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Permanent Magnet Synchronous Motors

Bilal Akin C2000 Systems and Applications Team
Manish Bhardwaj

Abstract

This application note presents a solution to control a permanent magnet synchronous motor (PMSM)
using the TMS320F2803x microcontrollers. TMS320F2803x devices are part of the family of C2000
microcontrollers which enable cost-effective design of intelligent controllers for three phase motors by
reducing the system components and increase efficiency With these devices it is possible to realize far
more precise digital vector control algorithms like the Field Orientated Control (FOC). This algorithm’s
implementation is discussed in this document. The FOC algorithm maintains efficiency in a wide range
of speeds and takes into consideration torque changes with transient phases by processing a dynamic
model of the motor.

This application note covers the following:
= A theoretical background on field oriented motor control principle.

= |Incremental build levels based on modular software blocks.
= Experimental results
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Introduction

A brushless Permanent Magnet Synchronous motor (PMSM) has a wound stator, a permanent magnet
rotor assembly and internal or external devices to sense rotor position. The sensing devices provide
position feedback for adjusting frequency and amplitude of stator voltage reference properly to maintain
rotation of the magnet assembly. The combination of an inner permanent magnet rotor and outer
windings offers the advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor
size. Moreover, the elimination of brushes reduces noise, EMI generation and suppresses the need of
brushes maintenance.

This document presents a solution to control a permanent magnet synchronous motor using the
TMS320F2803x. This new family of DSPs enables cost-effective design of intelligent controllers for
brushless motors which can fulfill enhanced operations, consisting of fewer system components, lower
system cost and increased performances. The control method presented relies on the field orientated
control (FOC). This algorithm maintains efficiency in a wide range of speeds and takes into
consideration torque changes with transient phases by controlling the flux directly from the rotor
coordinates. This application report presents the implementation of a control for sinusoidal PMSM
motor. The sinusoidal voltage waveform applied to this motor is created by using the Space Vector
modulation technique. Minimum amount of torque ripple appears when driving this sinusoidal BEMF
motor with sinusoidal currents.

Permanent Magnet Motors

There are primarily two types of three-phase permanent magnet synchronous motors. One uses rotor
windings fed from the stator and the other uses permanent magnets. A motor fitted with rotor windings,
requires brushes to obtain its current supply and generate rotor flux. The contacts are made of rings
and have any commutator segments. The drawbacks of this type of structure are maintenance needs
and lower reliability.

Replacing the common rotor field windings and pole structure with permanent magnets puts the motor
into the category of brushless motors. It is possible to build brushless permanent magnet motors with
any even number of magnet poles. The use of magnets enables an efficient use of the radial space and
replaces the rotor windings, therefore suppressing the rotor copper losses. Advanced magnet materials
permit a considerable reduction in motor dimensions while maintaining a very high power density.

Fig. 1 A three-phase synchronous motor with a one permanent magnet pair pole rotor



Synchronous Motor Operation

= Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a
constant rotor flux. This rotor flux usually has a constant magnitude. The stator windings when
energized create a rotating electromagnetic field. To control the rotating magnetic field, it is
necessary to control the stator currents.

= The actual structure of the rotor varies depending on the power range and rated speed of the
machine. Permanent magnets are suitable for synchronous machines ranging up-to a few Kilowatts.
For higher power ratings the rotor usually consists of windings in which a DC current circulates. The
mechanical structure of the rotor is designed for number of poles desired, and the desired flux
gradients desired.

= The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly
mounted to the frame, and the rotor is free to rotate, the rotor will rotate, producing a useful
mechanical output.

= The angle between the rotor magnetic field and stator field must be carefully controlled to produce
maximum torque and achieve high electromechanical conversion efficiency. For this purpose a fine
tuning is needed after closing the speed loop in order to draw minimum amount of current under the
same speed and torque conditions.

= The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field;
otherwise the rotor will experience rapidly alternating positive and negative torque. This will result in
less than optimal torque production, and excessive mechanical vibration, noise, and mechanical
stresses on the machine parts. In addition, if the rotor inertia prevents the rotor from being able to
respond to these oscillations, the rotor will stop rotating at the synchronous frequency, and respond
to the average torque as seen by the stationary rotor: Zero. This means that the machine experiences
a phenomenon known as ‘pull-out’. This is also the reason why the synchronous machine is not self
starting.

= The angle between the rotor field and the stator field must be equal to 90° to obtain the highest
mutual torque production. This synchronization requires knowing the rotor position in order to
generate the right stator field.

= The stator magnetic field can be made to have any direction and magnitude by combining the
contribution of different stator phases to produce the resulting stator flux.

FRotor Tiell

Stator field

Fig. 2 The interaction between the rotating stator flux, and the rotor flux produces a torque which
will cause the motor to rotate.



Field Oriented Control

Introduction

In order to achieve better dynamic performance, a more complex control scheme needs to be applied,
to control the PM motor. With the mathematical processing power offered by the microcontrollers, we
can implement advanced control strategies, which use mathematical transformations in order to
decouple the torque generation and the magnetization functions in PM motors. Such de-coupled torque
and magnetization control is commonly called rotor flux oriented control, or simply Field Oriented
Control (FOC).

The main philosophy behind the FOC

In order to understand the spirit of the Field Oriented Control technique, let us start with an overview of
the separately excited direct current (DC) Motor. In this type of motor, the excitation for the stator and
rotor is independently controlled. Electrical study of the DC motor shows that the produced torque
and the flux can be independently tuned. The strength of the field excitation (i.e. the magnitude of
the field excitation current) sets the value of the flux. The current through the rotor windings determines
how much torque is produced. The commutator on the rotor plays an interesting part in the torque
production. The commutator is in contact with the brushes, and the mechanical construction is designed
to switch into the circuit the windings that are mechanically aligned to produce the maximum torque.
This arrangement then means that the torque production of the machine is fairly near optimal all the
time. The key point here is that the windings are managed to keep the flux produced by the rotor
windings orthogonal to the stator field.
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Fig 3. Separated excitation DC motor model, flux and torque are independently controlled
and the current through the rotor windings determines how much torque is produced.

AC machines do not have the same key features as the DC motor. In both cases we have only one
source that can be controlled which is the stator currents. On the synchronous machine, the rotor
excitation is given by the permanent magnets mounted onto the shaft. On the synchronous motor, the
only source of power and magnetic field is the stator phase voltage. Obviously, as opposed to the DC
motor, flux and torque depend on each other.

The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be
able to separately control the torque producing and magnetizing flux components. The control
technique goal is to (in a sense), imitate the DC motor’s operation. FOC control will allow us to
decouple the torque and the magnetizing flux components of stator current. With decoupled control of
the magnetization, the torque producing component of the stator flux can now be thought of as
independent torque control. To decouple the torque and flux, it is necessary to engage several
mathematical transforms, and this is where the microcontrollers add the most value. The processing
capability provided by the microcontrollers enables these mathematical transformations to be carried
out very quickly. This in turn implies that the entire algorithm controlling the motor can be executed at a
fast rate, enabling higher dynamic performance. In addition to the decoupling, a dynamic model of the
motor is now used for the computation of many quantities such as rotor flux angle and rotor speed. This
means that their effect is accounted for, and the overall quality of control is better.



