ReedKacz
HDC2080Many systems require a method to detect tampering. In some cases, that could mean that the door of a product has been opened. In other cases, it could mean that a seal on a device has been breached, or that an external element is affecting measurement precision. Device tampering can have many negative impacts, including unexpected changes in functionality, a safety risk to humans, security breaches or ruined devices. The good news is that many different kinds of sensors can assist in the effectiveness of tamper detection.
In this technical article, I will compare several tamper detection methods in order to help you choose the right option for your next design. It is possible to implement tamper detection in constrained applications when you need to minimize space and power consumption, such as in battery-powered or other applications where the standby power must stay below a certain level. Sensors from TI, for example, have been optimized to be small in device size and low in quiescent current draw.
Tamper detection is appropriate when there is:
Let’s look at four different tamper detection sensor technologies.
Hall-effect switches detect the type of tampering where a case is opened by mounting a magnet to the door of the device; see the Magnetic Tamper Detection Using Low-Power Hall-Effect Sensors Reference Design shown in Figure 1. Once the door moves away from the sensor, the magnetic flux is no longer present and the sensor can then determine whether the case has been opened. Hall-effect sensors have the advantage of being very low in power consumption; for example, the DRV5032 has an average current draw of 0.54 µA.
In systems where case tampering is important, Hall-effect linear devices can also determine the strength of external magnetic fields not present during normal operation. In some parts of the world, disabling a system with large magnetic fields produced by strong magnets does occur. A linear device such as the DRV5055 can detect whether a large magnet is in close proximity to the system and alert the service provider. In some cases, multidimensional axes of detection offer a more robust solution.
Inductive sensors, in conjunction with a printed circuit board (PCB) coil and a metallic object, can detect the changing inductance of a coil and thus are a good fit for detecting tampering where a case is opened. An inductive sensor used for this type of tamper detection, as illustrated in Figure 2, has the advantage of being able to perform detection with the target being a metal object, such as a safe door. But because the PCB must have sufficient space for the coil, this is the most complex of the four sensor methods. If you choose this method, make sure to consult the additional resources at the end of this article.
Humidity sensors, as shown in Figure 3 and Figure 4, are able to measure relative humidity and temperature. This type of sensing can detect a broken seal or leak tamper. For devices that are sealed to protect against harsh environments, a humidity sensor is an effective way to control the environment inside the device. As soon as the humidity level rises, the sensor will detect the broken seal and take corrective action. Humidity sensors are particularly useful for underwater devices. A humidity-based solution does not require any external elements; however, it is more expensive than other sensor technologies.
Ambient light sensors, as shown in Figure 5 and Figure 6, can determine a change in illumination and can sense an increased optical response during a broken seal or opened case. For a design with a known amount of light at the PCB, an ambient light sensor offers an easy way to implement tamper detection. Once the light level rises, the end equipment has entered an unexpected state. One example is a money drawer in a cash register. If the register is closed and light enters unexpectedly, that indicates a tampering scenario.
Table 1 is a high-level comparison of the four tamper detection sensor technologies.
Sensor Type | Cost | External elements | Type of tampering | Environmental needs | Detectability | Power consumption | Design complexity | Key products and size |
---|---|---|---|---|---|---|---|---|
Hall-effect sensors | Low | Magnet | Case open, system tampering | Access to two pieces of the case | Magnetic field | Switch: 0.54 µA at 5Hz Linear: 2.3 mA | Medium | DRV5032 1.54 mm2 TMAG5273 4.64 mm2 |
Inductive sensors | Medium | PCB coil and metallic object | Case open, impervious to magnetic fields | Access to place the PCB coil; needs metal to sense | Conductive targets (such as copper) | 2 µA to 4 µA at 1 Hz | Highest | LDC0851 4 mm2 |
Humidity sensors | High | None | Broken seal | None | Change in humidity | 550 nA 400nA | Low | HDC2080 9mm2 HDC3020 6.25mm2 |
Ambient light sensors | Medium | None | Broken seal, case open | Needs to have light levels change when case opens | Any light (broad spectrum to include infrared) | 1.8 µA | Low | OPT3002 4mm2 |
Each of the four different methods leverages low-power and small-size sensors to implement tamper detection. Which method will work best for your system?
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated