This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

Important enhancements for CC1310 family of devices and Datasheet/Errata Updates

Other Parts Discussed in Thread: CC1310, UNIFLASH

With the introduction of CC1310 die Rev B Texas Instruments is announcing several important enhancements increasing the versatility and usability of all CC1310 part numbers going forward. The changes and updates are summarized as follows:

1) Removed limitation on usage of on-chip 32 kHz RC oscillator. On die Rev B the built in 32 kHz RC oscillator (RCOSC_LF) can be used as the system low frequency oscillator to clock the RTC. The accuracy of the RTC when using this oscillator is within +/- 500 ppm when calibrated 1x per second. For radio networks that have more relaxed timing accuracy than the above, it is now possible to run the CC1310 die Rev B with only 1x crystal on the PCB (24 MHz).

2) Removed limitation on frequency bands supported in CC1310. New frequency bands are supported for the CC1310 from die Rev B and onwards, starting with support for frequency bands in the 430-510 MHz range. This will allow customers to use the same device in a number of markets worldwide. Note that current die Rev A material will still be limited to 863-930 MHz only. SmartRF Studio 2.4.3 or later will detect die Rev A devices and issue an appropriate warning as to the applicable frequency range. Please remember to update SmartRF Studio accordingly.

3) Removed limitation on Brown-out detector (BOD). The brown-out detector (BOD) has been improved from die Rev A to die Rev B and the CC1310 datasheet restrictions regarding the BOD no longer apply. Restrictions do still apply for die Rev A material. More details regarding this item is found in section 6.7 – Power management in the CC1310 datasheet (SWRS181 update C, footnote 2).

4) ESD correction. The ESD HBM and ESD CDM levels are corrected to ±3000V and ±500V respectively in the CC1310 datasheet. Note the following:

  • JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
  • JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5) DEVICE ID change. The DEVICE ID will be stepped between die Rev A (2B9BE02F) and die Rev B (3B9BE02F). The Device Identification Register, abbreviated TAPID and holding the DEVICE ID, is a register within the ICEPick status and control registers. This register is accessed via JTAG. Reading DEVICE ID can also be done in software, using the ICEPICK_DEVICE_ID or the USER_ID registers. Please refer to the CC13xx, CC26xx SimpleLink™ Wireless MCU Technical Reference Manual for details on these registers. For FLASH-PROGRAMMER-2 version 1.7.2 or later no updates are required, while for earlier versions the software running on the tool must be updated. Else die Rev B will not be recognized. For the Uniflash Standalone Flash Tool die Rev B support is provided by using the application «Update»-feature. For third party Flash programmers please refer to the companies providing these flash programmers.

6) Mandatory Software update. It is mandatory that the software is updated to TI-RTOS version 2.16.01.14 or later in order to maintain compatibility between die revisions. Please refer to the guidelines on the TI-RTOS web page for more details. Register settings supporting both die Rev A and die Rev B are generated using SmartRF Studio 2.4.3 or later. Emphasis: Without applying the new software, correct operation of the CC1310 die Rev B device cannot be guaranteed!

 For more info on the PCN please refer to the following Wiki: http://processors.wiki.ti.com/index.php/CC1310_rev_B_PCN_information