According to the electromagnetic laws, the torque produced in the synchronous machine is equal to
vector cross product of the two existing magnetic fields:

T, =B B

stator x rotor

This expression shows that the torque is maximum if stator and rotor magnetic fields are orthogonal
meaning if we are to maintain the load at 90 degrees. If we are able to ensure this condition all the time,
if we are able to orient the flux correctly, we reduce the torque ripple and we ensure a better dynamic
response. However, the constraint is to know the rotor position: this can be achieved with a position
sensor such as incremental encoder. For low-cost application where the rotor is not accessible,
different rotor position observer strategies are applied to get rid of position sensor.

In brief, the goal is to maintain the rotor and stator flux in quadrature: the goal is to align the stator flux
with the q axis of the rotor flux, i.e. orthogonal to the rotor flux. To do this the stator current component
in quadrature with the rotor flux is controlled to generate the commanded torque, and the direct
component is set to zero. The direct component of the stator current can be used in some cases for
field weakening, which has the effect of opposing the rotor flux, and reducing the back-emf, which
allows for operation at higher speeds.

Technical Background

The Field Orientated Control consists of controlling the stator currents represented by a vector. This
control is based on projections which transform a three phase time and speed dependent system into a
two co-ordinate (d and q co-ordinates) time invariant system. These projections lead to a structure
similar to that of a DC machine control. Field orientated controlled machines need two constants as
input references: the torque component (aligned with the q co-ordinate) and the flux component
(aligned with d co-ordinate). As Field Orientated Control is simply based on projections the control
structure handles instantaneous electrical quantities. This makes the control accurate in every working
operation (steady state and transient) and independent of the limited bandwidth mathematical model.
The FOC thus solves the classic scheme problems, in the following ways:

= The ease of reaching constant reference (torque component and flux component of the stator current)

= The ease of applying direct torque control because in the (d,q) reference frame the expression of the
torque is:

mocypis,

By maintaining the amplitude of the rotor flux (¥, ) at a fixed value we have a linear relationship

between torque and torque component (isq). We can then control the torque by controlling the torque
component of stator current vector.

Space Vector Definition and Projection

The three-phase voltages, currents and fluxes of AC-motors can be analyzed in terms of complex
space vectors. With regard to the currents, the space vector can be defined as follows. Assuming that i,

ib, i are the instantaneous currents in the stator phases, then the complex stator current vector i, is
defined by:
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where o = ejgﬁ and «? = ejgﬁ , represent the spatial operators. The following diagram shows the stator
current complex space vector:
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Fig.4 Stator current space vector and its component in (a,b,c)

where (a,b,c) are the three phase system axes. This current space vector depicts the three phase
sinusoidal system. It still needs to be transformed into a two time invariant co-ordinate system. This
transformation can be split into two steps:

= (a,b,c) = («, B) (the Clarke transformation) which outputs a two co-ordinate time variant system
= (a,f)= (d,q) (the Park transformation) which outputs a two co-ordinate time invariant system

The (a,b,c) = (a, 8) Projection (Clarke transformation)

The space vector can be reported in another reference frame with only two orthogonal axis called («, ) .
Assuming that the axis a and the axis « are in the same direction we have the following vector diagram:
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Fig.5 Stator current space vector and its components in the stationary reference frame

The projection that modifies the three phase system into the («, ) two dimension orthogonal system is
presented below.

. 1. 2 .
lS,B :ﬁla +$lb

The two phase («, £) currents are still depends on time and speed.



The (a,8) = (d,q) Projection (Park Transformation)

This is the most important transformation in the FOC. In fact, this projection modifies a two phase
orthogonal system («, ) in the d,q rotating reference frame. If we consider the d axis aligned with the
rotor flux, the next diagram shows, for the current vector, the relationship from the two reference frame:
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Fig.6 Stator current space vector and its component in (c, ) and in the d,q

rotating reference frame

where 0 is the rotor flux position. The flux and torque components of the current vector are determined
by the following equations:

lgq =1y O8O +igsing

Iy =g SINO +i 5 c080

These components depend on the current vector («, f) components and on the rotor flux position; if we
know the right rotor flux position then, by this projection, the d,g component becomes a constant. Two

phase currents now turn into dc quantity (time-invariant). At this point the torque control becomes easier

where constant isg (flux component) and iy (torque component) current components controlled
independently.



The Basic Scheme for the FOC

The following diagram summarizes the basic scheme of torque control with FOC:
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Fig7 Basic scheme of FOC for AC motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module.
The outputs of this projection are designated is, and iss. These two components of the current are the
inputs of the Park transformation that gives the current in the d,q rotating reference frame. The isy and
isq components are compared to the references igyrer (the flux reference) and isqeer (the torque reference).
At this point, this control structure shows an interesting advantage: it can be used to control either
synchronous or HVYPM machines by simply changing the flux reference and obtaining rotor flux position.
As in synchronous permanent magnet a motor, the rotor flux is fixed determined by the magnets; there
is no need to create one. Hence, when controlling a PMSM, isges Should be set to zero. As HVPM
motors need a rotor flux creation in order to operate, the flux reference must not be zero. This
conveniently solves one of the major drawbacks of the “classic” control structures: the portability from
asynchronous to synchronous drives. The torque command isqer could be the output of the speed
regulator when we use a speed FOC. The outputs of the current regulators are Vgrer and Vggrer; they are
applied to the inverse Park transformation. The outputs of this projection are Ver and Vet Which are
the components of the stator vector voltage in the («, §) stationary orthogonal reference frame. These
are the inputs of the Space Vector PWM. The outputs of this block are the signals that drive the inverter.
Note that both Park and inverse Park transformations need the rotor flux position. Obtaining this rotor
flux position depends on the AC machine type (synchronous or asynchronous machine). Rotor flux
position considerations are made in a following paragraph.

Rotor Flux Position

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the
rotor flux is not aligned with d-axis and isq and isq are incorrect flux and torque components of the stator
current. The following diagram shows the (a,b,c), («, ) and (d,q) reference frames, and the correct

position of the rotor flux, the stator current and stator voltage space vector that rotates with d,q
reference at synchronous speed.
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Fig.8 Current, voltage and rotor flux space vectors in the d,q rotating reference frame and their relationship
with a,b,c and (a, ) stationary reference frame

The measure of the rotor flux position is different if we consider synchronous or asynchronous motors:

= In the synchronous machine the rotor speed is equal to the rotor flux speed. Then 6 (rotor flux
position) is directly measured by position sensor or by integration of rotor speed.

» In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip
speed), then it needs a particular method to calculate 6. The basic method is the use of the current
model which needs two equations of the motor model in d,q reference frame.

