Top 3 considerations for harsh industrial Ethernet

Originally published November 17, 2015.

Since its advent, Ethernet has grown by leaps and bounds, deployed prolifically in the commercial and enterprise markets. Due to well-defined standards and ease of deployment, it was only logical for Ethernet to spread in the industrial world as well. Meeting Ethernet requirements in harsh industrial environments requires a lot of insight and effort, however.

Meet the industry's lowest-latency 10/100-Mbps Ethernet PHY

 Reduce system response time or add extra nodes in daisy-chained networks without increasing system size or cost with the DP83826E.

The industrial environment, as shown in Figure 1, is very different from the commercial environment and poses its own set of challenges. Industrial environments often include harsh conditions like higher temperature ranges and voltages, higher noise, mechanical stress, etc. To meet the needs of this demanding environment, an industrial-grade Ethernet physical layer (PHY) must perform according to the requirements of Ethernet protocols. In this article, I’ll briefly describe the three most important aspects to consider when selecting Ethernet PHYs for your system.

Figure 1: Modern industrial setting connected by wireless and wired connections, including Ethernet. 

1. Low latency. Latency is the time it takes for packets to travel from source to destination. Different sections in a network will contribute to the total network latency. Communication in an industrial network is time-critical, which means that delays should be minimal and deterministic. Higher delay and varying packet arrival times degrade system performance.

Standard Ethernet is non-deterministic. IEEE 802.3 standards do not specify a maximum latency number for Ethernet PHYs. However, having low and deterministic latency becomes very important for Ethernet transceivers in an industrial environment. Low and deterministic latency enables faster response time and increases predictability. Low latency allows applications to run faster as there is less waiting time for information to propagate through the network and deterministic latency improves the synchronization of different networks since the delay remains constant.

Learn more about low and deterministic latency and how it is critical for industrial communications designs in this video.