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Abstract  
 
This application note presents a solution to control a permanent magnet synchronous motor (PMSM) 
using the TMS320F2803x microcontrollers. TMS320F2803x devices are part of the family of C2000 
microcontrollers which enable cost-effective design of intelligent controllers for three phase motors by 
reducing the system components and increase efficiency With these devices it is  possible to realize far 
more precise digital vector control algorithms like the Field Orientated Control (FOC). This algorithm’s 
implementation is discussed in this document. The FOC algorithm maintains efficiency in a wide range 
of speeds and takes into consideration torque changes with transient phases by processing a dynamic 
model of the motor. 
 
This application note covers the following:  
 
 A theoretical background on field oriented motor control principle. 
 Incremental build levels based on modular software blocks. 
 Experimental results  
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Introduction 
 
A brushless Permanent Magnet Synchronous motor (PMSM) has a wound stator, a permanent magnet 
rotor assembly and internal or external devices to sense rotor position. The sensing devices provide 
position feedback for adjusting frequency and amplitude of stator voltage reference properly to maintain 
rotation of the magnet assembly. The combination of an inner permanent magnet rotor and outer 
windings offers the advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor 
size. Moreover, the elimination of brushes reduces noise, EMI generation and suppresses the need of 
brushes maintenance.  
 
This document presents a solution to control a permanent magnet synchronous motor using the 
TMS320F2803x. This new family of DSPs enables cost-effective design of intelligent controllers for 
brushless motors which can fulfill enhanced operations, consisting of fewer system components, lower 
system cost and increased performances. The control method presented relies on the field orientated 
control (FOC). This algorithm maintains efficiency in a wide range of speeds and takes into 
consideration torque changes with transient phases by controlling the flux directly from the rotor 
coordinates. This application report presents the implementation of a control for sinusoidal PMSM 
motor. The sinusoidal voltage waveform applied to this motor is created by using the Space Vector 
modulation technique. Minimum amount of torque ripple appears when driving this sinusoidal BEMF 
motor with sinusoidal currents. 
 
Permanent Magnet Motors  

There are primarily two types of three-phase permanent magnet synchronous motors. One uses rotor 
windings fed from the stator and the other uses permanent magnets. A motor fitted with rotor windings, 
requires brushes to obtain its current supply and generate rotor flux. The contacts are made of rings 
and have any commutator segments. The drawbacks of this type of structure are maintenance needs 
and lower reliability.  

Replacing the common rotor field windings and pole structure with permanent magnets puts the motor 
into the category of brushless motors. It is possible to build brushless permanent magnet motors with 
any even number of magnet poles. The use of magnets enables an efficient use of the radial space and 
replaces the rotor windings, therefore suppressing the rotor copper losses. Advanced magnet materials 
permit a considerable reduction in motor dimensions while maintaining a very high power density. 

 

 

 

 

 

 

 

 

Fig. 1 A three-phase synchronous motor with a one permanent magnet pair pole rotor  
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Synchronous Motor Operation 
 

 Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a 
constant rotor flux. This rotor flux usually has a constant magnitude. The stator windings when 
energized create a rotating electromagnetic field. To control the rotating magnetic field, it is 
necessary to control the stator currents. 

 The actual structure of the rotor varies depending on the power range and rated speed of the 
machine. Permanent magnets are suitable for synchronous machines ranging up-to a few Kilowatts. 
For higher power ratings the rotor usually consists of windings in which a DC current circulates. The 
mechanical structure of the rotor is designed for number of poles desired, and the desired flux 
gradients desired. 

 The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly 
mounted to the frame, and the rotor is free to rotate, the rotor will rotate, producing a useful 
mechanical output. 

 The angle between the rotor magnetic field and stator field must be carefully controlled to produce 
maximum torque and achieve high electromechanical conversion efficiency. For this purpose a fine 
tuning is needed after closing the speed loop in order to draw minimum amount of current under the 
same speed and torque conditions. 

 The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field; 
otherwise the rotor will experience rapidly alternating positive and negative torque. This will result in 
less than optimal torque production, and excessive mechanical vibration, noise, and mechanical 
stresses on the machine parts. In addition, if the rotor inertia prevents the rotor from being able to 
respond to these oscillations, the rotor will stop rotating at the synchronous frequency, and respond 
to the average torque as seen by the stationary rotor: Zero. This means that the machine experiences 
a phenomenon known as ‘pull-out’. This is also the reason why the synchronous machine is not self 
starting. 

 The angle between the rotor field and the stator field must be equal to 90º to obtain the highest 
mutual torque production. This synchronization requires knowing the rotor position in order to 
generate the right stator field. 

 The stator magnetic field can be made to have any direction and magnitude by combining the 
contribution of different stator phases to produce the resulting stator flux. 

 

 

Fig. 2 The interaction between the rotating stator flux, and the rotor flux produces a torque which 
will cause the motor to rotate. 
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Field Oriented Control  
  

Introduction 
 
In order to achieve better dynamic performance, a more complex control scheme needs to be applied, 
to control the PM motor. With the mathematical processing power offered by the microcontrollers, we 
can implement advanced control strategies, which use mathematical transformations in order to 
decouple the torque generation and the magnetization functions in PM motors. Such de-coupled torque 
and magnetization control is commonly called rotor flux oriented control, or simply Field Oriented 
Control (FOC). 
 

The main philosophy behind the FOC 
 

In order to understand the spirit of the Field Oriented Control technique, let us start with an overview of 
the separately excited direct current (DC) Motor. In this type of motor, the excitation for the stator and 
rotor is independently controlled. Electrical study of the DC motor shows that the produced torque 
and the flux can be independently tuned. The strength of the field excitation (i.e. the magnitude of 
the field excitation current) sets the value of the flux. The current through the rotor windings determines 
how much torque is produced. The commutator on the rotor plays an interesting part in the torque 
production. The commutator is in contact with the brushes, and the mechanical construction is designed 
to switch into the circuit the windings that are mechanically aligned to produce the maximum torque. 
This arrangement then means that the torque production of the machine is fairly near optimal all the 
time. The key point here is that the windings are managed to keep the flux produced by the rotor 
windings orthogonal to the stator field. 
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Fig 3. Separated excitation DC motor model, flux and torque are independently controlled 
and the current through the rotor windings determines how much torque is produced.  

 
AC machines do not have the same key features as the DC motor. In both cases we have only one 
source that can be controlled which is the stator currents. On the synchronous machine, the rotor 
excitation is given by the permanent magnets mounted onto the shaft. On the synchronous motor, the 
only source of power and magnetic field is the stator phase voltage. Obviously, as opposed to the DC 
motor, flux and torque depend on each other. 
 
The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be 
able to separately control the torque producing and magnetizing flux components. The control 
technique goal is to (in a sense), imitate the DC motor’s operation. FOC control will allow us to 
decouple the torque and the magnetizing flux components of stator current. With decoupled control of 
the magnetization, the torque producing component of the stator flux can now be thought of as 
independent torque control.  To decouple the torque and flux, it is necessary to engage several 
mathematical transforms, and this is where the microcontrollers add the most value. The processing 
capability provided by the microcontrollers enables these mathematical transformations to be carried 
out very quickly. This in turn implies that the entire algorithm controlling the motor can be executed at a 
fast rate, enabling higher dynamic performance. In addition to the decoupling, a dynamic model of the 
motor is now used for the computation of many quantities such as rotor flux angle and rotor speed. This 
means that their effect is accounted for, and the overall quality of control is better. 
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According to the electromagnetic laws, the torque produced in the synchronous machine is equal to 
vector cross product of the two existing magnetic fields: 
 

rotorstatorem BBT


  

 
This expression shows that the torque is maximum if stator and rotor magnetic fields are orthogonal 
meaning if we are to maintain the load at 90 degrees. If we are able to ensure this condition all the time, 
if we are able to orient the flux correctly, we reduce the torque ripple and we ensure a better dynamic 
response. However, the constraint is to know the rotor position: this can be achieved with a position 
sensor such as incremental encoder. For low-cost application where the rotor is not accessible, 
different rotor position observer strategies are applied to get rid of position sensor.  
 
In brief, the goal is to maintain the rotor and stator flux in quadrature: the goal is to align the stator flux 
with the q axis of the rotor flux, i.e. orthogonal to the rotor flux. To do this the stator current component 
in quadrature with the rotor flux is controlled to generate the commanded torque, and the direct 
component is set to zero. The direct component of the stator current can be used in some cases for 
field weakening, which has the effect of opposing the rotor flux, and reducing the back-emf, which 
allows for operation at higher speeds. 
 
 Technical Background 
 
The Field Orientated Control consists of controlling the stator currents represented by a vector. This 
control is based on projections which transform a three phase time and speed dependent system into a 
two co-ordinate (d and q co-ordinates) time invariant system. These projections lead to a structure 
similar to that of a DC machine control. Field orientated controlled machines need two constants as 
input references: the torque component (aligned with the q co-ordinate) and the flux component 
(aligned with d co-ordinate). As Field Orientated Control is simply based on projections the control 
structure handles instantaneous electrical quantities. This makes the control accurate in every working 
operation (steady state and transient) and independent of the limited bandwidth mathematical model. 
The FOC thus solves the classic scheme problems, in the following ways: 
 

 The ease of reaching constant reference (torque component and flux component of the stator current) 

 The ease of applying direct torque control because in the (d,q) reference frame the expression of the 
torque is: 

SqR im   

By maintaining the amplitude of the rotor flux ( R ) at a fixed value we have a linear relationship 

between torque and torque component (iSq). We can then control the torque by controlling the torque 
component of stator current vector. 
 

Space Vector Definition and Projection 
 
The three-phase voltages, currents and fluxes of AC-motors can be analyzed in terms of complex 
space vectors. With regard to the currents, the space vector can be defined as follows. Assuming that ia, 
ib, ic are the instantaneous currents in the stator phases, then the complex stator current vector si  is 

defined by: 
 

cbas iiii 2   
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e , represent the spatial operators. The following diagram shows the stator 

current complex space vector: 
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Fig.4 Stator current space vector and its component in (a,b,c) 

 
where (a,b,c) are the three phase system axes. This current space vector depicts the three phase 
sinusoidal system. It still needs to be transformed into a two time invariant co-ordinate system. This 
transformation can be split into two steps: 
 
 (a,b,c) ),(  (the Clarke transformation) which outputs a two co-ordinate time variant system 

 ),(   (d,q) (the Park transformation) which outputs a two co-ordinate time invariant system 

 
The (a,b,c) ),(   Projection (Clarke transformation) 

 
The space vector can be reported in another reference frame with only two orthogonal axis called ),(  . 

Assuming that the axis a and the axis  are in the same direction we have the following vector diagram: 
 

 
Fig.5 Stator current space vector and its components in the stationary reference frame 

 
The projection that modifies the three phase system into the ),(  two dimension orthogonal system is 

presented below. 
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The two phase ),(  currents are still depends on time and speed. 
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 The ),(   (d,q) Projection (Park Transformation) 

 
This is the most important transformation in the FOC. In fact, this projection modifies a two phase 
orthogonal system ),(   in the d,q rotating reference frame. If we consider the d axis aligned with the 

rotor flux, the next diagram shows, for the current vector, the relationship from the two reference frame:  
 

 
Fig.6 Stator current space vector and its component in ),(  and in the d,q 

rotating reference frame 
 
where θ is the rotor flux position. The flux and torque components of the current vector are determined 
by the following equations: 
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These components depend on the current vector ),(  components and on the rotor flux position; if we 

know the right rotor flux position then, by this projection, the d,q component becomes a constant. Two 
phase currents now turn into dc quantity (time-invariant). At this point the torque control becomes easier 
where constant isd (flux component) and isq (torque component) current components controlled 
independently.  
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The Basic Scheme for the FOC 
 
The following diagram summarizes the basic scheme of torque control with FOC: 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig7 Basic scheme of FOC for AC motor 
 
Two motor phase currents are measured. These measurements feed the Clarke transformation module. 
The outputs of this projection are designated isα and isβ. These two components of the current are the 
inputs of the Park transformation that gives the current in the d,q rotating reference frame. The isd and 
isq components are compared to the references isdref (the flux reference) and isqref (the torque reference). 
At this point, this control structure shows an interesting advantage: it can be used to control either 
synchronous or HVPM machines by simply changing the flux reference and obtaining rotor flux position. 
As in synchronous permanent magnet a motor, the rotor flux is fixed determined by the magnets; there 
is no need to create one. Hence, when controlling a PMSM, isdref should be set to zero. As HVPM 
motors need a rotor flux creation in order to operate, the flux reference must not be zero. This 
conveniently solves one of the major drawbacks of the “classic” control structures: the portability from 
asynchronous to synchronous drives. The torque command isqref could be the output of the speed 
regulator when we use a speed FOC. The outputs of the current regulators are Vsdref and Vsqref; they are 
applied to the inverse Park transformation. The outputs of this projection are Vsαref and Vsβref which are 
the components of the stator vector voltage in the ),(  stationary orthogonal reference frame. These 

are the inputs of the Space Vector PWM. The outputs of this block are the signals that drive the inverter. 
Note that both Park and inverse Park transformations need the rotor flux position. Obtaining this rotor 
flux position depends on the AC machine type (synchronous or asynchronous machine). Rotor flux 
position considerations are made in a following paragraph. 
 

Rotor Flux Position 
 

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the 
rotor flux is not aligned with d-axis and isd and isq are incorrect flux and torque components of the stator 
current. The following diagram shows the (a,b,c), ),(   and (d,q) reference frames, and the correct 

position of the rotor flux, the stator current and stator voltage space vector that rotates with d,q 
reference at synchronous speed. 
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Fig.8 Current, voltage and rotor flux space vectors in the d,q rotating reference frame and their relationship 

with a,b,c and ),(   stationary reference frame 

 
The measure of the rotor flux position is different if we consider synchronous or asynchronous motors:  

 In the synchronous machine the rotor speed is equal to the rotor flux speed. Then θ (rotor flux 
position) is directly measured by position sensor or by integration of rotor speed. 

 In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip 
speed), then it needs a particular method to calculate θ. The basic method is the use of the current 
model which needs two equations of the motor model in d,q reference frame. 

 
Theoretically, the field oriented control for the PMSM drive allows the motor torque be controlled 
independently with the flux like DC motor operation. In other words, the torque and flux are decoupled 
from each other. The rotor position is required for variable transformation from stationary reference 
frame to synchronously rotating reference frame. As a result of this transformation (so called Park 
transformation), q-axis current will be controlling torque while d-axis current is forced to zero. Therefore, 
the key module of this system is the information of rotor position from QEP encoder. The overall block 
diagram of this project is depicted in Fig. 9. 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.9  Overall block diagram of sensored field oriented control 
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Benefits of 32-bit C2000 Controllers for Digital Motor Control (DMC) 
 
C2000 family of devices posses the desired computation power to execute complex control algorithms 
along with the right mix of peripherals to interface with the various components of the DMC hardware 
like the ADC, ePWM, QEP, eCAP etc. These peripherals have all the necessary hooks for 
implementing systems which meet safety requirements, like the trip zones for PWMs and comparators. 
Along with this the C2000 ecosystem of software (libraries and application software) and hardware 
(application kits) help in reducing the time and effort needed to develop a Digital Motor Control solution. 
The DMC Library provides configurable blocks that can be reused to implement new control strategies. 
IQMath Library enables easy migration from floating point algorithms to fixed point thus accelerating the 
development cycle. 
 
Thus, with C2000 family of devices it is easy and quick to implement complex control algorithms 
(sensored and sensorless) for motor control. The use of C2000 devices and advanced control schemes 
provides the following system improvements  

 Favors system cost reduction by an efficient control in all speed range implying right dimensioning of 
power device circuits 

 Use of advanced control algorithms it is possible to reduce torque ripple, thus resulting in lower 
vibration and longer life time of the motor 

 Advanced control algorithms reduce harmonics generated by the inverter thus reducing filter cost.  

 Use of sensorless algorithms eliminates the need for speed or position sensor.  

 Decreases the number of look-up tables which reduces the amount of memory required 

 The Real-time generation of smooth near-optimal reference profiles and move trajectories, results in 
better-performance 

 Generation of high resolution PWM’s is possible with the use of ePWM peripheral for controlling the 
power switching inverters 

 Provides single chip control system 

For advanced controls, C2000 controllers can also perform the following: 

 Enables control of multi-variable and complex systems using modern intelligent methods such as 
neural networks and fuzzy logic. 