Theoretically, the field oriented control for the PMSM drive allows the motor torque be controlled
independently with the flux like DC motor operation. In other words, the torque and flux are decoupled
from each other. The rotor position is required for variable transformation from stationary reference
frame to synchronously rotating reference frame. As a result of this transformation (so called Park
transformation), g-axis current will be controlling torque while d-axis current is forced to zero. Therefore,
the key module of this system is the information of rotor position from QEP encoder. The overall block
diagram of this project is depicted in Fig. 9.
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Fig.9 Overall block diagram of sensored field oriented control



Benefits of 32-bit C2000 Controllers for Digital Motor Control (DMC)

C2000 family of devices posses the desired computation power to execute complex control algorithms
along with the right mix of peripherals to interface with the various components of the DMC hardware
like the ADC, ePWM, QEP, eCAP etc. These peripherals have all the necessary hooks for
implementing systems which meet safety requirements, like the trip zones for PWMs and comparators.
Along with this the C2000 ecosystem of software (libraries and application software) and hardware
(application kits) help in reducing the time and effort needed to develop a Digital Motor Control solution.
The DMC Library provides configurable blocks that can be reused to implement new control strategies.
IQMath Library enables easy migration from floating point algorithms to fixed point thus accelerating the
development cycle.

Thus, with C2000 family of devices it is easy and quick to implement complex control algorithms
(sensored and sensorless) for motor control. The use of C2000 devices and advanced control schemes
provides the following system improvements

= Favors system cost reduction by an efficient control in all speed range implying right dimensioning of
power device circuits

= Use of advanced control algorithms it is possible to reduce torque ripple, thus resulting in lower
vibration and longer life time of the motor

= Advanced control algorithms reduce harmonics generated by the inverter thus reducing filter cost.
= Use of sensorless algorithms eliminates the need for speed or position sensor.
= Decreases the number of look-up tables which reduces the amount of memory required

= The Real-time generation of smooth near-optimal reference profiles and move trajectories, results in
better-performance

= Generation of high resolution PWM'’s is possible with the use of ePWM peripheral for controlling the
power switching inverters

= Provides single chip control system
For advanced controls, C2000 controllers can also perform the following:

= Enables control of multi-variable and complex systems using modern intelligent methods such as
neural networks and fuzzy logic.

= Performs adaptive control. C2000 controllers have the speed capabilities to concurrently monitor the
system and control it. A dynamic control algorithm adapts itself in real time to variations in system
behaviour.

= Performs parameter identification for sensorless control algorithms, self commissioning, online
parameter estimation update.

= Performs advanced torque ripple and acoustic noise reduction.

= Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of
mechanical vibrations, failure modes can be predicted in early stages.

= Produces sharp-cut-off notch filters that eliminate narrow-band mechanical resonance. Notch filters
remove energy that would otherwise excite resonant modes and possibly make the system unstable.
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Tl Literature and Digital Motor Control (DMC) Library

The Digital Motor Control (DMC) library is composed of functions represented as blocks. These blocks
are categorized as Transforms & Estimators (Clarke, Park, Sliding Mode Observer, Phase Voltage
Calculation, and Resolver, Flux, and Speed Calculators and Estimators), Control (Signal Generation,
PID, BEMF Commutation, Space Vector Generation), and Peripheral Drivers (PWM abstraction for
multiple topologies and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular
software macro is separately documented with source code, use, and technical theory. Check the
folders below for the source codes and explanations of macro blocks:

= C:\Th\controlSUITE\libs\app_libs\motor_control\math_blocks\fixed
= C:\ThcontrolSUITE\libs\app_libs\motor_control\drivers\f2803x

These modules allow users to quickly build, or customize, their own systems. The Library supports the
three motor types: ACI, BLDC, PMSM, and comprises both peripheral dependent (software drivers) and
target dependent modules.

The DMC Library components have been used by Tl to provide system examples. At initialization all
DMC Library variables are defined and inter-connected. At run-time the macro functions are called in
order. Each system is built using an incremental build approach, which allows some sections of the
code to be built at a time, so that the developer can verify each section of their application one step at a
time. This is critical in real-time control applications where so many different variables can affect the
system and many different motor parameters need to be tuned.

Note: TI DMC modules are written in form of macros for optimization purposes (refer to application
note SPRAAK2 for more details at Tl website). The macros are defined in the header files. The user
can open the respective header file and change the macro definition, if needed. In the macro definitions,
there should be a backslash ”\” at the end of each line as shown below which means that the code
continue in the next line. Any character including invisible ones like “space” after the backslash will
cause compilation error. Therefore, make sure that the backslash is the last character in the line. In
terms of code development, the macros are almost identical to C function, and the user can easily
convert the macro definition to a C functions.

#define PARK MACRO (v) \

\

v.Ds = _IQmpy (v.Alpha,v.Cosine) + _IQmpy (v.Beta,v.Sine); \
v.Qs = _IQmpy (v.Beta,v.Cosine) - _IQmpy (v.Alpha,v.Sine);

A typical DMC macro definition

11



System Overview

This document describes the “C” real-time control framework used to demonstrate the sensored field
oriented control of HYPM motors. The “C” framework is designed to run on TMS320C2803x based
controllers on Code Composer Studio. The framework uses the following modules’:

Macro Names Explanation

CLARKE Clarke Transformation

PARK / IPARK Park and Inverse Park Transformation

PID PID Regulators

RC Ramp Controller (slew rate limiter)

RG Ramp / Sawtooth Generator

QEP QEP Drive

SPEED_FR Speed Measurement (based on sensor signal frequency)

SVGEN Space Vector PWM with Quadrature Control (includes IClarke Trans.)
PWM / PWMDAC PWM and PWMDAC Drives

! Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro

In this system, the sensored Field Oriented Control (FOC) of Permanent Magnet Synchronous

Motor (PMSM) will be experimented with and will explore the performance of speed control. The PM
motor is driven by a conventional voltage-source inverter. The TMS320x2803x control card is used to
generate three pulse width modulation (PWM) signals. The motor is driven by an integrated power
module by means of space vector PWM technique. Two phase currents of PM motor (ia and ib) are
measured from the inverter and sent to the TMS320x2803x via two analog-to-digital converters (ADCs).
In addition, the DC-bus voltage in the inverter is measured and sent to the TMS320x2803x via an ADC.
This DC-bus voltage is necessary to calculate the three phase voltages when the switching functions
are known.

