Manny Soltero
A Hall-effect sensor, also known as a Hall sensor, monitors magnetic fields with high accuracy, consistency and reliability. Why is that important? Because it enables you to sense the position and movement of objects in a system. In this article, I’ll explain what a Hall-effect sensor is, its basic building blocks and functionality, and common use cases for Hall-effect sensing products.
A Hall-effect sensor is not your typical integrated circuit (IC), because unlike most ICs, it indirectly interacts with its key “circuit” – a magnet! As shown in Figure 1, the elementary Hall-effect sensor comprises a Hall element, which turns a magnetic field into a voltage, and processing circuitry such as an operational amplifier. Both analog and digital processing circuitry are critical to a Hall-effect sensor’s operation because the output voltage from a Hall element is tiny – sometimes in the microvolt range. One of the simplest Hall-effect sensors uses only three-pin packages, small-outline transistor (SOT)-23 or transistor outline (TO)-92, for the power supply, ground connection and output.
Magnetic fields are never straight lines, as they extend from one pole to the other, but Figure 1 shows straight lines impinging on the sensor for simplicity. Knowing exactly how these field vectors behave in space allows you to do many creative things with them. Check out the application notes on TI’s Magnetic Sensors Support and Training page for some basic ideas.
Ever thought about how Hall-effect sensors work? The simple answer is that a small voltage develops across a piece of conductive material, crowding electrons to one side as current is forced through the conductor and a magnetic field is applied in an orthogonal direction (see Figure 2). This voltage potential is attributed to the Lorentz force, discovered by Edwin Hall in 1879.
Notice the magnetic field direction relative to the Hall element? That is a key aspect of the Hall-effect sensor that you need to consider in your mechanical design. Most Hall-effect sensor data sheets specify the expected direction of the magnetic field relative to the package surface. TI has multiple options available in its Hall-effect sensor portfolio.
This foundational understanding of how Hall-effect sensors function is necessary so that you know how to use them effectively, with proper position relative to a magnet. But you also need to know how the magnetic fields produced by a magnet behave with distance. Figure 3 shows a simple graph of how a magnetic field decays over distance from the magnet.
To maximize the measurement resolution, you will need to ensure that the system’s minimum-to-maximum distance values are within the region with the greatest change in magnetic field.
There are three types of position Hall-effect sensors available today:
Figure 4 shows the respective transfer functions of the three Hall-effect sensor types.
The magnetic points BOP and BRP in switches and latches define the hysteresis value (BHYS = BOP - BRP). Leveraging hysteresis in your system will prevent bouncing back and forth between output states.
Switches are common in laptops, refrigerator doors and end-of-line switches to detect when a magnet comes in close proximity to the sensor. Latches are popular in rotary encoding and motor commutation applications, where the rotational aspect of the application is ripe for continuously monitoring the position of the rotating shaft. Linear sensors can accurately measure the displacement of an object, so they are suitable for linear actuators, variable speed triggers and acceleration pedals.
Hall-effect sensors provide a cost-effective way to monitor moving objects. Depending on the application, you can use a switch, latch or linear sensor. If you’d like to continue learning about Hall-effect sensors, I encourage you to check out our TI Precision Labs training series on magnetic sensors.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated