//########################################################################### // // FILE: Example_2833xLedBlink.c // // TITLE: DSP2833x eZdsp LED Blink Getting Started Program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example configures CPU Timer0 for a period, and sets and clears the GPIO31 // LED on the 2833x eZdsp once per interrupt. For testing purposes, this example // also increments a counter each time the timer asserts an interrupt. // // Watch Variables: // CpuTimer0.InterruptCount // // Monitor the GPIO31 LED blink on (for GPASET) and off (for GPACLEAR) on the 2833x eZdsp. // //########################################################################### // $TI Release: 2833x/2823x Header Files and Peripheral Examples V133 $ // $Release Date: June 8, 2012 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File #include // Prototype statements for functions found within this file. interrupt void cpu_timer0_isr(void); float d,t; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.TINT0 = &cpu_timer0_isr; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize the Device Peripheral. This function can be // found in DSP2833x_CpuTimers.c InitCpuTimers(); // For this example, only initialize the Cpu Timers #if (CPU_FRQ_150MHZ) // Configure CPU-Timer 0 to interrupt every 1s: // 150MHz CPU Freq, Period is in uSeconds ConfigCpuTimer(&CpuTimer0, 150, 1000000); #endif // To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any // of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2833x_CpuTimers.h), the // below settings must also be updated. CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0 // Step 5. User specific code, enable interrupts: // Configure GPIO32 as a GPIO output pin EALLOW; GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 0; GpioCtrlRegs.GPADIR.bit.GPIO31 = 1; EDIS; // Enable CPU INT1 which is connected to CPU-Timer 0: IER |= M_INT1; // Enable TINT0 in the PIE: Group 1 interrupt 7 PieCtrlRegs.PIEIER1.bit.INTx7 = 1; // Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM ERTM; // Enable Global realtime interrupt DBGM // Step 6. IDLE loop. Just sit and loop forever (optional): for(;;); } void delay_loop() { volatile long i; for (i = 0; i <= t; i++) {} } interrupt void cpu_timer0_isr(void) { CpuTimer0.InterruptCount++; GpioDataRegs.GPADAT.bit.GPIO31 = 1; // Sets the GPIO31 to high once per interrupt for the time t provided by delay loop. delay_loop(); GpioDataRegs.GPADAT.bit.GPIO31 = 0;// clears the GPIO31 to low once per interrupt after delay loop is over and stays there till interrupt is encountered again. PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;// Acknowledge this interrupt to receive more interrupts from group 1 } //=========================================================================== // No more. //===========================================================================