HVPM_Sensored project has the following properties:

C Framework

Program Memory Usage | Data Memory Usage1
2803x 2803x

HVPM_Sensored 3621 words? 1172 words

System Name

! Excluding the stack size
?Excluding “lQmath” Look-up Tables
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CPU Utilization of Sensored FOC of PMSM

Name of Modules * Number of Cycles

Ramp Controller 29
Clarke Tr. 28
Park Tr. 142
| Park Tr. 41

Speed Fr 67
QEP Drive 79
3 x Pid 167
Space Vector Gen. 137
Pwm Drv 74

Contxt Save etc. 74

Pwm Dac (optional)

DataLog (optional)

Ramp Gen (optional)

Total Number of Cycles 844 **
CPU Utilization @ 60 Mhz 14.1% ***
CPU Utilization @ 40 Mhz 21.1% ***

* The modules are defined in the header files as “macros”
** 1169 including the optional modules

*** At 10 kHz ISR freq.

System Features

Development /Emulation

Code Composer Studio V.4.0 (or above) with Real Time debugging

Target Controller

TMS320F2803x

PWM Frequency

10kHz PWM (Default), 60kHz PWMDAC

PWM Mode

Symmetrical with a programmable dead band

Interrupts

EPWM1 Time Base CNT_Zero — Implements 10 kHz ISR execution rate

Peripherals Used

PWM 1 /2 / 3 for motor control

PWM 5A, 6A, 7A & 7B for DAC outputs

QEP1AB, |

ADC A1 for DC Bus voltage sensing, B4 & B6 for phase current sensing

13




The overall system implementing a 3-ph HVPM motor control is depicted in Fig.10. The HVPM motor is
driven by the conventional voltage-source inverter. The TMS320F2803x is being used to generate the
six pulse width modulation (PWM) signals using a space vector PWM technique, for six power switching
devices in the inverter. Two input currents of the HVPM motor (ia and ib) are measured from the
inverter and they are sent to the TMS320F2803x via two analog-to-digital converters (ADCs). In
addition, the DC-bus voltage in the inverter is measured and sent to the TMS320F2803x via an ADC as
well. This DC-bus voltage is necessary in order to calculate three phase voltages of HYPM motor when
the switching functions are known.
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Fig 10 A 3-ph PM motor drive implementation

The software flow is described in the Figure 11 below.

QEP1

14



c_int0

 J

Initialize S /W
modules

r

Initialize time
bases

h J

Enable ePWM time
base CNT _ zero
and core interrupt

r

Initialize other
system and
module parameters

h J

Background
<—»{ INT 3
loop

Interrupt INT3

ePWM1_INT_ISR

v

Save contexts and clear
interrupt flags

'

Execute the ADC
conversion ( phase
currents and dc bus

voltage )

'

Execute the clarke / park
transformations

'

Execute the PID
modules (iq, id and
speed )

!

Execute the ipark and
svgen _ dq modules

'

Execute QEP driver

'

Execute speed
measurement module

'

Execute the pwm
modules

'

Fig.11 System software flowchart
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Hardware Configuration (HVDMC Kit)

Please refer to the HVMotorCtrl+PFC How to Run Guide and HW Reference Guide found:

C:\ThcontrolSUITE\development_kits\HVMotorCtrl+PfcKit\~Docs

for an overview of the kit's hardware and steps on how to setup this kit. Some of the hardware setup
instructions are captured below for quick reference

(i)

(ii)

HW Setup Instructions
Open the Lid of the HV Kit

Install the Jumpers [Main]-J6, J7 and J8, J9 for 3.3V, 5V and 15V power rails and JTAG reset line,
make sure that the jumpers [Main]-J3, J4 andJ5 are not populated.

Unpack the DIMM style controlCARD and place it in the connector slot of [Main]-J1. Push vertically
down using even pressure from both ends of the card until the clips snap and lock. (to remove the
card simply spread open the retaining clip with thumbs)

Connect a USB cable to connector [M3]-JP1. This will enable isolated JTAG emulation to the
C2000 device. [M3]-LD1 should turn on. Make sure [M3]-J5 is not populated. If the included Code
Composer Studio is installed, the drivers for the onboard JTAG emulation will automatically be
installed. If a windows installation window appears try to automatically install drivers from those
already on your computer. The emulation drivers are found at
http://www.ftdichip.com/Drivers/D2XX.htm.

The correct driver is the one listed to support the FT2232.

If a third party JTAG emulator is used, connect the JTAG header to [M3]-J2 and additionally [M3]-
J5 needs to be populated to put the onboard JTAG chip in reset.

Ensure that [M6]-SW1 is in the “Off’ position. Connect 15V DC power supply to [M6]-JP1.

Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as
well indicating the control card is receiving power from the board.

Note that the motor should be connected to the [M5]-TB3 terminals after you finish with the first
incremental build step.

Note the DC Bus power should only be applied during level 1 when instructed to do so. The two
options to get DC Bus power are discussed below,

To use DC power supply, set the power supply output to zero and connect [Main]-BS5 and BS6 to
DC power supply and ground respectively.

To use AC Mains Power, Connect [Main]-BS1 and BS5 to each other using banana plug cord. Now
connect one end of the AC power cord to [Main]-P1. The other end needs to be connected to
output of a variac. Make sure that the variac output is set to zero and it is connected to the wall
supply through an isolator.

! Since the motor is rated at 200V, the motor can run only at a certain speed and torque range properly without saturating the
PID regulators in the control loop when the DC bus is fed from 110V AC entry. As an option, the user can run the PFC on HV
DMC drive platform as boost converter to increase the DC bus voltage level or directly connect a DC power supply.
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For reference the pictures below show the jumper and connectors that need to be connected for this

lab.

Entry

BS3
[
GND

3 phase Inverter
) + PFC EWM

@ PFC-1n

® [}

L1 ] [Re] [er]
HS
®

I%I PFC-Out
Dl

sy —
D ERLEE s e
®3V3 @lfb-1 @Vfb [ —
Caution!
8 High Voltage
@ in 8 +1sv @ B]
° E :
o
[ ) @ i : a (] g]
>
o - 2 =
. g ' GNDp RS B B
I 3 4
¢e <+ ® =
ol 3 H
e @ e n onos @
® o
—
o RT1 AC Pur entry - 750K ®
% e o @ = g
o o » v - ~
1 o 0—0 (] (]
VAR1
®
Q& ng ® ® [ ] =]
%] o—0 ~ [}
E ®
@ Tt o= : ha DB1 R
@ e T EIeETeEIET go

Caution!
High Voltage

Instruments
J6 J7

5;::::::>

.

o
3

CONTROL tRs51

“_
N O
o _—
3
§ -
E
| |
g a PM
& =
9| Motor
EMcze (=}
3 o E
® Vib-v I::IE23 I -
o vivw (e 1y s IR ]E |
+@8lcr [R3] o Cmmm=l =
rea[w m]
Encoder

&
I3

[LILITLI
[o7]

Fig. 12 Using AC Power to generate DC Bus Power

A CAUTION: The inverter bus capacitors remain charged for a long time after the high

power line supply is switched off/disconnected. Proceed with caution!
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Fig. 13 Using External DC power supply to generate DC-Bus for the inverter

A CAUTION: The inverter bus capacitors remain charged for a long time after the high

power line supply is switched off/disconnected. Proceed with caution!
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Software Setup Instructions to Run HVYPM_Sensored Project

Please refer to the “Software Setup for HYMotorCtrl+PFC Kit Projects” section in the HVMotorCtrl+PFC
Kit How to Run Guide which can be found at

C:\ThcontrolSUITE\development_kits\HVMotorCtrl+PfcKit\~Docs

This section goes over how to install CCS and set it up to run with this project.

