

Improve Accuracy of the TMP006 With a Simple Transient Correction Algorithm

Ian Williams

October 31, 2011

Background

- Accuracy of the TMP006 is highly dependent on stable local temperature
- The IR (infrared) thermopile sensor in the TMP006 has a thermal RC response
 - Responds to thermal transients more slowly than a
 PCB board, causing temperature gradients to develop
 - Temperature gradients cause heat transfer by conduction between TMP006 and PCB, resulting in offsets in sensor voltage and unwanted error

Response to <u>Hot</u> Transient Event

Response to **Cold** Transient Event

Laptop Experiment Setup

 Laptop was powered for 30 min and several applications were run to stress the processor

TI Confidential – NDA Restrictions

Laptop Experiment Results

Laptop Experiment Results

Object Temperature Error Due to Transients

• The TMP006 transient error is proportional to the slope of the local temperature: $V_{obj} Error = \alpha (dT_{die}/dt)$

Theory: Sensor Time Constant Effect on Transients

- R_{th} Thermal resistance of thermopile
- C_{th} Thermal capacitance of thermopile

•
$$\frac{\partial T_{Hot}}{\partial t} = \frac{\partial T_{Cold}}{\partial t}$$
 (Delayed by R_{th}C_{th})

•
$$T_{Hot} - T_{Cold} = -\frac{\partial T_{Cold}}{\partial t} \times R_{th} C_{th}$$
 The difference in temperature created by a drift in the die

temperature

Theory: Sensor Time Constant Effect on Transients

$$T_{Hot} - T_{Die} = -\frac{\partial T_{Cold}}{\partial t} \times R_{th} C_{th}$$

$$V_{\text{Error}} = \text{Seebeck} \times (T_{\text{Hot}} - T_{\text{Die}})$$

The difference in temperature results in a voltage error on the thermopile

$$V_{Error} = Seebeck \times -\frac{\partial T_{Cold}}{\partial t} \times R_{th}C_{th}$$

$$V_{Error} = -\frac{\partial T_{Cold}}{\partial t} \times (Seebeck \times R_{th}C_{th})$$

$$\alpha = (\text{Seebeck} \times \text{R}_{\text{th}} \text{C}_{\text{th}}) = 2.96 \times 10^{-4} (\text{V} \times \text{sec} / \text{C})$$

The alpha mentioned before is a constant which corresponds to the multiplication of the Seebeck coefficient and slope of the die temperature (cold junction)

Calculating the Slope of Die Temperature

The slope of the best straight line fit for any set of points (x_i, y_i) can be calculated using the equation given below.

$$S_{0} = \frac{\left(n\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{\left(n\sum_{i=1}^{n} x_{i} x_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}\right)}$$

If we use four temperature points that are spaced 1 second apart; $(1, T_{diel})$ $(2, T_{die2})$ $(3, T_{die3})$ $(4, T_{die4})$ where T_{die4} is the latest measurement and T_{diel} is the first measurement, the above equation simplifies to:

$$T_{Slope} = -(0.3 \times T_{diel}) - (0.1 \times T_{die2}) + (0.1 \times T_{die3}) + (0.3 \times T_{die4})$$

Correcting Object Voltage Error

- Measure the slope of the local temperature versus time (recommend using 4 measurements)
 - For four, one second spaced readings:

•
$$T_{Slope} = -(0.3 \times T_{die1}) - (0.1 \times T_{die2}) + (0.1 \times T_{die3}) + (0.3 \times T_{die4})$$

Correct the sensor object voltage using:

•
$$V_{obj\ corrected} = V_{obj} + T_{Slope} \times 2.96 \times 10^{-4}$$

• Apply $V_{obj\ corrected}$ to the standard 3D equation to correct the transients

Laptop Experiment Post Transient Correction

TMP006EVM Software

- New revision (Rev. A) of <u>TMP006EVM software</u> includes transient correction functionality
- To enable, click Transient Correction at top-right of GUI
 - 4-sample delay will be observed when enabled while software calculates slope of local temperature

Questions?

- Contact information
 - Temperature Sensor area of E2E forums (preferred):
 http://e2e.ti.com/support/other_analog/temperature_sensors/default.aspx
 - E-mail: ian@ti.com

