to programming of TDC1000 and TDC7200 and for communication with a host PC over USB interface. A Graphic User Interface (GUI) is used for programming the registers of TDC1000 and TDC7200 and for displaying Δ TOF at zero flow condition.

Figure 3. zero flow measurement setup

The Choice of the Ultrasonic Flow-meter Sensor

The zero-flow demonstration setup is shown in Figure 4.

Figure 4. zero flow demonstration setup

System requirements, standards, and cost dictate the choice of flow-meter sensors. Water is a good medium for propagating ultrasonic pressure pulse and the most common sensors in this application have resonance frequency in the range of MHz, 1 MHz in this case.

For the demonstration purpose we use an Audiowell ultrasonic water flow-meter pipe shown in Figure 4. This sensor can be obtained from the source included in the reference section.

Figure 5. ultrasonic flow-meter sensor pipe

Steps to configure the setup

- 1. Obtain a TDC1000-TDC7200EVM
- 2. Obtain the ultrasonic water flow sensor shown in Figure 5 from the source in the reference section of this document. The union and the pipe extension are not necessary for zero flow test but you would need the end caps to confine water in the pipe for the test. The RTD temperature senor is not include in the sensor and can be obtained from a different manufacturer. The RTD used in this setup is a JUMO PT1000. If you need to use a PT500 temperature senor, you would need to change the temp sensor reference resistor (R_{REF}) on the TDC1000-TDC7200EVM to 500 Ω (the EVM board comes with a 1000 Ω resistor reference resistor).
- 3. Place a cap at one end of the sensor and fill the pipe with clean water. Make sure there are no bubbles trapped in the sensor. Place the second cap and the open end open of the pipe to confine water inside the pipe.
- 4. Connect the sensor to the EVM connector as shown below. Place the pipe on a flat surface in a standup position as shown if Figure 4. This would move up any bubbles trapped between the two transducers to the top of the pipe and away from the signal path. Bubbles trapped in the signal path causes severe attenuation of signal.
- 5. You may want to view the signal waveforms (Start, Stop, and Ultrasound received waveform at the input of TDC1000 internal comparators) on a scope to make sure proper operation of the sensor. You can either connect the scope probes to the provided terminals (test points) on the EVM or solder SMA connector on the EVM board and use the cables shown in Figure 4

Figure 6, EVM connections to the sensor

- 6. Install the TDC1000-TDC7200EVM software per the instruction in the user's manual
- 7. Connect the EVM to the Host PC using the provided USB cable

GUI Configuration

- 8. Run the GUI; if prompted, upgrade the version of the EVM firmware per the instructions in the TDC1000-TDC7200EVM User's Manual.
- 9. Set the registers in the TDC1000 menu to the values shown in Figure 7, Figure 8, and Figure 9. Flip the "CONTINOUS TRIGGER" switch to the top position (switch will turn to green from red indicating that the system is running).

Divide by 8	8 pulses	1 Cycle	5 STOPS	Enabled	TOF Measure	ment Enabled
W TDC1000_7200_EVM						
SETLIP TDC3000 TDC7200 COMPSIG (SM(0) TX (FRED, DV) Divide by 8		APH TEMPERATURE	pesus CONFIG2 (0x02) VCON-SEL Internal	Disabled MAS MODE TOP Measurement	DAMETING Dealed	PW REYSSON 04.5 413001 1.29 1/2.13 O(
NLIM_TX 8 Pulses	R SSTO	* R	EXT_CHER Disabled	CH_SEL CH1 (TX1)	TOF_MEAS_MODE Mode 2	×
CONFIG3 (0x03) TEMP_MODE REF_RTD1_RTD2	PT TEMP_RTD_SEL	1000 TEMP_CLK_DIV Divide by 8	CONFIG4 (0x04) RECEIVE_MODE Single Echo	TRIG_EDGE_POL		Mode 2
BLANKING Enabled		-125mV	pass	- Single Ed	cho RCAD ALL	Flip to continuous
FGA-1 (0.05)	PGA_CTRL Active	LNA_CTRL Bypass	TIMENG REGIDINT	38 8	R 0	
Capacitica	•	R	Blank Period - (TIMI	NG_REG - 36) × 8 × 70	URR_SOG_HEGH	R
TIMEOUT (0x08) PCRCP_SHORT 200 Disabled	Disabled 5487_TOP_RINK_PER 128 x T0	2 ua 16	CLOCK RATE (3x09) CLOCK RATE (3x09) Divide by 1	Divided I	by 1	
ECHO_TIMEOUT trubled	TOF_TIMEOUT_CTRL 236 x T0	ust 32 R	AUTOZERO_PERJOO	₩ ▼ 32	R SAVE CONFIG	
Note: T0 + CLOOQH_D	IV / CLK_PREQ					
Write register (TOF-1): 0xA8 -						