Select the HVPM_Sensored as the active project. Select the active build configuration to be set as
F2803x_RAM. Verify that the build level is set to 1, and then right click on the project name and select
“Rebuild Project”. Once build completes, launch a debug session to load the code into the controller.
Now open a watch window and add the critical variables as shown in the table below and select the
appropriate Q format for them.

P

. Mame

=
)=
(=
)=
= SpeedRef
)=
=
)=
)=
= clarkel As
()=

X

EnableFlag
lsw

Idref
Igref

pidl _spd.kp
pid1_spd.Ki
dlog. prescalar
IstTicker

clarkel .Bs

Yalue
]
0
0.0
0.04999995232
0.3000000119
1,299999952
0.01999993093
i

0
0
0

Format
Matural
Makural
Q-WalueiZ4)
Q-value(z4)
C-WalueiZ4)
Q-value(z4)
Q-WalueiZ4)
Makural
Makural
C-WalueiZ4)
Q-WalueiZ4)

= i z;ﬁ Qéh
Address
0=00009E49@Data
0=00009E40i@Datka
0=00009B62@Data
0=00009B60@Data
0=00009B66@0atka
O=00009C CaimData
O=00009Da@bata
0=00009C5F@Data
0=00009B70@Data
0=00009E90@Data
0=00009B92@Data

& @ rs
Type

unsigned ink
unsigred ink
long
lang
long
lang
long
ink
unsigned long
long
lang

Table 1 Watch Window Variables

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location C:\TN\ControlSUITE\developement_kits\HVMotorCtrl+PfcKit\HVPM_sensored\ . Click on
Continuous Refresh button@ﬁ on the top left corner of the graph tab to enable periodic capture of data
from the microcontroller.
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Incremental System Build

The system is gradually built up in order for the final system can be confidently operated. Four phases
of the incremental system build are designed to verify the major software modules used in the system.

Table 1 summarizes the modules testing and using in each incremental system build.

Software Module Phase 1 Phase 2 Phase 3 Phase 4
PWMDAC MACRO \ \ v \
RC_MACRO \ \ N \
RG_MACRO \ \ N \
IPARK_MACRO \V \ \ \
SVGEN MACRO \V \ \ \
PWM_ MACRO Y \ N \
CLARKE_MACRO W \ \
PARK_MACRO W N \
QEP_MACRO W \
SPEED FR_MACRO W \
PID_MACRO (IQ) W \
PID MACRO (ID) W \
PID_MACRO (SPD) \V
Note: the symbol ¥ means this module is using and the symbol v~ means this module is testing in this phase.

Table 2 Testing modules in each incremental system build
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Level 1 Incremental Build

At this step keep the motor disconnected. Assuming the load and build steps described in the
“‘HVMotorCtrl+PFC Kit How To Run Guide” completed successfully, this section describes the steps for
a “minimum” system check-out which confirms operation of system interrupt, the peripheral & target
independent |_PARK_MACRO (inverse park transformation) and SVGEN_MACRO (space vector
generator) modules and the peripheral dependent PWM_MACRO (PWM initializations and update)
modules. Open HVPM_Sensored-Settings.h and select level 1 incremental build option by setting the
BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.
» SpeedRef (Q24): for changing the rotor speed in per-unit.

» VdTesting (Q24): for changing the d-qxis voltage in per-unit.

» VgTesting (Q24): for changing the g-axis voltage in per-unit.

Level 1A (SVGEN_MACRO Test)

The SpeedRef value is specified to the RG_MACRO module via RC_MACRO module. The
IPARK_MACRO module is generating the outputs to the SVGEN_MACRO module. Three outputs from
SVGEN_MACRO module are monitored via the graph window as shown in Fig. 14 where Ta, Tb, and
Tc waveform are 120° apart from each other. Specifically, Tb lags Ta by 120° and Tc leads Ta by 120°.
Check the PWM test points on the board to observe PWM pulses (PWM-1H to 3H and PWM-1L to 3L)
and make sure that the PWM module is running properly.

P DualTimes -0 52 = O e DualTimes -1 52 =0
y-BETEEAR SR % 0T LEe A P BE R0
0.14 0.14
0.04 0.04
0.06 0.06
0.16 0.16

) T T T T T T ) T T T
600 8650 8700 8750 £000 6050 6100 6150
sample sampie

[ta¢ DualTimeE -0 52 = O | e DualTimeE -1 52 =0
HCEF SRR PP R H DT G- HE RS (ES REH DT
0.14 0.3
0.04 0.1
.06 0.1
0.16 0.3

T T T T T T T
8600 8650 8700 8750 6000 6050 6100 6150
sample sampie

Fig 14 Output of SVGEN, Ta, Tb, Tc and Tb-Tc waveforms
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Level 1B (testing The PWMDAC Macro)

To monitor internal signal values in real time PWM DACs are very useful tools. Present on the HV DMC
board are PWM DAC’s which use an external low pass filter to generate the waveforms ([Main]-J14,
DAC-1 to 4). A simple 1%—order low-pass filter RC circuit is placed on the board to filter out the high
frequency components. The selection of R and C value (or the time constant, 1) is based on the cut-off
frequency (f;), for this type of filter the relation is as follows:

1
T=RC=—-+
27,
For example, R=1.8kQ and C=100nF, it gives f.= 884.2 Hz. This cut-off frequency has to be below the
PWM frequency. Using the formula above, one can customize low pass filters used for signal being

monitored. The DAC circuit low pass filters ([Main]-R10 t013 & [Main]-C15 to18) is shipped with 2.2kQ
and 220nF on the board. Refer to application note SPRAAS88A for more details at Tl website.

AN AN
7 ./ \ \

\./ \\// S
Chl_1.00V % M20.0ms A Chl S 20.0mV

-+ 0.00000 s

Fig.15 DAC 1-4 outputs showing Ta, Tb, Tc and Tb-Tc waveforms

Level 1C (PWM_MACRO and INVERTER Test)

After verifying SVGEN_MACRO module in Level 1a, the PWM_MACRO software module and the 3-
phase inverter hardware are tested by looking at the low pass filter outputs. For this purpose, if using the
external DC power supply gradually increase the DC bus voltage and check the Vfb-U, V and W test
points using an oscilloscope or if using AC power entry slowly change the variac to generate the DC bus
voltage. The Inverter phase voltage dividers and waveform monitoring filters ([M5]-R19 to27 & [M5]-C21
to 23) enable the generation of the waveform. This circuit is used to observe low-pass filtered phase
voltage waveform to make sure that the inverter stage is working properly. Note that the default RC
values are optimized for BLDC back-emf high frequency noise filtering and the default cut-off is much
higher than of a typical low-pass filter used for signal monitoring. A value closer to 0.1uf for the [M5]-C21
to C23 would give better waveforms.