 Performs adaptive control. C2000 controllers have the speed capabilities to concurrently monitor the 
system and control it. A dynamic control algorithm adapts itself in real time to variations in system 
behaviour. 

 Performs parameter identification for sensorless control algorithms, self commissioning, online 
parameter estimation update. 

 Performs advanced torque ripple and acoustic noise reduction. 

 Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of 
mechanical vibrations, failure modes can be predicted in early stages. 

 Produces sharp-cut-off notch filters that eliminate narrow-band mechanical resonance. Notch filters 
remove energy that would otherwise excite resonant modes and possibly make the system unstable. 

 10



TI Literature and Digital Motor Control (DMC) Library 
 
 
The Digital Motor Control (DMC) library is composed of functions represented as blocks. These blocks 
are categorized as Transforms & Estimators (Clarke, Park, Sliding Mode Observer, Phase Voltage 
Calculation, and Resolver, Flux, and Speed Calculators and Estimators), Control (Signal Generation, 
PID, BEMF Commutation, Space Vector Generation), and Peripheral Drivers (PWM abstraction for 
multiple topologies and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular 
software macro is separately documented with source code, use, and technical theory. Check the 
folders below for the source codes and explanations of macro blocks: 
 
 C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\fixed 
 C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\f2803x 
 
These modules allow users to quickly build, or customize, their own systems. The Library supports the 
three motor types: ACI, BLDC, PMSM, and comprises both peripheral dependent (software drivers) and 
target dependent modules. 
 
The DMC Library components have been used by TI to provide system examples. At initialization all 
DMC Library variables are defined and inter-connected.  At run-time the macro functions are called in 
order.  Each system is built using an incremental build approach, which allows some sections of the 
code to be built at a time, so that the developer can verify each section of their application one step at a 
time. This is critical in real-time control applications where so many different variables can affect the 
system and many different motor parameters need to be tuned. 
 
Note:  TI DMC modules are written in form of macros for optimization purposes (refer to application 
note SPRAAK2 for more details at TI website). The macros are defined in the header files. The user 
can open the respective header file and change the macro definition, if needed. In the macro definitions, 
there should be a backslash ”\” at the end of each line as shown below which means that the code 
continue in the next line. Any character including invisible ones like “space” after the backslash will 
cause compilation error. Therefore, make sure that the backslash is the last character in the line. In 
terms of code development, the macros are almost identical to C function, and the user can easily 
convert the macro definition to a C functions.   
 
 
 

#define PARK_MACRO(v)             \ 
                   \ 

v.Ds = _IQmpy(v.Alpha,v.Cosine) + _IQmpy(v.Beta,v.Sine); \ 
v.Qs = _IQmpy(v.Beta,v.Cosine)  - _IQmpy(v.Alpha,v.Sine); 

 
 
 
 
 
 

A typical DMC macro definition  
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System Overview 
 
This document describes the “C” real-time control framework used to demonstrate the sensored field 
oriented control of HVPM motors. The “C” framework is designed to run on TMS320C2803x based 
controllers on Code Composer Studio. The framework uses the following modules1: 
 
Macro Names Explanation 

CLARKE  Clarke Transformation 

PARK / IPARK Park and Inverse Park Transformation 

PID PID Regulators 

RC Ramp Controller (slew rate limiter) 

RG Ramp / Sawtooth Generator 

QEP  QEP Drive 

SPEED_FR Speed Measurement (based on sensor signal frequency) 

SVGEN Space Vector PWM with Quadrature Control (includes IClarke Trans.) 

PWM / PWMDAC PWM and PWMDAC Drives 
1 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro 

 
In this system, the sensored Field Oriented Control (FOC) of Permanent Magnet Synchronous 
Motor (PMSM) will be experimented with and will explore the performance of speed control. The PM 
motor is driven by a conventional voltage-source inverter. The TMS320x2803x control card is used to 
generate three pulse width modulation (PWM) signals. The motor is driven by an integrated power 
module by means of space vector PWM technique. Two phase currents of PM motor (ia and ib) are 
measured from the inverter and sent to the TMS320x2803x via two analog-to-digital converters (ADCs). 
In addition, the DC-bus voltage in the inverter is measured and sent to the TMS320x2803x via an ADC. 
This DC-bus voltage is necessary to calculate the three phase voltages when the switching functions 
are known. 
 
HVPM_Sensored project has the following properties: 
 
 

C Framework 

System Name 
Program Memory Usage

2803x 
Data Memory Usage1 

2803x 

HVPM_Sensored 3621 words2 1172 words 
 
 
 
1 Excluding the stack size  
2 Excluding “IQmath” Look-up Tables 
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CPU Utilization of Sensored FOC of PMSM 

Name of Modules * Number of Cycles 
Ramp Controller 29 
Clarke Tr. 28 
Park Tr. 142 
I_Park Tr. 41 
Speed Fr 67 
QEP Drive 79 
3 x Pid 167 
Space Vector Gen.  137 
Pwm Drv 74 
Contxt Save etc. 74 
Pwm Dac  (optional)   
DataLog    (optional)   
Ramp Gen (optional)   
    
Total Number of Cycles 844 ** 

CPU Utilization @ 60 Mhz 14.1% *** 
CPU Utilization @ 40 Mhz 21.1% *** 

 
 
*   The modules are defined in the header files as “macros” 
** 1169 including the optional modules 
*** At 10 kHz ISR freq. 
 
 
 
 

System Features 

Development /Emulation Code Composer Studio V.4.0 (or above) with Real Time debugging 

Target Controller TMS320F2803x  

PWM Frequency 10kHz PWM (Default), 60kHz PWMDAC  

PWM Mode Symmetrical with a programmable dead band 

Interrupts EPWM1 Time Base CNT_Zero – Implements 10 kHz ISR execution rate 

Peripherals Used PWM 1 / 2 / 3 for motor control  
PWM 5A, 6A, 7A & 7B for DAC outputs 
QEP1 A,B, I   
ADC A1 for DC Bus voltage sensing,  B4 & B6 for phase current sensing 
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The overall system implementing a 3-ph HVPM motor control is depicted in Fig.10. The HVPM motor is 
driven by the conventional voltage-source inverter. The TMS320F2803x is being used to generate the 
six pulse width modulation (PWM) signals using a space vector PWM technique, for six power switching 
devices in the inverter. Two input currents of the HVPM motor (ia and ib) are measured from the 
inverter and they are sent to the TMS320F2803x via two analog-to-digital converters (ADCs). In 
addition, the DC-bus voltage in the inverter is measured and sent to the TMS320F2803x via an ADC as 
well. This DC-bus voltage is necessary in order to calculate three phase voltages of HVPM motor when 
the switching functions are known. 
 
 

 

 

  

 

 

 

 

 

 

 
Fig 10 A 3-ph PM motor drive implementation 

 

 

The software flow is described in the Figure 11 below.  
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 Hardware Configuration (HVDMC Kit) 
 
Please refer to the HVMotorCtrl+PFC How to Run Guide and HW Reference Guide found: 
 

C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit\~Docs  
 
for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup 
instructions are captured below for quick reference 
 

HW Setup Instructions 

1. Open the Lid of the HV Kit  

2. Install the Jumpers [Main]-J6, J7 and J8, J9 for 3.3V, 5V and 15V power rails and JTAG reset line, 
make sure that the jumpers [Main]-J3, J4 andJ5 are not populated.  

3. Unpack the DIMM style controlCARD and place it in the connector slot of [Main]-J1. Push vertically 
down using even pressure from both ends of the card until the clips snap and lock. (to remove the 
card simply spread open the retaining clip with thumbs) 

4. Connect a USB cable to connector [M3]-JP1. This will enable isolated JTAG emulation to the      
C2000 device. [M3]-LD1 should turn on. Make sure [M3]-J5 is not populated. If the included Code 
Composer Studio is installed, the drivers for the onboard JTAG emulation will automatically be 
installed. If a windows installation window appears try to automatically install drivers from those 
already on your computer. The emulation drivers are found at 
http://www.ftdichip.com/Drivers/D2XX.htm.                                                                                      
The correct driver is the one listed to support the FT2232.  

5. If a third party JTAG emulator is used, connect the JTAG header to [M3]-J2 and additionally [M3]-
J5 needs to be populated to put the onboard JTAG chip in reset.  

6. Ensure that [M6]-SW1 is in the “Off” position. Connect 15V DC power supply to [M6]-JP1. 

7. Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as 
well indicating the control card is receiving power from the board. 

8. Note that the motor should be connected to the [M5]-TB3 terminals after you finish with the first 
incremental build step. 

9. Note the DC Bus power should only be applied during level 1 when instructed to do so. The two 
options to get DC Bus power are discussed below, 

(i)   To use DC power supply, set the power supply output to zero and connect [Main]-BS5 and BS6 to 
DC power supply and ground respectively. 

(ii)  To use AC Mains Power, Connect [Main]-BS1 and BS5 to each other using banana plug cord. Now 
connect one end of the AC power cord to [Main]-P1. The other end needs to be connected to 
output of a variac. Make sure that the variac output is set to zero and it is connected to the wall 
supply through an isolator. 

 1 
Since the motor is rated at 200V, the motor can run only at a certain speed and torque range properly without saturating the 

PID regulators in the control loop when the DC bus is fed from 110V AC entry. As an option, the user can run the PFC on HV 
DMC drive platform as boost converter to increase the DC bus voltage level or directly connect a DC power supply.
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For reference the pictures below show the jumper and connectors that need to be connected for this 
lab.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    CAUTION: The inverter bus capacitors remain charged for a long time after the high 
power line supply is switched off/disconnected. Proceed with caution! 
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Fig. 12 Using AC Power to generate DC Bus Power
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Fig. 13 Using External DC power supply to generate DC-Bus for the inverter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    CAUTION: The inverter bus capacitors remain charged for a long time after the high 
power line supply is switched off/disconnected. Proceed with caution! 
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Software Setup Instructions to Run HVPM_Sensored Project  

Please refer to the “Software Setup for HVMotorCtrl+PFC Kit Projects” section in the HVMotorCtrl+PFC 
Kit How to Run Guide which can be found at   

C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit\~Docs 

This section goes over how to install CCS and set it up to run with this project. 

Select the HVPM_Sensored as the active project. Select the active build configuration to be set as 
F2803x_RAM. Verify that the build level is set to 1, and then right click on the project name and select 
“Rebuild Project”. Once build completes, launch a debug session to load the code into the controller. 
Now open a watch window and add the critical variables as shown in the table below and select the 
appropriate Q format for them. 

 

Table 1 Watch Window Variables 

 
Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following 
location C:\TI\ControlSUITE\developement_kits\HVMotorCtrl+PfcKit\HVPM_sensored\ . Click on 
Continuous Refresh button      on the top left corner of the graph tab to enable periodic capture of data 
from the microcontroller. 
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Incremental System Build 

The system is gradually built up in order for the final system can be confidently operated. Four phases 
of the incremental system build are designed to verify the major software modules used in the system. 
Table 1 summarizes the modules testing and using in each incremental system build. 
 
 

Software Module Phase 1 Phase 2 Phase 3 Phase 4 
PWMDAC_MACRO √ √ √ √ 
RC_MACRO √ √ √ √ 
RG_MACRO √ √ √ √ 
IPARK_MACRO √√ √ √ √ 
SVGEN_MACRO √√ √ √ √ 
PWM_MACRO √√ √ √ √ 
CLARKE_MACRO  √√ √ √ 
PARK_MACRO  √√ √ √ 
QEP_MACRO   √√ √ 
SPEED_FR_MACRO   √√ √ 
PID_MACRO (IQ)   √√ √ 
PID_MACRO (ID)   √√ √ 
PID_MACRO (SPD)    √√ 
Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

 
Table 2 Testing modules in each incremental system build 
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Level 1 Incremental Build  

At this step keep the motor disconnected. Assuming the load and build steps described in the 
“HVMotorCtrl+PFC Kit How To Run Guide” completed successfully, this section describes the steps for 
a “minimum” system check-out which confirms operation of system interrupt, the peripheral & target 
independent I_PARK_MACRO (inverse park transformation) and SVGEN_MACRO (space vector 
generator) modules and the peripheral dependent PWM_MACRO (PWM initializations and update) 
modules. Open HVPM_Sensored-Settings.h and select level 1 incremental build option by setting the 
BUILDLEVEL to LEVEL1 (#define   BUILDLEVEL LEVEL1). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
 
In the software, the key variables to be adjusted are summarized below. 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 VdTesting (Q24): for changing the d-qxis voltage in per-unit. 
 VqTesting (Q24): for changing the q-axis voltage in per-unit. 
 
Level 1A (SVGEN_MACRO Test) 
 
The SpeedRef value is specified to the RG_MACRO module via RC_MACRO module. The 
IPARK_MACRO module is generating the outputs to the SVGEN_MACRO module. Three outputs from 
SVGEN_MACRO module are monitored via the graph window as shown in Fig. 14 where Ta, Tb, and 
Tc waveform are 120o apart from each other. Specifically, Tb lags Ta by 120o and Tc leads Ta by 120o. 
Check the PWM test points on the board to observe PWM pulses (PWM-1H to 3H and PWM-1L to 3L) 
and make sure that the PWM module is running properly.  
 
  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig 14 Output of SVGEN, Ta, Tb, Tc and Tb-Tc waveforms 
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Level 1B (testing The PWMDAC Macro) 
 
To monitor internal signal values in real time PWM DACs are very useful tools. Present on the HV DMC 
board are PWM DAC’s which use an external low pass filter to generate the waveforms ([Main]-J14, 
DAC-1 to 4). A simple 1st–order low-pass filter RC circuit is placed on the board to filter out the high 
frequency components. The selection of R and C value (or the time constant, τ) is based on the cut-off 
frequency (fc), for this type of filter the relation is as follows: 

cf
RC




2

1
  

For example, R=1.8kΩ and C=100nF, it gives fc = 884.2 Hz. This cut-off frequency has to be below the 
PWM frequency. Using the formula above, one can customize low pass filters used for signal being 
monitored. The DAC circuit low pass filters ([Main]-R10 to13 & [Main]-C15 to18) is shipped with 2.2kΩ 
and 220nF on the board. Refer to application note SPRAA88A for more details at TI website. 
 

 

 

 

 

 

 

 

 

 
Fig.15 DAC 1-4 outputs showing Ta, Tb, Tc and Tb-Tc waveforms 

 
 
Level 1C (PWM_MACRO and INVERTER Test) 
 

After verifying SVGEN_MACRO module in Level 1a, the PWM_MACRO software module and the 3-
phase inverter hardware are tested by looking at the low pass filter outputs. For this purpose, if using the 
external DC power supply gradually increase the DC bus voltage and check the Vfb-U, V and W test 
points using an oscilloscope or if using AC power entry slowly change the variac to generate the DC bus 
voltage. The Inverter phase voltage dividers and waveform monitoring filters ([M5]-R19 to27 & [M5]-C21 
to 23) enable the generation of the waveform. This circuit is used to observe low-pass filtered phase 
voltage waveform to make sure that the inverter stage is working properly. Note that the default RC 
values are optimized for BLDC back-emf high frequency noise filtering and the default cut-off is much 
higher than of a typical low-pass filter used for signal monitoring. A value closer to 0.1uf for the [M5]-C21 
to C23 would give better waveforms.    

   
 

After verifying this, reduce the DC Bus voltage, take the controller out of real time mode 
(disable), reset the processor      (see “HVMotorCtrl+PFC Kit How To Run Guide” for details). 
Note that after each test, this step needs to be repeated for safety purposes. Also note that 

improper shutdown might halt the PWMs at some certain states where high currents can be drawn, 
hence caution needs to be taken while doing be taken while doing these experiments. 
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Level 2 Incremental Build  

Assuming section BUILD 1 is completed successfully, this section verifies the analog-to-digital 
conversion, Clarke / Park transformations. Now the motor can be connected to HVDMC board since the 
PWM signals are successfully proven through level 1 incremental build. Note that the open loop 
experiments are meant to test the ADCs, inverter stage, sw modules etc. Therefore running motor 
under load or at various operating points is not recommended. 

 
Open HVPM_Sensored-Settings.h and select level 2 incremental build option by setting the 
BUILDLEVEL to LEVEL2 (#define   BUILDLEVEL LEVEL2). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
In the software, the key variables to be adjusted are summarized below. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 VdTesting(Q24): for changing the d-qxis voltage in per-unit. 
 VqTesting(Q24): for changing the q-axis voltage in per-unit. 
 
