Developing a production advanced driver assistance system (ADAS) requires working in both controlled laboratory environments and real-world scenarios. Development platforms from TI’s ecosystem design partners can help.
Focused on specific ADAS applications, these development platforms offer a more advanced starting point for engineering development relative to a typical evaluation module (EVM). They provide hardware and firmware around the system on chip (SoC) to enable data acquisition for sensor evaluation and characterization. They can also provide a scalable approach from a laboratory development to an on-vehicle deployment.
Starter kits
In a laboratory environment, a starter kit enables algorithm development and tuning under controlled conditions. The Jacinto™ TDA3x Automotive Starter Kit has up to four synchronous FPD-Link™ III high-definition data streams. It includes TI software development kits (SDKs) and D3 Engineering software frameworks with demonstration-level algorithms for front or rear camera applications, 2-D/3-D surround view, driver monitoring, and radar fusion.
With the starter kit, shown in Figure 1, you can simulate challenging scenes such as high contrast or light-emitting diode (LED) flicker; characterize your sensors; and develop algorithms for motion compensation, gain, auto-exposure, auto-focus, and auto-white balance.
Figure 1: The TDA3x Automotive Starter Kit helps simulate challenging scenes to enable algorithm development and turning under controlled circumstances
Rugged vision platform (RVP) development kits
During the next phase of development, you need a more rugged platform for proof-of-concept testing in real-world conditions. RVP development kits, with the same SDK and software frameworks as the starter kits, ease the transition from lab to on-vehicle testing.
TDA3x processors have image signal processors (ISPs) built into the chip and direct MIPI Camera Serial Interface (CSI)-2 access to camera data, so you can use low-power, less expensive cameras. The RVP-TDA3x Development Kit, shown in Figure 2, has a TDA3x processor and four FPD-Link III camera inputs. You can pair it with OV10640 rugged camera modules, as shown in this SurroundView demonstration video, or work with D3 Engineering to integrate other sensors.
Figure 2: RVP-TDA3x Development Kit
TDA2x integrated circuits have more processing power for your algorithms, but no internal ISPs. The RVP-TDA2x Development Kit has a TDA2x processor and eight FPD-Link III inputs. You can pair it with FPD-Link III cameras that have internal ISPs.
The new TDA2Plus processors give you the best of both worlds, with the processing power of the TDA2x family plus the on-chip ISP and direct MIPI CSI-2 access of the TDA3x family. An RVP-TDA2P Development Kit will be available in the first quarter of 2018, with up to 12 synchronous FPD-Link III sensor inputs for cameras and radar, as well as the ability to bring in GPS, LIDAR, ultrasonic and other sensors via Ethernet serial protocols.
These production-intent development kits are easy to set up, provide a logical pathway from lab bench to on-vehicle testing, and pave the way to creation of production systems. They include demo algorithms for many ADAS applications, including:
Figure 3: Surround-view high-definition multimedia interface (HDMI) output
What’s next?
First, use a starter kit in the lab to develop your proof of concept and define the requirements of your production system. Then, move to an RVP development kit to quickly deploy the first phase of your production ADAS.
From there, you can continue development on your own or work with D3 Engineering for design services.
If you’re developing ADAS or autonomous driving solutions, you can get to market faster with starter kits and development kits from TI’s ADAS processor ecosystem of carefully selected design partners. The kits give you an advanced starting point for your design, and a scalable approach for moving from laboratory development to on-vehicle testing.
Learn more about TI’s ADAS solutions.