After verifying this, reduce the DC Bus voltage, take the controller out of real time mode
& (disable), reset the processor:g (see “HVMotorCtrI+PFC Kit How To Run Guide” for details).

Note that after each test, this step needs to be repeated for safety purposes. Also note that
improper shutdown might halt the PWMs at some certain states where high currents can be drawn,
hence caution needs to be taken while doing be taken while doing these experiments.
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Level 1 - Incremental System Build Block Diagram

PWM 1A
>
VqgTesting ipark_Q ipark_q Ubeta Ta Mfunc_c1 PWM 1B
—_— > > >
. IPARK SVGEN
theta_ip MACRO MACRO | Tb Mfunc_c2 pwm  |ev| PWM2A
4 MACRO 4
i ipark_D ipark_d Ualfa Tc Mfunc_c3 PWM 2B
VdTesting <5 — Qo/HW |Hw >
Mfunc_p PWM 3A
—> >
PWM 3B
set value . rmp_freq >
RC " RG
trgt value,| MACRO mp_offset f MACRO | rmp_oul
SpeedRef : set_eg trgt rmp_gain |/]/|/ ‘w < Pwm5A <wro
DAC 2 |!:°w « Pwm6A PMVA%%%C PwmDacPointer1
ass l
Scope pacs F(i:Iter :Pwm7A —— PwmDacPointer2
ct
DAC 4 < Pwm7B : : P PwmDacPointer3
=t - —= svgen._Ta
8 K Diog 1 gen._
= \ v/ «——| DbLoG Dlog 2 svgen._Tb
ST e—| e feRoad  svgen. Te
. \ “J' ¢ i 2log 4 svgen._Ta-svgen._Tb [M5] Vib-U, V, W test points Inverter Phase
NI e e /M\ /'“V’\\ or DAC1 to 4 Outputs U,V or W

A

B \
Graph Window / \\ / \ _ti:l ------ or
’ o 8 R

PWMDAC channels
| c PWM 5A, 6A, 7A, 7B

Level 1 verifies the target independent modules, duty cycles and PWM update. The motor is disconnected at this level.
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Level 2 Incremental Build

Assuming section BUILD 1 is completed successfully, this section verifies the analog-to-digital
conversion, Clarke / Park transformations. Now the motor can be connected to HVYDMC board since the
PWM signals are successfully proven through level 1 incremental build. Note that the open loop
experiments are meant to test the ADCs, inverter stage, sw modules etc. Therefore running motor
under load or at various operating points is not recommended.

Open HVPM_Sensored-Settings.h and select level 2 incremental build option by setting the
BUILDLEVEL to LEVEL2 (#define BUILDLEVEL LEVELZ2). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

» SpeedRef (Q24): for changing the rotor speed in per-unit.
» VdTesting(Q24): for changing the d-gxis voltage in per-unit.
» VqTesting(Q24): for changing the g-axis voltage in per-unit.

During the open loop tests, VgTesting, SpeedRef and DC Bus voltages should be adjusted carefully for
PM motors so that the generated Bemf is lower than the average voltage applied to motor winding. This
will prevent the motor from stalling or vibrating.

Phase 2A — Testing the Clarke module

In this part the Clarke module will be tested. The three measured line currents are transformed to two
phase dq currents in a stationary reference frame. The outputs of this module can be checked from
graph window.

» The clark1.Alpha waveform should be same as the clark1.As waveform.
» The clark1.Alpha waveform should be leading the clark1.Beta waveform by 90° at the same
magnitude.

¢ DualTimes -6 52 = O | fwe puallimes -7 52 =0

Y-BIE S @ R E[E]k e 7| -
0.14 0.1z

T
3000 3050 3100 3150 2500 2850 2900 2950

sample sample
¢ DualTimet -6 52 = O | e Duallimeg -7 52 = O
DCElF AR | P BPRE el T - e R PSSR EH DT
1 0.1z
0.8 0.07
0.8 0.0z
0.4 -0.03
0.2 -0.08
i 013
—— 7 ——7r——7———
3000 3050 3100 3150 2800 2850 2000 2050
sample sample

Fig 16 The waveforms of Svgen_dq1.Ta, rg1.Out, and phase A&B currents”

* Deadband = 0.83 usec, Vdcbus=300V , dlog.prescalar=3
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Note that the open loop experiments are meant to test the ADCs, inverter stage, sw modules etc.
Therefore running motor under load or at various operating points is not recommended.

Since the low side current measurement technique is used employing shunt resistors on inverter phase
legs, the phase current waveforms observed from current test points ([M5]-Ifb-U, and [M5]-Ifb-V) are
composed of pulses as shown in Fig 17.

..ﬂ{

Fig.17 Amplified Phase A current

Level 2B - Calibrating the Phase Current Offset

Note that especially the low power motors draw low amplitude current after closing the speed loop
under no-load. The performance of the sensored control algorithm becomes prone to phase current
offset which might stop the motors or cause unstable operation. Therefore, the phase current offset
values need to be minimized at this step.

Set VqTesting, VdTesting and SpeedRef to zero in the code, recompile and run the system and watch
the clarke1.As & clarke1.Bs from watch window. Ideally the measured phase currents should be zero in
this case. Make sure that the clarke1.As & clarke1.Bs values are less than 0.001 or minimum possible.
If not, adjust the offset value in the code by going to:

clarkel.As = IQ15toIQ((AdcResult.ADCRESULTO<<3)- IQ15(0.50))<<1;

and changing IQ15(0.50) offset value (e.g. IQ15(0.5087) or IQ15(0.4988) depending
on the sign and amount of the offset)

Rebuild the project and then repeat the calibration procedure again until the clarke1.As and clarke1.Bs
offset values are minimum.

Hint: If the value of clarke1.As is greater than zero, then increase the offset term by the half of the
clarke1.As value in the watch window. If the value of clarke1.As is less than zero, then decrease the
offset term by the half of the clarke1.As in the watch window.

Note: Piccolo devices have 12-bit ADC and 16-bit ADC registers. The AdcResult.ADCRESULT
registers are right justified for Piccolo devices; therefore, the measured phase current value is firstly left
shifted by three to convert into Q15 format (0 to 1.0), and then converted to ac quantity (+ 0.5) following
the offset subtraction. Finally, it is left shifted by one (multiplied by two) to normalize the measured
phase current to + 1.0 pu.
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Level 2 - Incremental System Build Block Diagram

PWM1A
>
VqTesting ipark_Q ipark_q Ubeta Ta Mfunc_c1 PWM1B
. B — I .
] IPARK 7 SVGEN 4 4
theta_ip | MACRO MACRO | Tb . Mfunc_c2 pwm  [ev| PWM2A
. 4 4 MACRO 4
VdTesting ipark_D ipark_d Ualfa Tc Mfunc_c3 PWM2B
— > Q0 /HW |HW >
Mfunc_p PWM3A
.
set value ,_rmp freg' PWM3B
SpeedRef RC RG >
trgt value.| MACRO Maﬁ MACRO rmp_out
set_eq_trgt rmp_gain
a = ==y
park_D park_d clark_d clark_a AdcResult 0 ADCINX (la)
4 4 d
- PARK D CLARKE h
MACRO | theta_p| MACRO | clark_b AdcResult 1 | ADC |ABC|  ApciNy (Ib)
M N CONV | HW "
park_Q park_q clark_q AdcResult 2 ADCINz (Vdc
¢ Dlog 1 < <
Graph ¢ DLOG ¢ Dlog 2
Window «—— 2log3
¢ e ¢ Dlog 4
| PwmbDacPointer0
Low : PWMDAC PwmDacPointer1
Scope Igi?tsesr ) LG50 PwmDacPointer2
Cct CEi PwmDacPointer3
«— —

Level 2 verifies the analog-to-digital conversion, offset compensation, clarke / park transformations.