During the open loop tests, VqTesting, SpeedRef and DC Bus voltages should be adjusted carefully for 
PM motors so that the generated Bemf is lower than the average voltage applied to motor winding. This 
will prevent the motor from stalling or vibrating. 
 
Phase 2A – Testing the Clarke module 
 
In this part the Clarke module will be tested. The three measured line currents are transformed to two 
phase dq currents in a stationary reference frame. The outputs of this module can be checked from 
graph window.  

 The clark1.Alpha waveform should be same as the clark1.As waveform. 

 The clark1.Alpha waveform should be leading the clark1.Beta waveform by 90o at the same 
magnitude. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 16 The waveforms of Svgen_dq1.Ta, rg1.Out, and phase A&B currents*  

*    Deadband = 0.83 usec,   Vdcbus=300V , dlog.prescalar=3 
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Note that the open loop experiments are meant to test the ADCs, inverter stage, sw modules etc. 
Therefore running motor under load or at various operating points is not recommended. 
 
Since the low side current measurement technique is used employing shunt resistors on inverter phase 
legs, the phase current waveforms observed from current test points ([M5]-Ifb-U, and [M5]-Ifb-V) are 
composed of pulses as shown in Fig 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.17 Amplified Phase A current 
 
 
Level 2B – Calibrating the Phase Current Offset 
 
Note that especially the low power motors draw low amplitude current after closing the speed loop 
under no-load. The performance of the sensored control algorithm becomes prone to phase current 
offset which might stop the motors or cause unstable operation. Therefore, the phase current offset 
values need to be minimized at this step.      
 
Set VqTesting, VdTesting and SpeedRef to zero in the code, recompile and run the system and watch 
the clarke1.As & clarke1.Bs from watch window. Ideally the measured phase currents should be zero in 
this case. Make sure that the clarke1.As & clarke1.Bs values are less than 0.001 or minimum possible. 
If not, adjust the offset value in the code by going to:  
 

clarke1.As =_IQ15toIQ((AdcResult.ADCRESULT0<<3)-_IQ15(0.50))<<1; 
 
and changing IQ15(0.50) offset value (e.g. IQ15(0.5087) or IQ15(0.4988) depending 
on the sign and amount of the offset) 
 
Rebuild the project and then repeat the calibration procedure again until the clarke1.As and clarke1.Bs 
offset values are minimum. 
 
Hint: If the value of clarke1.As is greater than zero, then increase the offset term by the half of the 
clarke1.As value in the watch window. If the value of clarke1.As is less than zero, then decrease the 
offset term by the half of the clarke1.As in the watch window. 
 
Note: Piccolo devices have 12-bit ADC and 16-bit ADC registers. The AdcResult.ADCRESULT 
registers are right justified for Piccolo devices; therefore, the measured phase current value is firstly left 
shifted by three to convert into Q15 format (0 to 1.0), and then converted to ac quantity (± 0.5) following 
the offset subtraction. Finally, it is left shifted by one (multiplied by two) to normalize the measured 
phase current to ± 1.0 pu.   
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Level 3 Incremental Build 
Assuming the previous section is completed successfully, this section verifies the dq-axis current 
regulation performed by PID_REG3 modules and speed measurement modules. To confirm the 
operation of current regulation, the gains of these two PID controllers are necessarily tuned for proper 
operation. 
 
Open HVPM_Sensored-Settings.h and select level 3 incremental build option by setting the 
BUILDLEVEL to LEVEL3 (#define   BUILDLEVEL LEVEL3). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable 
real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” 
will be incrementally increased as seen in watch windows to confirm the interrupt working properly. 
In the software, the key variables to be adjusted are summarized below. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef(Q24): for changing the d-qxis voltage in per-unit. 
 IqRef(Q24): for changing the q-axis voltage in per-unit. 

 

In this build, the motor is supplied by AC input voltage and the PM motor current is dynamically 
regulated by using PID_REG3 module through the park transformation on the motor currents. 
 
The steps are explained as follows: 

 Compile/load/run program with real time mode. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different), Idref to zero and 
Iqref to 0.05 pu (or another suitable value). 

 Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus voltage. 

 Check pid1_id.Fdb in the watch windows with continuous refresh feature whether or not it should be 
keeping track pid1_id.Ref for PID_REG3 module. If not, adjust its PID gains properly. 

 Check pid1_iq.Fdb in the watch windows with continuous refresh feature whether or not it should be 
keeping track pid1_iq.Ref for PID_REG3 module. If not, adjust its PID gains properly. 

 To confirm these two PID modules, try different values of pid1_id.Ref and pid1_iq.Ref or SpeedRef. 

 For both PID controllers, the proportional, integral, derivative and integral correction gains may be 
re-tuned to have the satisfied responses. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, 
taking the controller out of realtime mode and reset. Now the motor is stopping. 
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During running this build, the current waveforms in the CCS graphs should appear as follows*: 

 

 

 

 

 

 

 

 

 

 

 

 Fig.18 Measured theta, rg1.out and Phase A & B current waveforms. 
 
 
*    Deadband = 0.83 usec,   Vdcbus=300V, dlog.trig_value=100 
 
 
Level 3B – QEP / SPEED_FR test  
 
This section verifies the QEP1 driver and its speed calculation. Qep drive macro determines the rotor 
position and generates a direction (of rotation) signal from the shaft position encoder pulses. Make 
sure that the output of the incremental encoder is connected to [Main]-J10 and QEP/SPEED_FR 
macros are initialized properly in the HVPM_Sensored.c file depending on the features of the speed 
sensor. Refer to the pdf files regarding the details of related macros in motor control folder 
(C:\TI\controlSUITE\libs\app_libs\motor_control). The steps to verify these two software modules 
related to the speed measurement can be described as follows: 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Compile/load/run program with real time mode and then increase voltage at variac / dc power 
supply to get the appropriate DC-bus voltage.  