Figure 7. TDC1000 setup menu in the GUI

• TDC1000,7200. EVM SETUP ТОС1000 ТОС7300 ТОР_ОНЕ_ЭНОТ GRAPH	TEMPERATURE DEBUG		Image: Construction Gala Revision 1.29 1.0.2.13			
SENIAL PORT	TRUGORE UPDATE MEQ	ON BOARD OSC(8MHz)			
CORRECT DISCOMPLET	1.0sec	CPU_CDLEN CPU_CDLETRED LDMCDMEN CPU_CDLETRED LDMCDMEN (* [k]				
TDC 1000-HV Driver EN1 EN1 Prend (sa) 30 TDC 1000-HV Driver EN2 EV2 Prend (sa) 30	MEPHOD_SPL_CIX_COMPIG CIX_PhaseLow, Polarity Low MEPHOD_SPL_CIX_DIVIDER (>=1) =0000 R					
Write (set update freq) successful						

Figure 8. Sampling interval setup

TDC1000,7200_EVM STDR	OT COADH TENSEDATION PERIO	And And In	FW REVISIO	GUI REVISION
	Five			
CONFISI (bx00) TTART No Effect • MODE Measurement Mode 2 • START EDGE POLARITY Remp Edge • STOP LORGE POLARITY Remp Edge • TRIOG EDGE POLARITY Remp Edge • POLICIE CLIBRATION No Calibration after nitipit • R	CONFIG2 (MOIL) NAMERA CAF STORS NIVE ANERACING CYCLES 1 Maak CyCle 1 Maak CyCle 2 ALERATION 2 PERIODS 10 Cook Periods R COLARSE COTTR OV_H (burld) +15 R COARSE COTTR OV_H (burld) +15 R	INTERRUPT STATUS (bio2) NEW, JEAS, DIT Ditempt Celtected COARSE CHTR. OVERFLOW INT Overflow Detected COARSE CHTR. OVERFLOW INT Overflow Detected COARSE CHTR. OVERFLOW INT Overflow Detected MEASUREMENT STARTED FLAG Measurement Not Started Measurement Incomplete C	INTERRUPT MACK (buld) NEW, MEAS, MACK Interrupt Drubbed COMSEE_CITE_OHERPLOW_MACK Interrupt Drubbed COCK_CITE_CHERPLOW_MACK Interrupt Drubbed R CLOCK_CITE_STOP MACK_L (buld) + 00 R CLOCK_KITE IS INF MACK_L (buld) + 00 R	
0.000CONR 07_F (1066) +FF R	CLOCK CHITL OF J. (1997) +FF R Write regis	RENG ALL LOND O ter (Config2_7200): 0x4	overss sive coverss	,

Figure 9. TDC7200 registers setup

Observing the waveform using an oscilloscope

If you are using a scope, use three channels to observe the signal traces as given below:

CHAA :	START, 5V/DIV
CHA B:	STOP, 5V/DIV
CHA C:	COMP_IN, 5V/DIV
Trigger:	Normal, on Ch A
Time base:	20uV/DIV

You should be able to get similar display on you scope screen as shown in Figure 10. The time of flight can be measured reference to STOP pulse one to five. When calculating the delta TOF, if the same STOP pulse is used to measure the TOF for upstream and downstream, the net effect is canceled out and the delta TOF is the same no matter what STOP pulse is used to measure The TOF.

Figure 10. scope trace TOF measurement sequence

Now change the time base of the scope to 200 uV/DIV, you should see the TX/RX sequence for both directions as shown in Figure 11. In mode 2 of TDC1000 operation if CH_SWP is enabled, the state machine upon receiving a trigger pulse will TX/RX in one direction, then switch the direction and upon receiving a second trigger will TX/RX in the other direction.

Figure 11. ΔTOF measurement sequence

Displaying the delta TOF in GUI's GRAPH menu

Click on the "GRAPH" tab to display the "GRAPH" menu. In the box below "Flow MODE" on the right bottom corner of the display, check the flow mode option. In this mode the GUI generates a

downstream and upstream sequence and calculates the "Delta TOF" and display it at the top right of the screen under "FLOW DELTA AVG (ns)". Under "TDC_SELECT" chose the STOP pulse (STOP1, STOP2, etc) that provides the best accuracy in calculating the TOF. Try different selection and observe the changes in delta TOF and STADEV. As mentioned in the previous section, as the TOF in the upstream and the downstream directions are measured reference to the same STOP pulse, the net effect is independent of the choice of the STOP pulse.

To start the graph, click on "START Graph" tab, you should see the yellow moving trace of the delta TOF versus time as shown in Figure 12. If the numbers in delta TOF and the STDEV boxes are changing but the graph is not being displayed (black screen) then the graph is out of scale. To force the graph to be displayed in the window, place the cursor on the black background and right-click your mouse. A drop window display will show up giving you the option to select auto scale in the X and Y axis. Once you check mark the auto scale box, the GUI will scale the graph to fit in the display window.

Figure 12. ΔTOF graph display

Saving data in a file

To save data in a file for post processing purpose, check the box "SAVE GRAPH DATA TO FILE" before running the graph by clicking on "START GRAPH" button. You will be asked to name the file and identify a location on your computer to store the file. When you type in the information click the ok tab, you will be prompted to type the number of samples to be saved. If type ok without typing in the number of samples in the displayed box (0 samples by default), the GUI will continuously save unlimited number of data in the file until the "STOP GRAPH" tab is pressed to stop displaying the graph. The content of the file includes information as shown in Figure 13.

TOF referenced to Delta TOF (nS) based on the STOP pulse selected in the					- 82 -83			
		STOP1 pulse	e (ns)	"TDC_SELECT	" box. In this cas	e START-STO	P2 -	02-05
TOF								
downstream	1	A	В	C	D	E	F	G
	1	Start to Stop1	Start to Stop2	Start to Stop3	Start to Stop4	Start to Stop5	Delta TOF	RTD1 Temp
	2	63644.77881	64619.45727	65775.96333	66812.95379	67883.51831	0	46.299204
	3	63645.3517	64620.56811	65783.53074	66821.02685	67884.44692	-1.110845	46.299204
	4	63645.06949	64619.8076	65776.37038	66814.35072	67883.92626	0	46.299204
IOF	5	63645.89061	64621.03195	65783.96182	66822.59194	67884.45329	-1.224349	46.299204
Upstream	6	63645.31445	64620.09651	65776.50218	66814.67933	67883.93135	0	46.299204
	7	63646.22752	64621.32601	65784.52387	66822.48847	67885.14722	-1.229494	46.299204
	8	63645.47364	64620.15866	65776.42324	66813.92907	67884.62436	0	46.299204
	9	63646.47303	64621.49896	65783.90171	66822.12137	67885.56146	-1.340307	46.299204
	10	63645.65826	64620.33147	65777.36928	66815.00934	67884.45378	0	46.299204
	11	63646.40247	64621.61759	65784.05733	66822.13856	67885.49712	-1.286128	46.299204
	12	63646.0613	64620.85775	65777.65389	66814.93414	67885.32645	0	45.693814
	13	63647.29109	64622.54915	65785.36231	66823.17548	67886.02884	-1.691396	45.693814
	14	63646.52803	64621.32448	65777.88726	66815.34253	67885.44314	0	45.693814
	15	63647.76147	64622.9573	65785.36782	66823.42032	67886.49746	-1.632822	45.693814
	16	63646.65594	64621.38095	65778.31033	66815.0262	67885.91553	0	45.693814
	17	63648.0473	64623.24957	65785.53369	66824.50988	67886.55282	-1.868625	45.693814
	18	63646.76365	64621.67419	65778.24024	66815.466	67885.85265	0	45.693814
	19	63647.87226	64623.13288	65785.70873	66824.0431	67886.90291	-1.45869	45.693814
	20	63647.28878	64622.08262	65778.29858	66815.64105	67886.37778	0	45.693814
	21	63648.28069	64623.48296	65785.70873	66824.45153	67887.253	-1.400342	45.693814

Appendix 1: Sensor manufacturer

Application	Manufacturer	P/N	FR (kHz)
Heat/water	AudioWell http://www.audiowell.com/en/product- detail.aspx?id=80	Brass Pipe For Heat meter DN25. Ultrasonic flow sensor AW5Y0980K04L193Z	1000
Heat/water	AudioWell http://www.audiowell.com/en/product- detail.aspx?id=80	Brass Pipe For Heat meter DN20. Ultrasonic flow sensor AW5Y0980K08L151Z	1000