3-Phase

Inverter

a
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Level 3 Incremental Build

Assuming the previous section is completed successfully, this section verifies the dg-axis current
regulation performed by PID_REG3 modules and speed measurement modules. To confirm the
operation of current regulation, the gains of these two PID controllers are necessarily tuned for proper
operation.

Open HVPM_Sensored-Settings.h and select level 3 incremental build option by setting the
BUILDLEVEL to LEVELS3 (#define BUILDLEVEL LEVEL3). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable
real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker”
will be incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

= SpeedRef (Q24): for changing the rotor speed in per-unit.

= |dRef(Q24): for changing the d-gxis voltage in per-unit.

= IgRef(Q24): for changing the g-axis voltage in per-unit.

In this build, the motor is supplied by AC input voltage and the PM motor current is dynamically
regulated by using PID_REG3 module through the park transformation on the motor currents.

The steps are explained as follows:

= Compile/load/run program with real time mode.

= Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different), Idref to zero and
Igref to 0.05 pu (or another suitable value).

= Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus voltage.

= Check pid1_id.Fdb in the watch windows with continuous refresh feature whether or not it should be
keeping track pid1_id.Ref for PID_REG3 module. If not, adjust its PID gains properly.

= Check pid1_ig.Fdb in the watch windows with continuous refresh feature whether or not it should be
keeping track pid1_iq.Ref for PID_REG3 module. If not, adjust its PID gains properly.

= To confirm these two PID modules, try different values of pid1_id.Ref and pid1_iq.Ref or SpeedRef.

= For both PID controllers, the proportional, integral, derivative and integral correction gains may be
re-tuned to have the satisfied responses.

= Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage,
taking the controller out of realtime mode and reset. Now the motor is stopping.
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During running this build, the current waveforms in the CCS graphs should appear as follows*:

[ DualTimes -0 52 = O B oualTimes -1 52 =08
W-EHFE AR | HRFRE DT - O R S|Pk T
1 0.05
0.8 0.03
0.6 0.01
0.4 0.0
0.z -0.03
0 0.05

T T T T T T T T T
10000 10050 10100 10150 3500 9850 9000 9950
sample sample

[ DualTimes -0 52 = O B DualTimes -1 52 =08
u-EHFE SR SEF % E &S0 T - LA R S BEFRE o
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0.8 0.03
0.6 0,01
0.4 -0.01
0.z -0.03
0 0.05

— 7 ————————————
10000 10050 10100 10150 9500 9850 9900 9050
sample sample

Fig.18 Measured theta, rgl.out and Phase A & B current waveforms.

* Deadband = 0.83 usec, Vdcbus=300V, dlog.trig_value=100

Level 3B — QEP / SPEED_FR test

This section verifies the QEP1 driver and its speed calculation. Qep drive macro determines the rotor
position and generates a direction (of rotation) signal from the shaft position encoder pulses. Make
sure that the output of the incremental encoder is connected to [Main]-J10 and QEP/SPEED_FR
macros are initialized properly in the HYPM_Sensored.c file depending on the features of the speed
sensor. Refer to the pdf files regarding the details of related macros in motor control folder
(C:\TN\controlSUITE\libs\app_libs\motor_control). The steps to verify these two software modules
related to the speed measurement can be described as follows:

= Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).

= Compile/load/run program with real time mode and then increase voltage at variac / dc power
supply to get the appropriate DC-bus voltage.

= Add the soft-switch variable “Isw” to the watch window in order to switch from current loop
to speed loop. In the code Isw manages the loop setting as follows:

- Isw=0, lock the rotor of the motor.

- Isw=1, close the current loop.

= Set Isw to 1.Now the motor is running close to reference speed.Check the “speed1.Speed” in the
watch windows with continuous refresh feature whether or not the measured speed is around the
speed reference.

= To confirm these modules, try different values of SpeedRef to test the speed.
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» Use oscilloscope to view the electrical angle output, ElecTheta, from QEP_MACRO module and the
emulated rotor angle, rg1.0ut, from RG_MACRO at PWMDAC outputs with external low-pass
filters.

= Check that both gep1.ElecTheta and rg1.0Out are of saw-tooth wave shape and have the same
period. If the measured angle is in opposite direction, then change the order of motor cables
connected to inverter output (TB3 for HVYDMC Kkit).

= Check from Watch Window that gep1.IndexSyncFlag is set back to 0xFO every time it reset to 0 by
hand. Add the variable to the watch window if it is not already in the watch window.

» Qep1.ElecTheta should be slightly lagging rg1.out, if the calibration angle needs to be adjusted due
to the angle offset between index and locked rotor position.

» Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage,
taking the controller out of realtime mode and reset.

Next, the following steps are to verify and or perform calibration angle of the encoder. The steps are
as follows:

» Make sure EQep1Regs.QPOSCNT, EQep1Regs.QPOSILAT, Init_IFlag, gep1.CalibratedAngle, and
Isw are displayed in watch window.

= Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).

= Compile/load/run program with real time mode and then increase voltage at variac / dc power
supply to get the appropriate DC-bus voltage.

= Now the rotor should be locked. Set Isw to 1 to spin the motor. When the first index signal is
detected by QEP, the EQep1Regs.QPOSILAT register latches the angle offset in between initial
rotor position and encoder index in the code. Later, EQep1Regs.QPOSILAT is set to maximum of
EQep1Regs.QPOSCNT as it latches the counter value for each index signal. In the code
gep1.CalibratedAngle keeps the initial offset value. This value can be recorded to initialize
gep1.CalibratedAngle at the initialization section in HVPM_Sensored.c or it can be detected in the
code each time the motor is restarted. The calibration angle might be different for different start-ups
and can be formulated as follows:

Calibration Angle = Offset Angle = n . Line Encoder

= In the next section fine tune the detected calibration angle until minimum power is drawn under
certain speed-load conditions for precise field orientation.