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop 
to speed loop. In the code lsw manages  the loop setting as follows: 

- lsw=0, lock the rotor of the motor. 
- lsw=1, close the current loop. 

 Set lsw to 1.Now the motor is running close to reference speed.Check the “speed1.Speed” in the 
watch windows with continuous refresh feature whether or not the measured speed is around the 
speed reference. 

 To confirm these modules, try different values of SpeedRef to test the speed. 
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 Use oscilloscope to view the electrical angle output, ElecTheta, from QEP_MACRO module and the 
emulated rotor angle, rg1.Out, from RG_MACRO at PWMDAC outputs with external low-pass 
filters. 

 Check that both qep1.ElecTheta and rg1.Out are of saw-tooth wave shape and have the same 
period. If the measured angle is in opposite direction, then change the order of motor cables 
connected to inverter output (TB3 for HVDMC kit). 

 Check from Watch Window that qep1.IndexSyncFlag is set back to 0xF0 every time it reset to 0 by 
hand. Add the variable to the watch window if it is not already in the watch window. 

 Qep1.ElecTheta should be slightly lagging rg1.out, if the calibration angle needs to be adjusted due 
to the angle offset between index and locked rotor position. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, 
taking the controller out of realtime mode and reset.  

Next, the following steps are to verify and or perform calibration angle of the encoder. The steps are 
as follows: 

 Make sure EQep1Regs.QPOSCNT, EQep1Regs.QPOSILAT, Init_IFlag, qep1.CalibratedAngle, and 
lsw are displayed in watch window. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Compile/load/run program with real time mode and then increase voltage at variac / dc power 
supply to get the appropriate DC-bus voltage.  

 Now the rotor should be locked. Set lsw to 1 to spin the motor. When the first index signal is 
detected by QEP, the EQep1Regs.QPOSILAT register latches the angle offset in between initial 
rotor position and encoder index in the code. Later, EQep1Regs.QPOSILAT is set to maximum of 
EQep1Regs.QPOSCNT as it latches the counter value for each index signal. In the code 
qep1.CalibratedAngle keeps the initial offset value. This value can be recorded to initialize 
qep1.CalibratedAngle at the initialization section in HVPM_Sensored.c or it can be detected in the 
code each time the motor is restarted. The calibration angle might be different for different start-ups 
and can be formulated as follows: 

Calibration Angle = Offset Angle ± n . Line Encoder  

 In the next section fine tune the detected calibration angle until minimum power is drawn under 
certain speed-load conditions for precise field orientation. 
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Level 4 Incremental Build 

Assuming the previous section is completed successfully; this section verifies the speed pid module and 
speed loop. 
 
Open HVPM_Sensored-Settings.h and select level 4 incremental build option by setting the BUILDLEVEL 
to LEVEL4 (#define   BUILDLEVEL LEVEL4). Now Right Click on the project name and click Rebuild 
Project. Once the build is complete click on debug button, reset CPU, restart, enable real time mode and 
run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be incrementally 
increased as seen in watch windows to confirm the interrupt working properly. 
In the software, the key variables to be adjusted are summarized below. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef (Q24): for changing the d-qxis voltage in per-unit. 
 IqRef (Q24): for changing the q-axis voltage in per-unit. 
 
The key steps can be explained as follows: 

 Set Compile/load/run program with real time mode. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Gradually increase voltage at variac to get an appropriate DC-bus voltage and now the motor is running 
with this reference speed (0.3 pu). 

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop to 
speed loop. In the code lsw manages  the loop setting as follows: 

- lsw=0, lock the rotor of the motor. 
- lsw=1, close the current loop  
- lsw=2, close the speed loop (sensored FOC). 

 Set lsw to 1.Compare Speed with SpeedRef in the watch windows with continuous refresh feature 
whether or not it should be nearly the same. 

 To confirm this speed PID module, close the speed loop by setting lsw to 2 and try different values of 
SpeedRef (positive or negative).For speed PID controller, the proportional, integral, derivative and 
integral correction gains may be re-tuned to have the satisfied responses. 

 At very low speed range, the performance of speed response relies heavily on the good rotor position 
angle provided by QEP encoder.  

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset. Now the motor is stopping. 

 

LEVEL 4B 

 Once the tuning process is completed, the motor can directly startup with closed speed loop as shown 
in the second block diagram (4B). During the direct startup, use the calibration angle detected in the 
previous level as initial value of qep1. CalibratedAngle and by-pass the calibration angle detection.  
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During running this build, the current waveforms in the CCS graphs should appear as follows* : 

 
 
 

 

 

 

 

 

 

 

 

 

 Fig19 Measured theta, svgen duty cycle, and Phase A&B current waveforms under no-load & 0.3 pu speed 

 

 

  

 

 

 

 

 

 

 

 

 

 
Fig20 Measured theta, svgen duty cycle, and Phase A&B current waveforms under 0.33pu load & 0.3 pu speed 

 

 

 

*    Deadband = 0.83 usec,   dlog.trig_value=100,    Vdcbus=300V  
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Fig21 Flux and torque components of the stator current in the synchronous reference frame under  
0.33pu step- load and 0.3 pu speed monitored from PWMDAC output 
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Level 4A - Incremental System Build Block Diagram
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Level 4 verifies the speed pid and speed  loop.
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Level 4 verifies the speed pid and speed  loop.
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