29



Level 3 - Incremental System Build Block Diagram
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MACRO | theta_p MACRO | clark b AdcResult 1 | ADC |ADC _ ADGINy (Ib)
N CONV|[HW|"
park_Q park_q clark_q AdcResult 2 ADCINz (Vdc)
< < < — <
Constant 0
Isw=0
SpeedRef i set value , rmp freq, o ( )
MACRO f MACRO \
trgt_value, rmp_orise
e, -y rmp_out / Elec
set_eq_trgt rmp_gain /]/l/ (Isw=1) Theta
—> SPEED FR
—/\— Speed MACRO < QEP |QEP
 —— | ‘ . .
Direction | MACRO | HW
<
QEP A
QEP B
Index

Level 3 verifies the pid regulators and speed measurement modules.




Level 4 Incremental Build

Assuming the previous section is completed successfully; this section verifies the speed pid module and
speed loop.

Open HVPM_Sensored-Settings.h and select level 4 incremental build option by setting the BUILDLEVEL
to LEVEL4 (#define BUILDLEVEL LEVEL4). Now Right Click on the project name and click Rebuild
Project. Once the build is complete click on debug button, reset CPU, restart, enable real time mode and
run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be incrementally
increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

= SpeedRef (Q24): for changing the rotor speed in per-unit.
= |dRef (Q24): for changing the d-gxis voltage in per-unit.

= |gRef (Q24): for changing the g-axis voltage in per-unit.
The key steps can be explained as follows:

= Set Compile/load/run program with real time mode.

= Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).

= Gradually increase voltage at variac to get an appropriate DC-bus voltage and now the motor is running
with this reference speed (0.3 pu).

= Add the soft-switch variable “Isw” to the watch window in order to switch from current loop to
speed loop. In the code Isw manages the loop setting as follows:

- Isw=0, lock the rotor of the motor.
- Isw=1, close the current loop
- Isw=2, close the speed loop (sensored FOC).

= Set Isw to 1.Compare Speed with SpeedRef in the watch windows with continuous refresh feature
whether or not it should be nearly the same.

= To confirm this speed PID module, close the speed loop by setting Isw to 2 and try different values of
SpeedRef (positive or negative).For speed PID controller, the proportional, integral, derivative and
integral correction gains may be re-tuned to have the satisfied responses.

= At very low speed range, the performance of speed response relies heavily on the good rotor position
angle provided by QEP encoder.

= Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking
the controller out of realtime mode and reset. Now the motor is stopping.

LEVEL 4B

= Once the tuning process is completed, the motor can directly startup with closed speed loop as shown
in the second block diagram (4B). During the direct startup, use the calibration angle detected in the
previous level as initial value of gep1. CalibratedAngle and by-pass the calibration angle detection.
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*

During running this build, the current waveforms in the CCS graphs should appear as follows™ :

[ DualTimes -0 52 = O e DualTimen -1 52 =0
-EHFEEER | S ERE & DT - SR PR E W DT
! 0.01
0.8
0.6 i
0.4

0.01
0.2
i 0.02
T T T T T T T T
6600 6650 6700 6750 6600 6650 6700 6750
sample sample

[ DualTimes -0 &2 = O | e DualTimeB -1 52 =0
W-EHEFEERC R S PFRE & DT Exb s e R HBFRE A DT
0.12 0.011
0.02 0.001
0.08 -0.009
018 -0.019

. L e ———r— .
6600 6650 6700 6750 6600 6650 6700 6750
sample sample

Figl9 Measured theta, svgen duty cycle, and Phase A&B current waveforms under no-load & 0.3 pu speed
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—_— —T———— T
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Fig20 Measured theta, svgen duty cycle, and Phase A&B current waveforms under 0.33pu load & 0.3 pu speed

Deadband = 0.83 usec, dlog.trig_value=100, Vdcbus=300V
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Fig21 Flux and torque components of the stator current in the synchronous reference frame under
0.33pu step- load and 0.3 pu speed monitored from PWMDAC output
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Level 4A - Incremental System Build Block Diagram

IgRef (Isw=1) Constant 0 (Isw=0)
PWM1A
SpeedRef \4 ref >
_ i_rel
— piD mACRO | (8W1=2) \___q’PID MACRo| U_out.a ipark_Q ipark_q Ubeta Ta Mfunc_c1 PWM1B
spd_fbd | Spd reg. > . I > > > >
u_out_spd i_fdb_q q reg. ] IPARK SVGEN
- theta_ip MACRO MACRO Tb Mfunc_c2 PWM2A
I PWM EV )
i_ref d 4 MACRO 4
i S e u_out_d | ipark_D ipark_d Ualfa % Tc Mfunc_c3 ; oW PWM2B
'Y | a 'Y 0 HW | -
IdRef | ; tab g | " 1d reg. " o “ g
Mfunc_p PWM3A
—> >
PWM3B
>
Switched manually
in CC watch park_D park_d clark_d clark_a AdcResult 0 ADCINX (la)
d d d d
window - PARK [ D CLARKE b
MACRO | theta_p MACRO | clark b AdcResult 1 [ ADC JABC| 5Ny (1)
) b conv|rw/|*
park_Q park_q clark_q AdcResult 2 ADCINz (Vdc)
< < < — —
Constant 0
Isw=0)
| set value ), rmp freq (
SpeedRef y E é:RO " p'}:GRo —\ /l/l/
trgt value, ML
—>
rmp_out / <
set_eq_trgt rmp_gain =
A _eqlrg /]/l/ (Isw=1) (1sw=2)
QEP A
SPEED FR
Speed | MACRO ElecTheta QEP |QEP QEP B
< MACRO | HW Index
Direction

Level 4 verifies the speed pid and speed loop.

3-Phase

Inverter

4
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Level 4B - Incremental System Build Block Diagram

Con

stant O (Isw=0)

PWM1A
SpeedRef - R
— - i_re
PID MACRO | (8W=2) \_-"¢-4 PID MACRO| U_0ut 9 ipark_Q ipark_q Ubeta Ta Mfunc_ct PWM1B
spd_fbd | Spd reg. u_out_spd i fdb_q Iq reg. > . IPARK > SVGEN > R
L theta_ip | MACRO MACRO | Tb Miunc_c2 | owm PWM2A
> |
i_ref_d 4 MACRO >
L_ref_ . u_out d | ipark_D ipark_d Ualfa % Tc Mfunc_c3 . W PWM2B
> > > » Q0/HW >
IdRef | ; tab g | " 1d reg. > > Q >
Mfunc_p PWM3A
>
PWM3B
>
Switched manually
in CC watch . park_D ’ park_d ) clark_d clark_a ) AdcResult 0 ADCINX (la)
window < PARK < < — <
MACRO | theta_p MACRO | clark_b AdcResult 1 [ ADC [ABE| o )
4 < ADCINy (b) |
X CONV| HW
park_Q park_q clark_q AdcResult 2 ADCINz (Vdc)
< < < L2
Constant 0
(Isw=0)
/ <
(Isw=2)
QEP A
SPEED FR
Speed | MACRO ElecTheta QEP |QEP QEP B
) MACRO | HW Index
Direction

Level 4 verifies the speed pid and speed loop.

3-Phase

Inverter

4
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